
Performance Prediction of Cloud-Based Big Data Applications
Danilo Ardagna,

Enrico Barbierato,

Athanasia Evangelinou,

Eugenio Gianniti,

Marco Gribaudo

Dipartimento di Elettronica e Informazione

Politecnico di Milano

Milano, Italy

name.lastname@polimi.it

Túlio B. M. Pinto,

Anna Guimarães,

Ana Paula Couto da Silva,

Jussara M. Almeida

Departamento de Ciência da Computação

Universidade Federal de Minas Gerais

Belo Horizonte, Brazil

tuliobraga@dcc.ufmg.br,anna@dcc.ufmg.br,

ana.coutosilva@dcc.ufmg.br,jussara@dcc.ufmg.br

ABSTRACT
Big data analytics have become widespread as a means to extract

knowledge from large datasets. Yet, the heterogeneity and irregular-

ity usually associated with big data applications often overwhelm

the existing software and hardware infrastructures. In such con-

text, the flexibility and elasticity provided by the cloud computing

paradigm offer a natural approach to cost-effectively adapting the

allocated resources to the application’s current needs. However,

these same characteristics impose extra challenges to predicting

the performance of cloud-based big data applications, a key step

to proper management and planning. This paper explores three

modeling approaches for performance prediction of cloud-based

big data applications. We evaluate two queuing-based analytical

models and a novel fast ad hoc simulator in various scenarios based

on different applications and infrastructure setups. The three ap-

proaches are compared in terms of prediction accuracy, finding

that our best approaches can predict average application execution

times with 26% relative error in the very worst case and about 7%

on average.

1 INTRODUCTION
Nowadays, the big data adoption has moved from experimental

projects to mission-critical, enterprise-wide deployments providing

new insights, competitive advantage, and business innovation [11].

IDC estimates that the big datamarket grew from $3.2 billion in 2010

to $16.9 billion in 2015 with a compound annual growth rate of

39.4%, about seven times the one of the overall ICT market [2].

Key properties characterizing big data applications are high vol-

umes of data and increasing heterogeneity and irregularity in data

access patterns. Such properties impose challenges to the hardware

and software infrastructure. On the other hand, cloud computing in-

frastructures have become a versatile computing platform as cloud

resources fit application requirements, as they are needed, leverag-

ing the elastic nature of the cloud. Thus, big data applications find

in cloud-based infrastructures a natural hosting platform to cost-

effectively provisioning the necessary resources to their execution.

ICPE 2018, April 2018, Berlin, Germany
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

For example, 61% of Spark adopters ran their applications on Cloud

last year with a 20% increase with respect to 2015 [1].

However, though flexible, the shared infrastructure that powers

the Cloud together with the natural irregularity of big data appli-

cations may impact the predictability of cloud-based big data jobs.

As applications based on big data become an integral part of our

daily lives, predictability, robustness, and dependability become

primary requirements. Accurate performance prediction of an ap-

plication is a key step to both planning and managing: it is a key

component to drive the automatic system (re-)configuration so as

to properly meet the applications’ dynamic needs and avoid Service

Level Agreement (SLA) violations.

To address the challenges of predicting the performance of big

data applications, we here explore three different modeling ap-

proaches to estimate, given the available resources, the average
execution time of a target application. In other words, given a target

application, specified by a directed acyclic graph (DAG) represent-

ing the individual tasks and their parallelism and dependencies, the

purpose is to predict how long it will take for the application to

run (on average) given a target resource allocation (e.g., numbers

of cores, nodes). The focus concerns applications running on Spark

(http://spark.apache.org/), which is a fast and general engine for

large-scale data processing whose adoption has steadily increased

and which probably will be the reference big data engine for the

next 5–10 years [10].

Firstly, we investigate the use of analytic queuing network (QN)

models for predicting the performance of Spark applications. QN

models offer good abstractions to capture the main points of re-

source contention, which in turn contribute to longer delays and

waiting times in the various components (e.g., nodes) of the system.

However, capturing the delays due to synchronization between in-

dividual tasks of a parallel application in a QNmodel is a non-trivial

task as model complexity greatly increases, hurting efficiency.

Two QNmodeling approaches are explored here. One is based on

a simple upper-bound on the average execution time for Fork-Join

queuing networks, proposed by Nelson and Tantawi [19], which

depends only on the number of parallel tasks and on the average

execution time of a single task. We refer to this model as Fork-Join.
Since such approach demonstrated to provide limited accuracy, a

more sophisticated QN model proposed in [16], which extends an

approximated Mean Value Analysis (AMVA) technique by modeling

the precedence relationships and parallelism between individual

tasks of the same job, is considered. This model here referred to as

https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://spark.apache.org/

ICPE 2018, April 2018, Berlin, Germany Ardagna et al.

Task Precedence model, explicitly captures the overlap in execution

times of different tasks of the same job, thus potentially being more

general, though also more complex.

In addition to the aforementioned QN approaches, complex sys-

tems can be modeled by exploiting other formalisms or modeling

languages such as Stochastic Petri Nets (SPNs). Specifically, SPNs

provide a set of primitives to easily model the synchronization of

stages belonging to a DAG. Inspired by this formalism, dagSim was

implemented as an ad-hoc and fast discrete event simulator tomodel

the execution of complex DAGs. The novelty introduced by dagSim

is twofold: on one side, the simulation process achieved great ac-

curacy within a short timescale with respect to other formalisms

(such as SPNs) or specific tools (such as JMT [6] or GreatSPN [8]),

whose execution time resulted less satisfactory when using the

same models considered by dagSim. Furthermore, the flexibility

and modularity of the tool allow the implementation of future en-

hancements such as the computation of percentiles, which cannot

be provided by the Task Precedence model.
We evaluate the three modeling approaches in seven scenarios

consisting of different virtual machine environments and applica-

tions, considering both SQL like workloads and machine learning

benchmarks. For each scenario, we use our models to estimate the

application average execution time for different resource configu-

rations.

The results indicate that the Fork-Join model is not suitable for

predicting Spark application response time. This is evidenced by the

high prediction errors found during experimentation. Vice versa,

we found a good overall accuracy for average system response

time prediction through the Task Precedence model and dagSim

simulator (below 17% relative error in every considered scenario).

Both models presented similar performance, whereas dagSim per-

formed better for interactive queries while the Task Precedence

model performed better for iterative ML algorithms.

The rest of this paper is organized as follows. Section 2 presents

related work, discussing the efforts against predicting Spark ap-

plication response time as well as detailing both queuing network

models and simulation approaches related to the present research.

Section 3 describes Spark characteristics and model assumptions

relevant to understand our work. It also details the Fork-Join and

Task Precedence models, and the dagSim Simulator. Section 4 intro-

duces the experimental scenarios we explored, further showing and

discussing the results obtained for the three prediction approaches.

Section 5 comes up with our research discussions and conclusion.

2 RELATEDWORK
TheQoS study of BigData applications in the cloud can be addressed

from different perspectives.

Recently, sophisticated projects have emerged in the study of

Spark applications performance, such as PREDIcT [21] and RISE-

2016 [12]. PREDIct is a tool including a set of prediction techniques

for different areas of data analytics, while RISE2016 is a collection

of scalable performance prediction techniques for big data process-

ing in distributed multi-core systems. More specifically, the aim is

to study distributed computer clusters and their parallel applica-

tions, spanning performance hybrid models (which include both

machine learning and traditional analytical models like QN) and

optimization solutions related to hardware configurations. In [30],

the authors provide hierarchical models, which leverage the multi-

stage execution structure of Apache Spark jobs, and they are able

to obtain good accuracy generalizing the measurements performed

on a fraction of the real application data set.

This article focuses on the use of modeling techniques to guide

the initial configurations or to enable the analysis of the viability

of jobs. The most relevant related work is subdivided into two

parts, specifically i) analytical queuing network methods and ii)

simulation approaches.

2.1 Queuing Network Models
Applications running in parallel systems have to share physical

resources (processors, memory, bus, etc.). Competition for compu-

tational resources can occur among different applications (inter-

application concurrency) or among tasks of the same application

(intra-application concurrency). Given system resource limitation,

performance analysis techniques are important for studying funda-

mental performance measures, such as mean response time, system

throughput, and resource utilization. In this context, queuing net-

works have been successfully used for studying the impacts of the

resource contention and the queuing for service in the applications

running on top of parallel systems [16, 24, 25, 27].

The parallel execution of multiple tasks within higher level jobs

is usually modeled in the QN literature with the concept of fork/join:

jobs are spawned at a fork node in multiple tasks, which are then

submitted to queuing stations modeling the available servers. After

all the tasks have been served, they synchronize at a join node.

Unfortunately, there is no known closed-form solution for fork-join

networks with more than two queues, unless a special structure

exists [15].

The authors in [19] present a model for predicting the response

time of homogeneous fork/join queuing systems. The observed

system is made up of a cluster of homogeneous index servers, each
holding portions of querible data, and the query requests to the

index servers go in a FCFS (First-Come First-Served) scheduling

queuing discipline. In order to represent system parallelism, the

index server subsystem is modeled as a fork-join network. In this

model, an incoming task is split (forked) into identical subtasks,

which are then sent to individual servers and executed in parallel,

independently from one another. Once all subtasks have finished

executing, they are joined and the task execution is completed. The

average response time is determined by the slowest server.

Following the fork-join model paradigm, the authors in [27]

present an analysis of closed, balanced fork-join queuing networks,

in which a fixed number of identical jobs circulate. They intro-

duce an inexpensive bounding technique referred to as balanced

job bounds for fork-join systems (BJB-FJ), which is analogous to

balanced job bounds developed for product form networks. Servers

have a FCFS queuing discipline and exponentially distributed ser-

vice times. Based on Markov models theory, authors provide accu-

rate approximation results for the job response time.

In the same direction, [24] models a multiprocessing computer

system as K homogeneous servers, each with an infinite capacity

queue. Jobs arriving to the system are split into K independent

tasks, each of which is assigned to a server. The authors provide a

Performance Prediction of Cloud-Based Big Data Applications ICPE 2018, April 2018, Berlin, Germany

computationally efficient algorithm for obtaining upper and lower

bounds on the expected response time of this system. Moreover,

the algorithm guarantees an error bound and, if one desires, tighter

error bounds can be obtained at the cost of more computation.

The work in [16] also considers the issue of estimating perfor-

mance metrics in parallel applications. The proposed method is

computationally efficient and accurate for predicting performance

of a class of parallel computations, which can be modeled as task

systems with deterministic precedence relationships represented

as series-parallel DAGs. Tasks are represented as nodes and edges

mark precedence relationships between pairs of nodes. A task can

be executed once its parent tasks have finished executing. Further-

more, whenever nodes are independent, their executions may over-

lap fully or partially, according to resource availability. This overlap

can be determined from the start and ending times of task execu-

tions. The amount of overlap between tasks can then be used to

reduce the initial task DAG and successively estimate task response

times, ultimately leading to an estimate of the full application re-

sponse time. While the models proposed in [19, 24, 27] assume a

fork-join abstraction to represent parallel behavior, here the au-

thors focus on the precedence relationships resulting from tasks

that must run sequentially, combined with those that may run in

parallel. An extension of this model, capturing not only intra-job,

but also inter-job overlap to evaluate application response times, is

presented in [25].

In our work, we apply the models proposed by the authors in [19]

and [16], given that the parameters of both models are easily ob-

tained (for instance, service demands and task structure) and results

are obtained with low complexity cost. More details on [19] and [16]

models are presented in Sections 3.2.1 and 3.2.2.

2.2 Simulation approaches
Classical simulation methods consist of discrete event, continuous,

and Monte Carlo techniques.

A simulation based on discrete events (e.g., a number of cus-

tomers waiting for a service) takes advantage of a mathematical

model of a system changing its state in a (simulated) time. The

system state is measured only at certain fixed regular time instants.

On the other hand, in classical continuous simulation, models of

physical systems are described through differential equations and

simulated in a continuous way: the representation of the relation-

ships occurring between states and time are not necessarily explicit

and the system state varies continuously in time. Finally, Monte

Carlo methods model degrees of uncertainty where representing

time is not requested. The idea is to approximate an integral by tak-

ing a well-known geometrical shape and circumscribing a specific

region with it.

Literature presents a wide range of simulation software tools

based on stochastic formalisms varying in complexity and capabili-

ties, including the valuable possibility to share data and communi-

cate with other applications.

Petri nets (PN, presented by Carl Adam Petri in his Ph.D. disser-

tation, see [22]) represent an intuitive and powerful analysis tech-

nique, being applicable to a wide range of scenarios. Augmented PN

models considering a temporal specification, i.e., including transi-

tions firing with a probabilistic delay, identify an extended PN class

denoted by the term Stochastic Petri Net (SPNs). The simulation

tool proposed in this paper is inspired to SPNs, since they provide

a set of primitives to easily model the synchronization of stages

belonging to a DAG.

Several tools to study the behavior of SPNs have been imple-

mented. Examples include the Stochastic Petri Net Package (SPNP,

presented in [20]) and GreatSPN [8]. GreatSPN supports the anal-

ysis of Generalized Stochastic Petri Nets (GSPNs) including both

immediate (the fire event occurs immediately) and timed (the fire

event occurs within a stochastic time) transitions and of Stochas-

tic Well-Formed Nets (SWNs, i.e., Petri nets where the tokens can

be distinguished). SMART (Symbolic Model checking Analyzer for

Reliability and Timing, [9]) includes both stochastic models and log-

ical analysis. Currently, SMART offers a high level formalism (i.e.,

PNs) and two low level formalisms (discrete-time and continuous-

time Markov chains, i.e., DTMC and CTMC) to the modeler who

is free to calculate a set of measures for each model and exchange

parameters between models. SHARPE (Symbolic Hierarchical Au-

tomated Reliability and Performance Evaluator) is a tool to analyze

stochastic models [26], the most notable being fault trees, product

form queuing networks, Markov chains, and Generalized Stochas-

tic Petri nets. Finally, JMT [6] is a suite of applications offering

a framework for performance evaluation, system modeling, and

capacity planning.

The complexity introduced by applications based on big data has

stimulated the scientific community to develop tools and frame-

works based on more sophisticated architectures, in order to predict

the behavior of these scenarios in a timely and efficient manner.

The problem of studying the performance prediction of individ-

ual jobs is explored in [23] through a framework consisting of a

Hadoop job analyzer, while the prediction component exploits lo-

cally weighted regression methods. A similar issue is studied in [28]

by using instead a hierarchical model including a precedence graph

model and a queuing network model to simulate the intra-job syn-

chronization constraints. In [7], the authors consider the problem of

minimizing the cost involved in the search of the optimal resource

provisioning, proposing a cost function that takes into account: i)

the time cost, ii) the amount of input data, iii) the available sys-

tem resources (Map and Reduce slots), and iv) the complexity of

the Reduce function for the target MapReduce job. The usage of

a simulator to better understand the performance of MapReduce

setups is described in [29] with particular attention to i) the effect

of several component inter-connect topologies, ii) data locality, and

iii) software and hardware failures.

Finally, the authors in [4] describe multiple queuing network

models (simulated with JMT) and stochastic well formed nets (sim-

ulated with GreatSPN) to model MapReduce applications, high-

lighting the tradeoffs and additional complexity required to capture

system behavior to improve prediction accuracy. As a result, gen-

eral purpose simulators such as GreatSPN and JMT are not suitable

to study efficiently massively parallel applications introducing tens

(or even hundreds) of stages and thousands of parallel tasks for

each stage.

ICPE 2018, April 2018, Berlin, Germany Ardagna et al.

3 PERFORMANCE PREDICTION MODELS
This section presents the three modeling approaches analyzed in

this paper to predict the performance of cloud-based big data ap-

plications, namely Fork-Join, Task Precedence, and dagSim. Since

our main focus is on applications running on Spark, we start by

first presenting some key components of this framework, high-

lighting some assumptions behind its parallel execution model that

may affect the performance models (Section 3.1). The considered

queuing network models (Section 3.2) are then discussed as well as

the proposed dagSim discrete event simulator built to analyze the

performance of Spark applications (Section 3.3).

3.1 Spark Overview and Model Assumptions
Spark is a fault-tolerant cluster computing framework that provides

a set of abstractions for parallel computations across distributed

nodes with multiple cores. It is a fast and general purpose engine

for large-scale data processing and it was first proposed as an al-

ternative to Hadoop MapReduce [31]. Spark is the state-of-art for

fault-tolerant parallel processing and it recently became popular

for big data processing on the cloud [1].

The general unit of computation in Spark is an application. It

may be composed by a single job, multiple jobs, or a continuous

processing. A job is composed by a set of data transformations and

terminates with an action requesting a value from the transformed

data. Each transformation represents a specific piece of code that

launches data-parallel tasks on read-only data divided into blocks

of almost equal size, called partitions. This set of same class tasks

is called stage. Within a stage, a single task is launched for each

data partition, thus the number of tasks inside the stage is equal to

the number of partitions. During the stage runtime, each core (also

called CPU slot) can run only a single task at a time. Since cores

are a limited resource, the tasks are assigned to CPU slots until all

resources become busy. Thus, the remaining tasks are enqueued

and scheduled to be executed as soon as the cores become available.

The Spark executionmodel is represented by a DAG. Considering

a logical plan of transformations that is fired by an action, the Spark

DAGScheduler constructs a DAG of stages and their precedence

relations. The stages are submitted for execution as a set of tasks

that follows FCFS policy. The TaskScheduler does not know the

dependencies between stages. Each stage is a fully-independent

sequence of tasks that can run right away based on the data that

is already on the cluster [13]. Thus, only stages have precedence

relationships and these are represented by the DAG.

The key idea of this work is to apply a set of performance predic-

tion techniques to estimate the execution time of Spark applications

and evaluate their effectiveness. The issue of performance predic-

tion in parallel systems has been approached in several ways, with

varying degrees of detail, cost, and accuracy. Focusing on such data-

parallel framework based on a DAG execution model, one of the

main concerns is to model the synchronization step that happens

when a stage terminates. Then, the models for calculating perfor-

mance measures have to take into account how the executions of

stages overlap among themselves.

In this work, we made the following assumptions for all the three

(analytical and simulation) analyzed models: i) the concurrent sys-

tem is modeled as a closed queuing model, with a single application

that splits into one or more Spark jobs, ii) jobs are sequentially

scheduled and comprehend one or more stages, iii) multiple stages

may run in parallel or may have some precedence relationships, iv)

a stage is composed by tasks of the same class with no precedence

relationship among themselves (i.e., they may run in parallel), v) an

individual application obtains dedicated resources for its execution

(i.e., VMs that are executed on a cloud cluster), vi) resources (such

as memory, CPU, disk) are homogeneous (as frequently happens

in cloud deployments, see, e.g., [18]). Moreover, queuing network

models are based also on the assumption that the task demand

times on each resource (i.e., the time required to process a single

task) are exponentially distributed.

3.2 Queuing Network Models
This section describes the two queuing network models explored

in this paper. We first present the Fork-Join model, which relies on

a known approximation of response time for parallel applications,

and then briefly describe the Task Precedence model, which takes

as input a DAG representation of the parallel application.

3.2.1 Fork-Join Model [19]. This model provides a very simple

upper-bound on the average execution time for queuing networks

with fork-join synchronization. The main idea is as follows: the

cluster architecture is represented as a two-level graph in which

the leaves represent the execution nodes, modeled as Spark Worker

cores, and the root represents the unit that controls the execution

flow, modeled as the Spark Master node. Stages are forked into

same class tasks and scheduled to execute in parallel across the

available cores. After execution at all worker cores, the results from

each unit are joined.

The model expects as input the number of execution nodes in

the graph, that is, the total number of cores available through the

worker nodes, and the average execution time at an individual

core, which can be estimated based on historic data (i.e., logs of

previous executions of the same Spark application). It outputs two

values, namely a lower and an upper bound. The lower bound is

the execution time at a single core, here referred to as Rcore, and
reflects the application execution time when there are no synchro-

nization delays caused by discrepancies across individual cores. In

the present case, this lower bound is not of interest, for prediction

purposes, as it is one of the model inputs. However, Rcore could
be estimated based on some finer grained modeling strategy (e.g.,

Mean Value Analysis). The upper bound, on the other hand, is our

main interest: it provides an approximation that aims to capture

the effects of a slower core, which would cause delays and affect

the overall execution times.

According to Nelson and Tantawi [19], an upper bound for the

execution time of an application running on K cores is given by the

product of the average execution time at a single core (Rcore) and
the HK harmonic number (more details in [19]). Thus, the bounds

for the application response time (R
application

) are:

Rcore ≤ R
application

≤ HKRcore,

with HK = 1 + 1/2 + 1/3 + · · · + 1/K .
We note that the fork-join structure assumed by this model may

be a very coarse approximation for the execution of Spark appli-

cations. In particular it does not explicitly capture any precedence

Performance Prediction of Cloud-Based Big Data Applications ICPE 2018, April 2018, Berlin, Germany

relationship between stages. Rather it assumes such relationships

are indirectly captured in the input (Rcore). In other words, by look-

ing at historic data, we compute the average total execution time

at each individual core, considering all stages and individual tasks

of the given application, thus capturing the precedence of individ-

ual tasks in a single core. The model, in turn, aims at capturing

all synchronization delays across different cores by the inflation

factor HK . Though a coarse approximation, the simplicity of this

approach motivated us to assess to which extent it can provide

accurate performance predictions for Spark applications.

3.2.2 Task Precedence Model [16] . In this prediction method,

the performance of a parallel application is modeled by explicitly

capturing the precedence relationships between different blocks

of computation. We start by presenting the main ideas behind the

model, as proposed in [16]. We refer to the original paper for a

detailed derivation of the model. We then discuss how we applied

this model to Spark applications at the end of the section.

In the original paper [16], each block of computation was called

a task, and the goal was to estimate the average execution time

of an application composed by multiple parallel/sequential tasks.

The precedence relationships between different tasks are expressed

as a series-parallel directed acyclic graph (DAG), where each node

is a task. Available resources (e.g., cores) are modeled as service

centers in a queuing network model. By exploiting both the queuing

network and the DAG, the authors modified a traditional iterative

Mean Value Analysis (MVA) approach to account for delays caused

by synchronization and resource constraints originated from task

precedence and parallelism.

The solution uses a traditional MVA model to estimate the aver-

age execution time of each task. In order to explicitly capture the

synchronization delays between parallel tasks, the model estimates

an overlap probability between each pair of tasks based on the input

task precedence DAG. This probability captures the chance that

the executions of the two tasks overlap in time, and is used as an

inflation factor to estimate a new set of task average execution

times, according to the MVA equations. The model will continue to

iterate over these values until they converge below a given error

threshold. As a final step of each iteration, the precedence graph

is reduced to determine the average execution time of the whole

application. For example, execution times of sequential tasks will be

added; execution times of parallel applications will be aggregated

according to a probabilistic approach that takes into account the

overlap probabilities between them.

Since jobs in Spark are sequentially executed by default, we

here apply the model by considering each node in the input DAG

as a stage of the Spark application, thus explicitly capturing the

dependencies among stages (unlike the Fork-Join model) that exist

in Spark applications. Each stage is fully described by its average

execution time, which is estimated based on historic data (Spark logs

of previous executions of the same application). Thus, the model

takes as input the application’s DAG and the average execution

time of each individual stage and produces as output the average

execution time of each job. To estimate the average execution time

of the application, the execution times of all jobs are simply added

together.

Figure 1: dagSim and its components

3.3 dagSim Simulator
dagSim (see Figure 1) is a high speed discrete event simulator built

to analyze DAGs corresponding to MapReduce and Spark jobs
1

and consists of three main components: i) a parser, ii) a simulation
component, and iii) an output module.

Models are described with a data driven approach defining the

DAG stages and the workload they have to handle. Specifically, a

DAG model is defined as a tuple:

DAG = (S,N
Nodes

,NUsers,Z) (1)

Where N
Nodes

∈ N,N
Nodes

≥ 1 represents the number of compu-

tational nodes and NUsers ∈ N,NUsers ≥ 1 the number of users

concurrently submitting jobs to the system, and Z is the “think

time distribution”: the time a user will wait before submitting a

new job. Set S = {s1, . . . , sNStages
} is the set of stages that define the

DAG. Furthermore, each stage si ∈ S is a tuple:

si = (id,N
Tasks
, Pre, Post ,T) (2)

where id is a symbolic constant assigning a name to the stage,

N
Tasks

∈ N,N
Tasks

≥ 1 accounts for the tasks composing the stage,

Pre ∈ S and Post ∈ S define respectively the stages that must

have been completed for si to be executable, and the set of stages

that will be able to run after the completion of si . The probability
distribution T defines the duration of each task of the stage and is

obtained from Spark logs.

As a file interchange format to encode the previously formalized

model, LUA, a multi-purpose procedural programming language [3],

was selected. There are several advantages in using LUA with re-

spect to other alternatives. First, it has a very compact syntax for

defining complex structured constants, which allows to initialize

complex objects with a short textual overhead. Other languages,

such as XML, require a complex markup structure, which in the

end makes input files very long and difficult to generate. In our

approach, an input model is an instantiation of a set of predefined

global variables: thanks to the names used to identify such variables,

files are easily readable by a human, and simple to automatically

generate by a software component. Next, even if only the instances

of the global variables are used, model files are effectively LUA

1
The tool is available at https://github.com/eubr-bigsea/dagSim

https://github.com/eubr-bigsea/dagSim

ICPE 2018, April 2018, Berlin, Germany Ardagna et al.

Figure 2: Job finite state machine

programs. This means that they can exploit a full set of instructions

and systems commands to algorithmically compose a model by

loading pieces from external datasets, computing rates with alge-

braic expressions (e.g., 1/10000 instead of 0.0001), and use loop

constructs to repeat the same assignment several times.

The performance indices computed during the simulation are

fed back into LUA variables. The simulator then executes some pre-

defined LUA code that outputs the results stored in such variables.

Currently performance indices are displayed as plain text. However,

the ability of the user to replace the legacy LUA output code with

custom procedures allows to easily integrate the tool within larger

frameworks. Further enhancements may include library procedures

to support different formats, such as CSV, XML, or HTML.

The simulation engine has been written in the C language. It is

based on a classic discrete event simulation algorithm and has been

designed for high performance. Though dagSim is a lightweight

tool compared to other commercial programs, it targets specifically

DAG models. Simulation can run efficiently thanks to a proprietary

scheduler library offering data structures that perform well when a

high volume of events is generated. The tool is highly portable, since

it can be easily recompiled without the requirement of external

tools or libraries not supplied with the source code.

When addressing to the DAG’s components, the engine refers

to a few terms summarized in the following:

• A job is a process submitted by a user and is composed of a

set of stages {s1, s2, ..., sn };
• Each stage consists in turn of one or more tasks {t1, t2, ...,
tm };

• Each task corresponds to an event and is characterized by a

timestamp, denoting a start time;

• Given a job Ji , Prei denotes the set of jobs connected to Ji .
• According to the finite state machine depicted in Figure 2, a

job can be in one of the following four states:

– CAN_START : Prei = ∅;
– WAIT ING : Prei , ∅;

– RUNNING: this is the case of a job Ji that was eligible to

be executed (its previous state was CAN_START) and is

not depending on any other job;

– ENDED: all the stages in job Ji have been executed.

The core idea of the simulation engine is that each time a stage

sk ∈ Ji has been executed, a counter is decremented of one unit.

When the counter reaches zero, the engine determines that a stage

is completed and which ones are now eligible to start. By using a

doubly-linked list storing the relevant information about the jobs

in CAN_START state, it is possible to determine which one can

be executed without performing a full search on the set of jobs. In

this sense, the approach provided by dagSim’s engine is original

and more efficient with respect to other scheduling mechanisms

implemented in JMT [6] or GreatSPN [8].

Specifically, the engine implements Algorithm 3.1 (the most im-

portant functions and data structures are summarized, respectively,

in Table 2 and 1), which is articulated in different steps:

• Initially (lines 4–6), for each user accessing the system, a

doubly-linked list called UJD is populated with a set of infor-

mation, notably i) the number of stages ready to be started, ii)

the remaining tasks for each stage that need to be completed,

iii) the state of each stage, iv) the start and end time of each

stage, and v) a pointer to a list of jobs ready to be started. A

Node data structure is initialized at line 9;

• In a similar manner, the following phase (lines 12–16) adds a

new event (whose timestamp corresponds to the think time)
on a CalendarEvent structure. Furthermore, a doubly-linked

list JobData is populated by inserting i) a user identifier, ii)

a job and a stage status, and a iii) task identifier. Finally,

JobData is linked to the event created earlier;

• The most important part of the algorithm consists of a cycle

performed for all the available jobs (lines 20–54);

• At line 21, an event is extracted (pop operation) from the

CalendarEvent structure (if the latter is empty, the cycle

terminates);

• If the user requests to launch a new job (line 26), both

initUserJobData and createReadyList functions are invoked
(lines 27 and 28(: the former initializes all the job’s stages to

STAGE_ST_CAN_START or STAGE_ST_WAITING depend-

ing on whether the stage has incoming arcs or not, while

the latter reviews the status for each stage: if the stage is

ready to start, its execution begins and its status is updated to

STAGE_ST_RUNNING. For each task of the stage, an event

is created and stored in an doubly-linked list AUX, repre-

senting the events waiting to be executed;

• If there are available computational nodes and no lock has

been set (line 29), the scheduleReadyTasksOnAvailableNodes
function is invoked (line 30) to i) set a lock if the considered

node was not engaged and ii) schedule the waiting jobs

on available nodes. In the other case, the waiting jobs are

temporarily inserted into an auxiliary list (line 32);

• In case that a task of a running job ended (line 36), the

corresponding counter of the remaining tasks in a stage is

decremented of one unit (line 37). If there are no tasks left

(line 38), the stage’s state is updated to STAGE_ST_ENDED

and the checkNewStageStart function is invoked to verify

Performance Prediction of Cloud-Based Big Data Applications ICPE 2018, April 2018, Berlin, Germany

Table 1: Notable data structures

Data structure Relevant parameters

UserJobData - User identifier

- Job identifier

- Start and End time

- Stages that still needs to be started

- Jobs that still needs to be completed

per stage

- State of the stages

- Start / End time for the stage

- Lists of jobs that can be started

NodeData - Number of free nodes

- User locker

- Jobs that still needs to be executed

Job - User identifier

- Job identifier

- Stage identifier

- Task identifier

sList - The description of an Event

sAuxlists Auxiliary List to store Events that

are in waiting state

if another stage can start: in case of positive response, the

createReadyList function is called;

• Line 42 verifies if there are no tasks ready to be executed

and no stages to start: in this case, the stage end time and

the ended stage counter are updated;

• At the end of the main loop, finally the function releaseNode
is invoked (line 51), in order to remove the lock taken earlier

on the node if the the following conditions are met: i) no

more tasks need to be executed, ii) no other user has locked

the node, and iii) there are no other stages to start. If all the

conditions are met, the lock put by the current user on the

node can be released. Furthermore, in case there are still

some jobs in waiting state, the first job is removed from the

list and scheduleReadyTasksOnAvailableNodes is executed on

that job.

4 EXPERIMENTAL RESULTS
In this section we present the results of a set of experiments we per-

formed to explore and validate Fork-Join and Task Precedence pre-

dictors, and dagSim simulator on the TPC-DS industry benchmark

as well as on some reference Machine Learning (ML) benchmarks,

namely Support Vector Machines (SVMs), Logistic Regression, and

K-Means. Such experiments were performed on Microsoft Azure

Cloud. Overall our tests include sequential workloads (obtained

from the TPC-DS SQL queries execution plan) and iterative work-

loads, which characterize ML algorithms and are becoming more

and more popular in the Spark community [1].

Algorithm 3.1 Simulation engine algorithm

1: function solve(Model M, Users U, CalendarEvent ce)

2: /* Initialize user job data */
3: UserJobData **UJD;

4: for i = 0; i < size(U); i++) do
5: UJD[i] = createUserJobData(M);

6: end for
7: /* Initialize the Nodes data */
8: NodeData *ND = initNodeData(M);

9: /* Initialize Job structure */
10: for useri ∈ Users do
11: nEv = AddEvent(ce, ThinkTime);

12: JobData *jobData = populateJobData();

13: nEv->data = jobData;

14: end for
15: /* Main simulation loop */
16: int TotalJobEnded = 0;

17: while TotalJobEnded < maxJobs(M) do
18: event = pop(CE);

19: if event is NULL then
20: break;

21: end if
22: Job *jd = ev->data;

23: if jd->stageId == USER_WANTS_TO_START then
24: initUserJobData(jd->userId, M);

25: createReadyList(jd->userId, M);

26: if (ND->NfreeNodes > 0) AND (!getLock(ND))

then
27: scheduleReadyTasksOnAvailableNodes(ce, ND,

UJD[jd->userId]);

28: else
29: addToAux(event, WAITLIST);

30: end if
31: else
32: /*A task of a running job ended */
33: UJD[jd->userId]->remainingTasksXStage[jd-

>stageId]- -;
34: if UJD[jd->userId]->remainingTasksXStage[jd-

>stageId] ≤ 0 then
35: setstatus(sk), STAGE_ST_ENDED);
36: if createReadyList(UJD, M) then
37: checkNewStageStart(Ji , M);

38: if (UJD[jd->userId]->readyList == ∅ AND

UJD[jd->userId]->stagesToStart == 0) then
39: UJD[jd->jobId->userId]->endTime =

currTime;

40: nEv = addEvent(ce, T);

41: JobData *jobData = populateJobData();

42: nEv->data = jobData;

43: TotalJobEnded++;

44: end if
45: end if
46: end if
47: releaseNode(currTime, ce, ND, UJD);

48: end if
49: end while
50: end function

ICPE 2018, April 2018, Berlin, Germany Ardagna et al.

Table 2: Notable functions

Function Description

InitNodeData Populates a NodeData structure

AddEvent Adds a new event to Calendar Event data

structure

populateJobData Initializes a JobData structure

maxJobs Returns the maximum jobs number as per the

LUA input file

pop Performs a pop operation on a CalendarEvent

data structure. The output is an Event

(sList data structure)

initUserJobData Populates JobData structure for a specific user

createReadyList Populates ReadyList structure including

the jobs to be executed and

update the job’ status.

scheduleReadyTasks

OnAvailableNodes Schedules waiting jobs on available nodes

addToAux Adds an Event to an Auxiliary data structure

isEmpty Returns true of false depending on the list

passed as argument is empty or not

getLock Returns true or false depending on the

job passed as argument has been locked

by a user or not

setLock Locks a job

4.1 Scenarios
The experimental scenarios cover the most widely used applica-

tions on Spark [1]. The ML benchmarks, namely K-means, Logistic

Regression, and SVM, are core activities in machine learning ap-

plications and represent important steps on such data processing

pipelines. They are iterative algorithms. The Q26 and Q52 come up

as an example of interactive queries that are currently popular on

Spark. Indeed nowadays big data applications are moving from the

early days’ batch processing to more interactive workloads.

We conduct our experiments on three types of virtual machine

environments on the Microsoft Azure HDInsight PaaS [17], all of

them running Spark. The goal is to explore different deployments of

what the provider has to offer, including general purpose, CPU, and

memory optimized instances. Considering that fault-tolerant paral-

lel systems such as Spark are built to run on commodity clusters, it

is important to guarantee the stability of the methods across dif-

ferent resource configurations. Two different Spark versions have

also been considered.

For what concerns the A3 and D12v2 VMs, the Spark 1.6.2 re-

lease and Ubuntu 14.04 were considered. The D4v2 VM featured

Ubuntu 16.04 and Spark 2.1.0. All the scenarios had two dedicated

master nodes over D12v2 VMs. Table 3 details the configurations.

In the A3 case, the workers configuration consisted of 6 up

to 48 cores, while in the case of D12v2 the number of cores has

varied between 12 and 52. The D4v2 deployments consisted of 24

cores and 48 cores, on three and six nodes respectively. Table 4

describes the set of scenarios we analyze. Each TPC-DS query and

machine learning benchmark were run 10 times for each considered

configuration.

Table 3: Experimental Deployment Configurations

VM Cores

Cores

per Exec.

Exec.

RAM

Driver

RAM

VM

RAM

Persistent Disk

D12v2 4 2 2GB 4GB 28GB 200GB local SSD

A3 4 2 2GB 4GB 7GB 250GB local disk

D4v2 8 4 10GB 8GB 28GB 400GB local SDD

Table 4: Scenarios Description

Application VM Configuration (nodes; cores; data)

1 TPCDS Q26 D12v2 3-13; 4 cores per node; 500GB

2 TPCDS Q52 D12v2 3-13; 4 cores per node; 500GB

3 TPCDS Q26 A3 3-13; up to 4 cores per node; 500GB

4 TPCDS Q52 A3 3-13; up to 4 cores per node; 500GB

5 K-Means D4v2 3 and 6; 8 per node; 8GB,48GB,96GB

6 Log. Regression D4v2 3 and 6; 8 per node; 8GB,48GB,96GB

7 SVM D4v2 3 and 6; 8 per node; 8GB,48GB,96GB

The accuracy of the performance prediction models is measured

by the relative error metric, evaluated using the average real time

measured on the system and prediction time for each application:

εr =
T
real

−T
predict

T
real

. (3)

4.2 D12v2 Environment (Scenarios 1 & 2)
This section presents the results obtained by the Fork-Join pre-

diction model [19], the Task Precedence prediction model [16]

and dagSim simulator over Spark 1.6.1 experiments executed on

Azure HDInsight D12v12 VMs. As previouly described, the Fork-

Join model outputs two values: a lower bound and an upper bound.

The first does not provide any useful information since it is does not

take into consideration the task synchronization delays while the

latter is the value we are interested in, since it is usually considered

for capacity planning. Its value represents an application execution

time threshold for that cluster’s hardware and configuration.

Considering scenario 1, the Fork-Join model’s upper bound error

ranges from −256.18% to −162.27%. The maximum error was ob-

tained for the largest configuration. We attribute these high errors

to the model’s overestimation of delays caused by task synchro-

nization in our setup: as a single fork-join task may be broken into

successive steps, due to its resource demands and server capacity,

extra synchronization overheads are introduced to the system and

add to the overall response time of a single task. These response

times are then overinflated by the model’s use of a constant to

approximate server synchronization delays, which is applied to

response times that already include delays caused by task synchro-

nization.

Both the Task Precedence model and dagSim simulator showed

better estimates, with errors ranging from 4.4% to 20.7% and −0.1%
to 16.2%, respectively. These models consider the parallel execution

DAG to better capture the dependencies and interactions between

Performance Prediction of Cloud-Based Big Data Applications ICPE 2018, April 2018, Berlin, Germany

tasks, resulting in more accurate estimates of synchronization de-

lays. For scenario 2, we found similar results when comparing the

three models. Table 5 details these results.

Table 5: Scenarios 1 & 2: Real and predicted execution times
(seconds). Results in bold for themaximumerror and shaded
cells for the minimum error.

Cores Real

Fork-Join (error %) Task Prec. DagSim

Lower Upper (error %) (error %)

Scenario 1: TPC-DS Q26 over D12v2 VMs

12 722.2 626.9 (13.2) 1945.3 (-169.4) 690.2 (4.4) 682.3 (5.5)

16 582.9 465.5 (20.1) 1573.8 (-170.0) 543.9 (6.7) 526.5 (9.7)

20 515.9 391.6 (24.1) 1408.9 (-173.1) 469.0 (9.1) 455.3 (11.8)

24 447.6 335.4 (25.1) 1266.4 (-182.9) 398.3 (11.0) 394.3 (11.9)

28 415.7 290.0 (30.2) 1138.7 (-173.9) 367.2 (11.7) 348.4 (16.2)
32 366.1 255.6 (30.2) 1037.4 (-183.4) 316.5 (13.5) 312.4 (14.7)

36 306.1 228.5 (25.4) 953.8 (-211.6) 256.1 (16.3) 290.3 (5.2)

40 287.5 211.3 (26.5) 903.9 (-214.4) 236.8 (17.6) 270.3 (6.0)

44 259.7 195.5 (24.7) 855.1 (-229.3) 209.6 (19.3) 250.6 (3.5)

48 248.6 194.2 (21.9) 865.7 (-248.2) 197.2 (20.7) 249.0 (-0.1)

52 220.2 172.9 (21.5) 784.5 (-256.3) 181.4 (17.6) 221.0 (-0.4)

Scenario 2: TPC-DS Q52 over D12v2 VMs

12 719.9 657.9 (8.6) 2041.5 (-183.6) 660.8 (8.2) 716.0 (0.6)

16 562.7 521.5 (7.3) 1763.2 (-213.3) 517.3 (8.1) 559.6 (0.6)

20 471.8 404.2 (14.3) 1454.2 (-208.2) 412.7 (12.5) 468.3 (0.8)

24 417.7 353.7 (15.3) 1335.4 (-219.7) 358.3 (14.2) 415.3 (0.6)

28 364.1 298.6 (18.0) 1172.8 (-222.1) 304.7 (16.3) 360.7 (0.9)
32 324.7 263.2 (18.9) 1068.4 (-229) 265.0 (18.4) 322.3 (0.7)

36 306.8 240.5 (21.6) 1004.2 (-227.3) 247.0 (19.5) 304.2 (0.9)
40 275.2 215 (21.9) 920.0 (-234.3) 215.2 (21.8) 273.1 (0.8)

44 258.8 202.2 (21.9) 884.2 (-241.7) 200.2 (22.7) 257.0 (0.7)

48 250 192.4 (23) 857.7 (-243.1) 190.7 (23.7) 248.3 (0.7)

52 226.1 177.5 (21.5) 805.6 (-256.3) 179.3 (20.7) 224.2 (0.8)

Overall, taking absolute values, on average the errors were

201.14% for the Fork-Join model upper bound, 13.45% for the Task

Precedence model, and 7.73% for dagSim in scenario 1. For sce-

nario 2, the Fork-Join model obtained 225.33%, the Task Precedence

model obtained 16.92%, and dagSim obtained 0.74%.

As described in Section 3, Fork-Join model is a very simple ap-

proach, which depends only on the number of parallel tasks and

on the average execution time of a single task for performance

prediction. Unfortunately, its simplicity is not suitable for predict-

ing perfomance, with reasonable accuracy, in the scenarios we are

interested in. Then, in the next sections, we will consider only Task

Precedence model and the dagSim Simulator approaches. As these

models explicitly capture the precedence relation between stages,

they may be able to better estimate the synchronization delays and

provide more accurate predictions.

4.3 A3 Environment (Scenarios 3 & 4)
Although the scenarios 3 and 4 consider the same cluster sizes, data

set size and queries as the scenarios 1 and 2, they differ from the

latter on the VM type and on how the experiments were planned.

Note that for these scenarios there is no regular amount of cores

per nodes as in scenarios 1 and 2. Here, we ran experiments simu-

lating an environment with memory pressure. Since A3 VMs have

less available RAM memory than the D12v2 ones, a lower number

of executors were allocated. Note that this is due to memory con-

tention among the executors and the underlying operating system

processes and the behavior was not deterministic.

Regarding the results, the prediction error of Task Precedence

and dagSim varies from 0.8% and 10.0% and 0.01% to−11.7%, respec-
tively. Similar results were found for scenario 4. In both scenarios,

the models presented lower errors for the smaller configuration

and higher errors for the larger configurations. We interpret this

as an accumulation in the synchronization delay prediction error.

Once we have more cores to execute the tasks, we also have more

synchronization delay to predict and more errors to sum up. The

results for scenarios 3 and 4 are detailed in Table 6.

Table 6: Scenarios 3 & 4: Real and predicted execution times
(seconds). Results in bold for themaximumerror and shaded
cells for the minimum error.

Scenario 3 (error %) Scenario 4 (error %)Nodes

(Cores) Real Task Prec. DagSim Real Task Prec. DagSim

3(6) 2532.3 2512.8(0.8) 2538.5(-0.3) 2158.9 2107.6(2.4) 2153.0(0.3)

3(8) 2071.2 2052(0.9) 2086.1(-0.7) 1709.2 1656.8(3.1) 1702.5(0.4)

4(10) 1778.8 1763.6(0.9) 1778.6(0.01) 1327.4 1276.4(3.8) 1316.3(0.9)

4(12) 1690.6 1674.5(1.0) 1704.5(-0.8) 1124.5 1072.5(4.6) 1117.4(0.6)

5(14) 1439.3 1414(1.8) 1452.9(-0.9) 976.4 924.0(5.4) 970.5(0.6)

5(16) 1271.6 1243.3(2.2) 1281.0(-0.7) 884.9 832.6(5.9) 880.4(0.5)

6(18) 1127.2 1099.8(2.4) 1152.9(-5.4) 816.5 764.8(6.3) 809.8(0.8)

6(20) 1093.6 1064.2(2.7) 1095.2(-11.7) 738.8 687.3(7.0) 733.3(0.7)

7(22) 996.7 963.2(3.4) 1050.4(5.4) 667.9 613.6(8.1) 663.3(0.7)

7(24) 911.2 874.8(4.0) 933.9(-2.5) 620.1 566.2(8.7) 615.8(0.7)

8(26) 720.8 682.2(5.4) 735.6(-2.1) 572.1 512.7(10.4) 568.4(0.6)

9(30) 658.8 617.6(6.3) 691.6(5.0) 525.9 572.9(7.6) 465.0(11.6)
9(32) 629.8 589(6.5) 643.7(-2.2) 492.3 432.7(12.1) 487.9(0.9)

10(34) 625.8 584.3(6.6) 647.6(-3.5) 462.2 402.5(12.9) 457.4(1.0)

10(36) 577.4 532.4(7.8) 602.9(-4.4) 442.1 382.6(13.5) 439.3(0.6)

11(38) 546.6 503.1(8.0) 572.1(-4.7) 438.7 380.2(13.3) 436.8(0.4)

11(40) 530.6 487.3(8.2) 555.2(-4.6) 418.4 359.1(14.2) 415.6(0.7)

12(42) 488.4 447.3(8.4) 510.6(-4.6) 392.1 334.2(14.8) 390.2(0.5)

12(44) 470.7 427.6(9.2) 493.8(-4.9) 383.7 325.9(15.1) 379.5(1.1)

13(46) 446.4 405.6(9.1) 455.2(-2.0) 378.4 318.8(15.8) 380.1(-0.5)

13(48) 430.5 387.5(10.0) 460.9(-7.1) 362.8 305.0(15.9) 359.3(1.0)

The results found for the scenarios 3 & 4 support those found

for scenarios 1 & 2, signifying that the models are stable for both

VMs and queries tested. Overall, taking absolute values, on average

the errors were 5.03% for the Task Precedence model and 3.50% for

dagSim in scenario 3. For scenario 4, the Task Precedence model ob-

tained 9.8%, and dagSim obtained 1.17%. Furthermore, both models

performed well under a deployment subject to memory pressure.

The dagSim simulator proved stable, specially on scenario 4 with

low errors except for the 9 nodes and 30 cores experiment. The

Task Precedence errors increased as the number of cores increased,

indicating that the prediction can be affected by the cluster size.

ICPE 2018, April 2018, Berlin, Germany Ardagna et al.

We assume that this is due to the accumulation of synchronization

delay estimation errors present in the model.

4.4 D4v2 Environment (Scenarios 5, 6 & 7)
For scenarios 5, 6, and 7 we executed the Task Precedence prediction

model and dagSim Simulator considering Spark 2.1.0 logs for a set of

machine learning algorithms, namely K-Means, Logistic Regression,

and SVM. The ML workloads are iterative algorithms and usually

characterized by a larger number of stages than the scenarios 1

to 4. For these applications, data partitions are cached and accessed

multiple times during the iterations. As noticed, these workloads

present a higher variability since each iteration consists of data

processing and RDD partitions re-computation in case of RDD

cache eviction.

As detailed by Table 7, for every algorithm, the Task Precedence

model prediction error is inversely proportional to the size of data

sets, i.e., the larger the data sets, the lower the prediction error.

Since processing larger data sets requires more tasks to be executed,

the experiments yield a lower variance on the application response

times. Analogously, a smaller number of tasks would result in higher

variance across multiple runs. Regarding the different cluster sizes,

results for all three algorithms were similar to those found previ-

ously. For larger cluster sizes, the models produce higher errors:

as previously discussed, this is attributed to the accumulation of

synchronization delays over a large number of distributed tasks

running in multiple cores.

Differently, dagSim did not show any error pattern and its worst

case error (−25.6%) is achieved for K-Means.

We further looked into the response times measured for indi-

vidual runs of each algorithm on each configuration and observed

that the setup with the largest errors for all three benchmarks for

Task Precedence (8 GB on 48 cores) coincides with the scenario

with the highest variance across multiple runs. The large number of

cores used on a relatively small dataset, which might occasionally

cause resource underutilization, may explain the slightly worse

performance of the model in this setup.

With regard to absolute errors, both Task Precedence and dagSim

provide very good prediction accuracy across the considered set

of experiments, covering different platforms and configurations.

While Task Precedence obtained a 5.48% average percentage error

across scenarios 5, 6, and 7, dagSim achieved 8.34%.

Concerning the scenarios, Task Precedence obtained 9.03%, 1.62%,

and 5.80% errors for scenarios 5, 6, and 7, respectively. Similarly,

dagSim performed at an average 16.45%, 2.42%, and 7.43%.

4.5 Summary of Results
To summarize all our results, we observe that the Task Precedence

model achieved errors that vary from 0.8% to 20.7%, being on aver-

age only 7.38% (average computed across all errors taken in absolute

values). The errors achieved by dagSim, on the other hand, vary

from 0.7% up to −25.6%, but with an average of only 5.65%. It is

important to observe that in the performance evaluation literature,

30% errors (consistent across cluster size) in execution time predic-

tions can be usually expected, especially from analytical models

(see [14]). Thus, both approaches are suitable for predicting the per-

formance of Big Data applications. Moreover, we note that dagSim

Table 7: Scenarios 5, 6 & 7: Real and predicted execution
times (seconds). Results in bold for the maximum error and
shaded cells for the minimum error.

Nodes

(cores)

Data set

size (GB)

Real

Task Prec.

(error %)

dagSim

(error %)

Scenario 5: K-Means on Azure D4v2

3 (24) 8 99.0 81.9 (17.3) 75.6 (23.6)

3 (24) 48 342.2 325.1 (5.0) 364.6 (-6.5)

3 (24) 96 862.1 845.9 (1.9) 788.4 (8.5)

6 (48) 8 90.3 74 (18.1) 70.3 (22.1)

6 (48) 48 195.0 178.8 (8.3) 219.2 (-12.4)

6 (48) 96 594.3 572.9 (3.6) 746.2 (-25.6)

Scenario 6: Logistic Regression on Azure D4v2

3 (24) 8 164.6 159.5 (3.1) 156.1 (5.1)

3 (24) 48 669.4 664.4 (0.7) 671.7 (-0.3)

3 (24) 96 1418.8 1414.1 (0.3) 1404.9 (0.9)

6 (48) 8 166.5 161.0 (3.3) 156.5 (6.0)
6 (48) 48 368.2 362.5 (1.5) 362.9 (1.4)

6 (48) 96 1200.7 1192.6 (0.6) 1193.9 (0.5)

Scenario 7: SVM on Azure D4v2

3 (24) 8 190.9 171.7 (10.1) 167.7 (12.2)

3 (24) 48 356.7 339.2 (4.9) 358.1 (0.4)

3 (24) 96 1,367.0 1349.6 (1.3) 1323.9 (3.2)

6 (48) 8 189.7 170.2 (10.3) 164 (13.5)
6 (48) 48 372.5 353.2 (5.2) 352.2 (5.4)

6 (48) 96 650.5 631.1 (3.0) 635.4 (2.3)

1 2 3 4 5 6 7

0

5

10

15

Scenarios

%
E
r
r
o
r

dagSim

Task Prec.

Figure 3: Average prediction errors across all analyzed sce-
narios (averages computed across errors taken in absolute
values)

Performance Prediction of Cloud-Based Big Data Applications ICPE 2018, April 2018, Berlin, Germany

outperforms the Task Precedence model in all scenarios with in-

teractive queries, whereas the latter was the best approach for the

iterative ML algorithms. A summary of these results is shown in

Figure 3. Our results of the Fork-Join model, on the other hand,

indicate that the simpler model provides only a very coarse approxi-

mation, which is too conservative, especially compared to the other

approaches.

Moreover, for what concerns the execution time, dagSim usually

runs in 10 seconds on average, but this time can increase up to

nearly 10 minutes for complex DAGs. When compared with the

literature, JMT or GreatSPN for the same models can take up to

one hour without obtaining greater accuracy (see [5] for additional

details). On the other hand, on equivalent scenarios, the Task Prece-

dence model performed quite well in terms of model solving time

(always around one second). However, the Task Precedence model

is limited to assess average execution time, whereas dagSim can

be extended to provide also percentiles of application performance,

thus enabling much finer grained analyses. In light of all these

considerations, we find that there is no clear winner between the

two approaches.

5 CONCLUSIONS
In this paper we compared two analytical models and proposed an

ad hoc simulator for the performance prediction of Spark applica-

tions running on Cloud clusters.

Multiple Cloud configurations and workloads (including SQL

and iterative machine learning benchmarks) have been considered.

From the results we achieved, the Fork-Join model proposed in [19]

is too inaccurate to be considered in practice. On the other side,

results show that both the Task Precedence model proposed by

Mak & Lundstrom and the dagSim simulator perform very well for

predicting the average system response time and are effective in

capturing the dynamic resource assignment implemented in Spark,

achieving 7.38% and 5.63% average percentage error across all the

experiments, respectively.

In our future work we plan to extend our models to cope with

scenarios where multiple applications run concurrently compet-

ing to access the resources in the same clusters. Finally, we will

embed the models into a runtime optimization tool for managing

dynamically Cloud resources with the aim of providing application

execution within an a priori fixed deadline while minimizing Cloud

operational costs.

ACKNOWLEDGEMENT
The authors work has been partially funded by the EUBra-BIGSEA

project by the European Commission under the Cooperation Pro-

gramme (MCTI/RNP 3rd Coordinated Call), Horizon 2020 grant

agreement 690116. This research was also be partially funded by

CNPq and FAPEMIG, Brazil.

REFERENCES
[1] [n. d.]. Apache Spark Survey 2016 Results Now Available. ([n. d.]). https:

//databricks.com/blog/2016/09/27/spark-survey-2016-released.html

[2] [n. d.]. The Digital Universe in 2020. ([n. d.]). http://idcdocserv.com/1414

[3] [n. d.]. The Programming Language LUA. ([n. d.]). https://www.lua.org/home.

html

[4] Danilo Ardagna, Simona Bernardi, Eugenio Gianniti, Soroush Karimian Aliabadi,

Diego Perez-Palacin, and José Ignacio Requeno. 2016. Modeling Performance of

Hadoop Applications: A Journey from Queueing Networks to Stochastic Well

Formed Nets. In Algorithms and Architectures for Parallel Processing - 16th Interna-
tional Conference, ICA3PP 2016, Granada, Spain, December 14-16, 2016, Proceedings.
599–613.

[5] Danilo Ardagna, Simona Bernardi, Eugenio Gianniti, Soroush Karimian Aliabadi,

Diego Perez-Palacin, and José Ignacio Requeno. 2016. Modeling Performance of

Hadoop Applications: A Journey from Queueing Networks to Stochastic Well

Formed Nets. In Algorithms and Architectures for Parallel Processing - 16th Interna-
tional Conference, ICA3PP 2016, Granada, Spain, December 14-16, 2016, Proceedings.
599–613. https://doi.org/10.1007/978-3-319-49583-5_47

[6] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. 2009. JMT: performance

engineering tools for system modeling. SIGMETRICS Performance Evaluation
Review 36, 4 (2009), 10–15. https://doi.org/10.1145/1530873.1530877

[7] Keke Chen, James Powers, Shumin Guo, and Fengguang Tian. 2014. CRESP:

Towards Optimal Resource Provisioning for MapReduce Computing in Public

Clouds. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014), 1403–
1412. https://doi.org/10.1109/TPDS.2013.297

[8] Giovanni Chiola. 1985. A Software Package for the Analysis of Generalized

Stochastic Petri Net Models. In International Workshop on Timed Petri Nets, Torino,
Italy, July 1-3, 1985. 136–143.

[9] G. Ciardo, R. L. Jones, III, A. S. Miner, and R. I. Siminiceanu. 2006. Logic and

stochastic modeling with SMART. Perform. Eval. 63 (June 2006), 578–608. Issue
6. https://doi.org/10.1016/j.peva.2005.06.001

[10] Derrick. 2015. Survey shows huge popularity spike for Apache Spark. (2015).

http://fortune.com/2015/09/25/apache-spark-survey

[11] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstanti-

nou, Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014. Big Data

and Its Technical Challenges. Commun. ACM 57, 7 (July 2014), 86–94.

[12] Miriam Leeser Janki Bhimani, Ningfang Mi. [n. d.]. Scalable Performance

Prediction Techniques for Big Data Processing in Distributed Multi-Core

Systems. ([n. d.]). http://staging-rise.s3.amazonaws.com/1082/3/1001/bhimani_

janki_niljll.pdf?AWSAccessKeyId=AKIAIZD5HUIXRXZ4FWDA&Expires=

1775950506&Signature=87LWnIaPnB%2BS%2BNPgavF6VM9ypQo%3D

[13] Jacek Laskowski. 2016. Mastering Apache Spark. https://www.gitbook.com/

book/jaceklaskowski/mastering-apache-spark. (2016). [Online; accessed 28-June-

2016].

[14] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sev-

cik. 1984. Quantitative System Performance. Prentice-Hall. http://homes.cs.

washington.edu/~lazowska/qsp/

[15] Deron Liang and Satish K. Tripathi. 2000. On Performance Prediction of Parallel

Computations with Precedent Constraints. IEEE Trans. Parallel Distrib. Syst. 11, 5
(2000), 491–508. https://doi.org/10.1109/71.852402

[16] V.W. Mak and S.F. Lundstrom. 1990. Predicting Performance of Parallel Compu-

tations. IEEE Transactions on Parallel & Distributed Systems 1, undefined (1990),

257–270. https://doi.org/doi.ieeecomputersociety.org/10.1109/71.80155

[17] Microsoft. [n. d.]. Sizes for Windows virtual machines in Azure. https://docs.

microsoft.com/en-us/azure/virtual-machines/windows/sizes. ([n. d.]). [Online;

accessed 15-January-2017].

[18] Microsoft. 2016. What is PaaS? https://azure.microsoft.com/en-us/overview/

what-is-paas/. (2016). [Online; accessed 30-August-2016].

[19] Randolf D. Nelson and Asser N. Tantawi. 1988. Approximate Analysis of Fork/Join

Synchronization in Parallel Queues. IEEE Trans. Computers 37, 6 (1988), 739–743.
http://dblp.uni-trier.de/db/journals/tc/tc37.html#NelsonT88

[20] D. M. Nicol and A. S. Miner. 1995. The Fluid Stochastic Petri Net Simulator. In

Proceedings of the Sixth International Workshop on Petri Nets and Performance
Models (PNPM ’95). IEEE Computer Society, Washington, DC, USA, 214–. http:

//dl.acm.org/citation.cfm?id=826033.826758

[21] Adrian Daniel Popescu. 2015. Runtime Prediction for Scale-Out Data Analytics.
Ph.D. Dissertation. IC, Lausanne. https://doi.org/10.5075/epfl-thesis-6629

[22] Wolfgang Reisig, Grzegorz Rozenberg, and P. S. Thiagarajan. 2013. In Memoriam:
Carl Adam Petri. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–5. https:

//doi.org/10.1007/978-3-642-38143-0_1

[23] Ge Song, Zide Meng, Fabrice Huet, Frederic Magoules, Lei Yu, and et al. 2013. A

Hadoop MapReduce Performance Prediction Method. In HPCC 2013. 820–825.
[24] Don Towsley, John C.S. Lui, and Richard R. Muntz. 1998. Computing Performance

Bounds of Fork-Join Parallel Programs Under a Multiprocessing Environment.

IEEE Transactions on Parallel & Distributed Systems 9, 3 (1998), 295–311. https:
//doi.org/doi.ieeecomputersociety.org/10.1109/71.674321

[25] Satish K. Tripathi and De-Ron Liang. 2000. On Performance Prediction of Par-

allel Computations with Precedent Constraints. IEEE Transactions on Paral-
lel & Distributed Systems 11, undefined (2000), 491–508. https://doi.org/doi.

ieeecomputersociety.org/10.1109/71.852402

[26] Kishor S. Trivedi. 2002. SHARPE 2002: Symbolic Hierarchical Automated Relia-

bility and Performance Evaluator. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks. IEEE Computer Society, Wash-

ington, DC, USA, 544.

[27] Elizabeth Varki and Lawrence W. Dowdy. 1996. Analysis of Balanced Fork-join

Queueing Networks. SIGMETRICS Perform. Eval. Rev. 24, 1 (May 1996), 232–241.

https://databricks.com/blog/2016/09/27/spark-survey-2016-released.html
https://databricks.com/blog/2016/09/27/spark-survey-2016-released.html
http://idcdocserv.com/1414
https://www.lua.org/home.html
https://www.lua.org/home.html
https://doi.org/10.1007/978-3-319-49583-5_47
https://doi.org/10.1145/1530873.1530877
https://doi.org/10.1109/TPDS.2013.297
https://doi.org/10.1016/j.peva.2005.06.001
http://fortune.com/2015/09/25/apache-spark-survey
http://staging-rise.s3.amazonaws.com/1082/3/1001/bhimani_janki_niljll.pdf?AWSAccessKeyId=AKIAIZD5HUIXRXZ4FWDA&Expires=1775950506&Signature=87LWnIaPnB%2BS%2BNPgavF6VM9ypQo%3D
http://staging-rise.s3.amazonaws.com/1082/3/1001/bhimani_janki_niljll.pdf?AWSAccessKeyId=AKIAIZD5HUIXRXZ4FWDA&Expires=1775950506&Signature=87LWnIaPnB%2BS%2BNPgavF6VM9ypQo%3D
http://staging-rise.s3.amazonaws.com/1082/3/1001/bhimani_janki_niljll.pdf?AWSAccessKeyId=AKIAIZD5HUIXRXZ4FWDA&Expires=1775950506&Signature=87LWnIaPnB%2BS%2BNPgavF6VM9ypQo%3D
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark
http://homes.cs.washington.edu/~lazowska/qsp/
http://homes.cs.washington.edu/~lazowska/qsp/
https://doi.org/10.1109/71.852402
https://doi.org/doi.ieeecomputersociety.org/10.1109/71.80155
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-paas/
http://dblp.uni-trier.de/db/journals/tc/tc37.html#NelsonT88
http://dl.acm.org/citation.cfm?id=826033.826758
http://dl.acm.org/citation.cfm?id=826033.826758
https://doi.org/10.5075/epfl-thesis-6629
https://doi.org/10.1007/978-3-642-38143-0_1
https://doi.org/10.1007/978-3-642-38143-0_1
https://doi.org/doi.ieeecomputersociety.org/10.1109/71.674321
https://doi.org/doi.ieeecomputersociety.org/10.1109/71.674321
https://doi.org/doi.ieeecomputersociety.org/10.1109/71.852402
https://doi.org/doi.ieeecomputersociety.org/10.1109/71.852402

ICPE 2018, April 2018, Berlin, Germany Ardagna et al.

https://doi.org/10.1145/233008.233048

[28] Emanuel Vianna, Giovanni Comarela, Tatiana Pontes, Jussara Almeida, Virgílio

Almeida, Kevin Wilkinson, Harumi Kuno, and Umeshwar Dayal. 2013. Analytical

Performance Models for MapReduce Workloads. International Journal of Parallel
Programming 41, 4 (2013), 495–525. https://doi.org/10.1007/s10766-012-0227-4

[29] Guanying Wang, Ali Raza Butt, Prashant Pandey, and Karan Gupta. 2009. A sim-

ulation approach to evaluating design decisions in MapReduce setups.. In MAS-
COTS. IEEE Computer Society, 1–11. http://dblp.uni-trier.de/db/conf/mascots/

mascots2009.html#WangBPG09

[30] Kewen Wang and Mohammad Maifi Hasan Khan. 2015. Performance Prediction

for Apache Spark Platform.. In HPCC/CSS/ICESS. IEEE, 166–173. http://dblp.

uni-trier.de/db/conf/hpcc/hpcc2015.html#WangK15

[31] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10

(2010), 95.

https://doi.org/10.1145/233008.233048
https://doi.org/10.1007/s10766-012-0227-4
http://dblp.uni-trier.de/db/conf/mascots/mascots2009.html#WangBPG09
http://dblp.uni-trier.de/db/conf/mascots/mascots2009.html#WangBPG09
http://dblp.uni-trier.de/db/conf/hpcc/hpcc2015.html#WangK15
http://dblp.uni-trier.de/db/conf/hpcc/hpcc2015.html#WangK15

	Abstract
	1 Introduction
	2 Related Work
	2.1 Queuing Network Models
	2.2 Simulation approaches

	3 Performance Prediction Models
	3.1 Spark Overview and Model Assumptions
	3.2 Queuing Network Models
	3.3 dagSim Simulator

	4 Experimental Results
	4.1 Scenarios
	4.2 D12v2 Environment (Scenarios 1 & 2)
	4.3 A3 Environment (Scenarios 3 & 4)
	4.4 D4v2 Environment (Scenarios 5, 6 & 7)
	4.5 Summary of Results

	5 Conclusions
	References

