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Abstract

We consider the inverse problem of detecting an inclusion in a
layered conductor through electrostatic measurements taken on the
boundary. We analyze in particular the stability issue showing that
the solution depends from the available data with a rate of continuity
of logarithmic type.

1 Introduction

In this paper we consider the inverse problem of determining an unknown
inclusion contained in a layered medium from electrostatic boundary mea-
surements. In particular we focus our analysis on the stability issue, that is
the dependance of the inclusion from the measurements performed. This re-
sult follows the line started in [3], where it is considered a domain of constant
conductivity inside which a region with different unknown conductivity is lo-
cated. It is shown that the dependance of the inclusion from the boundary
measurements is of logarithmic type. This rate of continuity turns out to be
optimal as shown by examples in [10].

The approach to get stability has been later applied to different contexts
(more general isotropic conductivity [6], a class of anisotropic conductivities
[9], inverse scattering [7], thermal imaging [11, 12], elasticity [4]) and it is
based mainly on two arguments:

• quantitative estimates of unique continuation;

• singular solutions.
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Here we will use the same approach. As for the quantitative estimates of
unique continuation we will take advantage of the recent paper [13], where it
has been derived a three-region inequality for a second order elliptic equation
with a jump discontinuous coefficient. A crucial tool to get such inequality
is the Carlemann estimate proved in [8]. It is possible indeed to provide a
precise evaluation of the propagation of smallness measured on the boundary
up to the inclusion.

As for the singular solution method, we will use the asymptotic study
contained in [3] to get the stability estimates. Let us mention here that,
in the present setting, the inclusion is assumed to be located at a positive
distance from the interface of the layer. The major difficulty relays on the
fundamental solution argument. In particular it is not clear how to write
explicitly such a solution when the boundary of the inclusion and the interface
intersect each other.

The three region argument, since the background conductivity is known,
does not notice the presence of the interface. Therefore the result, we prove,
can be obtained for multi layers media no matter the number of interfaces
there are, as long as the inclusion does not touch the interface.

The paper is organized as follows. In the next Section 2, after some nota-
tions and definitions, we will state our main result, whose proof is presented
in the next Section 3. The proof is based on some auxiliary propositions
proved in Section 4.

2 Main Result

Let us first premise some notations and definitions. Let the domain Ω be a
bounded open set in Rn and the layer Σ be a closed hyper-surface contained
in Ω. With Σ, the domain Ω is separated into the union of three parts

Ω = Ω+ ∪ Σ ∪ Ω−,

where Ω± are open subsets such that ∂Ω− = ∂Ω ∪ Σ and ∂Ω+ = Σ. We
denote by D a subset of Ω such that D ⊂ Ω+ ⊂ Ω. We consider γ(x) the
conductivity of Ω of the form

γ(x) = c1 + (c2 − c1)χΩ+ + (k − c2)χD,

where c1 and c2 are given constants and k is an unknown constant.

For points x ∈ Rn, we will write x = (x′, xn), where x′ ∈ Rn−1 and x ∈ R.
Moreover, denoted by dist(·, ·) the standard Euclidean distance, we define

Br(x) = {y ∈ Rn|dist(x, y) ≤ r}, B′r(x
′) = {y′ ∈ Rn−1|dist(x′, y′) ≤ r}
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as the open balls with radius r centered at x and x′ respectively. We write
Qr(x) = B′r(x

′) × (xn − r, xn + r) for the cylinder in Rn. For simplicity, we
use Br, B

′
r, Qr instead of Br(0), B′r(0

′) and Qr(0) respectively. We shall also
denote half domain, as well as its associated ball and cylinder

Rn
+ = {(x′, xn) ∈ Rn|xn > 0}; B+

r = Br ∩ Rn
+; Q+

r = Qr ∩ Rn
+.

Definition 2.1. Let Ω be the bounded domain in Rn. Given α ∈ (0, 1], we
say a portion S of ∂Ω is of C1,α class with constants r, L > 0 if for any point
p ∈ S, there exists a rigid transformation ϕ : Rn−1 7→ R of coordinates under
which we have p = 0 and

Ω ∩Br = {(x′, xn) ∈ Br|xn > ϕ(x′)},

where ϕ(·) is a C1,α function on B′r, which satisfies

ϕ(0) = |∇ϕ(0)| = 0

and
||ϕ||C1,α(B′r) ≤ Lr,

where the norm is defined as

||ϕ||C1,α(B′r) := ||ϕ||L∞(B′r) + r||∇ϕ||L∞(B′r) + r1+α|∇ϕ|α,B′r

|∇ϕ|α,B′r := sup
x′,y′∈B′r,
x′ 6=y′

|∇ϕ(x′)−∇ϕ(y′)|
|x′ − y′|

.

Assumptions and a priori data
For f ∈ H1/2(∂Ω), let u be the solution of the problem{

div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω.
(2.1)

Our inverse problem is addressed to determine the anomalous region D
when the Dirichlet-to-Neumann map ΛD

ΛD : H1/2(∂Ω) −→ H−1/2(∂Ω)
f −→ ∂u

∂ν |∂Ω
,

is given for any f ∈ H1/2(∂Ω). Here, ν denotes the outer unit normal to
∂Ω, and ∂u

∂ν |∂Ω
corresponds to the current density measured on ∂Ω. Thus,
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the Dirichlet–to–Neumann map represents the knowledge of infinitely many
boundary measurements.

Given constants r1,M1,M2, δ1, δ2 > 0 and 0 < α < 1, we assume the
domain Ω ⊂ Rn is bounded

|Ω| ≤M2r
n
1 ,

where | · | denotes the Lebesgue measure.
The interface Σ is C2 and assumed to stay away from the boundary of the

domain, as dist(Σ, ∂Ω) ≥ δ2, and the inclusion D is assumed to stay away
from Σ, as dist(D,Σ) ≥ δ1, and also Ω\D is connected. Both ∂D and ∂Ω
are of C1,α class with constants r1,M1.

We refer to n, r1,M1,M2, α, δ1, δ2 as the a priori data. To study the
stability, we also denote by D1 and D2 two inclusions in Ω, which satisfy the
above properties. The associated Dirichlet-to-Neumann map are ΛD1 and
ΛD2 .

Theorem 2.2. Let Ω ⊂ Rn, n ≥ 2 and we have two known constants c1, c2

and one unknown constant k, which are given. Let D1, D2 be two inclusions
in Ω as above. If for any ε > 0 we have

‖ΛD1 − ΛD2‖L(H1/2,H−1/2) ≤ ε,

then
dH(∂D1, ∂D2) ≤ ω(ε),

where ω is an increasing function on [0,+∞), which satisfies

ω(t) ≤ C| log t|−η, ,∀ t ∈ (0, 1)

and C > 0, 0 < η ≤ 1 are constants depending on the a priori data only.

3 Proof of the Main Result

The proof of Theorem 2.2 is based on some auxiliary propositions, and their
proofs are collected in the next Section 4. In what follows we define layers
of our domains. We denote by G the connected component of Ω\(D1 ∪D2),
whose boundary contains ∂Ω. ΩD = Ω\G, S2r := {x ∈ Rn|r ≤ dist(x,Ω) ≤
2r}, Sr := {x ∈ CΩ|dist(x,Ω) ≤ r} and Gh := {x ∈ G|dist(x,ΩD) ≥ h}.
We recall that the layer Σ separates the domain into two parts known
as Ω− and Ω+. We also define Fλ := {x ∈ Ω−|dist(x,Σ) ≥ λ}, and
Σλ := {x ∈ Ω−|dist(x,Σ) = λ}

We introduce a variation of the Hausdorff distance called the modified
distance, which simplifies our proof.
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Definition 3.1. The modified distance between D1 and D2 is defined as

dm(D1, D2) := max

{
sup

x∈∂ΩD∩∂D1

dist(x, ∂D2), sup
x∈∂ΩD∩∂D2

dist(x, ∂D1)

}
.

With no loss of generality, we can assume that there exists a point O ∈
∂D1 ∩ ∂ΩD such that the maximum of dm = dm(D1, D2) = dist(O,D2) is
attainted. We remark here that dm is not a metric, and in general, it does not
dominate the Hausdorff distance. However, under our a priori assumptions
on the inclusion, the following lemma holds.

Lemma 3.2. Under the assumptions of Theorem 2.2, there exists a constant
c0 ≥ 1 only depending on M1 and α such that

dH(∂D1, ∂D2) ≤ c0dm(D1, D2). (3.1)

Proof. See [3, Proposition 3.3]

Another obstacle comes from the fact that the propagation of smallness
arguments are based on an iterated application of the three spheres inequality
for solutions of the equation over chains of balls contained in G. Therefore,
it is crucial to control from below the radii of these balls. In the following
Lemma 3.3 we treat the case of points of ∂ΩD that are not reachable by such
chains of balls. This problem was originally considered by [5] in the context
of cracks detection in electrical conductors.

Let us premise some notations. Given O = (0, . . . , 0) the origin, v a unit
vector, H > 0 and ϑ ∈

(
0, π

2

)
, we denote

C(O, v, ϑ,H) = {x ∈ Rn : |x− (x · v)v| ≤ sinϑ|x|, 0 ≤ x · v ≤ H}

the closed truncated cone with vertex at O, axis along the direction v, height
H and aperture 2ϑ. Given R, d, 0 < R < d and Q = −den, where en =

(0, . . . , 0, 1), let us consider the cone C
(
O,−en, arcsin R

d
, d

2−R2

d

)
.

From now on, without loss of generality, we assume that

dm(D1, D2) = max
x∈∂D1∩∂ΩD

dist(x, ∂D2)

and we write dm = dm(D1, D2).
We shall make use of paths connecting points in order that appropriate

tubular neighborhoods of such paths still remain within Rn \ΩD. Let us pick
a point P ∈ ∂D1 ∩ ∂ΩD, let ν be the outer unit normal to ∂D1 at P and let
d > 0 be such that the segment [(P + dν), P ] is contained in Rn \ΩD. Given
P0 ∈ Rn \ΩD, let γ be a path in Rn \ΩD joining P0 to P + dν. We consider
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the following neighborhood of γ ∪ [(P + dν), P ] \ {P} formed by a tubular
neighborhood of γ attached to a cone with vertex at P and axis along ν

V (γ) =
⋃
S∈γ

BR(S) ∪ C
(
P, ν, arcsin

R

d
,
d2 −R2

d

)
. (3.2)

Note that two significant parameters are associated to such a set, the radius R
of the tubular neighborhood of γ, ∪S∈γBR(S), and the half-aperture arcsin R

d

of the cone C
(
P, ν, arcsin R

d
, d

2−R2

d

)
. In other terms, V (γ) depends on γ and

also on the parameters R and d. At each of the following steps, such two
parameters shall be appropriately chosen and shall be accurately specified.
For the sake of simplicity we convene to maintain the notation V (γ) also
when different values of R, d are introduced. Also we warn the reader that
it will be convenient at various stages to use a reference frame such that
P = O = (0, . . . , 0) and ν = −en.

Lemma 3.3. Under the above notation, there exist positive constants d, c1,
where d

ρ0
only depends on M1 and α, and c1 only depends on M1, α, M2, and

there exists a point P ∈ ∂D1 satisfying

c1dm ≤ dist(P,D2),

and such that, giving any point P0 ∈ S2ρ0, there exists a path γ ⊂ (Ωρ0 ∪
S2ρ0) \ ΩD joining P0 to P + dν, where ν is the unit outer normal to D1

at P , such that, choosing a coordinate system with origin O at P and axis
en = −ν, the set V (γ) introduced in (3.2) satisfies

V (γ) ⊂ Rn \ ΩD,

provided R = d√
1+L2

0

, where L0, 0 < L0 ≤ M1, is a constant only depending

on M1 and α.

Proof. See [4, Lamma 4.2].

In order to use the information provided by the boundary measurements
to evaluate the distance between two inclusions D1 and D2, we apply the
following identity firstly introduced by Alessandrini in [1]. Let ui ∈ H1(∂Ω),
i = 1, 2, be solutions to (2.1) with conductivities γDi = c1 + (c2 − c1)χΩ+ +
(k − c2)χDi respectively, we have∫

Ω

(γD1∇u1 · ∇u2)−
∫

Ω

(γD2∇u1 · ∇u2) =

∫
∂Ω

u1[ΛD1 − ΛD2 ]u2. (3.3)
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However, when we use the method of fundamental solutions, we will only deal
with the interface which is close to ΩD. This means we are only interested
in what is happening inside of Ω+, where χΩ+ = 1 is used for conductivities.
Thus, we are only interested in the operator div((c2 + (k − c2)χDi)∇·) and
the associated fundamental solutions ΓDi for i = 1, 2. We apply (3.3) locally
to ΓD1 and ΓD2 , obtains∫

Ω

(c2 + (k − c2)χD1)∇ΓD1(·, y) · ∇ΓD2(·, z)

−
∫

Ω

(c2 + (k − c2)χD2)∇ΓD1(·, y) · ∇ΓD2(·, z)

=

∫
∂Ω

ΓD1(·, y)[ΛD1 − ΛD2 ]ΓD2(·, z). (3.4)

For y, z ∈ G ∩ CΩ, where CΩ is the complementary of Ω, we define

SD1(y, z) = (k − c2)

∫
D1

∇ΓD1(·, y) · ∇ΓD2(·, z)

SD2(y, z) = (k − c2)

∫
D2

∇ΓD1(·, y) · ∇ΓD2(·, z)

f(y, z) = SD1(y, z)− SD2(y, z).

Therefore (3.4) can be written as

f(y, z) =

∫
∂Ω

ΓD1(·, y)[ΛD1 − ΛD2 ]ΓD2(·, z), ∀y, z ∈ CΩ. (3.5)

The following two propositions provide quantitative estimates on f(y, y)
and SD1(y, y), when moving y towards O along ν(O). Their proof are post-
poned in the next Section 4.

Proposition 3.4. Given ε > 0, the domain Ω and inclusions D1, D2, and a
transformation of coordinates defined as y = hν(O), if we have

||ΛD1 − ΛD2 ||L(H1/2,H−1/2) < ε, (3.6)

then for every h where 0 < h < cr, 0 < c < 1, and c depends on M1, we have

|f(y, y)| ≤ C0
εBh

F

hT
. (3.7)

Here 0 < T < 1 and C0, B, F > 0 are constants that depend only on the a
priori data.
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Proposition 3.5. Given ε > 0, the domain Ω and inclusions D1, D2, and a
transformation of coordinates y = hν(O) defined as above. Then for every
0 < h < r0/2

|SD1(y, y)| ≥ C1h
2−n − C2d

2−2n
m + C3, (3.8)

where r0 := r
2

min
[

1
2
(8M1)−1/α, 1

2

]
, and C1, C2, C3 are positive constants de-

pending only on the a priori data.

Now, we have all the ingredients to conclude this section with the proof
of Theorem 2.2.

Proof of Theorem 2.2. We start from the origin of the coordinate system,
point O ∈ ∂D1 ∩ ∂ΩD, for which the maximum in Definition 3.1 is attainted

dm := dm(D1, D2) = dist(O,D2).

Then with a transformation of coordinates y = hν(O) where 0 < h <
h1, h1 := min{dm, cr, r0/2}, 0 < c < 1, where c depends on M1. By ap-
plying [Al-DC] Proposition 3.4 (i); i.e., |∇xΓDi(x, y)| ≤ c1|x − y|1−n, where
c1 > 0 depending only on k, n, α,M1; we have

|SD2(y, y)| = (k − c2)

∫
D2

∇ΓD1(·, y)∇ΓD2(·, y)

≤ (k − c2)

∫
D2

(c1| · −y|1−n)2 ≤ (k − c2)c2
1

∫
D2

(|dm − h|1−n)2

≤ (k − c2)c2
1|dm − h|2−2n|D2| ≤ C4|dm − h|2−2n.

(3.9)

Here |D2| is the measure of the inclusionD2 which is bounded by |D2| ≤ |Ω| ≤
M2r

n
1 . Thus, C4 depends on k, n, α,M1,M2, r1. From (3.7), we already have

the upper bound of f(y, y). Moreover, if we apply the triangular inequality,
we obtain

|SD1(y, y)| − |SD2(y, y)| ≤ |SD1(y, y)− SD2(y, y)| = |f(y, y)| ≤ C0
εBh

F

hT
.

(3.10)
Meanwhile, (3.8) gives us the lower bound of SD1(y, y). Therefore, together
with (3.9) and (3.10), we obtain

C1h
2−n − C2d

2−2n
m + C3 ≤ C4|dm − h|2−2n + C0

εBh
F

hT

We can rearrange terms, and with a bit modification of the notations of the
constants, (in particular, let C3 = C2d

2−2n
m ) we have

C1h
2−n ≤ C4|dm − h|2−2n + C0

εBh
F

hT
.
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We can simplify the above as, by setting C5 = C4/C0 and C6 = C1/C0

C5|dm − h|2−2n ≥ C6h
2−n − εBh

F

hT
= C6h

2−n(1− εBhFhK),

where 0 < K = n − 2 − T . Now let h = h(ε) = min
{
| ln ε|− 1

2F , dm
}

, for

0 < ε ≤ ε1, ε1 ∈ (0, 1) such that exp(−B| ln ε1|1/2) = 1/2. It is easy to see if

dm ≤ | ln ε|−
1
2F , the main Theorem 2.2 is already proved thanks to Lemma

3.2. Because we can set η = 1
2F

> 0, then

dH(∂D1, ∂D2) ≤ c0dm ≤ c0| ln ε|−η = ω(ε) (3.11)

In another case where dm ≥ | ln ε|−
1
2F , it is easy to check

(dm − h)2−2n ≥ C6

2C5

h2−n =⇒ dm ≤ C7| ln ε|−
n−2

4F (n−1) .

Here we can solve dm because here h = h(ε) = | ln ε|− 1
2F , and C7 depends only

on the a priori data. Therefore we conclude the proof by setting η = n−2
4F (n−1)

dH(∂D1, ∂D2) ≤ c0dm ≤ c0C7| ln ε|−η = ω(ε) (3.12)

and for ε1 ≤ ε, we can also include the proof because dm ≤ |Ω| ≤M2r
n
1 .

dH(∂D1, ∂D2) ≤ c0dm ≤ c0M2r
n
1 = ω(ε). (3.13)

We can conclude the proof Theorem 2.2 by (3.11), (3.12) and (3.13)

dH(∂D1, ∂D2) ≤ Cdm = ω(ε),

where C only depends on the a priori data.

4 Proof of the Auxiliary Propositions

First, we prove Proposition 3.4 mainly followed by [3, Proposition 3.5], with
three sphere inequalities. When it comes to the situation that we need to
cross Σ during the iterative process, we apply the three-region inequalities.
The proof contains two major steps: (1) we need to define our “smallness”
outside of the domain Ω, and then we will propagate this smallness until it
arrives at any given small ball contained inside Fλ; (2) we use three-region
inequality to propagate the “smallness” by crossing Σ; (3) we continue with
three-sphere inequalities until the “smallness” arrives arbitrarily closed to
O ∈ ∂D1.
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Before proving Proposition 3.4, let us briefly recall this result contained
in [13, Theorem 3.1]. Based on some suitable Carleman estimate (see [8,
Theorem 2.1]), the following three region inequality in the L2 norm across
the interface y = 0 holds.

Theorem 4.1. There exist C and R, depending on λ0,M0, n such that if
0 < R1, R2 < R then∫
U2

|u|2dx ≤
(
eτ0R2 + CR−4

1

)(∫
U1

|u|2dxdy
) R2

2R1+3R2

(∫
U3

|u|2dxdy
) 2R1+2R2

2R1+3R2

,

(4.1)
where τ0 is the constant derived in the Carleman estimate [8, Theorem 2.1],

U1 = {−4R2 ≤ z,
R1

8a
< y <

R1

a
},

U2 = {−R2 ≤ z ≤ R1

2a
, y <

R1

8a
},

U3 = {−4R2 ≤ z, y <
R1

a
},

(4.2)

a = α+/δ and

z =
α−
δ
y +

β

2δ2
y2 − 1

2δ
|x|2.

We also compute H := δ
β
[α−−

√
α2
− − 2R2β] to measure “vertical depth”

of the region U2 below the x-axis.

Proof of Proposition 3.4. Let us consider f(y, ·) with a fixed y ∈ S2r then

∆wf(y, w) = 0 in CΩD. (4.3)

For x ∈ S2r, by (3.5) and (3.6), we have the smallness quantity

|f(y, x)| ≤ C(r,M1,M2)||ΓD1 − ΓD2|| = ε. (4.4)

Also by [3, Proposition 3.4], the uniform bound of f is given as

|f(y, x)| ≤ ch2−2n, in Gh ∪ Fλ. (4.5)

For any 0 < r < r and for every ω ∈ Fλ, we can have smallness on any
arbitrarily small ball Br/2(ω) ⊂ Fλ ⊂ Gh by iteratively applying three-sphere
inequalities on a simple arc γ ∈ Ω− ∪ Sr ∪ S2r which connects ω and x. By
[3] (4.21), we can reach ω from x with a finite number s of balls. Thus we
obtain

||f(y, ·)||L∞(Br/2(ω)) ≤ C(h1−n)1−τsετ
s

, (4.6)
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where C depends on the a prior data.

Now let us deal with the situation when smallness is crossing the interface
Σ. We define a coordinator system locally in a small neighbor near Σ. For
any point O ∈ Σ, the outer norm ν from O onto Ω− with respect to Σ is
defined as the y-axis; and its tangential direction is defined as the x-axis. We
choose R1

8a
= 2λ, and λ ≤ r

15
for Fλ. Now by (4.2), there are three regions

U1, U2 and U3 located near the Σ, where U1 ⊂ Fλ and U2 ∩ Ω+ 6= ∅.

Notice with the choice of λ, we can use a finite amount of balls to cover the
region U1. We pick up ωj ∈ Σr/2+λ, where Σr/2+λ := {x ∈ Ω−|dist(x,Σ) =
r/2 + λ}. Then there exists J < ∞ such that ∪Jj=1Br/2(ωj) ⊃ U1. By
standard bound for L2 and L∞ norms, and (4.6), we obtain

||f(y, ·)||L2(U2) ≤ C||f(y, ·)||AL2(U1) · ||f(y, ·)||1−AL2(U3)

≤ C||f(y, ·)||AL∞(∪Jj=1Br/2(ωj))
· (h2−2n)2(1−A)

≤ C(h1−n)(1−τs)AεAτ
s · (h2−2n)2(1−A)

≤ C(h1−n)AεB,

(4.7)

where A = 4− 3A−Aτ s and B = Aτ s, C depends on τ0, R1, R2, λ0,M0, n, J
and a prior data. Then we pick up a small ball inside of U2∩Ω+ as the start
for the rest of the propagation. For the above coordinator system x-O-y, we
choose x0 = (0,−H/2) and r0 < H, so that Br0/2(x0) ⊂ U2 ∩ Ω+. By (4.7),

||f(y, ·)||L∞(Br0/2(x0)) ≤ ||f(y, ·)||L2(U2) ≤ C(h1−n)AεB. (4.8)

The rest of the propagation is similar as (4.6). If we choose any 0 < r0 <
r0 and any ω0 ∈ Ω+, by connecting x0 and ω0 with a simple arc, we obtain

||f(y, ·)||L∞(Br0/2(ω0)) ≤ C(h1−n)AεB. (4.9)

Then rest of the proof is followed by [3] (4.22) to (4.25): we define a
truncated cone C(O, ν(O), θ, r), in which O ∈ D1 is the point where the
maximum of Definition 3.1 is attained. Then we consider f(y, w) as a func-
tion of y to obtain similar results. The last step is to choose y = w = hν(O),
where ν(O) is the exterior unit normal to ∂ΩD in O, we can obtain

|f(y, y)| ≤ ChT (εB̃A
k(h)−1

)γA
k(h)−1

. (4.10)

We observe that for 0 < h < cr, where 0 < c < 1 depends on M1,
k(h) ≤ c| logA| = −c log h, we can rewrite

Ak(h) = exp{−c log h logA} = h−c logA = hc| logA| = hQ,
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(Ak(h))2 = (hQ)2 = hF

with F = 2Q = 2c| logA|. Therefore

|f(y, y)| ≤ Ch−T εB(Ak(h))2

≤ exp{−T log h} exp{B(Ak(h))2 log ε}
≤ exp{−T log h+BhF log ε}

=
εBh

F

hT
,

where B = γB̃
A2

The proof of Proposition 3.5 is based on the asymptotic behaviour of the
fundamental solutions locally in the neighbour of O ∈ D1, which is contained
complete inside of Ω+ because dist(D,Σ) ≥ δ1

div[(c2 + (k − c2)χD)∇ΓD(· − y)] = −δ(· − y)

div[(c2 + (k − c2)χ+)∇Γ+(· − y)] = −δ(· − y),

where χ+ is the characteristics function if the half-space {xn > 0}. If Γ is the
standard fundamental solution of the Laplace operator, and y∗ = (y′,−yn)
is the reflecting point, we have the following relationship

Γ+(x, y) =


1
k
Γ(x, y) + k−c2

k(k+c2)
Γ(x, y∗) for xn > 0, yn > 0

2
k+c2

Γ(x, y) for xnyn < 0
1
c2

Γ(x, y)− k−c2
c2(k+c2)

Γ(x, y∗) for xn < 0, yn < 0.

We have the following theorem.

Theorem 4.2. Let D ∈ Rn be an open set with C1,α boundary subjected
to constants M1, r. We have ΓD and Γ+ the fundamental solutions defined
above, respectively. The following asymptotic estimate holds for any x, y ∈ Rn

|∇ΓD(x, y)| ≤ C|x− y|1−n.

As for x ∈ D ∩ Bρ(O) and every y = hν(O), with 0 < ρ < r0 and
0 < h < r0 where r0 = r

2
min{1

2
(8M1)−1/2, 1

2
} we have

|ΓD(x, y)− Γ+(x, y)| ≤ C

rα
|x− y|α−n+2

|∇ΓD(x, y)−∇Γ+(x, y)| ≤ C

rα2 |x− y|α
2−n+1,

where C > 0 only depends on the a priori data.
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For both proofs of Theorem 4.2 and Proposition 3.5, we refer to the proofs
of Propositions 3.4 and 3.6 in [3] with a slightly modification on the constant
coefficients. In fact, during the integration steps, we use k−c2 as the constant
instead of k− 1. This won’t affect the proofs since both k− c2 and k− 1 can
be absorbed into a constant C in the final step, where C depends on k. We
mention that in our paper, Γ+ is also represented as a linear combination of
standard Laplace Γ with constants coefficients.
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