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Abstract—A wide gap exists between the state of the art in developing Wireless Sensor Network (WSN) software and current
practices concerning the design, execution, and maintenance of business processes. WSN software is most often developed based on
low-level OS abstractions, whereas business process development leverages high-level languages and tools. This state of affairs
places WSNs at the fringe of industry. The makeSense system addresses this problem by simplifying the integration of WSNs into
business processes. Developers use BPMN models extended with WSN-specific constructs to specify the application behavior across
both traditional business process execution environments and the WSN itself, which is to be equipped with application-specific
software. We compile these models into a high-level intermediate language—also directly usable by WSN developers—and then into
OS-specific deployment-ready binaries. Key to this process is the notion of meta-abstraction, which we define to capture fundamental
patterns of interaction with and within the WSN. The concrete realization of meta-abstractions is application-specific; developers tailor
the system configuration by selecting concrete abstractions out of the existing codebase or by providing their own. Our evaluation of
makeSense shows that i) users perceive our approach as a significant advance over the state of the art, providing evidence of the
increased developer productivity when using makeSense; ii) in large-scale simulations, our prototype exhibits an acceptable system
overhead and good scaling properties, demonstrating the general applicability of makeSense; and, iii) our prototype—including the
complete tool-chain and underlying system support—sustains a real-world deployment where estimates by domain specialists indicate
the potential for drastic reductions in the total cost of ownership compared to wired and conventional WSN-based solutions.
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1 INTRODUCTION

WIRELESS Sensor Networks (WSNs) are distributed
systems of small battery-powered devices equipped

with sensors and actuators. Their key features, such as ease
of deployment, make them ideal to harvest data from the
environment and to act on it.

Despite the many solutions to WSN-specific challenges,
such as energy-efficient communication, industry is reluc-
tant to adopt WSN technology. In fact, WSNs are often
perceived as a “foreign body” w.r.t. the established business
process technology at the back-end of information systems.
This is partly because, despite the several existing propos-
als [1]–[3], WSNs are still programmed with OS-level con-
structs [4], [5], which inherently clashes with the high level
of abstraction of business process design and execution [6].
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Scenarios. Consider for example the goal of improving
energy consumption and user comfort in an office environ-
ment. Employees book meeting rooms on the Web through a
back-end process notifying the expected participants. Inside
the rooms, ventilation should be minimal when no meeting
is scheduled, whereas knowledge of the booking schedule
enables pre-ventilation before a meeting, to ensure proper
air quality. Similarly, sensing the actual occupancy, e.g.,
empty booked rooms and occupied non-booked rooms,
helps optimize business operations by prematurely releas-
ing non-occupied rooms or by charging for overuse. To en-
sure proper air quality, actuators such as ventilation devices,
can take local decisions based on the status of surrounding
sensors, e.g., CO2 and motion, and on the booking schedule.

This scenario prominently includes requirements that
developers can only address by extending the application
logic across business processes and WSNs. Similar traits
emerge in a multitude of applications [7], such as predictive
maintenance of large machinery and operation of large
power plants [8]–[11]. For example, sensors attached to the
engines of cargo vessels can monitor their functioning based
on vibrations and lubricant temperatures. These data serve
at the shipping company’s back-end to optimize a cargo’s
route and to provision spare parts [8]. Differently, sensors
and actuators attached to solar panels can steer their opera-
tion based on current prices on the energy market, trading
off a panel’s wear and tear against monetary gains [9].

These scenarios are just further instances of the emerging
“Internet of Things” (IoT) [12], whose fundamental chal-
lenge is that of extending interactions between humans
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and digital machines to the physical world. WSNs provide
a low-cost, yet effective means to concretely achieve such
integration. As the Internet of Things reaches into industry
settings, many predict that the need to implement similar
applications flexibly and efficiently is bound to become
key [13], [14]. The case of business process integration, in
particular, is already frequently observed [15]–[17]. Unfor-
tunately, the current state of affairs lags behind this vision:
WSN technology is used only in very specific industry
settings, with little confidence in its performance and using
handcrafted solutions to achieve simplistic means of busi-
ness process integration [11], [18], [19].
Challenges. The example applications intrinsically require
a tight integration between the business process and the
WSN deployed in the environment. Unlike scenarios where
sensor devices simply act as data sources, the WSN needs to
enact part of the application logic specified in the business
process, for efficiency or dependability reasons [19]. As
a result, part of the application-specific software is to be
deployed right onto the resource-constrained WSN devices.

As we further elaborate in Section 2, this is still a
wide open software engineering problem. Despite the many
approaches existing to provide higher-level programming
abstractions [1], [2] for WSNs, the dominating practice is
to rely solely on the low-level constructs of the underly-
ing OS. To make a parallel with conventional platforms,
the situation is akin to developing a complex distributed
information system without any middleware, by employing
only on system calls.

To harmonize the state of the art in WSN software with
the more advanced and established practices in business
processes, we are to solve two key challenges:

1) The Integration challenge refers to the need of coor-
dination across the business back-end and the WSN.
Currently, the latter is mostly considered as a stand-
alone system: its integration with the back-end is left to
application developers. This is relatively simple when
such integration consists only in relaying collected sen-
sor data. However, it becomes complex when the WSN
must be equipped with application-specific functional-
ity and this must be coded with low-level primitives
provided by OSes such as TinyOS [4] or Contiki [5]. The
required expertise spans from traditional information
systems to low-level embedded systems programming.

2) The Unification challenge refers to the need of a single
comprehensive WSN programming framework. Exist-
ing higher-level WSN programming abstractions [1]–
[3] often focus only on one specific problem; their
combined use in a single application still requires con-
siderable effort. On the contrary, to drastically simplify
programming of WSN-integrated business processes in
the diverse scenarios above, developers need to com-
bine several abstractions at once. This requires a unified
programming framework where existing and future
WSN programming abstractions can blend smoothly.

We maintain, and empirically demonstrate in a real
deployment, that these challenges bear great impact on the
total cost of ownership, and hence are key in determining
the success of WSN technology in this domain.
Contribution and road-map. This paper presents the de-

sign, implementation, and evaluation of the makeSense sys-
tem we develop to address these challenges.

At the core of makeSense is the notion of meta-abstraction,
described in Section 3. Meta-abstractions capture the essence
of existing WSN interaction patterns, and serve to specify
the coordination between the business back-end and the
WSN. We define the set of meta-abstractions, their abstract
semantics, and their relationships in a meta-model that
describes these programming concepts independent of their
concrete realization. This remains application-dependent,
allowing different instantiations of a makeSense system, each
tailored to a specific scenario.

To address the integration challenge, we treat meta-
abstractions as first-class elements in existing business pro-
cess notations. To demonstrate this, we extend the Business
Process Model and Notation (BPMN) [20] with constructs
to represent meta-abstractions and to specify their concrete
instantiation, as illustrated in Section 4. We choose BPMN
because of its standardized nature and wide tool support.
We are, however, not strictly tied to BPMN; makeSense is
applicable to other workflow-based business process nota-
tions [6]. Figure 1 gives a concrete feel of our approach, by
showing the model implementing the aforementioned office
ventilation scenario. We return to Figure 1 in Section 4, when
we describe the specific BPMN extensions we design and
how they are used in our example application.

To reconcile the expressiveness of business process no-
tations with the reality of resource-constrained WSN de-
vices, we adopt a fully automated model-driven approach,
shown in Figure 2. The BPMN model is first compiled into
a custom intermediate language, called makeSense macro-
programming language (mPL), described in Section 5. The
language serves a dual purpose: i) it encodes the WSN-
specific processing at a higher level of abstraction than
OS-level WSN programming, thus decoupling the BPMN
model from the target WSN platform; and ii) it provides
a stand-alone language that WSN developers can directly
access if and when required, e.g., to fine-tune performance
or whenever they consciously decide not to rely on a model-
driven approach. The notion of meta-abstractions emerges
in mPL to provide a unit of language modularity, allowing
one to combine multiple programming abstractions, thus
addressing the unification challenge.

Developers reap the benefits of makeSense by means
of the associated toolchain, described in Section 6. The
toolchain includes the compilers and run-time layers sup-
porting the above functionality, along with a library of
concrete abstractions and a custom editor supporting mod-
eling. A full prototype of the toolchain can be downloaded
as a pre-configured virtual machine, along with technical
documentation in the form of a tutorial [21].

Our evaluation, in Section 7, is divided in three parts:
• In Section 7.1 we assess our core goal, that is, whether
makeSense facilitates the development activities, by con-
ducting two user studies, respectively targeted at the
modeling and macro-programming languages. The re-
sults confirm that developers perceive makeSense as a
significant step forward compared to the state of the art
in WSN development. This provides a basis to the argu-
ment of increased developer productivity when using
makeSense rather than OS-level WSN programming.



3

M
ee

tin
g 

Sc
he

du
lin

g

 
send 

meeting 
set-up 

message

receive end of 
meeting 
message

register room 
as free

register room 
as busy

V
en

til
at

io
n 

Sy
ste

m

send end of 
meeting 
message

master 
Data

lowEnergyConsumptionMode

aggreg 
CO2 
Data

delay 30s

 

 

 
 

aggreg 
Presence 

Data

detect 
presence

 
 delay 60s room free

delay: 
requestRoom.startTime 

- now() - 15*60

reliableTransmissionMode

aggregCO2Data 
.value < 20

aggregCO2Data 

.value >= 20 && 

aggregCO2Data 

.value < 50

ag
gr

eg
 

Pr
es

en
ce

 
D

at
a 

.v
al

ue
 >

 0

delay 30s

ReportAction: Stream

Target: LN

LocalAction: CO2SensingLocalAction
sense co2

DataOperator : Average

  reserve
new room

 send room 
busy message

 send room 
free message

 start 
ventilation

 stop 
ventilation

reliableTransmissionMode

 sense CO2 (static target: type = flapActuator, dynamic target = masterData.roomNum)

detect presence
(static target: type = flapActuator, 
dynamic target = masterData.roomNum)

Figure 1. Example makeSense BPMN model for adaptive ventilation.

• In Section 7.2, we dissect the performance of makeSense
from a system standpoint, evaluating the performance
overhead induced by the increased level of abstraction
and the extent it affects the system’s scaling properties.
The overhead we measure is acceptable and, most
importantly, it remains within the tight limits posed
by WSN platforms. Moreover, such overhead does not
prevent a makeSense system to scale up to hundreds of
devices, as we show through time-accurate simulations.

• In Section 7.3 we report on a small-scale real-world
deployment of the adaptive ventilation application in
Cádiz, Spain. This experience confirms the practical
effectiveness of makeSense, and is the opportunity to
estimate the monetary savings in development, instal-
lation, and maintenance compared to an existing wired
system and a conventional WSN-based one. Our anal-
ysis indicates a 65% reduction in development costs
compared to mainstream WSN programming solutions.

We end the paper with a concise survey of related work
in Section 8, and with brief concluding remarks in Section 9.

2 PROBLEM

Engineering software to collect, process, and store sensor
data is straightforward whenever the devices equipped with
the relevant sensors act as mere data sources, much like
a database. Developers encode the application logic using

Application
Model

Model
Compiler

Macro
Program

Macro
Compiler

WSN-ready
Binary

Figure 2. From process models to WSN-executable code.

traditional methodologies and tools, whereas the software
on the sensor nodes is application-agnostic. This is the case,
for example, when using externally-powered sensor nodes
directly connected to mainstream machines. Frameworks
enabling various forms of “physical mashups” [22], and
programming environments such as Wilyodrin [23] and
IBM’s Node-red [24] enable this kind of integration.

The application requirements and target platforms we
consider, and thus the software engineering problem we
tackle, are sharply different. Three key aspects set us apart
from the simpler setting above:

1) WSNs are distributed, wireless systems of battery-powered
embedded devices. The nodes typically route their net-
work traffic through multiple hops to one another or to
one or multiple gateways, which provide connectivity
to the back-end. The WSN is thus a separate distributed
system capable of operating autonomously, and yet
subject to severe constraints, especially in terms of
energy consumption [7].

2) Part of the application logic is to be deployed onto the WSN
devices, for efficiency or dependability reasons [19]. For
example, sensor data may be processed inside the WSN
using domain-specific algorithms, thus reducing net-
work traffic and saving energy. Further, control loops
such as the adaptive ventilation in our example appli-
cation, are most efficiently implemented by limiting the
data paths to the portion of physical space under con-
trol. Developers need to equip the WSN devices with
application-specific software, drastically increasing the
complexity of development.

3) Business processes express complex workflows through a
variety of different constructs expressing ordering of ac-
tivities, distributed interactions, decisions, and respon-
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sibilities. Envisioning part of the resulting workflows
to run on a WSN system, thus strikingly different than
usual business process execution environments, raises
a number of questions Examples are how to properly
slice the application logic, how to enable the coordi-
nation between WSNs and the back-end, and how to
generate efficient WSN code out of a high-level business
process specifications.

As we discuss further in Section 8, the current state of
the art in this area is limited. Solutions such as “physical
mashups” [22], Wilyodrin [23] and IBM’s Node-red [24],
for example, are unable to relocate part of the application
logic onto WSN nodes. Most existing model-driven ap-
proaches for WSN software do not address the integration
challenge. The few exceptions employ application-specific
proxies, incurring in additional development efforts and
performance penalties. Here again, no application-specific
logic is deployed onto WSN nodes.

The fundamental obstacle, in fact, is to engineer the
software running on WSN nodes [1]–[3]. The existing liter-
ature [25] already recognizes the distance in methodologies,
abstractions, and concrete tools between traditional prac-
tices of software engineering and WSN software, regardless
of application domains. The lack of a principled approach
to developing WSN-integrated business processes is thus
probably yet another instance of the “consensual divorce”
between software engineering and WSNs [25]. The ambition
of makeSense is to help reconcile these two domains.

3 META-ABSTRACTIONS

To address the integration challenge, we need to facil-
itate embedding WSN functionality in business process
specifications. To this end, we define the notion of meta-
abstraction: a conceptual model of typical WSN interaction
patterns independent of specific implementations. Defining
meta-abstractions also requires to formalize their relation-
ships. Knowledge of these is useful to establish how meta-
abstractions can be combined, providing a basis to tackle the
unification challenge.

Meta-abstractions thus provide: i) conceptual unity and
structure: coordination among WSN nodes and their in-
tegration with the business back-end are expressed with
few fundamental concepts and well-defined compositional
rules; and ii) extensibility and flexibility: by defining the
fundamental building blocks abstractly, we only partially
constrain their behavior, which is left open for (re)definition
by the concrete abstractions in a specific instantiation of
makeSense. The latter is also instrumental to address the
variety of available sensor and actuator technology [26].
None of our design decisions, in fact, is dictated by a
specific kind of sensor or actuator. Such details are to be
encapsulated in a specific makeSense instantiation, based on
application requirements and deployment scenario.
Identifying meta-abstractions. To determine the set of use-
ful meta-abstractions, we consider both the existing litera-
ture on WSN applications [7] and the emerging program-
ming practices in WSN development [27].

Figure 3 provides an intuition on the key meta-
abstractions we define in makeSense. Distributed actions

model WSN interactions involving multiple nodes, as op-
posed to local actions—not shown in Figure 3—that only
affect single devices, e.g., the action of sampling a sensor or
that of combining the readings of multiple physical sensors
on the same device into a higher-level information [28].
Distributed actions are further separated into:
Report actions represent the typical many-to-one interaction

pattern used in WSNs to funnel data from multiple
nodes (the “many”) to a single destination (the “one”).
Examples of report actions exist in most WSN ap-
plications, notably including those where WSNs are
employed to harvest data from the environment using
multiple sensor nodes reporting to a data sink, e.g., in
habitat, wildlife, or structural monitoring [29]. In this
sense, report actions map to the “collection” primitive
recognized by Levis et al. [27].

Tell actions are dual w.r.t. report actions and model the one-
to-many interaction pattern that enables communica-
tion from “one” node to “multiple” others. Examples of
tell actions are also found in many WSN applications,
especially those employing WSNs to implement control
loops [13], [14]. In these applications, actuation com-
mands are typically distributed from a single controller
node to multiple actuators in the environment. Thus,
tell actions mirror the “dissemination” primitive [27].

Collective actions, different from report and tell actions, do
not focus on a specific node, rather enable a global
behavior across multiple WSN devices. As such, they
model the many-to-many interaction pattern found in
WSN-based applications in the health-care, building
automation, and vehicular traffic domains [30]. More-
over, collective actions abstract a number of WSN coor-
dination functionality, such as monitoring distributed
assertions [31], [32].

Orthogonal to distributed actions, modifiers represent
ways to customize the behavior of a distributed action. A
target modifier identifies a set of nodes satisfying given
application constraints defined over application-level node
attributes, giving the ability to apply a distributed action
solely to these nodes. For example, a target may allow

f(x1 .. xn) 

tell actionreport action collective action target data operator

distributed actions modifiers

Figure 3. Distributed actions and modifiers.
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Figure 4. Meta-abstractions in makeSense.
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Figure 5. Nesting a report action inside a tell action to implement
distributed control loops.

one to “tell” only the actuators on a specific building floor
to take a (local) action. This is particularly useful in the
scenarios we focus on, where nodes possibly differ along
several dimensions, including their physical placement or
the sensors and actuators they are equipped with. Moreover,
data operators allow one to couple data processing with com-
munication. Examples of these are algorithms to filter data
before returning them to the user or forms of in-network
processing to reduce the amount of data transferred, thus
improving the radio utilization [33].

Composing meta-abstractions. Figure 4 shows a UML
meta-model specifying the relationships across meta-
abstractions and the allowed combinations.

According to the meta-model, at most one target is
optionally attached to any distributed action. We choose
to enforce this limitation in that applying a distributed
action to multiple, possibly intersecting, subsets of nodes
may conceal non-trivial semantics issues. Multiple data op-
erators may be attached only to report actions, according
to a programmer-specified order. Data operators, indeed,
may be applied in sequence and are most commonly used
when collecting sensor data according to a many-to-one
pattern [33], whereas they have limited applicability in
combination with tell or collective actions.

As shown in Figure 4, report and collective actions take
as input a local action that indicates what the “many” nodes
are to execute to produce the input data, e.g., sampling a
sensor. Tell actions, on the other hand, may use any action
as input, including distributed ones, to communicate what
action is to take on the “many” end. This enables a range
of sophisticated interaction patterns, such as distributed
control loops. For example, developers may write control
functionality to run on actuators based on nearby sensor
data, as in the case of an actuator controlling a room’s
ventilation based on CO2 readings in the same room. To
this end, developers can tell actuators to execute a report
action that collects nearby sensor data, as shown in Figure 5,
by “nesting” a report action inside a tell action. The nodes
addressed by the report action are specified with a proper
target relative to the actuator, e.g., by binding the sensors’
location to that of the corresponding actuator.

To ensure that the set of meta-abstractions and the cor-
responding meta-model are sufficiently general, we cross-
check our design against 48 recent WSN applications [7].
We use the meta-abstraction representation in mPL, as ex-
plained in Section 5, to perform such analysis, creating the
necessary code and comparing the resulting processing with
the application requirements. Our analysis indicates that our
design would be applicable to all but 3 of these applica-
tions, namely, FireWxNet, LOFAR-agro, and MEDiSIN [7].

In essence, the functionality we cannot easily express is that
of moving a data processing function across nodes based on
real-time sensor readings. Even though we can tell a subset
of nodes to execute a given action by properly defining
a corresponding target, making the same target definition
dependent on remote data is non-trivial. The latter func-
tionality would require the use of an involved combination
of report actions to move sensor data onto the node where
the target is defined.
Concrete abstractions. Meta-abstractions do not specify
their behavior, which is left to the concrete abstractions pro-
viding their actual instantiation.

In the current makeSense prototype, we use the Log-
ical Neighborhoods (LN) [34] abstraction to provide an
instantiation for both tell and target. LN replaces the phys-
ical neighborhood provided by wireless broadcast with an
application-defined one. The span of a logical neighborhood
is specified declaratively by means of Boolean predicates
over application-defined node attributes, using a custom
language. LN provides application programmers with a
broadcast API that allows one to send data to all nodes
belonging to a previously specified logical neighborhood.
Besides minor adaptations, LN matches the semantics of
both tell and target.

The DICE [31] system provides an instance of collective
action by enabling WSN-based distributed monitoring of
global invariants. A DICE invariant is expressed by Boolean
predicates defined over the state of multiple WSN nodes,
e.g., the expected state of actuators based on sensed en-
vironmental conditions. The underlying run-time support
performs invariant checking in a fully decentralized fashion,
thus matching the abstract semantics of collective actions.

We build custom implementations to instantiate the
report and data operator meta-abstractions. We essentially
wrap a simplified version of an existing data collection
protocol [35] with the APIs necessary to make it usable
as an instance of report. We call it STREAM abstraction, as
it primarily supports periodic traffic. Similarly, we create
wrappers for a number of common sensor data processing
functions to provide a basic library of data operators. Fur-
ther custom local action instances are available for reading
sensors and controlling actuators on the target platforms.

Our implementation of LN, DICE, and the STREAM
abstraction include mechanisms to transparently adapt to
varying underlying wireless topologies. Crucially, the sepa-
ration between meta- and concrete abstractions shields de-
velopers from this complexity, as meta-abstractions concep-
tually models given WSN interaction patterns independent
of how these are concretely realized. In the absence of such a
separation, developers would be exposed to the intricacies
of the corresponding mechanisms [36], ultimately steering
their attention away from the application goals.

We export meta- and concrete abstractions both at the
modeling layer, as described in Section 4, and at the pro-
gramming layer, as illustrated in Section 5.

4 WSN-INTEGRATED
BUSINESS PROCESS MODELING

To tackle the integration challenge, makeSense extends busi-
ness process specification languages to stretch the process
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definition and execution to the WSN. To render our ideas
concrete, we use BPMN to specify the behavior of WSN-
integrated business processes. In addition to the afore-
mentioned standardized nature and wide tool support of
BPMN, its expressiveness is already recognized as apt to
WSN applications [37]. These aspects motivate our choice of
BPMN, even though our approach is generally applicable to
workflow-based business process notations [6]. The existing
BPMN standard, however, does not suffice in makeSense and
requires dedicated extensions, as we discuss next.

Our presentation revolves around the example modeling
of the adaptive ventilation application described in the
Section 1, shown in Figure 1 using the makeSense extended
BPMN. Nonetheless, the design of the BPMN extensions
we describe next is rooted in the analysis of a large set
of WSN applications [7]. Besides the adaptive ventilation
application, we also test the applicability of our BPMN
extensions with two additional and diverse application do-
mains, namely, predictive maintenance of large machinery
and operation of large power plants [8]–[11]. Albeit not in-
cluded in the paper for brevity, these results of this analysis
are also available [38]–[40].

We begin with a concise primer on BPMN and discuss
the limitations of the existing standard that prevent mak-
ing the concepts in Section 3 emerge in BPMN. Next, we
describe our custom extensions to BPMN to specify the
behavior of business processes that extend to WSNs.

4.1 The BPMN Standard
The BPMN 2.0 standard [20] defines a notation widely
used to define and execute interactions between people,
systems, and organizations. Here we focus on the modeling
constructs most relevant to our goals.
Key concepts. Central to BPMN is the notion of process,
which is a behavior pattern with a corresponding run-time
instantiation. BPMN events define when process instances
are created and destroyed, or when their execution is sus-
pended until a condition occurs, e.g., a timeout expires.
The execution semantics of BPMN relies on the notion of
tokens associated to process instances. Flows represent the
control flow, i.e., the paths available to tokens across the
model. These paths can be manipulated at gateways acting
as decision points. Examples are parallel gateways, used
either to synchronize and combine incoming parallel flows
or to create new ones. Tasks represent the actual operations
carried out in a process, e.g., sending a message or entering
data by a human. Finally, data objects represent data struc-
tures, shared within a process instance, and accessible for
read/write by all of its elements.

Processes belong to pools, which represent distinct in-
teracting systems or organizations. Process instances exist
independently in their pools, although they can communi-
cate across pools with asynchronous messages. For instance,
in a trade between organizations, a sales process instance in
one organization may communicate with a purchase process
instance on another, by means of messages containing the
order number. Instead, flows and related elements can be
used only inside a single pool.
The need to extend BPMN. Existing work already recognize
how the existing BPMN standard is insufficient when inte-

grating ubiquitous embedded technology [17], [41], [42]. In
our case, BPMN is unable to express many of the concepts
required to export meta- and concrete abstractions at the
modeling layer, as we explained in the following.

The slice of the process logic running within the WSN,
for example, is difficult to identify unless developers pro-
vide appropriate inputs at the modeling layer. Such infor-
mation is necessary because the WSN-specific part of the
process logic requires special handling during compilation,
as discussed in Section 6. Similarly, the use of specific WSN
interaction patterns, represented in makeSense through the
combined use of meta- and concrete abstractions in support
of specific tasks, needs to be explicitly indicated by devel-
opers. It is in general impossible to infer this information
automatically when compiling the process model.

BPMN processes are also typically seen as distinct sin-
gletons, whereas in makeSense a single triggering event may
need to activate the same behavior on multiple WSN nodes,
possibly later rejoined when the processing is over. As
a result, merely identifying the slice of the process logic
germane to the WSN does not suffice. An example is the
distributed control functionality of Figure 5. The issues are
that: i) the (same) control process should be instantiated
on multiple actuators, and ii) the execution of such control
processes must be concurrent. The notion of BPMN process
is unable to specify such a behavior.

Finally, WSNs are complex software artifacts, whose
performance depends on the deployment environment and
is complicated by the scarcity of resources. Optimizing the
WSN operation is a non-trivial task, whose burden should
not be put on the application developer. BPMN per se can-
not express high-level non-functional requirements. Instead,
the makeSense toolchain may take these as input to steer the
system’s configuration towards given performance goals.

4.2 Extending BPMN
We extend BPMN to address these shortcomings. In do-
ing so, we adopt a methodology similar to other domain-
specific BPMN extensions [43].

Figure 1 exemplifies the use of the extended BPMN to
model the adaptive ventilation application. The bottom pool
VentilationSystem represent the WSN sub-system, while the
top pool concerns meeting schedules. The setup of a meeting
from a process instance in the latter triggers a message,
shown as an envelope icon, representing the event creating
the main process instance in the WSN pool. The information
is stored in a data object, shown as a document icon,
containing the overall schedule. The newly-created process
is immediately suspended by a timeout event, shown as a
clock icon, specifying that nothing is to be done until 15
minutes before the meeting. When the timeout expires, the
flow encounters a parallel gateway, shown as a diamond
with plus sign, which forks two processes concerned with
CO2 sensing and presence detection—the bottom and top
rectangles, respectively.
WSN pool. As illustrated in Figure 1, we use a single pool
to specify the WSN logic in makeSense. Explicitly distin-
guishing this pool from others elegantly makes the service
contract between the WSN and the rest of the process ex-
plicit; both can only communicate through messages. Such
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a distinction is anyways necessary as the WSN pool requires
a special handling by the makeSense toolchain [38]–[40]. We
introduce a new graphical element – the antenna icon in the
top-left corner of the VentilationSystem pool in Figure 1 –
to indicate the WSN pool. This allows the model compiler
to treat this pool differently from others: its corresponding
BPMN specification must be eventually translated into mPL,
as shown in Figure 2.

Compared to standard BPMN pools, a different set of
modeling constructs is available within a WSN pool. On one
hand, only a subset of standard BPMN is supported, as we
verify that many of the available constructs, e.g., the variety
of gateways and events, are of marginal use in WSNs [7],
[39]. On the other hand, we add new BPMN constructs
to make meta-abstractions emerge at the BPMN level. Im-
portantly, unlike existing literature aiming to model WSN
behaviors in plain BPMN [44], meta-abstractions spare the
need to explicitly model communication with and within
the WSN, by abstractly capturing possible WSN interaction
patterns. This greatly simplifies their integration in business
process modeling languages, such as BPMN.

In our example, both pools have terminating end events:
once a meeting finishes, any ongoing activities should be
terminated. The system can then switch to an idle state with
minimal resource usage until the next scheduled meeting
takes place.

WSN tasks. Processes in a WSN pool may or may not
correspond to concrete interactions with the WSN. In the
former case, processes are represented as “service tasks” in
BPMN jargon and identified by the same antenna icon of
the WSN pool, as for the sense CO2 task in Figure 1.

Every WSN task is mapped onto one action meta-
abstraction. This mapping, along with the binding of the
meta-abstraction with the concrete one, is represented
graphically through nesting. For example, in Figure 1 the
sense CO2 task is mapped onto a report action that acquires
values from remote CO2 sensors. The outer box in the
balloon associated to sense CO2 contains a label showing
the association between the meta-abstraction (report) and the
concrete one (STREAM).

The report action has associated modifiers and parameters,
shown inside the balloon with a similar pair of meta- and
concrete abstractions. In this example, modifiers include
a target to determine the action scope, bound to the LN
concrete abstraction, and a data aggregator to specify ad-
ditional data processing, bound to an AVERAGE concrete
abstraction. The only action parameter is, in this case, a
local action bound to a CO2SENSINGLOCALACTION used
to probe the CO2 sensor. The result of report is available as
a data object that, as in standard BPMN, can be accessed by
other elements in the diagram.

Based on the aggregate CO2 value, an XOR gateway,
shown as a diamond with an “X” sign, is used to toggle
ventilation in a room. The latter occurs in the start/stop
ventilation tasks. The processing in the bottom sub-process
is thus to collect CO2 data from a subset of remote nodes,
whose values are averaged to perform a local actuation.
We find similar patterns to express the decisions based on
sensed values also in the other application domains where
we apply our BPMN extensions [38], [39].

WSN tasks can be mixed freely with standard BPMN
tasks, as in the top process concerned with presence detec-
tion. In this case, the result of the detect presence WSN task is
used, through an XOR gateway, to send different messages
to the top process depending on the result of detect presence.

Sub-processes. To address the limitation described in Sec-
tion 4.1 of BPMN processes represented as distinct sin-
gletons, and thus unable to express multiple instances
of distributed computations within the WSNs, we extend
the BPMN sub-process construct. Sub-processes allow one
to structure the model hierarchically, like the two sub-
processes in Figure 1 concerned with presence detection and
CO2 sensing. In makeSense, sub-processes also determine the
node that orchestrates different parts of process execution.

The processing in the WSN pool outside of any sub-
process is always orchestrated by a single “bridge” node
interconnecting the WSN with a standard business process
execution engine. If we applied the same approach also to
orchestrate the execution of any sub-process in the WSN
pool, the bridge would be involved in every step of process
execution. This would generate plenty of network traffic:
every node involved in a sub-process would need to in-
form the bridge of the state of execution at every step,
significantly impacting the WSN lifetime. In domains where
connectivity between the bridge and the WSN cannot be
taken for granted [8], [11], in addition, this approach would
simply be unfeasible.

To ameliorate this issue, we make it possible to transfer
the execution of individual sub-processes to other arbitrary
WSN devices. In Figure 1, for example, the CO2Sensing sub-
process executes on all actuator nodes of a given room—the
one communicated via the message that originally triggered
the creation of the outer process. These actuators perform
CO2 sensing remotely through the report action bound to the
sense CO2 task. We use targets to specify where a sub-process
executes. In this example, we employ LN to instantiate
the target meta-abstraction. Therefore, target expressions
are represented in Figure 1 next to the name of the sub-
process as Boolean predicates over application-defined node
attributes, whose definition we illustrate next. Whenever
a sub-process terminates, the control flow returns to the
bridge node, which continues the execution.

Node attributes. To use target meta-abstractions, the node
attributes must be available at the BPMN level. To that end,
the relevant node attributes are specified in the Application
Capability Model (ACM), which defines a “schema” of at-
tributes to describe a node’s capabilities.

For example, the ACM for our reference application
may include a “function” attribute to distinguish nodes
equipped with sensors from those equipped with actuators,
as well as sensor-specific information such as accuracy or
maximum sampling frequency in the former case. Because
of its abstract nature, the ACM may also be used to represent
existing sensor classification schemes [26]. The actual values
taken by attributes on a given node are deployment-specific.
In a given deployment of the adaptive ventilation applica-
tion, a specific CO2 sensor deployed in room A would be,
for example, described by four attributes: hfunction, sensori,
htype, CO2i, haccuracy, 1ppmi, and hroom, Ai.

Whenever applicable, node attributes may be denoted
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as static, i.e., constants, or dynamic, i.e., values known only
at run-time. This distinction enables more efficient compi-
lation. For example, whenever targets are used to specify
the location of execution for sub-processes, as in Figure 1,
we can partition the code during compilation based on the
static part of target expressions.
Performance annotations. We tackle the problem of ex-
pressing high-level non-functional requirements, described
in Section 4.1, by providing performance annotations in
BPMN, e.g., to optimize latency vs. energy consumption
depending on the application’s state. The annotations are
conceived as extensions of the BPMN group element, and
depicted as dotted rounded boxes. In Figure 1, we use this
construct to set the WSN nodes into “low-power” mode
while they wait for a meeting to begin, and into a “reliable
transmission” mode during the meeting.

An underlying run-time adaptation framework would
monitor the execution of makeSense applications and, if
needed, realign the system configuration with the desired
performance goals. Section 6 describes a proof-of-concept
implementation of such adaptation framework. The goal
of this is merely to let us verify that the performance
annotations are sufficiently expressive to tune the system’s
operation towards different performance goals, and that the
makeSense run-time support provides the necessary hooks.

5 MACRO-PROGRAMMING LANGUAGE

To tackle the unification challenge, the design of mPL is
centered on two key aspects: i) the specification of interfaces
to implement the meta-abstractions in Section 3; and ii)
the definition of a core language to express the computation
required – at the WSN-level – to coordinate concrete abstrac-
tions, according to the meta-model of Figure 4.

The resulting language has a dual role: it provides the
target language for compilation of the extended BPMN
models, as shown in Figure 2, and can be used directly by
developers in a stand-alone fashion1. To facilitate the trans-
lation of the extended BPMN models, we design mPL as an
imperative object-oriented (OO) language with static typing.
This also fosters code re-use and robust implementations,
which are particularly challenging to achieve in WSNs [1],
[3]. Although the syntax is reminiscent of Java, the concrete
language semantics differs in many respects, because of
the need to reconcile the OO paradigm with the resource
scarcity of typical WSN nodes.

The remainder of this section focuses on the fundamen-
tal features of mPL and its role as part of the makeSense
toolchain. The complete specification of the language is
available [45].

5.1 Meta-abstraction Interfaces

The meta-abstraction interfaces, shown in Figure 6, capture
the constraints on how meta-abstractions can be composed,
as previously illustrated in the meta-model of Figure 4.

1. When mPL is used as a stand-alone language, or when mPL code is
manually modified after the model editor translates the original model
into mPL, the benefits of the model-driven approach are obviously lost.
We discuss this further in Section 6.

interface MetaAbstraction extends Serializable {}
interface Action extends MetaAbstraction {
void execute();
void stop();
Boolean isDone();
void waitDone();
void setParameter(Object key, Object value);
Object getParameter(Object key);
Object checkError();

}
interface LocalAction extends Action {
Boolean hasResult();
Object getResult();

}
interface DistributedAction extends Action {
void setTarget(Target t);
Target getTarget();

}
interface TellAction extends DistributedAction {
void setAction(Action a);

}
interface ReportAction extends DistributedAction {
void setAction(LocalAction la);
void setDataOperator(DataOperator dop);
DataOperator getDataOperator();
Boolean hasResult();
Object getResult();

}
interface CollectiveAction extends DistributedAction {
void setAction(LocalAction la);

}
interface Modifier extends MetaAbstraction {}
interface Target extends Modifier {}
interface DataOperator extends Modifier {
Object create(Object value);
Object nextState(Object state, Object value);
Object evaluate(Object state);

}

Figure 6. Meta-abstraction interfaces.

Moreover, they specify the operations associated with meta-
abstractions, which concrete abstractions must implement.

The Action interface provides an execute method to
trigger the action, which is limited to the local node in case
of a local action, or may span multiple nodes for distributed
actions. For instance, in the case of a report action, a call
to execute starts the process of gathering data from the
target nodes. The stop method interrupts any processing
triggered by execute. An action’s execution is asynchronous
w.r.t. the caller, that is, a call to execute does not block. This
applies also to local actions, as in many cases their duration
may be non-negligible, e.g., when operating a mechanical
actuator. To enable the caller to synchronize with an action’s
execution, waitDone blocks the caller until the action is
terminated, whereas isDone performs a non-blocking check
on the state of an action’s execution.

Actions may also accept parameters to customize their
behavior. For instance, a local action for opening a vent may
accept a parameter specifying the required vent opening
angle. The setParameter and getParameter methods allow
developers to specify an action’s parameters as key/value
pairs. Moreover, the execution of an action may fail; the
checkError method allows the caller to verify whether an
action is successfully executed.

LocalAction refines Action with the ability to return
results to the caller, e.g., a sensor reading. The hasResult
and getResult methods provide an iterator-like interface to
access the results. The former is a non-blocking operation
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that returns whether results are present; the latter is a
blocking operation that returns the first available result.
DistributedAction introduces the ability to specify a target
for the action execution, according to Figure 4, therefore
limiting its effects to a subset of the WSN nodes. The Target
interface, although empty, ensures through type-checking
that concrete abstractions providing target functionality are
correctly composed with actions.

Concrete abstractions providing distributed functional-
ity are expected to implement the interfaces TellAction,
ReportAction, or CollectiveAction, which extend Distribu-
tedAction. These provide a setAction method that allows
developers to specify the action to execute on the “many”
side, as illustrated in Section 3. This action is executed in
parallel on all nodes targeted by the DistributedAction. In
the case of a TellAction, this can be any Action including
further DistributedActions, which developers can exploit to
build schemes with a distributed control flow. For example,
the processing of Figure 5 can be specified with mPL as:
TellAction tell = ...
tell.setTarget(...); // actuators for ventilation
ReportAction report = ...
report.setTarget(...); // CO_2 sensors in the same room
LocalAction la = ... // local action to read CO_2 values
report.setAction(la);
tell.setAction(report);
tell.execute();

Unlike TellAction, the other distributed actions Report-
Action and CollectiveAction can only execute a Local-
Action, as in Figure 4. Developers access the results of a
ReportAction via an iterator-like interface, as in LocalAction.
Moreover, developers can associate a ReportAction to a
DataOperator instance to perform additional processing on
gathered data.

The DataOperator interface provides methods to enable
in-network processing of gathered data, based on an in-
cremental evaluation of aggregate state [46]. The create
method initializes the aggregate; the nextState method com-
putes a new aggregate starting from the current aggregate
and an additional value to merge; the evaluate method
computes the final aggregate. Numerous data processing
algorithms, especially those typically employed in WSNs,
can be expressed in this way [33].

Concrete abstractions are integrated in mPL as classes
implementing the interfaces of Figure 6. These classes differ
from regular mPL classes in that they are typically not en-
coded in mPL, but they implement the required functionality
in low-level C code. The use of C code increases the effi-
ciency and facilitates the reuse of existing WSN implementa-
tions. We expect the implementation of concrete abstractions
to be conducted by WSN experts already familiar with C
programming on embedded devices.

5.2 ScriptActions
The notion of BPMN sub-processes described in Section 4.2
requires to relocate the orchestration of an arbitrarily com-
plex sequence of operations—not just a single Action—to a
subset of WSN devices, as in the example of Figure 1.

For instance, imagine a specification stating that, on
all CO2 sensor nodes, a reading should be acquired and
reported to a nearby actuator only if the battery level is

above 20%. The actions to carry out on every CO2 sensor
node are themselves a composition of multiple actions: the
actions of acquiring the sensor reading and of checking
the battery level are both LocalActions, while the action of
sending data to an actuator is a TellAction. Further, these
actions are themselves “glued” together by some application
logic. Such a complex behavior cannot be expressed by a
single Action.

To cater for these needs, we define a modularity con-
struct called ScriptAction. The behavior of ScriptActions is
not predefined, but specified by the application developer
using custom mPL code. A ScriptAction can therefore be
used to define arbitrarily complex command sequences to
be executed on the nodes targeted by a DistributedAction
A ScriptAction is a sub-interface of Action, and can be used
wherever the latter is allowed, as in Figure 6.

In the above example of CO2 sensor nodes, one would
write the top-level code for the TellAction as
ScriptAction a = ...
TellAction t = ... // the top-level tell action ...
t.setTarget(...); // ... limited to CO_2 nodes
t.setAction(a); // a is a ScriptAction

where a is an instance of a class implementing the
ScriptAction interface, whose execute method would look
like:
void execute() {
LocalAction co2 = ... // reading CO_2
LocalAction battery = ... // reading battery levels
TellAction toActuator = ... // creates a tell action ...
toActuator.setTarget(...); // ... towards a nearby actuator

// reads the CO_2 sensor value
float p = (float) co2.execute().getResult();
// checks the battery level
if ((float) battery.execute().getResult() > 0.2)
// sends CO_2 reading to the actuator
toActuator.execute();

}

Based on the type rules of the interfaces, ScriptActions
can be used only in conjunction with TellAction, whose
setAction method accepts a generic Action. The name
ScriptAction refers to the fact that its use in conjunction
with a TellAction resembles the ability to remotely execute
a script. Note, however, that this does not imply that the
ScriptAction is necessarily migrated at run-time. We argue
that in the common cases where this technique is used, the
“scripts” can be pre-loaded on the target nodes, and invoked
at the appropriate time. The mPL macro-compiler performs
the necessary code allocation as explained in Section 6.

5.3 Core Language
mPL provides control flow constructs to coordinate the
functionality of concrete abstractions and multithreading
support to ease the translation of the extended BPMN dia-
grams. mPL’s core language is therefore designed to express
actual computation, possibly unfolding through multiple
execution units that proceed in parallel. We illustrate here
the key concepts; additional details on the design of the core
language are also available [47].
Language design. To ease the translation of the extended
BPMN models to mPL, we provide the key OO abstractions
through the familiar Java language syntax. Therefore, the
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object model is similar to Java: it supports single inheritance
for classes, but a class may implement an arbitrary number
of interfaces.

We also need to cater for compiling mPL to efficient
binary code that fits within the resource constraints of WSN
nodes. The memory model thus is different from many OO
languages, and supports different allocation schemes. In ad-
dition to dynamic allocation of objects on the heap, we also
support automatic allocation on the stack and static global
allocation. Using these features, programmers can imple-
ment code with more predictable memory requirements, as
memory overflows are extremely difficult to detect in WSN
software [48]. Like in Java, objects are always accessed via
references independent of how they are allocated.

To support the translation of parallel executions from
BPMN, mPL provides basic multithreading primitives, ac-
cessed by programmers with an interface closely modeled
after the Java Thread interface. We implement this interface
using the Contiki [5] multi-threading library. In doing so,
a potential issue is the high memory overhead, as each
thread has its own stack that needs to be constantly kept in
memory. To cope with this, mPL only supports co-operative
multi-threading and a pre-defined maximum number of
concurrent threads. If the maximum is reached, attempts to
create further threads fail and an error is signaled.

Embedded code. Many of the existing WSN abstractions
require extensive configuration, and provide their own lan-
guage to this end [1]–[3]. These languages are quite diverse
along a number of dimensions, ranging from purely declar-
ative [49] to functional designs [50], and from SQL-like [51]
to entirely custom syntax [34]. When integrating one such
abstraction in makeSense, the question arises as to how mPL
programmers may use abstraction-specific languages.

We employ the concept of embedded code, represented
with a special data type code, to address this issue. The
concept shares similarities with prepared statements for
embedding SQL code in programming languages to in-
teract with DBMSs. However, embedded code fragments
in makeSense are not interpreted at run-time, but they are
compiled as part of the macro-program. Whenever the mPL
compiler encounters an embedded code snippet, it triggers
abstraction-specific plug-ins that parse the embedded code
and produce C code eventually linked to the rest of the sys-
tem, as described in Section 6. The C code implements the
functionality necessary to configure the concrete abstraction.

For example, the Logical Neighborhood (LN) abstraction
that we use to implement the Target interface, already pro-
vides a custom language [34] to select the nodes belonging
to a logical neighborhood, that is, to a target in mPL. Figure 7
shows an example of the LN language as embedded code
in mPL. In lines 2 to 6, we use embedded code to identify
the set of nodes equipped with a CO2 sensor and located in
a specific room.

The example of Figure 7 also shows how abstraction-
specific custom languages often refer to a node’s charac-
teristics, such as “function”, “type”, and “location”. This
is the case in LN and many other WSN abstractions [31],
[49]. In makeSense, these information are encoded as node
attributes in the ACM, as explained in Section 4. To this end,
embedded code snippets are automatically given a reference

1 code neighborhoodDef = {:
2 neighborhood co2Sensors() {
3 ACM.getFunction() == "sensor" and
4 ACM.getType() == "co2" and
5 ACM.getLocation() == room
6 }
7 :};
8
9 Target co2SensorsRoomA = new LN(neighborhoodDef);

10 co2SensorsRoomA.bind("room", "meeting room A");
11
12 Report co2StreamA = new Stream();
13 co2streamA.setTarget(co2SensorsRoomA);
14 co2streamA.setAction(new ReadCo2Sensor());
15 ...
16
17 Target co2SensorsRoomB = new LN(neighborhoodDef);
18 co2SensorsRoomB.bind("room", "meeting room B");
19
20 Report co2StreamB = new Stream();
21 co2streamB.setTarget(co2SensorsRoomB);
22 co2streamB.setAction(new ReadCo2Sensor());

Figure 7. Embedded code example.

to a static mPL object ACM with pre-defined methods to access
a node’s attributes, as shown in lines 3 to 5 of Figure 7.
In this example, the embedded code snippet accesses the
ACM to retrieve the values of node attributes relevant to
the definition of the target.

In the same example, the selection of the room is left as a
symbol in the embedded code, with no concrete value asso-
ciated. This allows programmers to reuse the same embed-
ded code fragment for multiple instantiations of the same
concrete abstraction. This occurs at every such instantiation
by binding a symbol in embedded code with a variable or
a concrete value in mPL using bind, as in line 10 and 18.
This allows programmers to configure two LN instances
targeting different rooms based on the same embedded code
snippet. Whenever bind is used, during compilation the
abstraction-specific compiler plug-in is given a reference to
the bound value or variable, so it can generate C code that
accesses the actual value whenever needed2.

Without embedded code, abstraction-specific languages
would need to emerge at the meta-abstraction layer, break-
ing the generality of the latter. In contrast, our solution
allows a sharp decoupling between the meta-abstraction
and its concrete instance.

6 TOOLCHAIN AND RUN-TIME SUPPORT

We implement a complete toolchain to support the model-
driven approach in makeSense, as illustrated in Figure 2. The
toolchain aids developers in writing makeSense applications,
compiling them down to WSN nodes, and managing their
execution. A prototype of the entire toolchain, along with
an accompanying tutorial, is available online as a pre-
configured virtual machine image [21], easing the installa-
tion for novice users.
Model editor and compiler. The model editor is a brow-
ser-based tool supporting the creation of BPMN diagrams
including the extensions described in Section 4, based on

2. This also entails that if such a binding changes because of modifi-
cations in either embedded code or the mPL program, the mPL compiler
needs to re-run to generate an updated C code.
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the open source editor Signavio Core Components [52].
The editor allows one to create process models with the
BPMN extension elements illustrated in Section 4. It does
so by supporting WSN configurations, that is, workspaces
separating the modeling of different WSN installations with
different deployment-specific information in the ACM, e.g.,
about installed sensors and available concrete abstractions.
Further details on the model editor are available in [53].

The model editor also creates an extended underlying
XML structure model, which we use as a basis to trans-
late the WSN-specific slice of BPMN model into mPL. The
generated mPL code implements a state machine handling
execution tokens as per the BPMN standard, but also con-
tains code for exchanging messages via the WSN bridge
connecting the WSN devices with the back-end. WSN tasks
are transformed into calls to the mPL meta-abstraction in-
terfaces. BPMN sub-processes in the WSN pool cause the
generation of ScriptActions, as explained in Section 5.2.

The mPL code output by the model compiler is function-
ally complete and requires no manual intervention before it
can be handed over to the next stage of compilation, unless
developers are interested in fine-tuning the code by hand.
In this case, the manual changes are not reflected back in
the original BPMN model. Techniques exist to enable such
back-propagation, and could be integrated in makeSense [54].
Macro-compiler. The macro-compiler takes as input an mPL
program, either generated by the model compiler or, when
mPL is used in a stand-alone fashion, hand-written by devel-
opers. The macro-compiler generates as output executable C
code for the target platform [47], the Contiki [5] OS in our
case. The resulting C code is then compiled to a deployment-
ready binary using the standard Contiki toolchain.

We implement the macro-compiler in Java. An ANTLR-
based combined scanner and parser first generates an ab-
stract syntax tree representation of the input program, en-
riched with further information provided by a semantic
analyzer that determines dependencies among the involved
classes. Code generation for the target platform is handled
by a dedicated back-end, currently supporting Contiki-
based C code but designed to be easily replaceable to
support other platforms, e.g., TinyOS [4].

The output of the code generator is input to a code allo-
cator module, which leverages the dependency information
to slice the code for different nodes, based on their role. For
example, the WSN bridge most often employs a different set
of classes than sensors and actuators, as it does not demand
interactions with the environment, but requires the ability
to parse external messages. The ability to slice the code
accordingly improves the utilization of program memory,
precious on WSN nodes.

Embedded code snippets are handed over to abstraction-
specific compiler plug-ins as the macro-compiler encounters
them. Every concrete abstraction employing embedded code
is thereby required to provide one such compiler plug-in, re-
sponsible for parsing and translating the abstraction-specific
embedded code into executable C. The macro-compiler in-
cludes specific Java interfaces to enable the integration of
such plug-ins.
Run-time adaptation. The extended BPMN diagram may
include annotations specifying performance objectives at

different stages of the process, as described in Section 4.
Moreover, the communication protocols supporting the con-
crete abstractions need continuous monitoring and opti-
mization to cope with unpredictable environment dynam-
ics [36]. To meet these varying requirements, the protocols
must dynamically re-configure.

The kind of run-time adaptation problem we face in
makeSense differs from existing WSN literature, where the
dominating approach is to analytically model a protocol’s
operation and running optimization algorithms on such
model [55]. In makeSense, we do not deal with a single pro-
tocol whose operation is known in detail. Instead, multiple
protocols run simultaneously, each supporting a different
concrete abstraction, while their operation may not be pre-
cisely known, e.g., whenever a new concrete abstraction is
added with a custom run-time support.

Albeit not the central focus of our work, we verify that
such an adaptation problem is practically solvable by imple-
menting a proof-of-concept adaptation framework. In doing
so, we confirm that the performance annotations provide
sufficient information to express given performance objec-
tives, and that the underling makeSense run-time support
provides the necessary hooks to enact adaptation decisions.

Our proof-of-concept adaptation framework [56] is
based on Monte Carlo Q-learning [57], and operates without
requiring analytic protocol models. The optimization pro-
cess takes as input the performance objectives in the BPMN
diagram, the current system state, e.g., the link qualities, and
the complete WSN binary output by the makeSense toolchain.
Thus, we do not consider a single protocol, rather the same
combination of application-level functionality and network
protocols in use in the real system. Developers add cus-
tom abstractions to mPL by simply tagging the “tunable”
parameters, and let the adaptation process explore different
settings for those parameters as part of the binary image.

The learning process occurs through extensive simula-
tions performed to infer optimization policies, i.e., rules map-
ping a system state to a set of protocol parameters optimized
for a given performance objective. The policies are injected
back into the network, where a dedicated sub-system moni-
tors a node’s state and possibly executes policies as required.
The process relies on the COOJA simulator [58], which
allows time-accurate executions of binary code. Because of
the binary-level execution, the approach is applicable also
to OSes other than Contiki.

The model compiler uses dedicated APIs in mPL to
translate the performance annotations to executable mPL
code. In a sense, performance annotations in BPMN act
as an “aspect” [59] that percolates through the model- and
macro-compiler in Figure 2, down to the executable binary.
One may retain the same architecture, but provide different
implementations for the same mPL APIs to integrate more
sophisticated adaptation mechanisms [60], [61].
Execution and maintenance. The Contiki/C code output
by the macro-compiler runs on two target WSN platforms:
the popular TMote Sky [62] and WisMote [63] devices. As
Contiki itself is quite portable, moving to different platforms
does not pose excessive challenges.

We provide tools to monitor the system’s performance
after deployment. Through a dedicated GUI, developers
obtain statistics such as packet reliability and energy con-
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sumption, which are useful to further tune the perfor-
mance objectives. An over-the-air reprogramming tool also
allows one to replace the code running on a user-specified
subset of nodes without manually retrieving them, as is
common practice in WSN deployments. The overhead of
transferring the whole binary image, as normally required
because of the limitations of common WSN operating sys-
tems, may be reduced by integrating existing differential
re-programming approaches. This is straightforward, as the
makeSense toolchain eventually produces C code, which is
the target language for many such approaches [64]. These
functionalities offer great flexibility after deployment, e.g.,
to change the application logic or to apply bug fixes.

7 EVALUATION

We evaluate makeSense along three dimensions. Section 7.1
assesses the primary goals of makeSense: i) facilitating the
integration of WSNs with business processes—the integra-
tion challenge, and ii) the provision of a unified WSN pro-
gramming framework—the unification challenge. Section 7.2
studies the performance penalty that the higher-level of
abstraction in makeSense imposes. Section 7.3 reports about
a real-world deployment in a student dormitory in Cádiz
(Spain), which is also the opportunity to estimate the bene-
fits in total cost of ownership that makeSense may enable.

7.1 Benefits to Software Development
Through separate user studies, we assess how makeSense
facilitates the integration of WSNs with business processes,
discussed in the following section, and the effectiveness
of the unified WSN programming framework, analyzed in
Section 7.1.2. We apply different approaches in the two
studies to best cater for the different goals and expected
user base at the business process or programming level.

7.1.1 Business Process Integration
We assess whether our approach does indeed simplify the
development of WSN-integrated business processes.
Approach. We recruit six developers at SAP, with an average
age of 29.5 years and no previous knowledge of makeSense.
Only one participant is familiar with WSNs; half of them
report average knowledge of BPMN; the others have little
or no knowledge of either. Beforehand, we give the par-
ticipants a basic introduction to business process modeling
and BPMN, WSNs, and the makeSense model editor. This
introduction lasts less than an hour—from a business per-
spective, an acceptable training effort.

Next, we illustrate a test scenario similar to the Cádiz de-
ployment. The participants are asked to complete different
modeling tasks of increasing complexity, varying from “open
the editor and select the correct WSN configuration” (Task 1) to
“configure outgoing edges in such a way that ventilation is turned
on if CO2 is greater than 1000 ppm; otherwise it is turned off ”
(Task 21). After each task, we note down to what extent the
participants solve the task, in a “no success”, “success with
help” and “success” scale. We also collect the encountered
problems and offer help to those who do not complete the
task, ensuring that all participants are on the same level
when starting with the next task.
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Figure 9. Results from the modeling language questionnaire.

After the exercise, the participants are asked to fill in
a standardized User Experience Questionnaire (UEQ) [65],
asking for a score on a Likert scale of how the tool appeared
both in its pragmatic and hedonic qualities.

Results. Our main indicator for success is the task comple-
tion rate, depicted in Figure 8. For 22 out of the 24 tasks,
all participants can complete the given task successfully
with little or no help. Tasks 15 and 16 prove the most
challenging. They are about creating target specifications
based on Boolean expressions, which the model compiler
eventually translates into LN embedded code snippets. As
the users only had a brief introduction to the syntax of the
expressions, they struggle formulating them correctly. Only
one user completes them successfully without support, and
two users do not complete them at all. However, all users
complete the later Task 23 on their own, which requires
similar target specifications. Therefore, the skill for creating
target expressions can be acquired fast.

These results suggest that in the settings we test, users
without expertise in WSNs successfully design and imple-
ment WSN-integrated business processes with makeSense.
Overall, 4 users are able to complete all tasks with little or no
help. In particular, we observe that users are able to famil-
iarize themselves with the presented tool rather quickly. As
shown in Figure 9, the usability assessment of the makeSense
editor reveals that users finds the system attractive, efficient,
interesting (stimulation), and innovative (novelty), as the
values above average indicate. However, the questionnaire
also reveals that participants sometimes find it hard to find
the interface elements for a task (perspicuity).

The feedback we receive generally shows room for im-
provement w.r.t. the selection of WSN nodes using tar-
get meta-abstractions. As already noted, the participants
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struggled when selecting the relevant nodes using Boolean
expressions, which currently have minimal support from the
model editor. While the success rates in the second part of
the scenario indicate that users did learn this mechanism
eventually, the development of additional GUI elements for
this feature could help simplify this step. The editor inter-
face could also be improved by merging WSNs elements
into the categories of their BPMN counterparts, e.g., listing
WSN tasks besides the standard BPMN tasks, by providing
hints for data types, and by showing an indication of the
created meta-abstraction directly in the BPMN diagram.

Overall, the data collected in the usability study indi-
cates that our approach is effective in facilitating the design
and implementation of WSN-integrated business processes.

7.1.2 Macro-programming Language
Besides representing the compilation target for the model
compiler, mPL may also operate as a stand-alone WSN
programming language. We assess its effectiveness in this
respect as described next.
Approach. We mainly target novice WSN programmers,
namely, persons with average expertise in developing dis-
tributed software using conventional programming lan-
guages (e.g., Java) and development frameworks (e.g., JEE),
yet without specific skills in WSN programming. To this
end, we recruit 19 graduate students at Politecnico di
Milano, Italy. The students are completely extraneous to
makeSense, but successfully attended several general courses
on software engineering. Because of their background, the
students involved well represent the skills of a junior soft-
ware developer.

The students are first given a 1.5-hour introduction to
WSNs. Next, we teach the students programming WSNs
with Contiki/C. The tutorial, lasting 6 hours in total, mir-
rored previous Contiki tutorials, and included exercises that
the participants performed on their own; for example, to
setup staple networking functionality such as data collection
or to implement control loops based on sensor data. The
following day, we teach the students mPL programming. We
first briefly present makeSense in a 30’ seminar. Next, we
walk them through the tutorial [21]. This tutorial lasts about
5 hours, and comprises exercises similar to the Contiki one,
including the implementation of decentralized control loops
similar to Figure 5.

At the end of the second day, the students are given a
link to fill a survey about their experience. Questions in the
survey are split in two parts: questions to gauge background
and skills, and questions on the use of mPL. We report a
summary of the results next. The detailed description of the
answers is also available [66].
Results. Answers to questions about the participants’ back-
ground confirm their skills: 79% of the participants claim
5+ years experience with OO languages. On the contrary,
they appear fairly new to WSNs: 79% of the participants
indicate they learned about WSNs since about three months
and about 90% of their knowledge on the subject comes
from our general introduction. The participants hence do
match the kind of developers we target with makeSense.

Table 1 summarizes the answers on the use of mPL. The
concept of macroprogramming, known to cause confusion

Question Positive · · · Negative
Q1: Do you find the concept of macroprogram-
ming in makeSense intuitive?

47 43 10 0 0

Q2: Do you find the concepts of meta-abstraction
and concrete abstractions intuitive?

17 73 5 5 0

Q3: Does makeSense simplify development of data
collection applications?

90 5 5 0 0

Q4: Does makeSense simplify development of con-
trol applications?

95 5 0 0 0

Q5: Does object-orientation in makeSense help
achieve re-usable implementations?

90 5 5 0 0

Q6: How easy is it to adjust and to tune the make-
Sense tool-chain?

0 5 32 58 5

Q7: Is mPL easier to understand and use than
Contiki/C?

48 52 0 0 0

Q8: How smoother is mPL’s learning curve com-
pared to Contiki/C?

10 52 38 0 0

Table 1
Summary of answers to the questionnaire on mPL. Answers are

possible in a 5-grade scale, from most positive to most negative. Values
are in percentages.

because of the many flavors available [1], appears nonethe-
less fairly intuitive for makeSense (Q1). The less conventional
concept of meta-abstraction seems slightly harder to master;
the general agreement, however, is that it is still sufficiently
intuitive (Q2). The general feeling is also that makeSense
greatly simplifies the implementation of both data collec-
tion (Q3) and control applications (Q4). We argue that this
especially comes from the clear separation of distributed
actions into report, tell, and collective actions. Overall, much
of the positive feedback we collect is due to the higher
level of abstraction mPL offers compared to OS-level WSN
programming [3].

The adoption of a lightweight OO programming model
in makeSense also appears well received (Q5). Notwith-
standing the system overhead necessary to support an OO
programming model, we thus maintain that this design
decision pays off. On the other hand, the weakest point is
generally identified in the toolchain (Q6). This was some-
how expected: we mostly concentrated on designing and
implementing the programming model, whereas we lim-
ited toolchain support to the bare functionality necessary
to obtain running implementations. Improving this aspect,
however, “only” entails some additional implementation
work with no significant technical challenges involved.

Compared to Contiki/C, makeSense is perceived as easier
to understand and to use (Q7). The learning curve is simi-
larly considered smoother for makeSense than for Contiki/C
(Q8). This is the key comparison we are interested in, and
the results confirm we do achieve our overall goals. Using
mPL, the participants were indeed able to develop fairly
complex applications in a matter of a few hours. Within the
same time, using Contiki/C they could not progress farther
than a few toy examples.

7.2 System Performance
The benefits makeSense enables come at the cost of increased
run-time overhead, which we study in the following.
Previous results. In existing work [47], we quantitatively
assessed specific overhead figures by comparing represen-
tative WSN applications in mPL against functionally equiv-
alent Contiki/C implementations. We investigated perfor-
mance metrics such as code size, indicating the size of the
binary image to deploy onto the WSN nodes, and memory
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Figure 10. Large-scale performance in the building ventilation scenario.

consumption. These metrics, rarely significant for conven-
tional platforms, are key for WSNs because of resource con-
straints. For example, with only 48 KB of program memory
on TMote Sky nodes, an increase in code size of a few KB
may determine whether the resulting binary does fit at all.

The results indicated that although makeSense introduces
a non-negligible system overhead, the absolute values make
it still applicable to typical WSN platforms. Further, the
Contiki/C implementations are strictly tied to the consid-
ered applications, whereas the makeSense counterparts are
more generic. Based on our analysis, a Contiki/C implemen-
tation providing a level of flexibility similar to makeSense
would likely show a similar resource consumption [47].

In contrast, here we concentrate on how such system
overhead may possibly impact the ability of a makeSense
system to scale to large scenarios. This serves to demonstrate

the general applicability of makeSense.
Setup and metrics. We use the COOJA time-accurate sim-
ulator [58] to re-create a scenario akin to the one in the
Section 1. A custom Java program runs the business process
in Figure 1 by fictitiously generating meeting schedules.
The readings for CO2 and presence detection sensors are
randomly generated from a uniform distribution.

We simulate a variable number of meeting rooms, each
including one CO2 sensor, one ventilation actuator, and one
“controller” device that gathers data from the sensor and
accordingly operates the corresponding actuator. We also
simulate ten “backbone” WSN devices acting as wireless
routers to ensure connectivity. The wireless connectivity
among nodes is determined by enforcing all devices in a
room or in the backbone to be within each other’s wireless
range, and by randomly deciding what node in the back-
bone is within the communication range of one in a room.
Even though the setup is that of the adaptive ventilation
application, the network topology, the traffic patterns, and
the data paths are quite common in industrial WSN appli-
cations [11], [18], which gives our results wider validity.

We consider both system-level and application-specific
metrics. As for the former, we measure: i) the processing
overhead, indicating the microcontroller usage on the WSN
devices; and ii) the network overhead as the number of packets
transmitted over the air. These metrics are fundamental
for WSNs; for example, the communication overhead is
often regarded as a proxy for energy consumption, which
ultimately determines the system’s lifetime. To study the
application’s delivered quality of service, we measure: iii)
the detection latency at the back-end to register a room as
busy or free, depending on the readings of presence sensors;
and iv) the responsiveness of the control loop, determined as the
time the system leaves a room without ventilation when the
CO2 readings are above threshold, or vice-versa3.

We compare the makeSense implementation against two
functionally-equivalent Contiki/C implementations, based
on different architectures. One is completely centralized, that
is, all sensor data is funneled to a single device that acts
as a bridge to the business process, and the controller
nodes in every room are not utilized for application-level
processing. Actuation commands are centrally decided as
well, and then distributed to the actuators. This architecture
mirrors approaches where the integration with external
business processes occurs by means of custom-developed
application-specific proxies [69]–[71].

The other Contiki/C implementation is distributed in
that it allocates the CO2 sensing and presence detection
tasks in Figure 1 to controller nodes in every room. This
requires a significant development effort using Contiki/C:
the application code must be manually customized and tuned
depending on the type of node. With makeSense, the use of
sub-processes—eventually translated into ScriptActions—
and of properly defined Targets, together with the code
allocation functionality in the macro-compiler make this
process automatic.

3. Sensing room occupancy by comparing CO2 readings against a
threshold may appear trivial. In fact, much more sophisticated ap-
proaches exist [67], [68]. The specific way to process sensor readings
is, however, orthogonal to our work with makeSense, which imposes
no restrictions on the application logic.
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We ask seasoned Contiki programmers to implement
either of the baseline applications, and to do so in the
most optimized fashion, to provide a challenging baseline to
compare makeSense performance against. Each run lasts 24
simulated hours. The results we present next are averages
over at least 10 repetitions of the same parameter settings
with varying wireless topologies.

Results. We measure a similar processing overhead across
all implementations we test, with a worst-case 9.2% overhead
for makeSense compared to the distributed implementation
with Contiki/C. The application we consider does not in-
clude any particular heavy processing, as most WSN appli-
cations we target [7]. The added MCU usage in makeSense is
mostly due to OO support in mPL. This requires additional
functionality compared to a hand-written C implementation
that can be finely optimized for the task at hand. In absolute
terms, however, the overhead is limited, and not expected
to impact the general applicability of makeSense.

Figure 10 reports the results we obtain for the remaining
performance figures. Figure 10(a) shows that the network
overhead is approximately the same using makeSense or the
distributed Contiki/C implementation, essentially because
the data paths within the network and the underlying proto-
cols are largely the same. This is the most important aspect
determining a system’s lifetime, which is thus minimally
affected by makeSense when compared with a Contiki/C
implementation that, however, requires significantly greater
development effort.

In contrast, the centralized Contiki/C implementation in
Figure 10(a) scales much worse, culminating at more than
twice the network overhead than the distributed implemen-
tations with 100 rooms. Being entirely centralized, addi-
tional rooms cause added network traffic that eventually
causes collisions and re-transmissions on the wireless chan-
nel. The system’s lifetime thus suffers as a result. However,
this kind of centralized implementations are mandatory
when the back-end integration is realized with application-
specific proxies.

The detection latency measures shown in Figure 10(b)
confirm these observations. The performance for makeSense
and the distributed Contiki/C implementation is roughly
the same. The centralized Contiki/C implementation, how-
ever, suffers from a steep increase in the latency to signal
room occupancy to the business process. This is due to the
increasing number of re-transmissions, caused by greater
network overhead. In fact, the chart does not account for
executions where the message to the business process is
lost on the way, e.g., because a maximum number of re-
transmissions is reached. This almost never happens in the
distributed implementations, whereas it becomes increas-
ingly likely with the centralized one. With 100 rooms, about
one message every three is lost this way. Whenever this
happens, the back-end is notified only at the next iteration
of the sensing loop; for presence detection, this occurs after
an entire minute.

Figure 10(c), showing the control responsiveness we
measure in our experiments, again demonstrates that make-
Sense incurs little overhead compared to a distributed Con-
tiki/C implementation, which however, requires specialized
skills to develop. The performance for both implementations

(a) CO2 sensor. (b) Ventilation actuator.

Figure 11. Node installation in Cádiz.

is constant, as the data paths are limited to individual
rooms. Therefore, their number becomes immaterial. In
contrast, the centralized Contiki/C implementation suffers
similarly to Figure 10(b). The sensor readings must (unnec-
essarily) travel all the way up to the business process, where
the actuation decisions are taken and then distributed in the
opposite direction. This causes significant network traffic,
which impacts this implementation’s ability to scale.

Both the trends and the absolute values in Figure 10 pro-
vide evidence of makeSense general applicability, especially
w.r.t. large-scale settings. In summary, makeSense can recon-
cile the simplicity of programming provided by application-
specific proxies [69]–[71] with the efficiency of hand-coded
decentralized architectures.

7.3 Real-world Deployment and
Total Cost of Ownership

We deploy a simplified version of the adaptive ventilation
application in Section 1 in a student dormitory in Cádiz
(Spain). This effort is instrumental to both test the function-
ing of a makeSense-based implementation in a real setting
and to estimate the reduction in total cost of ownership
makeSense may enable.
Installation and operation. The application adjusts the
ventilation in a student’s room based on CO2 levels. The
system automatically shuts down at night to prevent noise
disturbing the student’s sleep. We deploy three WSN nodes
in each of two student rooms: one to monitor the CO2 levels,
shown in Figure 11(a); one to operate a motor hooked to
a ventilation duct, shown in Figure 11(b); one to act as a
controller that gathers data from the sensor and commands
the actuator based on a simple threshold-based control
law. We also install a WSN bridge in a nearby electrical
cabinet, and an additional WSN node in the ceiling to ensure
overall multi-hop connectivity. We assess the functioning of
the system through the logs collected at additional devices
we deploy attached to the WSN nodes. These monitor the
application execution through a WSN node’s serial interface.

We design and implement the software by using tell
actions to re-locate the control law on the controller nodes,
similar to Figure 5. The corresponding logic is encapsulated
in a ScriptAction including a report action to gather CO2

readings and a further tell action to command the actuators.
A third tell action is used at the WSN bridge to shut down
the system at night.
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Figure 12. Estimates of total cost of ownership in the real deployment of
Cádiz according to the development phase.

We run the system in Cádiz for about a week. Based
on the logs, we confirm that the system worked correctly
for the whole deployment duration, including night-time
shutdowns. During day-time, the actuator operates the air
duct according to two patterns. When a person is in a room,
the CO2 readings slowly increase until the threshold is
passed. This triggers the actuator to open the duct, causing
a decrease in CO2 values until they are below threshold.
At this point, the actuator closes the duct and the behavior
repeats, on average every 15’, as long as a person is in
the room. Instead, when a person is not in the room, CO2

readings are stable and always below threshold.

Total cost of ownership. Our installation in Cádiz re-
places a conventional wired system [72]. Moreover, our
industrial partners previously developed multiple WSN-
based installations [73]–[75] by only employing traditional
WSN programming systems. We can therefore, compare the
development, installation, and operating costs of both a
wired and a traditional WSN-based installation with those
of makeSense. The estimates we obtain, although certainly
not absolutely accurate in a quantitative sense, provide a
rough indication of the savings enabled by makeSense.

For the conventional wired system, we calculate the costs
using the task and material list of the earlier installation [72],
which was based on a proprietary system as in most similar
cases [76]. The hardware necessary for both the traditional
WSN-based installation and the makeSense one is the same.
For this, we refer to market prices at the time of the Cádiz
deployment. Considering the costs of components, assem-
bly, and customization at a major embedded hardware dis-
tributor [77], a CO2 sensor node costs 200e and an actuator
node costs 250e in quantities up to 50 items. To estimate the
software development costs for a WSN-based installation,
using either traditional programming systems or makeSense,
we consider the hourly development cost incurred by our
industrial partners in a previous similar WSN project [75].
These cover all development phases, including design, im-
plementation, and testing. For the makeSense installation, we
consider the same cost figures and scale them down to the
reduction in development time observed in the user studies,
as in Section 7.1.

Note that the approach above is likely to overestimate
the development costs for makeSense. The specialized em-
bedded programmers necessary for the traditional WSN-

based installation are highly skilled persons [78]. Their
unit cost is probably higher than that of personnel with
average expertise in distributed software, whom makeSense
empowers with a level of abstraction and tools sufficient to
effectively develop WSN-integrated business processes.

Figure 12 reports the results of our analysis split accord-
ing to the development phase. We consider a deployment of
30 nodes lasting 5 years, which is in line with existing instal-
lations in smart buildings [76]. Also note that the different
phases in Figure 12 concern not only the development of
the software, but also of the hardware and the costs of the
actual physical installation. The savings shown for different
systems in different phases are explained as follows:

• During requirement analysis, both WSN-based systems
equally incur lower costs because of the increased flex-
ibility due to wireless communications, which spares
much of the effort required to consider the wiring
requirements.

• During design, the traditional WSN-based approach
corresponds to the highest costs because of the effort
required to design custom functionality to integrate
with the business process out of the WSN.

• During implementation and testing, the conventional
approach pays the cost of dealing with a proprietary
system, which may either require specialized train-
ing or outsourcing the implementation to the system’s
provider.

• In the same phases, the traditional WSN-based ap-
proach suffers the complexity of current low-level WSN
programming systems. makeSense, however, speeds up
this task by hiding most low-level details.

• At deployment time, again the wireless systems incur
lower costs because of the flexibility of wireless com-
munications, which avoids cabling costs and facilitates
optimizing sensing and actuation points, unlike with a
wired system.

• For maintenance, the conventional system possibly re-
quires the intervention of the system’s provider. The
simpler WSN hardware makes maintenance easier,
while the reprogramming facility in makeSense further
simplifies the task.

• Disposing a wired system is extremely costly, as con-
struction works might be needed to remove wires [73],
[74]. This is not the case for both WSN-based systems.

Overall, we estimate that using a WSN-based system in
place of a wired one corresponds to savings ranging from
52% (Contiki/C) to 67% (makeSense) [66]. Using WSNs, the
requirement analysis, design, and implementation phases
account for a significant part of the whole figure. Using
WSN technology with traditional development approaches
turns out costly compared to makeSense: our estimates in-
dicate makeSense allows one to save 43% of these costs
compared to traditional WSN programming systems, such
as Contiki/C [66]. This is largely due to the ease of pro-
gramming that makeSense enables, grounded in the specific
support for integrating WSNs with business processes.

8 RELATED WORK

We concisely survey related efforts according to their scope.
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Business processes and ubiquitous technology. Integrating
or augmenting business processes with ubiquitous embed-
ded technology is often a challenge.

For example, Graja et al. [17] present extensions to
BPMN to model the interactions between a cyber-physical
system and the environment it is immersed in, along with
the corresponding physical and control dynamics. Several
works integrate IoT devices with business processes by pre-
senting them as a form of sensing resource to the workflow
definition [42], [69], [71], [79]. Yousfi et al. [41] revisit the the
XML schema definition of BPMN as well as the notation,
to represent business process where ubiquitous technolo-
gies are employed to generate triggering events. Baresi et
al. [80] present an extension to the Guard-Stage-Milestone
framework to integrate the functionality of smart objects
in cross-organization business processes. Finally, Kim et
al. [81] describe a method to develop adapters between
BPEL documents and IoT services.

Unlike in makeSense, in these works no application-
specific logic is deployed on the embedded devices. Dif-
ferently, application-specific proxies are created on inter-
mediate machines, such as gateways or home routers [70],
[82]. These mediate the interactions between a standard
business process engine and the embedded devices. Such
an approach presents several limitations, in that it involves
a significant per-application development effort. Moreover,
it is likely inefficient whenever, for example, the application
logic involves coordination of co-located sensors and actu-
ators. In these cases, data that should be processed in-situ
must travel across a complex network infrastructure to the
business process engine and back, causing increased latency
and energy consumption. We quantitatively verify this claim
in Section 7.2 with the centralized baseline.

Model-driven development (MDD). The high-level of ab-
straction of MDD approaches provides an asset to move
developers away from the intricacies of low-level embedded
programming [83]. In makeSense, we leverage this feature as
well, through the model-driven approach shown in Figure 2.

In other works, FRASAD [84] defines a node-centric
software architecture and a rule-based programming model
to let developers describe applications. Executable code is
generated from the initial models through an automatic
model transformation process. Patel et al. [85] present a
development methodology that separates IoT application
development into different concerns, and a supporting de-
velopment framework that integrates code generation, task-
mapping, and linking techniques. Vidal et al. [86] offer
modeling primitives for explicitly specifying the autonomic
behaviour of a cyber-physical system and model transfor-
mations for automatically generating part of the embedded
code. None of these works, however, explicitly targets the
integration of the embedded system with an existing back-
end, as we do in makeSense.

Works also exist that use business process notations as
a WSN programming language, hence not explicitly consid-
ering integration with the back-end [87]. In these cases, the
business process notation merely represents a graphical al-
ternative to traditional programming languages. For exam-
ple, the work by Caracas and Bernauer [44] relies on a subset
of BPMN to generate WSN code from business process

specifications. Glombitza et al. [88] use BPEL to a similar
end. Common to these works is is the direct generation of
platform-specific low-level code out of high-level models.
In contrast, our model-driven approach, shown in Figure 2,
along with the use of mPL as intermediate language, caters
for better platform-independence and increased extensibil-
ity. Nevertheless, we demonstrate in Section 7 that the sys-
tem overhead of makeSense is comparable to existing works,
and does not appreciably impact scalability.
WSN programming. Closest to our work is Baobab [89], a
framework whose objective is to strike a balance between
generality and applicability of the meta-model layer. In
Baobab, users can extend the meta-model layer by defin-
ing their own domain-specific or platform-specific meta-
models. This is similar to the developers’ ability in make-
Sense to add new concrete abstractions to the meta-model,
depending on application requirements. However, Baobab
exclusively targets functionality running within the WSN,
unlike the back-end integration we target in makeSense.

In the general field of WSN programming, several solu-
tions exist to raise the abstraction level [1], [2]. For example,
some systems represent the WSN as a distributed database
[51], or provide sophisticated macroprogramming frame-
works atop C [90] or using custom languages [50]. Database-
like interfaces are usually limited to data collection applica-
tions while more complex frameworks may require learning
a new language. Systems of both categories are usually
monolithic and do not provide a well-defined interface
to integrate application-specific abstractions. Instead, mPL
provides an extensible programming framework.

The syntax of mPL’s resembles Java, a language most
business-oriented programmers are already familiar with.
Although several Java virtual machines exist that are tar-
geted at low-power embedded systems [91]–[93], they still
require a significant amount of resources. Our approach
differs by generating customized C code, which is in turn
compiled into optimized binary code.

9 CONCLUSION

makeSense aims at simplifying the integration of WSNs into
business processes. Central to makeSense is the notion of
meta-abstraction, which captures fundamental WSN inter-
action patterns. We use meta-abstractions to extend a main-
stream business process notation, and as the cornerstone
of a new WSN programming language. The latter serves
as intermediate language in a compilation toolchain that
transforms process models to deployment-ready WSN bi-
naries. Our evaluation shows that the performance penalty
due to abstraction is well compensated by the advantages it
bears, both at the modeling and programming levels. This
ultimately results in reduced total cost of ownership, as we
demonstrated based on real-world experience.
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