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Abstract Periodicity of motion around the collinear li-

bration point associated to the Elliptic Restricted Three-

Body Problem is studied. A survey of periodic soluti-

ons in the Circular Restricted Three-Body Problem is

presented considering both Sun-Earth and Earth-Moon

systems. Halo, Lyapunov and Vertical families around

L1, L2 and L3 points are investigated and their orbital

period ranges through the entire family are reported.

Resonant motions within the orbit families in the cir-

cular problem are identified and selected as suitable ini-

tial guess to find periodic orbits in the elliptic problem,

which are targeted using a differential correction algo-

rithm. Periodic solution found are cataloged depending

on the number of revolutions around libration points.

Geometry, dynamical behavior and stability properties

of single-revolution orbits are shown, as well as double-,
triple- and quadruple-revolution solutions.

Keywords Periodic motion · Three-Body Problem ·
ER3BP

1 Introduction

The search for periodic solutions in complex non-Keplerian

systems represents one of the most promising and chal-

lenging problems in modern astrodynamics. Although
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this problem has been extensively studied in the past

decades, still the full comprehension of its dynamics is

far to be reached. Simplified models of the motion of

a particle under the gravitational attraction of celestial

bodies are usually studied. Among them, the Restricted

Three-Body Problem (R3BP) gained a lot of popularity

in the last few decades and, in some cases, replaces or

complements the simpler but less accurate Restricted

Two-Body Problem (R2BP) within specific and pecu-

liar applications.

Analytical studies by Farquhar [4] on three-dimensional

periodic solutions about libration points in the Earth-

Moon three-body system started a new era. Farquhar

found three-dimensional periodic orbits in the proxi-

mity of libration points and named them ‘Halo’ orbits.

Following his work on Halo orbits, Farquhar and Ka-

mel [5] found Lissajous trajectories near the translunar

libration point. Later, Howell [9] developed a numerical

algorithm to precisely compute them. After them, dif-

ferent families of periodic orbits have been found and

computed in the frame of the Circular Restricted Three-

Body Problem (CR3BP).

The Elliptic Restricted Three-Body Problem (ER3BP)

represents a better approximation, compared to the

CR3BP, of the dynamics of a small body in the prox-

imity of two attractors, whose two-body motion is not

circular. The nonzero eccentricity of the orbits of prima-

ries is the most notable perturbation leading the orbit

not to be periodic [20]. Compared to the widely studied

CR3BP, periodic motion in the ER3BP remains still to

be explored. Different kind of orbits have been targeted

in the past, with the main focus being either on syste-

matic analysis of the elliptical problem (e, µ) space de-

pendency [2,12,13,25,18] or on finding multi-revolution

orbits about collinear libration points [22,3,14,21]. Re-

levant studies on periodic motion under ER3BP include
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also the work by Gurfil and Kasdin [7], Palacian et

al [19] and Nayfeh [16]. The study of periodic motion

in the ER3BP is tightly correlated to the study of the

resonant motion near libration points. Reference works

in this field include studies on the investigation of the

dynamics related to the resonance problem [23,28] and

their classification [17,11].

The present work aims at finding periodic orbits

about collinear points in the ER3BP. Section 2 presents

the dynamics of the problem and sets the mathemati-

cal background in use throughout the paper. Section 3

discusses the numerical method in use and the stra-

tegy implemented to find solutions in the elliptic pro-

blem. Due to their peculiar nature, such solutions pos-

sess natural resonance with the motion of primaries.

Section 4 presents a survey of families of periodic or-

bits in the CR3BP and identifies suitable resonant solu-

tions, which are used as initial guess to compute orbits

in the elliptic problem, as shown in Section 5. Stability

properties of periodic orbits are reported for families of

solutions found and their dependency on eccentricity is

discussed.

2 Dynamics

The present study is performed under the assumptions

related to the Restricted Three-Body Problem (R3BP),

which describes the dynamics of a small body (third

body) that moves under the gravitational attraction of

two massive bodies, called primaries, without influen-

cing their motion. The R3BP is a suitable model of the

reality when the mass of the third body is negligible

with respect to the mass of the primaries. The motion

of the primaries is then influenced only by their mutual

attraction: accordingly, their relative trajectory is a co-

nic section, being solution of the Two-Body Problem.

The elliptic problem (ER3BP) considers the primaries

moving on ellipses around the barycenter of the system,

and it represents a generalization (for e 6= 0) of the sim-

pler circular problem (CR3BP), where the primaries are

constrained to move on circular paths (e = 0).

2.1 Equations of motion

In analogy to the classical formulation of the circular

problem [26], the equations of motion of the ER3BP are

commonly expressed in the synodic reference frame [27].

Unlike the CR3BP, the position of the primaries is not

fixed in the rotating frame as they move along elliptical

orbits: their relative distance ρ is not constant in time

ρ =
p

1 + e cos f
(1)

where p is the semi-latus rectum, f is the true anomaly

and e is the eccentricity of the two-body orbit of the pri-

maries. As a result, when seen from the rotating frame

(x̂, ŷ, ẑ), which rotates with angular velocity equal to

that of the primaries (two-body motion), the position

of m1 and m2 pulsates along the x̂ axis.

System 2 shows the equations of motion in nondi-

mensional form
x′′ − 2y′ = Ux

y′′ + 2x′ = Uy

z′′ = Uz

(2)

where (·)′ and (·)′′ indicate first and second derivative

with respect to the true anomaly f , while the nota-

tion U(·) indicates the partial derivative of the pseudo-

potential with respect to the variable (·). The pseudo-

potential function U associated to the problem is defi-

ned as

U =
1

1 + e cos f

[
1

2
(x2 + y2 − z2e cos f) +

1− µ
r1

+
µ

r2

]
(3)

where r1 and r2 represent the distance of the particle

from the primaries (m1 and m2), while µ is the mass

ratio of the planetary system

µ =
m2

m1 +m2
(4)

The system 2 is non-autonomous, since the motion

of the third body explicitly depends on the position of

the primaries, through the true anomaly f .

2.2 State Transition Matrix

The State Transition Matrix (STM) associated to sy-

stem 2 is used in the differential correction algorithm

to compute periodic orbits. Given the state vector X =

[x, y, z, x′, y′, z′]T , variational equations associated to

the problem can be written as

δX ′ = A(f)δX (5)

where A(f) is the Jacobian of system 2

A(f) =

[
0 I

UXX 2Ω

]
(6)

A(f) is a 6x6 matrix and its four 3x3 submatrices are

0 = zero matrix

I = identity matrix

UXX = matrix of second partial derivatives of U

Ω =

 0 1 0

−1 0 0

0 0 0


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Being the STM Φ(f, f0) solution of Equation 5, its com-

ponents can be computed numerically by solving the

system{
Φ′(f, f0) = A(f)Φ(f, f0)

Φ′(f0, f0) = I
(7)

2.3 Periodicity in the elliptic problem

For an orbit to be periodic in the CR3BP, it is suffi-

cient to replicate its six-dimensional state, after a cer-

tain time (period of the orbit). The circular problem

is known to have an infinite number of periodic soluti-

ons which can be collected into families of orbits with

continuously varying period. This is not true for the el-

liptic problem. Due to its explicit time dependency, it is

not sufficient for an orbit in the ER3BP to replicate its

six-dimensional state: the whole dynamics shall be re-

plicated, including the time-dependent position of pri-

maries. For this reason the ER3BP admits only isolated

periodic orbits, with well-determined periods. Since the

time dependency of the problem is due to the motion

of the primaries, orbits in the ER3BP must be periodic

with a period commensurable to that of the primaries.

When considering nondimensional equations 2, prima-

ries moves with normalized period of 2π: accordingly,

periodic solutions of the ER3BP must have period of

T = 2πN , with N ∈ N+. Being the orbit periodic with

period equal or multiple to that of the rotating frame,

it is periodic both in the rotating and in the inertial

frame.

The criterion for an orbit to be periodic in the ER3BP

was firstly given by Moulton [15], after merging toget-

her the aforementioned period constraint and his con-

siderations on the symmetry of the problem

if the infinitesimal body crosses the x-axis per-

pendicularly when the finite bodies are at an apse,

its motion is symmetrical with respect to the x-

axis.

The formalization of the periodicity condition is due to

Roy and Ovenden [24], who generalized it for the mo-

tion of n point-masses in the so called Mirror Theorem:

if n point-masses are acted upon by their mutual

gravitational forces only, and at a certain epoch

each radius vector from the (assumed stationary)

centre of mass of the system is perpendicular to

every velocity vector, then the orbit of each mass

after that epoch is a mirror image of its orbit

prior to that epoch

According to Moulton [15] and Roy and Ovenden [24],

a sufficient condition for the motion in the ER3BP to be

Fig. 1 Distribution of eigenvalues on the complex plane re-
presentative of the families of orbits studied in the paper.

periodic is that it has two perpendicular crossings with

the (x̂, ẑ) plane, which shall occur when the primaries

are at an apse.

2.4 Stability of periodic orbits

The stability of periodic orbits is assessed by studying

the properties of the STM over one orbital period (mo-

nodromy matrix). The eigenvalues of the monodromy

matrix and their evolution as function of the eccentri-

city are studied for each family reported in this paper.

The monodromy matrix is a 6x6 matrix and has six

eigenvalues which come in complex conjugate or reci-

procal pairs [2]. Figure 1 show possible distribution of

eigenvalues. These include cases with (a) three recipro-

cal real pairs, (b) two real and one complex conjugate

pair (on the unit circle), (c) one real and two complex

conjugate pairs (on the unit circle), (d) one real and

two complex conjugate pairs (not on the unit circle),

(e) three complex conjugate pairs (only one on the unit

circle), (f) three complex conjugate pairs (on the unit

circle). All cases (a-e) are representative of unstable or-

bits, except for case (f), which indicates a stable orbit.

Stability properties of periodic orbits studied are repor-

ted in Section 5, with reference to types of eigenvalue

distributions defined in Figure 1.

3 Numerical method

In this work, periodic orbits in the ER3BP have been

generated starting from orbits in the CR3BP with same

period, through differential corrections and eccentricity

continuation techniques.

In agreement with the Mirror Theorem [24], the dif-

ferential correction algorithm is implemented to target

two perpendicular crossings with the (x̂, ẑ) plane. More

in detail, a fixed-time single-shooting algorithm is im-
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plemented, based on the algorithm proposed by Ho-

well [9] and adapted for the case of ER3BP.

The initial guess is taken on the (x̂, ẑ) plane, at a

time the primaries are at an apse. The correction algo-

rithm targets the second perpendicular crossing, that

occurs after π or multiples of π, i.e. when the primaries

happen to be at an apse again. The time between the

two perpendicular crossings is half of the orbital period

of the periodic solution. In this case, it is sufficient to

find half of the orbit, and to propagate it forward for the

remaining half period to have the full periodic solution.

With reference to Howell [9], the vector of free vari-

ables is written as

χ =
[
x0 z0 y′0

]T
(8)

where the subscript 0 indicates conditions at initial

time, corresponding to initial true anomaly f0 that equals

either 0 (periapsis) or π (apoapsis). At the end of the

trajectory (half orbit), the state must satisfy the follo-

wing constraint condition, defined such to have perpen-

dicular crossing on the (x̂, ẑ) plane

F (χ) =
[
yh x′h z′h

]T
= 0 (9)

with subscript h indicating the state after half period of

the orbit, corresponding to true anomaly fh = f0+Nπ.

The goal is to compute a solution for the free vari-

able vector χ that satisfies the constraint condition

F (χ) = 0. The result is found iteratively through a

multi-variable Newton’s method:

χk+1 = χk − J(χk)−1F (χk) (10)

where subscript k indicates the current iteration and

k + 1 the next iteration. The Jacobian matrix J(χ) of

the problem is found by computing the derivatives of

the constraint with respect to the free variables

J(χ) =
∂F (χ)

∂χ
=


∂yh

∂x0

∂yh

∂z0

∂yh

∂y′
0

∂x′
h

∂x0

∂x′
h

∂z0

∂x′
h

∂y′
0

∂z′
h

∂x0

∂z′
h

∂z0

∂z′
h

∂y′
0

 =

Φ21 Φ23 Φ25

Φ41 Φ43 Φ45

Φ61 Φ63 Φ65


(11)

with Φij being the element (i, j) of the STM Φ(fh, f0).

4 Families in the circular problem

Several studies exist on the characterization of peri-

odic motion near equilibrium points in the CR3BP.

Relevant contributions include the work by Breakwell

and Brown [1], who computed families of orbits in the

Earth-Moon system. Later, their work has been exten-

ded to compute families for different systems, and study

Table 1 Orbital period of common resonant orbits.

T [nondim] M:N
1.26 5:1
1.40 9:2
1.57 4:1
1.79 7:2
2.09 3:1
2.51 5:2
3.14 2:1
4.19 3:2
6.28 1:1

Table 2 Orbital period for Halo families in the CR3BP.

T [nondim]
Libration Point Earth-Moon Sun-Earth

L1 1.84 - 2.78 1.52 - 3.06
L2 1.77 - 3.41 1.87 - 3.10
L3 6.15 - 6.23 6.28 - 6.28

their properties depending on the mass ratio µ between

primaries [9,?,10]. More recent works include a com-

prehensive survey of orbit families in the Earth-Moon

system [8,6] and their classification [29].

This section reports and discusses orbital period

ranges within Halo, planar and vertical Lyapunov fa-

milies around collinear libration points, in the case of

Earth-Moon and Sun-Earth three-body systems. Reso-

nant motion in the CR3BP is identified to be used as

initial guess to compute periodic orbits in the ER3BP.

Table 1 shows periods of common resonant orbits, cho-

sen in the interval between π/5 and π, with a maximum

of N = 2, with M,N ∈ N+ indicating respectively, the

number of revolution on the orbit and the number of

revolution of primaries.

4.1 Halo family

Table 2 shows orbital period ranges for Halo families

around L1, L2 and L3 in both Earth-Moon and Sun-

Earth system.

Orbital period of L1 and L2 families is shown to

be significantly lower than L3 family. Existence of reso-

nant motion in the Halo families can be established by

comparing Table 2 with Table 1. Resonant 3:1 and 5:2

Halo orbits exist around L1 and L2, both in the case of

Earth-Moon and Sun-Earth system. In the Earth-Moon

system, the L2 family has a slightly wider period range

with respect to the L1 family and includes 7:2 and 2:1

resonant orbits as well. In the Sun-Earth system, Halo

orbits with lower periods exist in the L1 family and 4:1

resonance is found. A significantly larger period is ob-

served for Halo orbits about the L3 point. In this case

the period is on the order of 2π and a 1:1 resonant be-
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havior is observed for orbits of the L3 Halo families in

the Sun-Earth system.

4.2 Planar and vertical Lyapunov families

Similar trends are found for planar and vertical Lyapu-

nov families, with the difference that, Lyapunov have

in general higher period with respect to Halo as they

can became very large. For the case of L1 and L2 fa-

milies, orbital periods ranges between approximately 3

nondimensional units, up to 5-7 nondimensional units.

More in detail, 3:2 resonance is found in all planar and

vertical Lyapunov families around L1 and L2, in both

Earth-Moon and Sun-Earth systems, and 2:1 resonance

is found in most of them. Families of Lyapunov about

L3 have period of approximately 2π, as in the case of

Halo orbit families, leading to 1:1 resonant motion with

primaries.

5 Periodic orbits in the elliptic problem

A survey of periodic motion in the ER3BP is presented

in this section. The orbits are classified depending on

the number of revolutions they perform around colli-

near points. Stability properties are also reported and

classified with reference to Section 2.4 and Figure 1. Ex-

amples from both Earth-Moon (e = 0.0554) and Sun-

Earth (e = 0.0167) systems are shown.

5.1 Single-revolution orbits

Single-revolution orbits in the ER3BP are associated

to 1:1 resonance with the motion of the primaries: the

spacecraft completes one orbit as the primaries do the

same around the barycenter of the system. Suitable ini-

tial guess for periodic motion in ER3BP typically refer

to 1:1 resonant orbits in the circular problem. In parti-

cular, as discussed in Section 4, solutions around L3 are

of interest, as well as large Lyapunov orbits, with pe-

riod of 2π. An example, referring to a planar Lyapunov

orbit about L2 in the Earth-Moon system, is shown in

Figure 2(a). The picture shows the initial guess given

to the correction algorithm in red (the 1:1 Lyapunov re-

sonant orbit in the CR3BP) and the periodic solution

after correction in the Earth-Moon ER3BP in blue, as

seen from the nondimensional rotating-pulsating frame.

The eccentricity of the problem is shown to have an ef-

fect on the orbit, as it shrinks the amplitude of the

orbit along the x axis. However, apart from this small

effect, no significant deviation from the circular case is

found. This kind of behavior is observed for many 1:1
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Fig. 2 Single-revolution orbits: planar Lyapunov in CR3BP
(red) and ER3BP (blue). (a) L2 orbit in the Earth-Moon
system (1:1 in the CR3BP). (b) L1 orbit in the Sun-Earth
system (5:2 in the CR3BP).

orbits, including those around L3, which are then not

very much affected by the eccentricity of the system.

Concerning stability, the planar L2 Lyapunov exhibits

a bifurcation at e = 0 where the two unitary eigenvalues

of the CR3BP orbit bifurcate to a complex conjugate

pair on the unit circle. There are no further bifurcati-

ons observed in the range e = [0, 0.0554] and all orbits

in this range are unstable, with two real (one positive

and one negative) and one complex conjugate (on the

unitary circle) pairs of eigenvalues (type (b)).

A further example of single-revolution motion is shown

in Figure 2(b), with the case of a periodic orbit in the

ER3BP generated from a 5:2 planar Lyapunov orbit

about L1 in the CR3BP. The corrector converges to a

single revolution orbit, of period 2π despite the different

resonance properties of the same orbit in the CR3BP,

which completes 5 revolutions every two revolutions of

primaries. With a different period, the geometry of the

solution changes and a greater deviation is observed

with respect to the previous case. As for the previous

case, the orbits are unstable and no bifurcations are

observed in the range of eccentricities explored. The

distribution of eigenvalues is of type (b) for all orbits,

with two negative real and one unitary complex conju-

gate pair of eigenvalues.

Single-revolution orbits appear to be the only possi-

ble periodic motion around L3: no multiple-revolution

orbits are observed about L3. The reason is found in

typical orbital periods of L3 orbits, which are in the

order of 2π. Only 1:1 resonance motion is observed in

this particular location. These orbits are stable in the

CR3BP and mostly keep their properties in the ER3BP.

A bifurcation occurs when e = 0, with the eigenvalues

moving from (1,0) point to the unitary circle and on

the real axis. However, the motion is very small along

the range of eccentricities studied and all eigenvalues

remains very close to the unitary point.
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Fig. 3 Double-revolution orbits (Earth-Moon system) shown
in nondimensional rotating-pulsating frame (left) and Moon
centered inertial frame (right). Solutions generated from 2:1
resonant orbits in CR3BP: (a,b) planar Lyapunov about L1,
(c,d) Halo about L2, (e,f) vertical Lyapunov about L1. Pro-
jections of 3D ER3BP orbits on x-y, x-z and y-z planes are
shown in gray.

5.2 Double-revolution orbits

Double-revolution orbits are observed to generate from

2:1 resonance in the circular problem. Since such perio-

dic motion exists in Halo and Lyapunov families around

L1 and L2 points, double-revolution orbits are found to

be quite common solutions in the ER3BP. Examples re-

lated to Halo, vertical and planar Lyapunov are shown

here.

Figure 3 shows examples of double-revolution or-

bits in the Earth-Moon system. Periodic motion is de-

picted both in the nondimensional rotating-pulsating

frame (figures on the left side) and in the Moon centered

inertial frame (figures on the right side). Figures 3(a)

and 3(b) refer to a planar solution that generates from

a Lyapunov orbit about L1. As any other orbit shown

in this work, the orbit is symmetric with respect to the

x-z plane. Due to its symmetry, the time between two

consecutive perpendicular crossings with the x-z plane

is π. This result is in agreement with the aforementio-

ned mirror theorem, since every perpendicular crossing

occurs when the primaries are at an apse (every π).

The orbit is made of two loops and a half (symmetric)

orbit includes the two halves of each loop. Each loop

has a period of approximately π, as the initial guess

orbit in the CR3BP. In particular, the smaller loop has

a period slightly larger than π, while the bigger loop

is flown in a shorter time. Figures 3(c) and 3(d) shows

a three-dimensional periodic solution, which generates

from a Halo orbit around L2 in the CR3BP. The three-

dimensional view is shown together with the projection

of the ER3BP orbit on the x-y, x-z and y-z planes.

The same is shown for the periodic orbit in Figure 3(e)

and 3(f), which refer to a solution generating from a

vertical Lyapunov near the L1 point. For the case of

double-revolution orbits shown in this work, all perio-

dic solutions appear to have similar properties in terms

of geometry and period with respect to their correspon-

ding CR3BP orbit. Both Halo, planar and vertical Ly-

apunov orbits in the CR3BP have period of π (they re-

plicate their initial state after 2π as well) and they split

into two geometrically similar orbits in the ER3BP.

The nonzero eccentricity has the effect of duplicating

the single orbit into two semi-orbits, which does not

replicate itself after π as in the CR3BP, but becomes

periodic of period 2π in the ER3BP. More into detail,

the two semi-orbits appear to be symmetric along the

x axis, with a contact point shared with their CR3BP

reference orbit. The presence of the contact point bet-

ween ER3BP and CR3BP solutions is enforced by the

single-shooting numerical correction algorithm in use,

to find a periodic solution in the ER3BP associated to

the specific (resonant) solution in the CR3BP. Trajec-

tories as seen from the Moon centered inertial frame

are also of interest. Since the motion is in resonance

with primaries, it results to be periodic in the inertial

frame as well. Interesting behavior appear both for the

planar case (Figure 3(b)) and for the three-dimensional

cases (Figure 3(d) and Figure 3(f)), where the orbits

are shown to surround the Moon with very peculiar

oscillating paths. Double-revolution orbits shown here

share similar stability properties and behavior. All or-

bits are unstable and exhibit a bifurcation at e = 0,

when a pair of eigenvalues departs from point (1,0).

Planar orbits show a type (a) instability (three pairs of

positive real eigenvalues), while three-dimensional or-

bits show a type (b) instability (two positive real and

one complex conjugate pair). Results on stability pro-

perties and e = 0 bifurcation are confirmed by results

in [3] on double-revolution three-dimensional Halo or-

bits.
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5.3 Triple-revolution orbits

As for the case of double-revolution orbits, the exis-

tence of 3:1 resonance in all families of Halo and Lya-

punov orbits about L1 and L2 makes triple-revolution

orbits quite common solutions in the ER3BP. Figure 4

shows some examples of triple revolution orbits, obtai-

ned from corresponding periodic motion in the CR3BP.

In this case, periodicity in the state is reached after

three orbital loops. With analogy to what observed

within the double-revolution cases, a similar orbit to

that of CR3BP is replicated three times. In the case

of Figures 4(a) and 4(b), the periodic motion in the

ER3BP is generated starting from a 3:1 resonant Halo

orbit about L2 in the CR3BP. Such orbit possesses or-

bital period of 2/3π. This example is in analogy with

the case shown in Figure 3(c) and 3(d): both cases re-

fer to a Halo orbit about L2, but with different orbital

period. Figures 4(c) and 4(d) show an ER3BP solution

associated to a 3:2 vertical Lyapunov about L1 in the

CR3BP. In this case, the CR3BP guess has an orbital

period of 4/3π, since it completes three orbital loops as

the primaries revolves two times around the barycen-

ter of the system. The orbital period is doubled with

respect to the case shown in Figures 4(a) and 4(b).

Accordingly, the resulting trajectory in the ER3BP is

periodic with period 4π. Geometrically, the outcome is

similar to those observed so far: the orbit makes three

loops and is periodic both in the synodic and in the in-

ertial frame. Same considerations apply for the case of

Figures 4(e) and 4(f), which refer to a periodic ER3BP

solution generated from a 3:2 resonant vertical Lyapu-

nov about L2 in the CR3BP. Periodicity is also obser-

ved after two revolutions of primaries (4π). Very inte-

resting behavior are observed for triple-revolution or-

bits, as seen from the Moon centered inertial point of

view. As for the case of double-revolution orbits, the

trajectory path surrounds the Moon with oscillations

associated to the three orbital loops that characterize

triple-revolution motion.

A very interesting solution is obtained when provi-

ding a 3:1 resonant Halo orbit about L1 in the CR3BP

as initial guess. In this case the starting point is a or-

bit with period 2/3π and three loops are obtained in

the ER3BP, in order to match the period of 2π. The

correction algorithm converges into a peculiar solution,

that connects motion between the neighborhoods of L1

and L2 points. Such solution is in fact a heteroclinic

connection between a solution around L1 and a solu-

tion around L2 (Figure 5). This periodic orbit might

be of great interest for space applications, since it pro-

vides free motion between L1 and L2 and considers the

higher fidelity dynamics associated to ER3BP.
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ŷ [km]

×1040

10

x̂ [km]

×104 0
-55

(b)

L1
Moon

0.2
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Fig. 4 Triple-revolution orbits (Earth-Moon system) shown
in nondimensional rotating-pulsating frame (left) and Moon
centered inertial frame (right). Solution generated from 3:1
resonant Halo about L2 in CR3BP (a,b). Solutions generated
from 3:2 resonant orbits in CR3BP: (c,d) vertical Lyapunov
about L1, (e,f) vertical Lyapunov about L2. Projections of
ER3BP orbits on x-y, x-z and y-z planes are shown in gray.
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Fig. 5 Triple-revolution orbit (Sun-Earth system) shown in
(a) nondimensional rotating-pulsating frame and (b) Earth
centered inertial frame. Solution generated from 3:1 resonant
Halo about L1 in CR3BP. Projections of ER3BP orbit on x-y,
x-z and y-z planes are shown in gray.

Vertical Lyapunov orbits are unstable with eigenva-

lue distribution of type (a) (L1 orbit) and of type (b)

(L2 orbit). In both cases, their real eigenvalues are po-

sitive and no bifurcations occur in the range of eccen-

tricities studied. On the contrary, triple-revolution Halo

orbits show a more complicated behavior. Figure 6 show
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(a)

(b)

Fig. 6 Distribution of eigenvalues as function of the eccen-
tricity for the case of triple-revolution families of orbits gene-
rated from 3:1 resonant Halo around (a) Sun-Earth L1 and
(b) Earth-Moon L2.

the evolution of the eigenvalue distribution for the case

of 3:1 Halo as function of the eccentricity. Several colli-

sions and bifurcations are observed. Figure 6(a) refers

to the Sun-Earth L1 3:1 Halo. In this case, after a bifur-

cation at e = 0, the distribution evolves from type (b)

(two real and one complex conjugate pair on unitary

circle) to type (a) (three real pairs) after a collision in

(-1,0) when e = 0.0085. A double collision occurs for

e = 0.0092, when two pairs of complex conjugates ap-

pears (not on the unitary circle, type (d)). Figure 6(b)

refers to the triple-revolution Earth-Moon L2 Halo. In

this case, the distribution of eigenvalues evolves from

type (c) (one negative real and two complex conjugate

pairs on the unitary circle) to type (f) (three complex

conjugate pairs on the unitary circle) after a collision at

(-1,0) when e = 0.0454. It is worth noting that type (f)

orbits are stable. A stability region is then identified for

this family of orbits in the interval e = [0.0454, 0.0468].

At e = 0.0468 a double collision occurs on the unitary

circle and two complex pairs are created inside and out-

side the unitary circle (type (e)).
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Fig. 7 Quadruple-revolution orbit (Sun-Earth system)
shown in (a) nondimensional rotating-pulsating frame and
(b) Earth centered inertial frame. Solution generated from
4:1 resonant Halo orbit about L1 in the CR3BP. Projections
of ER3BP orbit on x-y, x-z and y-z planes are shown in gray.

5.4 Quadruple-revolution orbits

The last class of periodic motion reported here is quadruple-

revolution motion. The resonance of 4:1 is not very com-

mon in the families of vertical and planar Lyapunov.

Also, no 4:1 resonance orbit can be found in the Halo

families about L1, L2 or L3 in the Earth-Moon system.

As for the case under study in this work, such resonance

is observed only in the family of Halo orbits around L1,

in the Sun-Earth system. Figure 7(a) and 7(b) show an

example of four-revolution solution obtained from the

4:1 Halo about L1 in the Sun-Earth CR3BP. As for the

last case of triple-revolution orbits shown, the correc-

tor converges to a heteroclinic connection between L1

and L2 solutions. In this case, the initial guess orbit

possesses period of 1/2π and then, the ER3BP orbit

is periodic after looping four times between L1 and L2.

The looping behavior is clearly seen when looking at the

projection of the motion in the synodic frame on the y-z

axis. The quadruple-revolution orbit exhibit a type (b)

instability, with two positive real and one complex con-

jugate pair (on the unitary circle) of eigenvalues. No

bifurcations are observed in the range of eccentricities

observed.

6 Conclusions

The work presents a survey of periodic solutions about

collinear libration points in the ER3BP. Results associ-

ated to Earth-Moon and Sun-Earth systems are shown.

Periodic motion is classified depending on dynamical

behavior and geometry, with the focus on the number

of revolutions the trajectory does before replicating its

initial state. Stability properties are assessed for each

orbit found and discussed as function of the eccentricity.

The resonance properties of Halo, planar and verti-

cal Lyapunov families are reported and the existence of

corresponding ER3BP solutions in discussed. More in
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detail, the analysis shows that planar orbits are com-

monly found as single-revolution orbits in the ER3BP.

Also, single-revolution solutions are found to be the

only existing solutions in the proximity of the third La-

grangian point, where resonant three-dimensional mo-

tion has not been observed. The most common three-

dimensional solutions found around L1 and L2 points

are double- and triple-revolution orbits. Such solutions

are associated to the 2:1, 3:1 or 3:2 resonance motion,

which is very common in all families of Halo and vertical

Lyapunov orbits. Finally, interesting heteroclinic con-

nections between L1 and L2 solutions have been found

associated to 3:1 and 4:1 resonance in the Halo family

around L1 point of the Sun-Earth system.
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