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Abstract—We focus on the problem of managing a shared
physical wireless sensor network (WSN) where a single net-
work infrastructure provider leases the physical resources of the
networks to application providers to run/deploy specific applica-
tions/services. In this scenario, we solve jointly the problems of
application admission control (AAC), that is, whether to admit
the application/service to the physical network, and wireless sen-
sor network slicing (SNS), that is, to allocate the required physical
resources to the admitted applications in a transparent and effec-
tive way. We propose a mathematical programming framework
to model the joint AAC-SNS problem which is then leveraged to
design effective solution algorithms. The proposed framework is
thoroughly evaluated on realistic WSNs infrastructures.

Index Terms—Internet of Things, optimization, resource allo-
cation, virtualization, wireless sensor networks (WSNs).

I. INTRODUCTION

IRELESS sensor networks (WSNs) are one of the key
Wenabling building blocks for the Internet of Things.
Looking back at the evolution of WSNs, a clear trend can be
observed moving from standalone, application-specific deploy-
ments to highly integrated wireless sensor systems used to
support heterogeneous ecosystems of services and applica-
tions. In this context, the premium deployment domains for
WSNs are nowadays smart cities, smart home and buildings
and intelligent transportation systems, which are all character-
ized by the coexistence of sensor nodes with heterogeneous
sensing, processing and communication capabilities, which all
together support multiple applications and services.

The aforementioned trend calls for novel design good prac-
tices to overcome the limits in flexibility, efficiency, and
manageability of vertical, task-oriented, and domain-specific
WSNs. In this field, virtualization appears to be the most
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promising approach to reach this goal. Virtualization is already
a consolidated reality at the very heart of cloud-based ser-
vices in data centers and the Internet core, and is also gauging
momentum in the domain of wireless mobile networks under
the push of network “softwareization”; as an example, one
of the major innovation of the fifth generation (5G) of the
mobile broadband systems under current standardization is
network slicing, which allows allocating/partitioning the phys-
ical resources of the radio access network and the core net-
work to multiple concurrent applications with heterogeneous
requirements and constraints.

Similar virtualization approaches have been recently pro-
posed in the domain of WSNs to ease up reconfigurability
and manageability of network resources, eventually opening
up for novel business opportunities where the roles of WSN
infrastructure provider and WSN service/application provider
are decoupled. WSNs virtualization includes all technologies
to abstract the physical communication, sensing, and process-
ing resources in a shared WSN to efficiently allocate them to
multiple independent applications or clients. Generally speak-
ing, the realization of virtual sensor networks requires tech-
nologies and solutions in different domains ranging from the
node level, where the virtual sensor nodes must be able to sup-
port and run applications in a transparent way, up to the net-
work level where effective platforms and solutions are required
to manage and reconfigure on-the-fly the network resources.

We focus here on the problem of managing a shared physi-
cal WSN over time; we look at the reference scenario where a
single shared sensor network infrastructure provider (SSN-IP)
owns an heterogeneous infrastructure which can be accessed
by multiple application providers which issue requests to
deploy specific applications/services. In this scenario, we solve
jointly the problems of application/service admission con-
trol (AAC), that is, whether to admit the application/service
to the physical network, and WSN slicing (SNS), that is,
to allocate the required physical resources to the admitted
applications in a transparent and effective way. We propose
a mathematical programming framework to model the joint
AAC-SNS problem, which is then leveraged to design effective
solution algorithms. The proposed framework is thoroughly
evaluated on realistic heterogeneous WSNs.

This paper is organized as follows. Section II gives an
overview of the background and the most relevant related lit-
erature, further commenting on the main contributions of this
paper. Section III introduces the addressed problem and the
reference scenario, whilst Sections IV and V introduce the
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optimization framework to solve the joint problem of AAC and
wireless SNS in the two cases where application arrival time
and activation time are/are not known a priori, respectively. In
Section VI, we introduce a heuristic to solve the joint AAC-
SNS problem whose performance is evaluated in Section VIIL.
Concluding remarks are finally reported in Section VIIL.

II. RELATED WORK

Virtualization is a widely used technique in the manage-
ment of cloud-based services in the core network of the
Internet [1]. Besides that, virtualization is also impacting the
domain of wireless networks in general and mobile radio
networks in particular with the ongoing standardization of
novel virtualization-aware features for the 5G of mobile radio
network including network slicing and Cloud-RAN [2].

Only recently virtualization technologies have also been
studied in the domain of WSNs with the primary goal to
improve the flexibility, the manageability and the return on
investment of widespread and large WSNs deployments. Being
the research field that recent, a common and shared termi-
nology is still missing and the technical papers often use
different wording for similar concepts; as an example, vir-
tual sensor networks, shared sensor networks, federated sensor
networks, and multiapplication sensor networks are often
used almost interchangeably in the related literature. The
interested reader may refer to the following surveys on the
topic [3], [4].

In this paper, we will use the term virtual sensor network to
define a physical sensor network heterogeneous infrastructure
which can be used to support multiple concurrent applica-
tions and services, and where the ownership of the physical
infrastructure is decoupled from the ownership of the appli-
cations and services; along the same lines, we will refer to
virtualization technologies to define the different solutions and
approaches to support and realize a virtual sensor network.

Virtualization technologies at different levels are needed
to actually enable a virtual sensor network. One insightful
classification of such technologies available in the literature
distinguishes virtualization technologies at the node level and
at the network level [3]. Node-level virtualization encompasses
the design of abstraction layers and primitives on the single
sensor node to overcome the problem of application-platform
dependency and/or code modularization; in this field, archi-
tectures based on virtual machines are proposed to enable vir-
tualization and reprogrammability. As an example, Maté [5],
ASVM [6], Melete [7], and VMStar [8] are frameworks for
building application-specific virtual machines over constrained
sensor platforms. Similarly, ReLog [9] proposes a systematic
approach consisting of a programming language, a compiler,
and a virtual machine to make application programs concise
and easy to modify.

Network-level virtualization technologies include two main
building blocks which are usually tightly coupled: 1) man-
agement platforms to support multiple application sharing
a common physical infrastructure and 2) tools/algorithms
to allocate the physical resources to the multiple applica-
tions. Representative examples of management platforms are

SenSHare [10] and UMADE [11], which create multiple
overlay sensor networks which are “owned” by different appli-
cations on top of a shared physical infrastructure. Along the
same lines, Fok et al. [12] and Li et al. [13] introduced
middleware abstractions to support multiple applications in
heterogeneous WSNs. A prototype of software defined WSN
is proposed in [14] where a centralized control plane dynam-
ically manages communication routes in the network with the
goal of augmenting the energy efficiency.

As far as resource allocation in virtual sensor network is
concerned, Xu et al. [15] focused on environmental moni-
toring applications and proposed a centralized optimization
framework which allocates applications to sensor nodes with
objectives to minimize the variance in sensor readings. The
same authors address in a later work the case where the
application assignment problem is no longer centralized but
rather distributed by resorting to game-theoretic tools [16].
Ajmal et al. [17] proposed a decision algorithm to dynamically
“admit” applications to physical sensor network infrastruc-
ture. Activity time maximization of the physical infrastructure
is targeted in [18] and [19], which focus on the problem
of scheduling applications in shared sensor nodes. In our
past work [20], we study the problem of resource alloca-
tion in virtual sensor networks in a static case where the
set of applications to be serviced is fixed and given. The
research streamline on sensor mission assignment [21]-[24]
also addresses a resource allocation problem in WSNs; namely,
the problem is to jointly allocate the physical sensor resources
to incoming applications while incorporating admission con-
trol policies. In this respect, the problem addressed in this
paper bears similarities with sensor mission assignment; on
the other side, our approach has the following distinctive
additional features which make it more comprehensive with
respect to the related work on sensor mission assignment: our
framework considers networking-related aspects (e.g., routing,
interference, and network capacity), includes the possibility
to reconfigure the sensor network by moving applications
which were previously deployed, and further allows model-
ing situations where multiple applications can be concurrently
deployed at a sensor node.

This paper naturally fits in the network-level virtualization
class and further extends the related literature in this field by
considering a dynamic case where applications/services are
“offered” to the physical infrastructure provider over time. Our
proposal provides a more flexible resource allocation, aligned
with the ideas of virtualization and network slicing, and a more
detailed modeling of application demands, sensor resources
and networking aspects than previous sensor mission assign-
ment works. To the authors’ knowledge, this paper is the first
approach to model and analyze the joint problem of AAC and
physical resource allocation in virtual sensor networks.

III. PROBLEM STATEMENT AND SYSTEM MODEL

The reference playground features one SSN-IP that owns
a WSN composed of heterogeneous nodes in terms of pro-
cessing, sensing and communication capabilities; the SSN-IP
has full management control of the physical infrastructure



TABLE I
SET OF PARAMETERS OF THE OPTIMIZATION FRAMEWORK

’ Parameter ‘ Definition

’ Sets, vectors, characteristics ‘

S ={s1,82,...,55}

Set of sensor nodes; subscript index @ (or h) refers to sensor node s; (or sp)

S’ Set of nodes that are not Sinks (a subset of S)
A= {al, az,...,q A\} Set of applications; subscript index j refers to application a;
W= {wl, wa, ..., w‘W|} Set of test points; subscript index k refers to test point wy,
W Set of test points of application j
S; Set of sensor nodes covering test point k£ of application j

0j = {cj,my,l;}

Requirement vector of application j (source rate, memory, processing load)

0; ={Ci,M;,L;, E;}

Resource vector of node 4 (bandwidth, storage, proccessing power, energy)

T= {t1, ta,... ,t‘T‘} Set of time instants; subscript index n refers to time instant ¢,
T Instant time in which application j arrives
€j Activity time of application j
T; Subset of T' formed by the time instants that lay in the interval [7, 7; + €;)
Aq =A{aj|rq € [1q,7q¢ + €¢)} | Set of applications that are running in the network at 7, including the arriving application
Q= {7'1, T2, T A‘} Subset of T' containing the time instants of the arrival of the applications; subscript index ¢ refers
to time instant 74
R? Sensing range of node %
’ Coverage and application deployment

zj Binary variable indicating if application j is successfully deployed

Yijkn Binary variable indicating if test point k of application j is deployed at sensor node ¢ at time instant n
Tin Binary variable indicating if sensor node ¢ is active in the network at time instant n

Rjkn Binary variable indicating if test point k£ of set T} is sensed by a sensor node at time instant n

Yijk Binary variable indicating if test point & of application j is deployed at sensor node ¢
z; Binary variable indicating if sensor node ¢ is active in the network

X Constant equal to 1 if the node ¢ was active before the arrival of the new application, and O otherwise
Yijk Constant equal to 1 if the test point £ of the application j was being sensed in the node 4 just before
the arrival of the new application, and O otherwhise

Nij Maximum number of test points of application j actually covered by sensor node %

Uin Binary variable: u;p, = TinTin—1

Vijkn Binary variable: v;;xn = Yijkn¥Yijkn—1

and receives requests from sensor network service providers
(SN-SP) to have their services, called applications here-
after, deployed in the physical infrastructure. Each application
request is characterized by an arrival time, that is, the time
the application request is issued, an activity time, that is how
long the application needs to be active in the network, and a
set of requirements, that is, the service level required by the
application in terms of sensing area to be covered, required
processing and storage capabilities of the node(s) hosting the
application, and required communication bandwidth to deliver
application data remotely across the physical sensor network.

We set ourself in the perspective of the SSN-IP and address
the problem on how to optimally manage the application
requests coming from the SN-SPs to maximize our total rev-
enue which is assumed to be proportional to the number of
application requests which can be satisfied. In a nutshell, we
introduce hereafter optimal and suboptimal techniques to let
the SSN-IP decide jointly when to admit/not admit an applica-
tion request and how to reconfigure consequently the current
physical resource assignment to applications.

Tables I and II summarize the notation used through
Sections III-V. Let § = {s1,52,...,55]) be a set of

sensor nodes, A = {aj,as,...,a4} a set of applica-
tions which are to be deployed in the reference area,
and W = {wy, w2, ..., ww|} a set of test points in the refer-
ence network scenario. These test points are physical locations
where the application’s sensing parameters must be measured
(e.g., a test point can be a physical location where a tem-
perature monitoring application needs to collect a temperature
sample). To simplify notation, in the following we will use the
subscript index i (or %) to refer to a sensor node s; (or sp), the
subscript index j to refer to an application a; and the subscript
index k to refer to a test point wy.

Each application j requires to sense a given set of test points
W; € W. Formally, the application j has to be deployed in a
subset of the sensor node set S such that all the test points in
W; are sensed. We consider that a test point is covered by a
sensor node i if it is within its sensing range, R}. Thus, given
a test point, a set of sensor nodes can cover it (the test point
can be in the sensing range of several nodes), but only one
sensor node will sense it.

Therefore, it is also convenient to introduce the set Sy,
defined as the set of sensor nodes which cover the test point &,
with k € W;. In other words, if the application j is deployed on



TABLE 1T
SET OF PARAMETERS OF THE OPTIMIZATION FRAMEWORK

l Parameter | Definition ‘
l Propagation model l
Priax Maximum transmission power
anaz Maximum transmission range with Py, qq
Rfmm Maximum interference range with P, g4
gin Channel gain from transmitter ¢ to receiver h in the directional link (z, h)
din Distance from ¢ to h
9o Constant dependent on antenna parameters
¥ Path loss index
« Receiver sensitivity
“w Interference sensitivity
PDi Transmission power assigned to node %
RT (pi) Transmission range for node ¢ with transmission power p;
Rf (ps) Interference range for node 7 with transmission power p;
l Routing
fihn Flow of data in bps transmitted from node ¢ to node h at time instant n
fin Flow of data in bps transmitted from node ¢ to node h
finj Flow of data for application j in bps transmitted from node 4 to node h
Tin Rate generated by node ¢ at time instant n
Kin If nodes 4 and h are linked according to the routing tree, K ;5 is a constant higher than the maximum transmission rate of a node. If not, K;p is O
l Bandwidth l
l Cin [ Capacity of the link (¢, h) ‘
l Energy ‘
B1 B1 = 50 nJ/bit
B2 B2 = 0.0013pJ/bit/m*
P p = 50 nl/bit
Pitn Power dissipation at the radio transmitter of node 4 at time instant n
P Power dissipation at the radio receiver of node ¢ at time instant n
Pitj Power dissipation for the application j at the radio transmitter of node ¢
pirj Power dissipation for the application j at the radio receiver of node ¢
©i Cost incurred every time a node ¢ is activated
dij Cost incurred in node ¢ due to the impact of receiving the bytecode of application j
i Variable indicating the residual energy that node ¢ would have once the activity time of the applications deployed in it or forwarded by it expires
A Variable indicating the total residual energy of the network once the activity time of all the applications deployed in the network expires

any of the sensors in Sj, then the target test point k is sensed
for this application. A necessary condition for an application
J to be successfully deployed is that all the test points in its
target set W; must be sensed.

To model the dynamics of the arrival and departure of appli-
cations, we assume that each application j arrives and leaves
the system at time instants 7; and 7; + €;, where ¢; is its
activity time. With this, we can define an ordered set of time
instants T = {t1, 12, ..., fj7)}, each of them corresponding to
the moment at which the arrival or departure of an application
happens. To simplify the notation, in the following we will
use the subscript index n to refer to the time instant #,. Each
application j will be active in the network (if it is possible
to deploy it) during a time interval that begins and ends at
elements of 7. We define 7; as the subset of 7" formed by the
time instants that lay within the interval [}, 7; + €;), which
corresponds to all the arrivals and departures of applications
during the activity time of application j.

Each application j in A is further characterized by a require-
ment vector o; = {cj, m;, ;} which specifies the generated
source rate (bit/s), memory (bits), and processing load (MIPS)
consumed by the application when it is deployed on a sensor

node. The requirement vector can be interpreted as the amount
of resources needed to accomplish the specific tasks required
by the application (e.g., acquire, process, and transmit ten tem-
perature samples, or acquire process and transmit one JPEG
image, etc.). Additionally, each sensor node i in S is charac-
terized by a given resource vector O; = {C;, M;, L;, E;}, which
specifies its available bandwidth, storage capacity, processing
power and energy.

A protocol interference model with power control [25] is
used to characterize the wireless communications among the
sensor nodes. The maximum transmission power is Ppax. With
this power, there are a maximum transmission range R._ and
a maximum interference range R/ . Given a directional link
between a pair of nodes (i, h), the channel gain from trans-
mitter i to receiver & is defined as gj; = godi;y, being d;, the
distance from i to &, y the path loss index and gp a constant
dependent on antenna parameters. In order for a transmission
to be successful, the received power must exceed a thresh-
old «. Additionally, all the nodes under the interference range
of a sensor node share the same transmission channel and
therefore, the transmission time is shared among them. If p;
is the transmission power assigned to node i, a transmission



toward h is successful if p;gin > «. Thus, the transmission
range for node i with transmission power p; can be obtained
as RiT(pi) = (pigo/a)'/7. Similarly, the interference result-
ing from node i with power p; is non-negligible only if it
exceeds a certain threshold n. Then, the interference range is
Rlpi) = (pigo/ )7 .

IV. GENERAL OPTIMIZATION FRAMEWORK

We start off by casting the AAC with wireless SNS (AAC-
SNS) problem in the ideal case where the activity time and
the arrival time of each application are known a priori. This
leads to a performance benchmark which will be then used to
evaluate the algorithms and solutions in the real case where
application arrivals cannot be predicted a priori. In this ref-
erence scenario, we target the maximization of the overall
serviced applications, subject to node-related and network-
related constraints. Namely, this problem is subject to coverage
constraints (the set of test points of each application must
be sensed) and to application requirements (each application
should be assigned enough processing and storage resources
during its whole activity time to operate successfully). In
addition, due to the multihop nature of WSNs, routing and
link capacity constraints must be considered when the data
generated by the applications have to be delivered remotely.

Let z; be a binary variable indicating if application j is suc-
cessfully deployed in the network. Let yjj, be a binary variable
indicating if test point k of application j is deployed at sensor
node i at time instant n. Let x;, be a binary variable indicat-
ing if sensor node i is active in the network at time instant n.
Let hjx, be a binary variable which indicates if test point k of
application j is sensed at time instant n. The objective function
aims to maximize the total number of deployed applications

maxZZj. ey

JjeA

A. Constraints on Coverage and on Resources of
the Sensors

Constraints (2)—(6) require that all the applications which
are actually deployed do fulfill the coverage constraints, that
is, they sense all the required test points during their corre-
sponding activity time. Specifically, (2) indicates that a test
point k of an application j is sensed at time instant n if the
application j is deployed at a sensor node i belonging to Sj;
at that instant. If so, it ensures that it is only sensed by sensor
node i. Equation (3) ensures that if a sensor node i does not
cover a test point k of an application j, then it cannot sense
that test point. Equation (4) guarantees that the test points of
each application are only tested during the required time inter-
val of the application 7;. Depending on the application, it can
be possible that the same sensor node can sense several of its
test points (e.g., visual applications). If we define N;; as the
maximum number of test points of the same application j that
a sensor i is able to sense, (5) guarantees that this threshold is
not exceeded at any time instant. Equation (6) indicates that an
application j is successfully deployed, i.e., z; = 1, if and only
if all its test points are sensed during the activity time of the
application (hjyx, = 1,Vk € W;,Vn € Tj). On the other hand,

if the application is not successfully deployed, i.e., if z; = 0,
the constraint forces none of its test points to be sensed at all
(hjkn = 0, Vk € W, Vn € T; and consequently according to (2),
Yikn = 0,Vk € W;, Vi € Sy, Vn € Tj). This guarantees that if
the application cannot be deployed, resources are not wasted

> Vign =hita Vj€A ke W, VneT )
1€Sjk
Vign =0 Vi¢ Sp, Vi €A Yke W,¥neT  (3)
Vign =0 VieSp, Vi €A Yke W, Vn ¢ T;  (4)
> v <Nj  VieS.VjeAVnel, (5)
keW;
1 :
z;zWZZhﬂm Vj € A. (6)
| f||-’|n€1}keﬂg

Constraints (7) and (8) are budget-type constraints for the
available storage and processing load of the sensor nodes. They
must be ensured for all the nodes at any time instant n € T

DO myign <M;  VieS.VneT (7)
JEA keW;
S by <Li VieS.Vnel. (8)
JEA keW;

B. Routing Constraints

Deployed applications require that the information gener-
ated locally is delivered remotely to collection points (sink
nodes) through multihop paths. Note that these sensor nodes
may run deployed applications or not. By resorting to a
fluid model, it should be ensured that all the data produced
by the sensors running applications at any time is received
by the sink nodes. This fact can be conveniently expressed
using the following constraints:

Tin = Z Z cyijkn Vi€ S,VneT (9)

JEA keW;
thin - Zfihn +rip=0 VieS,VneT (10
heS heS
i#h hti
ch Z hjn = Z Zfihn +rm| VneT
jeA  keW; hes\S' \ icS
i#h
(11)

where S’ is the set of nodes that are not sinks (a subset of
S), riy is a variable indicating the data generated by node i at
time instant n, and fi, is a variable representing the flow of
data in bps transmitted from node i to node % at time instant
n. Constraints (9) and (11) enforce flow conservation at sen-
sor nodes: the incoming flow rate into a node i plus the data
generated by itself must be equal to the outcoming flow rate.
When a node 7 runs application j to monitor its test point k, it
generates traffic at a rate ¢; bps.

Constraints (11) impose that the amount of data generated in
the network at any time instant is equal to the amount of data
collected by the set of sinks. The left term represents the total
data rate generated in the network: for each active application



J» there may be different sensor nodes sensing the correspond-
ing |Wj| test points and therefore each one generating c; bps.
The right term represents the overall traffic received by the set
of sink nodes plus the rate generated by themselves in case
they are also running applications. This equality, together with
the flow conservation in constraint (10), imposes that all the
traffic generated in the network is finally collected by the set
of sinks (delivered by other nodes or generated by the sinks
themselves).

The following constraints set enforces that if a sensor node
is either running an application or receiving data at time
instant n, then it must be active in the network and inactive
otherwise:

Xin = thin + rin < Kxj, VieS,VneT

heS
h#i

12)

where K is a constant high enough (higher than the maximum
transmission rate of a node).

Finally, in WSNs routes from each sensor node to a sink
node follow typically a single path, such as the destination ori-
ented directed acyclic graph (DODAG) of RPL [26]. To model
this behavior, we build a DODAG for each sink using the
number of hops as a metric (i.e., when there are several sinks,
each node belongs to the DODAG that reaches a sink with the
minimum number of hops). The following set of constraints
forces all the traffic to be forwarded only through the links
that belong to the predefined routes defined in the DODAG:S:

fin < Kin~ Vi,heS,VneT (13)

where for each node i, K;; is O for all nodes 4 but for the
father node in the routing tree toward the sink. In that case,
Kjj, is a constant higher than the maximum transmission rate
of a node.

C. Bandwidth Constraints

The available bandwidth in the network is bounded and
must be shared among sensor nodes. We assume that a fair
medium access control scheme orchestrates the access to
the shared medium. Given a directional link between a pair
of nodes (i, h), let the capacity of the link be defined as
Cin = min(C;, Cp). This aims to model that the transmis-
sion rate is limited by the most restrictive node in the link.
Transmissions of other links where i or & are either trans-
mitter or receiver cannot be simultaneously active with (i, h)
(note that some combinations are not possible in this particu-
lar case due to routing constraints, i.e., another link with 7 as
a transmitter).

According to the considered protocol interference model,
the interfering links for link (i, #) are those whose receiver
is within the interference range of node i or the links, where
h is within the interference range of its transmitter. Although
none of these links can be simultaneously active with (i, i),
some of them (depending on their relative positions) could
be simultaneously active with each other. Therefore, for each
link in the network (i, /) it must be ensured that the fraction of
time used by the link plus all its interferences at time instant

n is less or equal to 1

fc;fm ngln+2fhgn+zfghn+ Z fgtn
ih ees Cai ges g€s gleS
gF#i g#i dir<RL(pi)
+ > ffﬂgl Vi,he S,VneT. (14)
g,teS 8t
dgn <Rk (pg)

Constraints (14) are the equivalent budget-type constraints
for the available wireless capacity to the storage and process-
ing load constraints given in (7) and (8).

D. Energy Constraints

Finally, energy constraints are included to ensure that the
application deployment pattern does not exceed the energy
budget of the network. Typically, energy consumption due to
wireless communication (i.e., transmitting and receiving) has
been considered the dominant factor in power consumption
for WSNs [27]. While this is the case for traditional scalar
applications, where processing is limited to simple operations,
in multimedia applications the energy required to process data
cannot be neglected [28].

Regarding wireless transceiver, the power dissipation at the
radio transmitter P!, or at the radio receiver P, of each node
i at time instant n can be modeled as [29]

Plo= Y (Bi+hd))fim VieSvVneT  (15)
heS, hati
Pho=p > fin VieS.VneT. (16)
heS,hti

Typical values for By, B2, and p are B1 = p = 50 nJ/bit
and B> = 0.0013 pl/bit/m*, with y = 4 the path loss index.

The estimation of the power dissipation due to the process-
ing load is not so straightforward, since it depends on several
factors such as the hardware architecture of the nodes or the
specific implementation of the algorithm for each application.
In the energy constraints set in (17), this power dissipa-
tion is left as a function f of the processing loads /; of the
applications. In Section VII, further details about the specific
evaluated multimedia applications are given. In addition, we
assume that the sinks do not have energy constraints since they
can be plugged directly into the grid

S A Py P L[S0 il

neTl JEA keW;

<E; Vieds.

a7

To introduce the effect of the activation and deactivation of
sensor nodes and the migration of active applications between
sensor nodes of the network, we consider that both events
decreases the energy of the affected nodes (i.e., the energy
of a node decreases when it is booted-up or when it receives
an application). In other words, there is a cost ¢; related to
the amount of energy that the node i needs to wake up from
the sleep mode. Besides, it is allowed moving applications
from one active node to another as long as all the restrictions



described previously are fulfilled. Nevertheless, it is assumed
that moving an application j has a cost §;; due to the impact of
moving the application code to the new node i. This modifies
the previous set of restrictions as follows:

S An| P+ P[0 il

neT JEA keW;
+ i Z(xin — Xin—1)Xin
nel
+D 85 ) D (viikn — Vijkn—1)Vijhn < Ei. - (18)
JjEA  keW;neT

Considering that x;;, and yjj, are binary variables and defin-
ing the binary variables u;, = XiyXin—1 and Vi = YijknYijkn—1,
the previous expression can be reformulated as

ZAtn P;n +P;n +f Z Z)’ijknlj

neT JEA keW;
+ @i Z(xin — Uin)
nel
3785 > (vikn — Vi) < Ei - VieS  (19)
JjEA  keW;neT

with the variables u;, and vjj, fulfilling the following set of
restrictions:

Uin < Xin VieS,VneT (20)
Uin < Xin—1 VieS,VneT (1)
Uin > Xip + Xin—1 — 1 VieS,VneT (22)
Vijn < Yijkn VieS,VjeA Yke W;,VneT 23)
Vijkn = Yijkn—1 VieS,Vje A, Vke W;,VneT 24)
Vijkn = Yijkn + Yijkn—1 — 1
VieS VjeA Yke W;,VneT. (25)

V. OPTIMIZATION MODEL FOR DYNAMIC
RESOURCE ALLOCATION

The general optimization framework set in the previous sec-
tion assumes that the arrival and departure times of each appli-
cation are known in advance. While this approach provides a
benchmark for the best achievable performance, its application
to real scenarios is limited to very specific situations where this
information could be available.

Thus, to encompass a more realistic scenario, in this sec-
tion we focus on the problem of dynamically addressing the
deployment of new applications as they arrive to the network.
Specifically, the problem can be described as follows: every
time a new application arrives to the reference area, it will
be deployed as long as the rest of applications that are run-
ning at that moment are not dropped out of the system. If this
is not possible, the new application is discarded and the sys-
tem remains unaltered so that the previous applications can be
served. If it is possible, the applications should be deployed in
such a way that the likelihood of deploying new applications
in the future is maximized.

As one of the most limiting factors to deploy new applica-
tions is the remaining energy of the nodes (it will be shown
in Section VII), three approaches are considered to select the
way that applications are deployed in the network: 1) to max-
imize the global energy of the network; 2) to maximize the
energy of the node with the lowest energy; and 3) a weighted
sum of the first and the second approaches.

In the following, we define formally the optimization prob-
lem that must be solved every time a new application g € A
arrives to the system. Let Q = {71, 12, ..., 74|} be the subset
of T that contains all the arrival time instants. For every 7,
we define the subset A, C A as the set of applications that
are running in the network at time instant t,, including the
arriving application, i.e., A; = {qj|ty € [7}, Tj + €))}.

As the optimization problem that must be solved when the
application ¢ arrives only involves those applications that are
active in the network at time instant 7, (i.e., those is A,), we
can remove the dependency on n from the variables y;jx, and
Xy and redefine them as follows: y; is a binary variable indi-
cating if application j is deployed at a sensor node i covering
test point k, and x; is a binary variable indicating if sensor
node i is active in the network.

The following sets of restrictions force all the applications
in A, to be deployed. It is worth noting that now the problem
may be infeasible. If so, the system is left as it is to ensure
that the current applications remain in the network and the new
application is not deployed. Many of the following constraints
are similar to the ones presented previously but without the
subscript index n and restricted to the subset A, instead of the
set A.

A. Constraints on Coverage and on Resources of
the Sensors

Constraints (26) require that all the applications in A,
sense all their required test points. To do so, it forces that
for every test point k of an application j, the application is
deployed at a sensor node i that can cover that test point
k. Equations (27) and (28) are equivalent to the constraints
presented in (3) and (5), respectively,

Y ovik=1  VjeAgVkeW, (26)
i€Sjk

yik=0 V€A, VkeW,Vi¢Sp (27
> vk <Ny  VieS.VjeA, (28)
keW;

Constraints (29) and (30) are budget-type constraints, equiv-
alent to the equations in (7) and (8)

YO mpyp <M Vies (29)
JEA, keW;
Z Z Lyj <Li  Vi€S. (30)
JEAG keW;

B. Routing and Bandwidth Constraints

Let fi; be the flow of data of application j in bps transmitted
from node i to node 4 and fj, the flow of data in bps transmitted



from node i to node i. While fj; is equivalent to the already
shown fin,, finj is needed to describe the corresponding power
dissipation at radio transmitter and radio receiver as it will be
shown in Section V-C.

Constraints (31)—(37) are equivalent to constraints (9)—(14).
Now, in (34), since the problem forces all the applications to
be active, the left term is the sum of all the possible data rate
generated in the network by all the applications in A, and it
does not depend on any variable

rg= Y ¢k V€A, VieS 31
keW;
fo= faj Vi.heS (32)
JEA,
Shii =D Sty VieAqvieS  (33)
hes hesS
i£h h£i
YoWilei= Y| D fnt D (34)
JEAG heS\S' l?egl JEAG
N<Y futy rj<Kg YieS (35
heS JEA,
h#i
f,h <Krip ViheS (36)
RO TN LD
ges ges ges
gF#i gF#i
+ Z fgt + Z fgt
g.1eS Cr g.1es Cr
d,,<R () dgi <Rl (I’g
<1 Vihes. (37)

C. Energy Constraints

The power dissipation for the application j at the radio trans-
mitter Pﬁj or at the radio receiver Pirj of each node i can be
modeled as

Pi= 3 (Bi+pad))fay VieSVied, (38
heS,h#i

Pi=p Y fuj VieSNjeA, (39)
heS, h+i

P’ and P’ are equivalent to the expressions seen

in (15) and (16)

Note that now the power dissipation is defined per appli-
cation j at each node i instead of only per node i. This
differentiation is needed because the remaining activity time of
each application in A; may be different, which will impact on
the energy consumption of the node as shown in the following
restriction.

Let X; be a constant equal to 1 if the node i was active
before the arrival of the new application, and 0 otherwise.
This constant is equivalent to the variable x;,—; shown in the
general model. Analogously, let Y;j be a constant equal to 1
if the test point k of the application j was being sensed in
the node i just before the arrival of the new application, and

0 otherwise. Thus, this constant is equivalent to the variable
Yijkn—1 previously shown. A7; is the remaining activity time of
application j at time instant 7, (At; = Tj+¢€;—1,), Ei(7,) is the
remaining energy that node i still has at 7,, and A; is a variable
indicating the residual energy that node i would have once the
activity time of the applications deployed in it or forwarded
by it expires. Again, sinks do not have energy constraints.
With this, the energy constraints that must be ensured in every
node are

SOPIAG+ Y PRATG A YD vl | A

JEAq JEA; JEA keW;
i (= Xp)xit 8 Y ik — Yie) - ik
JEA;  keW;
+ A= Ei(‘[q) Vies (40)

with %; > 0, which are equivalent to constraints defined
in (18).

D. Objective Function

The sets of restrictions described above forces the deploy-
ment of the application arriving at time instant 7, and also of
all the applications that are already active at that moment. If
the solution space described by these restrictions is null, then
the new application cannot be deployed ensuring the presence
of the previous applications and therefore the system rejects
it. If the solution space contains several feasible solutions to
deploy a new application, we should select a solution that
increases the probability of accepting future applications. As
stated before, the remaining energy of the nodes is one of
the most limiting factors to deploy new arriving applications.
Therefore, we propose three possible objective functions for
the optimization problem, being all of them related to the
residual energy of the network or its nodes. The quality of
the three strategies will be analyzed in Section VII.

The first one is to maximize the total residual energy of the

network, that is
max Z Aj.

ies

(41)

The second one is to maximize the residual energy of the

node with the lowest energy
maxi A <A, Viel§. (42)

Finally, we also consider a weighted sum of the two
previous alternatives

. /
max(x+|?2,\) L<A Vied.

ey

(43)

In the following, we will denote these three strategies as
total, max—min, and mixed, respectively.

VI. HEURISTIC ALGORITHM FOR DYNAMIC
RESOURCE ALLOCATION

We propose hereafter a heuristic based on a greedy algo-
rithm to solve the dynamic resource allocation problem



described in Section V. This heuristic is executed each time a
new application a, arrives to the reference area.

The objective of the heuristic is to deploy the arriving appli-
cation in a set of sensor nodes that cover all its test points
without dropping out any of the applications running at that
moment. This implies that the solution found by the heuris-
tic must satisfy the same constraints defined in Section V.
Additionally, the solution should deploy the new application
using the existing resources of the network efficiently, so that
the probability of deploying new applications in the future is
maximized.

As the most restricting factor to deploy new applications is
the spare energy of the nodes, the main idea of the greedy
algorithm is to deploy the new application trying to maximize
the residual energy of the energy bottleneck node. To do so,
the algorithm sorts all the nodes in the set Sy in an decreasing
order with respect to a metric e; defined as

e; = min £y (zy) (44)
heP;

where P; is the set of nodes forming the path from node i
to its corresponding sink (note that these nodes are known in
advance since they depend on the routing algorithm used in
the network), and Eh(rq) is the remaining energy that node
h would have once all the applications that are deployed on
it at time instant 7, (when application a, arrives) leave the
network. The term e; represents therefore the “bottleneck™ in
terms of energy among the nodes in P;. With this, the aim is
to deploy the application in the sensor node with the highest
value of e; that has enough free resources to allocate it.

The detailed pseudocode of the proposed solution is
reported in Algorithm 1. The inputs of the heuristic are the
available memory and processing capacity of the nodes at time
instant 74, which are denoted as M;(t;) and L;(z,), respec-
tively; the terms Ei(rq) defined previously; and the available
transmission resources of the links between each node i and
its predecessor in the routing graph, which are denoted as
Bi(ty). Note that, before any application has arrived to the
network, M;(t,), Li(t,), and E,-(tq) are equal to M;, P;, and
E;, and B;(t,) are equal to 1 indicating that the whole airtime
of all the links are fully available.

Once the new application a, has arrived, the first step is to
define the variables Ml.(r), Pl(r), E;r), and Bl@, which are used
to store a copy of M;(ty), Li(ty), E,-(rq), and B;(ty). These
variables allow obtaining the remaining resources of the net-
work if application a, can be effectively deployed (i.e., if there
are enough resources in the network). We also define the lists
S;k to store the nodes that cover each test point wy of appli-
cation a, and have enough resources to sense effectively this
test point. Each list S/ is initialized with the elements in the
corresponding set Sy (line 2).

Then, the algorithm enters into its main loop and tries to
sense all the test points of a, following the energy criteria
defined previously (lines 3-30). To that end, we compute the
terms ¢; for all the nodes in S’ « using (44) and sort the nodes
in a decreasing order of e;. Then, we look for the sensor node
with the highest value of e; (sensor node s¢ in line 7) and try
to deploy a, on it. For simplicity, this part of the heuristic

Algorithm 1 Pseudocode of the Dynamic Greedy Solution
1: Application a, arrives at time 1,
2 Initialize variables M{”, P\, E{”, B{" and lists S,
3: for all wy € W, do
4: Compute e; with (44) Vs; € S’qk

5 Sort all the nodes in S;k in decreasing order of e;

6 repeat

7: Sf < argmaXyey), (e)

8 Check if ay fits into sy (alg. 2)

9 if it fits then

10: Test point wy is sensed

11: Update variables Mi(r), Pl@, Efr), Bl(r)

12: else

13: if 57 is active then

14: Store in Ly all the pairs (aj, s;), with a;
on sy and s; € Sjx — {s7}

15: Sort the elements of Ly in increasing order
of c(aj, s;i)

16: repeat

17: (ac, sq) <—arg max(aj,si)ELf(c(aj, Si))

18: Check if a, fits into sy and ay fits into

sy without a, (alg. 3)

19: if they fit then

20: Test point wy is sensed

21: Update vars. Ml.(r), P,(-r), El.(r>, Bl(r)

22: else

23: Remove (ac, s¢) from Ly

24: end if

25: until wy is sensed or Ly is empty

26: end if

27: Remove s¢ from S;k

28: end if

29: until wy is sensed or S;k is empty

30: end for

31: if all w; € W, are sensed then

32: Deploy a; and update M;(t,), Li(t,), Ei(rq), Bi(y)
33: else

34: Reject a,

35: end if

is detailed in Algorithm 2 and will be explained later. If this
is feasible, we update the variables M, P”, E) and B\"
(line 11) and we move to the next test point of a,. If not, the
next step depends on whether sensor node sy is already active
or not. If it is not active, sy is removed from S’ X and the next
node with the highest value of ¢; is selected (line 27). If it is
active, we try to free some of its resources by moving one of
the applications it hosts to another node (lines 14-26).

In order to decide which application to move, we compute
for each application a; on sy and each node s; € Sjx — {sr},
the cost of moving a; to s;. This cost is defined as c(q;, 5;) =
h(s;) — h(sf), with h(s;) the number of hops from sensor node
s;i to its corresponding sink. We store each pair of applica-
tion ¢; and alternative node s; on the list Ly and sort it on
increasing order of c(aj;, s;) (lines 14 and 15). Then, we try
to move the first application in this list to its corresponding



Algorithm 2 Check if Application a, Fits Into the Node s¢

1: Initialize variables Ml.(“), Pl@, El.(”), Bl(.“)

2: M;a) <« M;a) —my

3 P« P —p,

4: for all s, € Py do

5: if 5, = 57 then

6 E B = e (fg) + o (B + B2d] )
7: else

s B B (ot Bt prdl )
9: end if

10: if 5, is off then

1 EY — EY — ¢,

12: end if

13 BY «BY —¢,/C,

14: for all /[, € I, do

15: B\ « B —¢,/C,

16: end for

17: end for

18: if any variable Ml.(“) , PE“), Et@, BE”) is < O then
19: return a, does not fit into sy
20: end if

21: return ay fits into sy and Ml-(a), Pl@, Ei(a), Bl@

alternative node (a. and s in line 17) and deploy a, in s¢. For
simplicity, this part of the heuristic is detailed in Algorithm 3
and will be explained later. If they fit, we update the variables
Mi(r), Pl@, Efr) and Bl@ (line 21) and we move to the next test
point of a,. If not, we remove the pair (a., s4) from L; and
repeat the process iteratively until the list is empty. When this
happens, we remove sy from S;k and the next node with the
highest value of e; is selected.

If after all this process we cannot sense a test point in
Wy (i.e., the list S/qk is empty for some wy € W,), then the
application is rejected and the system remains unchanged in a
way that the previous applications can be served. On the con-
trary, if all the test points are sensed, we deploy the incoming
application in the nodes selected during the execution of the
algorithm, updating the resources of the involved nodes [i.e.,
the terms M;(z,), Li(ty), Ei(rq), and B;(ty)].

Now, we describe the procedure followed to determine if
the application ay fits into the sensor node sy (Algorithm 2).
First, we define the variables Mi(a) , PZ@, Ef“), and Bfa), which
are used to store a copy of Ml-(r), Pl(-r), El-(r), and Bl(-r) and are
initialized with their values. These variables allow obtaining
the remaining resources of the nodes if a, can be effectively
deployed on sy.

To check this, we have to compute the remaining resources
of all the nodes that would be affected if the application were
deployed on sy.

1) The remaining available memory and processing capac-

ity of node sy (lines 2 and 3).

2) The remaining energy of sy. To compute it, we have
to remove the energy that sy requires to sense the test
point, which corresponds to the term €,4f(l;), and the
energy required to send the gathered data to the next

Algorithm 3 Check if a, Fits Into the Node sy When a. Is
Moved to sy

1: Initialize variables Ml-(a), Pl@, El-(a), Bl(»“)
2: Mfla) <« M%a) — me
3 P PY —p,
4: for all s, € Py do
5: if Sg =S4 then
6: E‘(ia) <~ E((ia) — 8cd
(1 + € = 7)1 U0 + e 1 + adl )
7: else @ @
a a
E;” <« Eg
—cq(Te + € — 1) (p + B+ ﬁZd;;s(g))

9: end if
10: if 54 is off then
11: E® «E® — g,
12: end if
13 BY «BY —c./C,
14: for all [, € I, do
15: B\ < B —c./C,
16: end for
17: end for
18: M;a) <« M;a) —mg +me

19: P — P\¥ — py + pe
20: for all s, € Py do
21: if 5, = 57 then

2, B B — efflp +efprt b))

+(Tc + € — T‘I)(f(l") Tt ('Bl * ﬁzd}/ﬂs(f)»

23: else

24 E;,a) <« Ei,a) — €4¢q (,o + B1+ ﬁzd;_)s(g))
+cc(rc + €c — Tq)(p + 61+ IBZd;/%S(g))

25: end if

2. BY < B — (¢, —co)/Cq

27: for all [, € I, do

28: B\ <« B — (c; — c)/Cq

29: end for

30: end for

31: if any variable Ml.(“), Pl@, E;“), Bl@ is < O then

32: return a, does not fit into sy

33: end if

34: return gy fits into s; and Mi(“), Pl@, Ei(“), Bl@

node in the path to its sink, which corresponds to the
term €,c4(B1 +132dfy—>n(f))' In this expression n(f) is the
node corresponding to the next hop of sy in the path
calculated by the routing algorithm, and dy_, ) is the
distance between sy and s,(r) (line 6). Additionally, if sf
is off, we also have to consider the energy required to
power it on (line 11).

3) The remaining energies of the rest of nodes in the path
Py. To compute them, we have to remove for each node
sg in the path (different from sy) the energy that it
requires to receive the sensed data from the previous
node in the path, which corresponds to €,c4p0, and the



energy required to retransmit them to the next node,
which corresponds to €,c,(B1 + ﬁzdgﬁ n( g)) (line 8).
Again, if s, is off, we also have to consider the energy
required to power it on (line 11).
4) The remaining transmission resources of each link of the
path Py (line 13). We name as [, (or directly g) the link
between the node s, and the node being its next hop
Sn(g)- For each link, the required transmission resources
correspond to the airtime needed to transmit the sensed
data, which is c¢4/C,.
5) The remaining transmission resources of the set of
links that interfere or are interfered by link [,
(lines 14 and 15). We name this set as I, and it is formed
by the links whose receiver is within the interference
range of the node s, and the links where the node s,g)
is within the interference range of its transmitter.
If all the auxiliary variables Ml-(a),Pl(-”), Efa), and Bl(-a) are
higher than zero, we can state that a, fits into sy (line 21).

Finally, we describe the procedure followed to determine if
it is possible to deploy application a, into the sensor node sy
when we move application a. from sy to s4 (Algorithm 3).
This procedure consists of two parts, being each of them very
similar to the procedure described in Algorithm 2. In the first
one, we check if sensor node s; has enough resources to host
application a, (lines 4-17). The only difference with respect to
the verifications done in Algorithm 2 is that the time that the
application is in the network is not €. but 7. + €. — 1, which
impacts on the energy requirements of the nodes (lines 6-8),
as well as the energy impact of sending the bytecode of a. to
s4. In the second one, we check if sensor node sy can host a,
once the resources used by a, are freed from sy (lines 20-33).
In this case, the difference with respect to Algorithm 2 is that
we must add the new available resources that were previously
used by ac.

VII. PERFORMANCE EVALUATION

In this section, we evaluate in detail the performance
of the proposed strategies. Unless otherwise stated, results
have been obtained by solving the optimization models of
Sections IV and V using CPLEX software [30]. The simulated
scenarios consider several area sizes and different number of
applications and nodes. In all the cases, results have been
obtained averaging the outcome of 100 realizations. We con-
sider a default sensing range of R} = 40 m for all the
sensors [31] and a two-ray ground path loss model with y = 4
and go = 8.1 - 1073 [32]. Ppax is set to —10 dBm and the
receiver sensitivity « is fixed to —92 dBm [33], which implies
a maximum transmission range R;ax of 33 m. Similarly, the
interference sensitivity p is set to —104 dBm, which implies

a maximum interference range R/ . of 67 m.

A. Applications and Sensor Nodes

As a reference, we have focused on multimedia applica-
tions, which require the sensing, processing and delivery of
multimedia content (images and video). Specifically, we con-
sider visual sensor networks, i.e., WSNs designed to perform
visual analysis (e.g., object recognition) [34]. In that work,

TABLE III
DEPLOYED APPLICATIONS FOR EACH STRATEGY

Strategy
O.R. ‘ Total ‘ Max-min ‘ Mixed ‘ Heuristic | Global
1 TP. A. 97.85 | 99.65 99.65 99.65 99.64 99.94
2 TP. A. 76.71 | 75.36 91.71 95.64 87.64 98.57

TP. A. Test Point per Application

a detailed characterization of transmission rates and energy
consumption for these applications is provided. Based on this
analysis, the transmission rate is set to 12 Kb/s, the required
memory to 842 KB, the processing load to 69.23 MIPS and
the associated power dissipation [function f in (17) and (40)]
to 0.2 W. Details on how these numbers have been derived
are shown in [20]. Thus, the requirement vector for visual
applications is o; = {12 kb/s, 842 KB, 69.23 MIPS}.

To support these visual applications, we consider high-level
sensor node hardware. Using as a reference BeagleBone plat-
forms [35] or similar, the sensor nodes are assumed to have a
720 MHz super-scalar ARM Cortex-A8 processor (up to 720
MIPS) and 256 MB of RAM. In addition they are equipped
with an IEEE 802.15.4 radio with an integrated antenna and
a low-power USB camera. The reference resource vector is
0; = {250 kb/s, 256 MB, 720 MIPS, 32400 J}. The energy
budget for all the nodes but sinks, which we assume that can
be plugged directly into the grid, is 32400 J assuming that
a node runs at 3 V with 3 Ah of battery supply (two AA
batteries).

B. General Optimization Framework Results

We begin by assessing the general optimization framework
of Section IV. The solution of this problem gives an upper-
bound to the performance of the strategies evaluated in the
following section and gives a hint on the value of “future
information” (i.e., the knowledge about the applications that
have not arrived to the system yet). Nevertheless, this model
is neither realistic nor easy to solve computationally due to
the extremely high number of variables needed to solve it.

Since the number of variables needed to solve the general
problem increases quickly, we need to use a smaller scenario
than the used in the following section. We have considered a
scenario formed by 18 BeagleBone nodes, where 100 visual
applications are generated according to a Poisson process with
rate of 0.5 applications per hour and a constant activity time
€j of 5 h. We assume that each sensor is able to cover N =1
test point of the same application and that there is 1 sink node
in the network. Sensor nodes are deployed in a 100 x 100 m
scenario.

Table III gives the number of deployed applications
achieved for the general optimization strategy seen in
Section IV (global), the different proposed strategies with the
dynamic model (fotal, max—min, and mixed) and the heuris-
tic algorithm (heuristic in the legends). In addition, results
are also presented for the case where no objective function is
considered, and the dynamic optimization problem only tries
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to deploy the application satisfying all the restrictions [only
restrictions (O.R.) in the legends].

The number of test points for each application is 1 or 2. As
can be seen, the improvement of solving the global problem is
not significant, so the proposed solutions for optimizing online
the energy of the network work properly.

C. Dynamic Resource Allocation Results

The following results have been obtained by solving the
optimization model of Section V and the heuristic algorithm
proposed in Section VI. We have considered a scenario formed
by 36 BeagleBone nodes as a reference example to thoroughly
evaluate the validity of the dynamic model, the performance of
the different objective functions proposed in Section V-D and
the heuristic greedy algorithm. In each realization, 200 visual
applications are generated according to a Poisson process with
rate of one application per hour and a constant activity time
€j of 5 h. The number of test points is 3 for each application,
and we assume that each sensor is able to cover N; =1 test
point of the same application and that there are two sink nodes
in the network. Sensor nodes are deployed in a 141 x 141 m
scenario.

Figs. 1 and 2 show the impact of the energy cost of mov-
ing an application j from one node A to another one i, §;,
and the energy cost of activating a node i, ¢;, for the dif-
ferent proposed strategies (fotal, max—min, mixed, heuristic,
and O.R.). Fig. 1(a) shows that the total number of actually
deployed applications in the system is higher for the mixed
approach for all the moving cost values; as expected the worst

results are obtained with the O.R. approach. The max—min
and the greedy heuristic algorithm provide results close to the
mixed approach. The near-flat behavior of the heuristic can
be explained by the extremely low number of movements it
performs: as there are barely any movement, the impact of
the moving cost is negligible. More details about this behav-
ior are given later, when explaining Figs. 5 and 6. On the
other hand, when the total energy is maximized, the number
of deployed applications rises with higher moving costs. This
can be explained as follows: when the moving cost is low and
a new application arrives at the system, it is preferred to move
one current application from one active node to another, rather
than activating a new node so as to maximize the overall resid-
ual energy. This makes new applications tend to be located in
the activated nodes, making the energy of these nodes be spent
faster. In the end, this leads to nodes running out of energy
earlier, making the network disjoint and reducing the number
of applications that can be deployed.

Fig. 1(b) and (c) shows that O.R. and max—min are the
strategies that have more movements and activations. This
is straightforward for O.R., since applications are deployed
without any additional objective rather than fulfilling the con-
straints, and therefore the specific nodes where the applications
are deployed are chosen randomly as long as the constraints
are satisfied. A similar explanation can be applied to the
max—min strategy: (40) and (42) only consider the node with
the lowest energy, so the remaining nodes can be activated
or receive an application without any penalty in the objective
function. On the other hand, the lowest number of movements
is obtained with the heuristic algorithm since in this case the
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Fig. 3. Temporal evolution of system performance. (a) Deployed applications.
(b) Overall residual energy. ; = 10 J. §;; =10 J. Vi € §,Vj € A.

number of possible movements that are tested is the lowest:
we only move an application from one node to another so as
to put the arriving application in its instead.

Finally, it must be noted [Fig. 1(c)] that the number of
activations remains almost constant (and not rises) when the
moving cost increases for the O.R., mixed, and heuristic strate-
gies. This is because the activation of a new node also implies
that this node has to receive the bytecode of the application,
so the higher moving cost cannot be compensated by activat-
ing more nodes. However, for the fotal strategy, the number of
activations increases as the moving cost increases. As noted in
the explanation of Fig. 1(a), for low moving costs, this solu-
tion tends to move applications between active nodes instead
of activating new nodes.

Fig. 2(a) shows that the mixed strategy keeps providing the
best performance in terms of deployed applications for differ-
ent values of the activation cost. Again, for the same reasons
explained above, max—min is the strategy with more move-
ments and activations [Fig. 2(b) and (c)]. In addition, it is
worth noting again that for heuristic, the number of move-
ments and activations keeps almost constant as the activation
cost increases.

In Figs. 3 and 4, we focus on the temporal evolution of
the system fixing both ¢; and §;; to 10 J. As can be seen
in Fig. 3(a), at first (when all the nodes have a high residual
energy), applications are equally deployed for all the strategies.
However, as time passes and energy depletes, the fairer energy
distribution obtained by the mixed and max—min strategies
allows deploying more applications in the system. Comparing
Fig. 3(a) and (b), an inverse relationship between the residual
energy and the deployed applications is observed. Therefore,
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the key to design a proper strategy is not strictly maximizing
the total energy of the network (which is done with the toral
strategy), but to ensure that the network has enough energy to
keep being a connected graph as applications are deployed.

In Fig. 4, the cumulative distribution function of the resid-
ual energy per node at time 360000 s is shown. The vertical
blue line represents the minimum energy required for a node
to sense an application and send the data at the maximum
transmission power. As can be seen, the probability of a node
not having enough energy to admit a new application is the
lowest for the mixed and max—min strategies, which confirms
the results shown in Fig. 3(a).

In order to assess the performance of the proposed solu-
tions for different scenario sizes, we vary now the size of
the reference network topology while maintaining the same
node density and a maximum transmitted power of Ppax =
—10 dBm. Both activation and moving costs are set to 10 J.
Table IV summarizes the main features of the tested scenarios.



TABLE IV
SCENARIO TOPOLOGIES

Scenario
1 2 3 4 5 6
Size 100 x 100 m | 141 x 141 m | 173 x 173 m | 200 x 200 m | 224 x 224 m | 245 x 245 m
Number of nodes 18 36 54 72 90 108
Number of sinks 1 2 3 4 5 6
Number of applications 100 200 300 400 500 600
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Fig. 6. Temporal evolution of the deployed applications for different scenarios. (a) 100x100 m. (b) 141x141 m. (c) 173x173 m. (d) 200x200 m.

(e) 224x224 m. (f) 245x245 m.

For example, the first one is a 100 x 100 m scenario with 18
BeagleBones (one of them acting as a sink) where 100 ATC
applications are generated according to a Poisson process with
rate of 0.5 applications per hour and a constant activity time
€ of 5 h. In all the cases, the number of test points per appli-
cation is 3, and we assume that each sensor is able to cover
Njj =1 test points of the same application.

Fig. 5 depicts the number of deployed applications and the
solution time of the proposed solutions. The results have been
obtained on 3.0-GHz Quad Core Intel Woodcrest (64 bits)
machines with 8-GB RAM and 250-GB SATA storage, aver-
aging over 100 randomly generated network topologies for
each scenario of Table IV. These results show that for all
the scenarios, the computation time of the heuristic approach
is much lower. According to the number of deployed appli-
cations, the heuristic approach is always close to the mixed
and max—min strategies. Therefore, we can consider that the
proposed heuristic achieves near optimal results for all the
scenarios considered so far (varying scenario sizes, moving
cost, and activation size), with a negligible computational cost.

Additionally, in Fig. 5(a) we notice that for large scenar-
ios, the deployed applications with the heuristic algorithm get
slightly higher values than the other strategies. This can be
explained as follows: in some cases, the heuristic algorithm
rejects arriving applications that could have been deployed if
a more exhaustive search had been performed. Typically, these
rejected applications tend to consume more network resources
than the accepted ones, so the rejections also save more
resources for subsequent applications. Thus, later on, when
nodes have little residual energy, new applications consuming
few resources are more likely to be deployed with the heuristic
algorithm. This effect of rejecting some high resource consum-
ing applications to later accept more low resource consuming
ones is more evident as the total number of applications rises,
in large scenarios. This behavior is confirmed in Fig. 6, where
the temporal evolution of the number of deployed applications
is shown. For large scenarios [Fig. 6(e) and (f)], the heuris-
tic goes below the mixed strategy at first (for 1 < 6 - 107)
because the heuristic does not find some feasible solutions
that the mixed does since the heuristic does not examine the



entire solution space whereas the mixed strategy solves the
optimization problem, and therefore, always finds the feasible
solution, if any. Nevertheless, this saved energy is used after-
wards (for ¢ > 6 - 10%), allowing the heuristic to deploy some
applications that the mixed strategy cannot. Finally, coming
back to Fig. 1(a), it was shown that the heuristic has a near-
flat behavior with the moving cost while for the max—min and
mixed strategies the performance degrades as the moving cost
grows. This can be better explained now: the heuristic per-
forms a low number of movements and some applications are
rejected because of this. As the moving cost rises, the heuris-
tic saves more energy with respect to the other strategies by
rejecting those applications. Thus, later on, more applications
consuming few resources that can no longer be admitted by
the max—min or mixed strategies can still be deployed by the
heuristic.

VIII. CONCLUSION

In this paper, we have studied the problem of virtual sen-
sor network management from the perspective of an SSN-IP
that leases its physical resources to multiple concurrent appli-
cations/application providers. Namely, a joint optimization
framework has been introduced to solve the problem of AAC-
SNS. The proposed framework optimally decides: 1) if/when
to admit new applications to the use of the physical infrastruc-
ture and 2) how to allocate the physical resources of the shared
infrastructure to the multiple concurrent applications, while
considering constraints at the sensor node level (processing
power and storage) as well as at the network level (available
bandwidth, shared communication technologies, and routing).
The results of the proposed optimization framework have been
compared against the ideal scenario where the SSN-IP has
full knowledge of the application/service request across time,
which is introduced as a performance benchmark. Moreover,
a greedy heuristic is also proposed to obtain close-to-optimal
solutions of joint AAC-SNS problem in short computation
time.
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