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A MODEL OF VISCOELASTICITY
WITH TIME-DEPENDENT MEMORY KERNELS

MONICA CONTI, VALERIA DANESE, CLAUDIO GIORGI AND VITTORINO PATA

Abstract. We consider the model equation arising in the theory of viscoelasticity

∂ttu− ht(0)∆u−

∫

∞

0

h′

t(s)∆u(t− s)ds+ f(u) = g.

Here, the main feature is that the memory kernel ht(·) depends on time, allowing for
instance to describe the dynamics of aging materials. From the mathematical viewpoint,
this translates into the study of dynamical systems acting on time-dependent spaces,
according to the newly established theory of Di Plinio et al. [11]. In this first work, we
give a proper notion of solution, and we provide a global well-posedness result. The
techniques naturally extend to the analysis of the longterm behavior of the associated
process, and can be exported to cover the case of general systems with memory in
presence of time-dependent kernels.

1. Introduction

Let Ω ⊂ R
3 be a bounded domain with smooth boundary ∂Ω. For any given τ ∈ R, we

consider for t > τ the evolution equation arising in the theory of uniaxial deformations in
isothermal viscoelasticity (see e.g. [3, 17, 28])

(1.1) ∂ttu− h(0)∆u−

∫ ∞

0

h′(s)∆u(t− s)ds+ f(u) = g,

subject to the homogeneous Dirichlet boundary condition

(1.2) u(t)|∂Ω = 0.

The unknown variable u = u(x, t) : Ω × R → R describes the axial displacement field
relative to the reference configuration of a viscoelastic body occupying the volume Ω at
rest, and is interpreted as an initial datum for t ≤ τ , where it need not solve the equation.
Here, f : R → R is a nonlinear term, g = g(x) : Ω → R an external force, and the
convolution (or memory) kernel h is a function of the form

h(s) = k(s) + k∞,

where k is a (nonnegative) convex summable function. The values h(0) > k∞ > 0
represent the instantaneous elastic modulus, and the relaxation modulus of the material,
respectively. Since h′ = k′, a formal integration by parts yields

∫ ∞

0

h′(s)∆u(t− s)ds = −k(0)∆u(t) +

∫ ∞

0

k(s)∆∂tu(t− s)ds,
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so that (1.1) can be rewritten as

(1.3) ∂ttu− k∞∆u−

∫ ∞

0

k(s)∆∂tu(t− s)ds+ f(u) = g.

A simplified, yet very effective, way to represent linear viscoelastic materials is through
rheological models, that is, by considering combinations of linear elastic springs and vis-
cous dashpots. In particular, a standard viscoelastic solid is modeled as a Maxwell ele-
ment, i.e. a Hookean spring and a Newtonian dashpot sequentially connected, which is in
parallel with a lone spring. The resulting memory kernel turns out to be of exponential
type. In this context, the aging of the material corresponds to a change of the physical
parameters along the time leading, possibly, to a different shape of the memory kernel.
There are several ways to reproduce this phenomenon within a rheological framework (see
e.g. [13]). Here, we propose to describe aging as a deterioration of the elastic response of
the viscoelastic solid, translating into a progressive stiffening of the spring in the Maxwell
element. In the limiting situation, when the spring becomes completely rigid, the outcome
is the Kelvin-Voigt (solid) model, depicted by a damper and an elastic spring connected
in parallel.

fig. 1 Mechanical schemes of the standard viscoelastic solid model (left) and the Kelvin-Voigt model (right)

Mathematically speaking, the Kelvin-Voigt model can be obtained from (1.3) by keeping
fixed the total mass of the kernel k, that is,

∫ ∞

0

k(s)ds = m,

and letting h(0) → ∞. Or, in other words, by taking the “limit”

k(s) → mδ0(s),

where δ0 is the Dirac mass at 0+. This leads to the equation

(1.4) ∂ttu− k∞∆u−m∆∂tu+ f(u) = g.

In the terminology of Dautray and Lions [10], this is the passage from viscoelasticity with
long memory to viscoelasticity with short memory.

In spite of a relatively vast literature concerning both (1.1) and (1.4) (see e.g. [1, 2, 4, 8,
16, 18, 19, 21, 22, 23, 24, 25, 26, 30] and references therein), we are not aware of analytic
studies which consider the possibility of including aging phenomena (or, more generally,
changes of the structural properties) of the material within the dynamics. Thus, from our
point of view, it is of great interest to have a model whose physical parameters can evolve
over time. This would allow, for instance, to describe the transition from long to short
memory of a given viscoelastic material.
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The way to pursue this goal is to let the memory kernel h depend itself on time.
Accordingly, we will consider a modified version of (1.1), namely,

(1.5) ∂ttu− ht(0)∆u−

∫ ∞

0

h′t(s)∆u(t− s)ds+ f(u) = g,

subject to the boundary condition (1.2), with

ht(s) = kt(s) + k∞, k∞ > 0,

where the time-dependent function kt(·) is convex and summable for every fixed t. Here
and in what follows, the prime denotes the partial derivative with respect to s. It is
worth noting that the nonautonomous character of (1.5) is structural, in the sense that
the leading differential operator depends explicitly on time. A much different situation
than, say, having a time-dependent external force. The equation is supplemented with
the initial conditions

(1.6)











u(τ) = uτ ,

∂tu(τ) = vτ ,

u(τ − s) = φτ (s), s > 0,

where uτ , vτ and the function φτ are assigned data.
In order to study the initial-boundary value problem above, following the pioneering

idea of Dafermos [8, 9] we introduce for t ≥ τ the past history variable

ηt(s) = u(t)− u(t− s), s > 0.

Besides, aiming to incorporate the boundary conditions, we consider the strictly positive
linear operator A = −∆ on the Hilbert space L2(Ω) of square summable functions on Ω,
with domain

D(A) = H2(Ω) ∩H1
0 (Ω),

where H1
0 (Ω) and H

2(Ω) denote the usual Sobolev spaces. Then, calling

µt(s) = −k′t(s) = −h′t(s),

and setting for simplicity the constant k∞ = 1, problem (1.5) with the Dirichlet boundary
condition (1.2) reads

(1.7) ∂ttu+ Au+

∫ ∞

0

µt(s)Aη(s)ds+ f(u) = g.

Denoting
ητ (s) = uτ − φτ (s),

in view of (1.6) it is readily seen that, for every t ≥ τ ,

(1.8) ηt(s) =

{

u(t)− u(t− s), s ≤ t− τ,

ητ (s− t+ τ) + u(t)− uτ , s > t− τ.

Accordingly, viewing the original problem as the evolution system (1.7)-(1.8) in the vari-
ables u(t) and ηt, the initial conditions (1.6) turn into

(1.9)











u(τ) = uτ ,

∂tu(τ) = vτ ,

ητ = ητ .
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The focus of this paper is a global well-posedness result for problem (1.7)-(1.9) in a
suitable functional space. From the mathematical point of view, the presence of a time-
dependent kernel introduces essential difficulties, and new ideas are needed. Indeed, in
the classical Dafermos scheme, one has a supplementary differential equation ruling the
evolution of the variable η, generated by the right-translation semigroup on the history
space, whose mild solution is given by (1.8). But in our case, the natural phase space
for the past history is itself time-dependent, suggesting that the right strategy is to work
within the theory of processes on time-dependent spaces Ht, recently devised by Di Plinio
et al. [11], and further developed in [5, 6, 7, 12]. Still, in those papers the time dependence
entered only via the definition of the norm in a universal reference space, i.e. the spaces
Ht are in fact the same linear space endowed with different norms, all equivalent for t
running in compact sets. On the contrary, here the phase space Ht depends on time at
a geometric level, and we only have a set inclusion Hτ ⊂ Ht as τ ≤ t. This poses some
problems even in the definition of the time derivative ∂tη. To overcome this obstacle,
we propose a different notion of solution (which boils down to the usual one when the
memory kernel is time-independent), where the evolution of η is actually postulated via
the representation formula (1.8). At the same time, this prevents us to obtain directly
differential inequalities, essential to produce any kind of energy estimates, so that the
main technical tool in our approach turns out to be a family of integral inequalities,
which are obtained by several approximation steps.

The theory, along with the techniques developed in this work, open the way to the
longterm analysis of the solutions, which will be the object of future works. Besides,
a paradigm is set in order to tackle any equation of memory type with time-dependent
kernels. It is worth mentioning also the possibility of extending in a quite natural way
the underlying ideas to the study of systems with memory in the so-called minimal state
framework introduced in [15].

Outline of the paper. In Section 2 we stipulate our assumptions on the time-dependent
memory kernel, showing a concrete example of physical relevance, while in Section 3 we
introduce the proper functional spaces. The global well-posedness result is stated in
Section 4. The main technical tool needed in our analysis is discussed in Section 5,
and the remaining of the paper is devoted to the proofs: existence of solutions (Section
6), uniqueness (Section 7) and further regularity (Section 8). In the final Appendix we
provide a physical derivation of our equation via a rheological model for aging materials.

Notation. For σ ∈ R, we define the compactly nested Hilbert spaces

Hσ = D(Aσ/2),

endowed with the inner products and norms

〈u, v〉σ = 〈Aσ/2u,Aσ/2v〉L2(Ω) and ‖u‖σ = ‖Aσ/2u‖L2(Ω).

The index σ will be always omitted when equal to zero. For σ > 0, it is understood
that H−σ denotes the completion of the domain, so that H−σ is the dual space of Hσ.
The symbol 〈·, ·〉 will also be used to denote the duality pairing between H−σ and Hσ. In
particular,

H−1 = H−1(Ω), H = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0(Ω).
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Along the paper, we will repeatedly use without explicit mention the Young, Hölder and
Poincaré inequalities, as well as the standard Sobolev embeddings, e.g. H1 ⊂ L6(Ω).

2. The Time-Dependent Memory Kernel

2.1. General assumptions. In order to prove a well-posedness result for our problem,
we suppose that the function

(t, s) 7→ µt(s) : R× R
+ → R

+

satisfies the following set of assumptions, where R
+ = (0,∞) and we agree to denote

µ̇t(s) = ∂tµt(s) and µ′
t(s) = ∂sµt(s),

whenever such derivatives exist.

(M1) For every fixed t ∈ R, the map s 7→ µt(s) is nonincreasing, absolutely continuous
and summable.

(M2) For every τ ∈ R there exists a function Kτ : [τ,∞) → R
+, summable on any

interval [τ, T ], such that

µt(s) ≤ Kτ (t)µτ (s)

for every t ≥ τ and every s > 0.

(M3) For almost every fixed s > 0, the map t 7→ µt(s) is differentiable for all t ∈ R.
Besides,

(t, s) 7→ µt(s) ∈ L∞(K) and (t, s) 7→ µ̇t(s) ∈ L∞(K)

for every compact set K ⊂ R× R
+.

(M4) There exists a function M : R → R
+, bounded on bounded intervals, such that

µ̇t(s) + µ′
t(s) ≤M(t)µt(s)

for every t ∈ R and almost every s > 0.

Here are some immediate consequences of the assumptions. First, due to (M1), the
function s 7→ µt(s) is differentiable almost everywhere and, for every t ∈ R,

µ′
t(s) ≤ 0, for a.e. s > 0.

Note that s 7→ µt(s) can be possibly unbounded in a neighborhood of zero. Besides,
denoting the total mass of µt by

κ(t) =

∫ ∞

0

µt(s)ds,

from (M2) we readily see that

(2.1) κ(t) ≤ Kτ (t)κ(τ), ∀t ≥ τ.

Remark 2.1. In this work we are mainly concerned with kernels that do not vanish on
R

+, modeling the so-called infinite delay case. However, our analysis applies as well (and
with no changes in the proofs) to the finite delay case, namely, when

s∞(t) = sup{s > 0 : µt(s) > 0} <∞.

In this case, in comply with (M2), note that s∞(t) is a nonincreasing function of t.
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2.2. A concrete example: the rescaled kernel. An enlightening example of the kind
of kernel we have in mind is obtained by a suitable rescaling of a (nonnegative) nonin-
creasing function µ ∈ C1(R+) ∩ L1(R+). More precisely, given ε ∈ C1(R,R+) satisfying

ε̇(t) ≤ 0, ∀t ∈ R,

we define

µt(s) =
1

[ε(t)]2
µ

(

s

ε(t)

)

.

Remark 2.2. With reference to (1.3), defining

k(s) =

∫ ∞

s

µ(y)dy,

we have

kt(s) =
1

ε(t)
k

(

s

ε(t)

)

.

In particular, if we assume that s 7→ sµ(s) ∈ L1(R+), we get
∫ ∞

0

kt(s)ds =

∫ ∞

0

k(s)ds =

∫ ∞

0

sµ(s)ds = m <∞.

Accordingly, if ε(t) → 0 as t→ ∞, we obtain the distributional convergence

lim
t→∞

kt = mδ0.

We now verify that such a µt complies with the assumptions above. We begin to write
explicitly the derivatives of µt, namely,

µ′
t(s) =

1

[ε(t)]3
µ′

(

s

ε(t)

)

,

and

µ̇t(s) = −
ε̇(t)

ε(t)

[

2µt(s) + sµ′
t(s)

]

.

• Assumptions (M1) and (M3) are obviously verified. In particular, we have that

κ(t) =

∫ ∞

0

µt(s)ds =
1

ε(t)

∫ ∞

0

µ(s)ds <∞.

• Assumption (M2) holds with

Kτ (t) =

[

ε(τ)

ε(t)

]2

.

This easily follows from the fact that both µ and ε are nonincreasing in the respective
arguments.
• Assumption (M4) holds with

M(t) = −2
ε̇(t)

ε(t)
.

Indeed,

µ̇t(s) + µ′
t(s) =

[

1− s
ε̇(t)

ε(t)

]

µ′
t(s)− 2

ε̇(t)

ε(t)
µt(s).
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Since ε̇ ≤ 0 and µ′
t ≤ 0, we obtain the desired inequality.

Remark 2.3. The typical (and physically relevant) example is obtained by taking

µ(s) = k(s) = e−s,

in which case

kt(s) =
1

ε(t)
e−

s
ε(t) and µt(s) =

1

[ε(t)]2
e−

s
ε(t) .

3. Time-Dependent Memory Spaces

Let σ ∈ R and τ ∈ R be arbitrarily fixed. For every t ≥ τ , we introduce the memory
spaces

Mσ
t = L2

µt
(R+; Hσ+1),

equipped with the weighted L2-inner products

〈η, ξ〉Mσ
t
=

∫ ∞

0

µt(s)〈η(s), ξ(s)〉σ+1ds.

Owing to (M2), for every η ∈ Mσ
τ we have

(3.1) ‖η‖2Mσ
t
≤ Kτ (t)‖η‖

2
Mσ

τ
, ∀t ≥ τ,

providing the continuous embedding

Mσ
τ ⊂ Mσ

t , ∀t ≥ τ.

We will also consider the linear operator

Tt : D(Tt) ⊂ Mσ
t → Mσ

t ,

acting as
Ttη = −η′,

the prime standing for weak derivative, with domain

D(Tt) =
{

η ∈ Mσ
t : η′ ∈ Mσ

t , lim
s→0

η(s) = 0 in Hσ+1
}

.

It is well known (see e.g. [20]) that Tt is the infinitesimal generator of the contraction
semigroup of right-translations on the space Mσ

t , hence a dissipative operator. More
precisely, we have the estimate

(3.2) 〈Ttη, η〉Mσ
t
=

1

2

∫ ∞

0

µ′
t(s)‖η(s)‖

2
σ+1ds, ∀η ∈ D(Tt),

which by (M1) readily yields

〈Ttη, η〉Mσ
t
≤ 0, ∀η ∈ D(Tt).

Due to (3.1), we also observe that

(3.3) Tt ⊃ Tτ , ∀t ≥ τ.

In fact, the operators {Tt}t≥τ are increasingly nested extensions of each other. Finally,
we define the extended memory spaces

Hσ
t = Hσ+1 × Hσ ×Mσ

t ,

with the usual product norm

‖(u, v, η)‖2Hσ
t
= ‖u‖2σ+1 + ‖v‖2σ + ‖η‖2Mσ

t
.
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Again, the subscript σ is omitted whenever zero.

4. Statement of the Result

In this section, we give the definition of a (weak) solution to our problem, and we state the
main existence and uniqueness result. We first stipulate the assumptions on the external
force g and on the nonlinearity f .

• Let g ∈ H.

• Let f ∈ C1(R), with f(0) = 0, satisfy the growth restriction

(4.1) |f ′(u)| ≤ C
(

1 + |u|2),

for some C ≥ 0, along with the dissipation condition

(4.2) lim inf
|u|→∞

f(u)

u
> −λ1,

λ1 > 0 being the first eigenvalue of A.

Definition 4.1. Let T > τ ∈ R, and let zτ = (uτ , vτ , ητ ) ∈ Hτ be a fixed vector. A
function

z(t) = (u(t), ∂tu(t), η
t) ∈ Ht for a.e. t ∈ [τ, T ]

is a solution to problem (1.7)-(1.9) on the time-interval [τ, T ] with initial datum zτ if:

(i) u ∈ L∞(τ, T ; H1), ∂tu ∈ L∞(τ, T ; H), ∂ttu ∈ L1(τ, T ; H−1).

(ii) u(τ) = uτ , ∂tu(τ) = vτ .

(iii) The function η fulfills the representation formula (1.8).

(iv) For every test function ϕ ∈ H1 and almost every t ∈ [τ, T ],

〈∂ttu(t), ϕ〉+ 〈u(t), ϕ〉1 +

∫ ∞

0

µt(s)〈η
t(s), ϕ〉1ds+ 〈f(u(t)), ϕ〉 = 〈g, ϕ〉.

Remark 4.2. As it will be shown in the proofs, the facts that uτ ∈ H1, ητ ∈ Mτ and
u ∈ L∞(τ, T ; H1) are enough to guarantee that ηt given by (1.8) belongs to Mt for almost
every t ∈ [τ, T ].

Remark 4.3. By means of standard embeddings (see e.g [14, §5.9]), point (i) of the
definition yields at once

u ∈ C([τ, T ],H) ∩ C1([τ, T ],H−1).

Thus, speaking of the initial values of u and ∂tu makes sense.

Remark 4.4. As already mentioned in the Introduction, it is worth noting that the def-
inition above, where the representation formula (1.8) is actually postulated, is applicable
as well to classical systems with memory (i.e. in presence of time-independent kernels),
providing a notion of solution completely equivalent to the usual one (see e.g. [4, 27]).
In fact, this approach seems to be even more natural, and considerably simplifies the
proofs of existence and uniqueness results. In particular, it allows to avoid cumbersome
regularization arguments, needed to justify certain formal multiplications (cf. [27]).

Within the assumptions above on µt, g and f , we can state our well-posedness theorem.
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Theorem 4.5. For every T > τ ∈ R and every initial datum zτ = (uτ , vτ , ητ ) ∈ Hτ ,
problem (1.7)-(1.9) admits a unique solution z(t) = (u(t), ∂tu(t), η

t) on the interval [τ, T ].
Besides,

u ∈ C([τ, T ],H1) ∩ C1([τ, T ],H),

ηt ∈ Mt, ∀t ∈ [τ, T ],

and

sup
t∈[τ,T ]

‖z(t)‖Ht < C,

for some C > 0 depending only on T, τ and the size of the initial datum.

Actually, given any two solutions z1(t) and z2(t) on [τ, T ], the following continuous
dependence result holds.

Theorem 4.6. There exists a positive constant C, depending only on T, τ and the size of
the initial data, such that

‖z1(t)− z2(t)‖Ht ≤ C‖z1(τ)− z2(τ)‖Hτ

for every t ∈ [τ, T ].

Then, for every initial datum zτ ∈ Hτ , we can write the solution z(t) as

z(t) = U(t, τ)zτ .

The two-parameter family of operators

U(t, τ) : Hτ → Ht, t ≥ τ,

is called a processes on time-dependent spaces (see [5, 6, 7, 11, 12]), characterized by the
two properties:

(i) U(τ, τ) is the identity map on Hτ for every τ ;

(ii) U(t, τ)U(τ, s) = U(t, s) for every t ≥ τ ≥ s.

The rest of the paper is devoted to the proofs of Theorems 4.5 and 4.6.

5. A Key Inequality

The main technical tool in order to produce the energy estimates needed in the analysis is
an integral inequality involving the norm of the auxiliary variable in the time-dependent
memory space. Let then σ ∈ R and T > τ ∈ R be arbitrarily fixed, and let

u ∈ W 1,∞(τ, T ; Hσ+1) and ητ ∈ Mσ
τ

be any two given functions. Recall the standard embedding

W 1,∞(τ, T ; Hσ+1) ⊂ C([τ, T ],Hσ+1).

Defining η = ηt(s), with (t, s) ∈ [τ, T ]× R
+, by the formula

(5.1) ηt(s) =

{

u(t)− u(t− s), s ≤ t− τ,

ητ (s− t + τ) + u(t)− u(τ), s > t− τ,

the following theorem holds.
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Theorem 5.1. For all τ ≤ a ≤ b ≤ T , we have the inequality

‖ηb‖2Mσ
b
≤ ‖ηa‖2Mσ

a
+M

∫ b

a

‖ηt‖2Mσ
t
dt + 2

∫ b

a

〈∂tu(t), η
t〉Mσ

t
dt,

having set
M = sup

t∈[τ,T ]

M(t).

The proof of Theorem 5.1 requires a number of preparatory lemmas.

Lemma 5.2. Setting

Φ(u, ητ ) = 6κ(τ)‖u‖2L∞(τ,T ;Hσ+1) + 3‖ητ‖
2
Mσ

τ
,

we have that ηt ∈ Mσ
τ ⊂ Mσ

t with

‖ηt‖2Mσ
τ
≤ Φ(u, ητ ), ∀t ∈ [τ, T ],

and
‖ηt‖2Mσ

t
≤ Φ(u, ητ )Kτ (t) ∈ L1(τ, T ).

Proof. Recalling that µτ(·) is nonincreasing, we have

‖ηt‖2Mσ
τ
=

∫ t−τ

0

µτ (s)‖u(t)− u(t− s)‖2σ+1ds

+

∫ ∞

t−τ

µτ(s)‖ητ (s− t+ τ) + u(t)− u(τ)‖2σ+1ds

≤ 6‖u‖2L∞(τ,T ;Hσ+1)

∫ ∞

0

µτ (s)ds+ 3

∫ ∞

0

µτ (s+ t− τ)‖ητ (s)‖
2
σ+1ds

≤ Φ(u, ητ ).

The latter inequality follows from (M2) and (3.1).

Remark 5.3. It is clear from the proof that the conclusion of Lemma 5.2 is true without
any assumption on ∂tu, provided that u ∈ C([τ, T ],Hσ+1).

Lemma 5.4. Assume in addition that ητ ∈ D(Tτ ). Then η
t ∈ D(Tτ ) for every t ∈ [τ, T ],

η ∈ W 1,∞(τ, T ;Mσ
τ ) and the differential equation

∂tη
t = Tτη

t + ∂tu(t)

holds in Mσ
τ .

Proof. Since ητ ∈ D(Tτ ) ⊂ Mσ
τ and u ∈ W 1,∞(τ, T ; Hσ+1), we can differentiate (5.1) with

respect to s and to t in the weak sense, so obtaining

(5.2) ∂sη
t(s) =

{

∂tu(t− s), s ≤ t− τ,

η′τ (s− t+ τ), s > t− τ,

and

(5.3) ∂tη
t(s) =

{

∂tu(t)− ∂tu(t− s), s ≤ t− τ,

∂tu(t)− η′τ (s− t+ τ), s > t− τ.

Let us prove that ηt ∈ D(Tτ ). Since u ∈ C([τ, T ],Hσ+1), we readily obtain the limit

lim
s→0

ηt(s) = 0 in Hσ+1.
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Moreover, as µτ (·) is nonincreasing and ητ ∈ D(Tτ ) ⊂ Mσ
τ ,

‖∂sη
t‖2Mσ

τ
=

∫ t−τ

0

µτ (s)‖∂tu(t− s)‖2σ+1ds+

∫ ∞

t−τ

µτ (s)‖η
′
τ(s− t+ τ)‖2σ+1ds(5.4)

≤ κ(τ)‖∂tu‖
2
L∞(τ,T ;Hσ+1) + ‖η′τ‖

2
Mσ

τ
,

yielding ∂sη
t ∈ Mσ

τ . Analogous calculations provide the estimate

ess sup
t∈[τ,T ]

‖∂tη
t‖Mσ

τ
<∞,

which, together with Lemma 5.2, gives η ∈ W 1,∞(τ, T ;Mσ
τ ). Finally, collecting (5.2) and

(5.3), it follows that the differential equation

∂tη
t = Tτη

t + ∂tu(t)

holds in Mσ
τ .

Remark 5.5. Since Mσ
τ ⊂ Mσ

t , recalling (3.3) the latter differential equation gives

(5.5) ∂tη
t = Ttη

t + ∂tu(t),

where the equality holds in Mσ
t at any fixed t.

Remark 5.6. When ητ ∈ D(Tτ ), from (3.1) and (5.4) we deduce the estimate

(5.6) ‖∂sη
t‖2Mσ

t
≤ Ψ(u, ητ )Kτ (t), ∀t ∈ [τ, T ],

where

Ψ(u, ητ) = κ(τ)‖∂tu‖
2
L∞(τ,T ;Hσ+1) + ‖η′τ‖

2
Mσ

τ
.

We are ready to prove an integral inequality for more regular data.

Lemma 5.7. Assume that u ∈ C1([τ, T ],Hσ+1) and ητ ∈ C1(R+,Hσ+1) ∩ D(Tτ ). Then,
for all τ ≤ a ≤ b ≤ T , we have the inequality

‖ηb‖2Mσ
b
≤ ‖ηa‖2Mσ

a
+

∫ b

a

∫ ∞

0

[

µ̇t(s) + µ′
t(s)

]

‖ηt(s)‖2σ+1ds dt+ 2

∫ b

a

〈∂tu(t), η
t〉Mσ

t
dt.

Proof. For every ε > 0 small, we introduce the cut-off function

φε(s) =



























0 if 0 ≤ s < ε,

s/ε− 1 if ε ≤ s < 2ε,

1 if 2ε ≤ s ≤ 1/ε,

2− εs if 1/ε ≤ s < 2/ε,

0 if 2/ε ≤ s.

Correspondingly, we define the family of approximate kernels

µε
t(s) = φε(s)µt(s).

Denoting now

fε(t, s) = µε
t (s)‖η

t(s)‖2σ+1,

we claim that

(5.7)

∫ ∞

0

d

dt
fε(t, s)ds =

d

dt

∫ ∞

0

fε(t, s)ds.
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Indeed, from Lemma 5.2 we know that s 7→ fε(t, s) ∈ L1(R+) for every fixed t. Moreover,
since t 7→ ‖ηt(s)‖2σ+1 ∈ C1([τ, T ]) for every s,

d

dt
fε(t, s) = µ̇ε

t(s)‖η
t(s)‖2σ+1 + 2µε

t(s)〈∂tη
t(s), ηt(s)〉σ+1,

and (5.7) follows once we show the bound

(5.8)

∫ ∞

0

sup
t∈[τ,T ]

∣

∣

∣

∣

d

dt
fε(t, s)

∣

∣

∣

∣

ds <∞.

To this end, in light of the assumptions on u and ητ along with formulae (5.1) and (5.3),
we note that

sup
t∈[τ,T ]

sup
s∈[ε,2/ε]

[

‖ηt(s)‖σ+1 + ‖∂tη
t(s)‖σ+1

]

<∞.

Hence, exploiting (M3) on the compact set K = [τ, T ]× [ε, 2/ε], there exists Cε > 0 such
that

∣

∣

∣

∣

d

dt
fε(t, s)

∣

∣

∣

∣

≤ Cεφε(s) ≤ Cεχ[ε,2/ε](s).

This proves (5.8).

At this point, introducing the ε-dependent memory space

Mσ,ε
t = L2

µε
t
(R+; Hσ+1),

with the usual scalar product and norm, we multiply (5.5) by 2ηt in Mσ,ε
t , so to get

2〈∂tη
t, ηt〉Mσ,ε

t
= 2〈Ttη

t, ηt〉Mσ,ε
t

+ 2〈∂tu(t), η
t〉Mσ,ε

t
.

Making use of (5.7),

2〈∂tη
t, ηt〉Mσ,ε

t
=

∫ ∞

0

µε
t (s)

d

dt
‖ηt(s)‖2σ+1ds

=

∫ ∞

0

[

d

dt

(

µε
t(s)‖η

t(s)‖2σ+1

)

− µ̇ε
t (s)‖η

t(s)‖2σ+1

]

ds

=
d

dt
‖ηt‖2Mσ,ε

t
−

∫ ∞

0

µ̇ε
t(s)‖η

t(s)‖2σ+1ds.

Besides, from (3.2) applied in the space Mσ,ε
t ,

2〈Ttη
t, ηt〉Mσ,ε

t
=

∫ ∞

0

(µε
t )

′(s)‖ηt(s)‖2σ+1ds.

In summary, we end up with

d

dt
‖ηt‖2Mσ,ε

t
=

∫ ∞

0

[

µ̇ε
t(s) + (µε

t )
′(s)

]

‖ηt(s)‖2σ+1ds+ 2〈∂tu(t), η
t〉Mσ,ε

t
.

As a byproduct of (5.7)-(5.8), we also infer that the map t 7→ ‖ηt‖2
Mσ,ε

t
is absolutely

continuous. This allows us to integrate the differential identity above, obtaining

‖ηb‖2Mσ,ε
b

− ‖ηa‖2Mσ,ε
a

−

∫ b

a

∫ ∞

0

[

µ̇ε
t (s) + (µε

t)
′(s)

]

‖ηt(s)‖2σ+1ds dt(5.9)

= 2

∫ b

a

〈∂tu(t), η
t〉Mσ,ε

t
dt.
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In order to complete the proof, it suffices to pass to the limit in (5.9) as ε → 0. Note first
that, for any fixed t,

0 ≤ ‖ηt‖2Mσ
t
− ‖ηt‖2Mσ,ε

t
≤

∫ 2ε

0

µt(s)‖η
t(s)‖2σ+1ds+

∫ ∞

1/ε

µt(s)‖η
t(s)‖2σ+1ds→ 0.

Analogously, for any fixed t we verify that

〈∂tu(t), η
t〉Mσ,ε

t
→ 〈∂tu(t), η

t〉Mσ
t
.

Exploiting (M2) and Lemma 5.2,

|〈∂tu(t), η
t〉Mσ,ε

t
| ≤

√

κ(t)‖∂tu(t)‖σ+1‖η
t‖Mσ

t

≤
√

κ(τ)‖∂tu(t)‖σ+1

√

Kτ (t)‖η
t‖Mσ

t
∈ L1(a, b),

and the Dominated Convergence Theorem entails
∫ b

a

〈∂tu(t), η
t〉Mσ,ε

t
dt→

∫ b

a

〈∂tu(t), η
t〉Mσ

t
dt.

Thus, denoting

gε(t, s) = −
[

µ̇ε
t(s) + (µε

t )
′(s)

]

‖ηt(s)‖2σ+1,

g(t, s) = −
[

µ̇t(s) + µ′
t(s)

]

‖ηt(s)‖2σ+1,

we are left to prove that
∫ b

a

∫ ∞

0

g(t, s)ds dt ≤ lim inf
ε→0

∫ b

a

∫ ∞

0

gε(t, s)ds dt.

Indeed, in light of (M4),

gε(t, s) = −
[

φε(s)µ̇t(s) + φε(s)µ
′
t(s) + φ′

ε(s)µt(s)
]

‖ηt(s)‖2σ+1

≥ −M(t)µt(s)‖η
t(s)‖2σ+1 −

1

ε
χ[ε,2ε](s)µt(s)‖η

t(s)‖2σ+1.

We infer from Lemma 5.2 that the first term in the right-hand side above belongs to
L1((a, b)× R

+). Concerning the second one, we observe that

‖ηt(s)‖2σ+1 ≤
(

∫ s

0

‖∂sη
t(y)‖σ+1dy

)2

≤ s

∫ s

0

‖∂sη
t(y)‖2σ+1dy,

implying in turn, as µt(·) is nonincreasing,

µt(s)‖η
t(s)‖2σ+1 ≤ s

∫ s

0

µt(y)‖∂sη
t(y)‖2σ+1dy ≤ s‖∂sη

t‖2Mσ
t
≤ Ψ(u, ητ)sKτ (t),

where (5.6) is invoked in the last passage. Besides, since we can assume ε ≤ 1,

s

ε
χ[ε,2ε](s) ≤ 2χ[0,2](s).

Collecting the two inequalities above, we end up with

1

ε
χ[ε,2ε](s)µt(s)‖η

t(s)‖2σ+1 ≤ 2Ψ(u, ητ)χ[0,2](s)Kτ (t) ∈ L1((a, b)× R
+).

In conclusion, we found a (positive) function

ψ(t, s) =M(t)µt(s)‖η
t(s)‖2σ+1 + 2Ψ(u, ητ)χ[0,2](s)Kτ (t) ∈ L1((a, b)× R

+)
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satisfying

gε(t, s) ≥ −ψ(t, s).

We are in a position to apply Fatou’s Lemma: since gε(t, s) → g(t, s) almost everywhere,
the required inequality follows. �

By (M4) we have a straightforward corollary.

Corollary 5.8. Within the hypotheses of Lemma 5.7, for all τ ≤ a ≤ b ≤ T , we have the
inequality

‖ηb‖2Mσ
b
≤ ‖ηa‖2Mσ

a
+M

∫ b

a

‖ηt‖2Mσ
t
dt + 2

∫ b

a

〈∂tu(t), η
t〉Mσ

t
dt.

Proof of Theorem 5.1. Choose two sequences

ητn ∈ C1(R+,Hσ+1) ∩D(Tτ ) and un ∈ C1([τ, T ],Hσ+1)

such that

ητn → ητ in Mσ
τ ,

un → u in W 1,∞(τ, T ; Hσ+1),

and define ηn = ηtn(s) as

ηtn(s) =

{

un(t)− un(t− s), s ≤ t− τ,

ητn(s− t+ τ) + un(t)− un(τ), s > t− τ.

From Corollary 5.8, we know that

‖ηbn‖
2
Mσ

b
≤ ‖ηan‖

2
Mσ

a
+M

∫ b

a

‖ηtn‖
2
Mσ

t
dt+ 2

∫ b

a

〈∂tun(t), η
t
n〉Mσ

t
dt.

All is needed is passing to the limit in the inequality above. By means of Lemma 5.2
applied to the difference ηn − η and to ηn, we draw the estimate

‖ηtn − ηt‖2Mσ
t
≤ Φ(un − u, ητn − ητ )Kτ (t),

implying the pointwise convergence

ηtn → ηt in Mσ
t , ∀t ∈ [a, b],

along with the control

‖ηtn‖
2
Mσ

t
≤ sup

n
Φ(un, ητn)Kτ (t) ∈ L1(a, b).

In particular,

‖ηtn‖
2
Mσ

t
→ ‖ηt‖2Mσ

t
, ∀t ∈ [a, b],

and, by the Dominated Convergence Theorem,
∫ b

a

‖ηtn‖
2
Mσ

t
dt→

∫ b

a

‖ηt‖2Mσ
t
dt.

In order to establish the remaining convergence
∫ b

a

〈∂tun(t), η
t
n〉Mσ

t
dt→

∫ b

a

〈∂tu(t), η
t〉Mσ

t
dt,



15

we argue as in the proof of Lemma 5.7. Indeed,

〈∂tun(t), η
t
n〉Mσ

t
→ 〈∂tu(t), η

t〉Mσ
t
, for a.e. t ∈ [a, b],

and

|〈∂tun(t), η
t
n〉Mσ

t
| ≤

√

κ(t)‖∂tun(t)‖σ+1‖η
t
n‖Mσ

t
≤ CKτ (t) ∈ L1(a, b),

having set

C = sup
n

[

√

κ(τ)Φ(un, ητn) ‖∂tun‖L∞(τ,T ;Hσ+1)

]

.

A further application of the Dominated Convergence Theorem will do. This finishes the
proof of Theorem 5.1. �

6. Existence of Solutions

We are now ready to prove the existence result.

Theorem 6.1. For every T > τ ∈ R and every initial datum zτ = (uτ , vτ , ητ ) ∈ Hτ ,
problem (1.7)-(1.9) admits at least a solution z(t) on [τ, T ]. Moreover, z(t) ∈ Ht for
every t and

sup
t∈[τ,T ]

‖z(t)‖Ht ≤ C,

for some C > 0 depending only on T, τ and the size of the initial datum.

The proof of the theorem is based on a Galerkin procedure, where the first step consists
in looking for smooth solutions to suitable approximating problems on finite-dimensional
spaces.

6.1. Galerkin approximations. Let {wn} be an orthonormal basis of H which is also
orthogonal in H1. For every n ∈ N, we define the finite-dimensional subspace

Hn = span{w1, . . . , wn} ⊂ H1

and we denote by Pn : H → Hn the orthogonal projection onto Hn. We approximate the
initial datum zτ = (uτ , vτ , ητ ) with a sequence zτn = (uτn, vτn, ητn), where

uτn = Pnuτ → uτ in H1,(6.1)

vτn = Pnvτ → vτ in H,(6.2)

ητn = Pnητ → ητ in Mτ .(6.3)

For every n ∈ N, we look for Tn ∈ (τ, T ] and

un : [τ, Tn] → Hn

satisfying, for every test function ϕ ∈ Hn and every t ∈ [τ, Tn],

(6.4) 〈∂ttun(t), ϕ〉+ 〈un(t), ϕ〉1 +

∫ ∞

0

µt(s)〈η
t
n(s), ϕ〉1ds+ 〈f(un(t)), ϕ〉 = 〈g, ϕ〉,

where

(6.5) ηtn(s) =

{

un(t)− un(t− s), s ≤ t− τ,

ητn(s− t + τ) + un(t)− uτn, s > t− τ,
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along with the initial conditions

(6.6)

{

un(τ) = uτn,

∂tun(τ) = vτn.

Lemma 6.2. For every n ∈ N, there exist Tn ∈ (τ, T ] and a pair (un, ηn) satisfying
(6.4)-(6.6), where un is of the form

un(t) =
n

∑

j=1

anj (t)wj, anj ∈ C2([τ, Tn]).

The proof is completely standard, and therefore omitted. It is enough to note that (6.4)
translates into a system of n integro-differential equations in the unknowns anj , and the
existence (and uniqueness) of a local solution is guaranteed by a classical ODEs result,
owing to the fact that the nonlinearity f is locally Lipschitz.

According to Lemma 6.2, we denote by

zn(t) = (un(t), ∂tun(t), η
t
n)

the (local) solution to the approximating problem at time t. In what follows, C will denote
a generic positive constant and Q : R+ → R

+ a generic nondecreasing positive function,
both (possibly) depending only on τ , T and the structural parameters of the problem,
but independent of n.

6.2. Energy estimates. The crucial step is finding suitable a priori estimates for the
approximate solution zn.

Lemma 6.3. Let ‖zτ‖Hτ ≤ R for some R ≥ 0. Then zn(t) ∈ Ht for every t and

sup
t∈[τ,T ]

‖zn(t)‖Ht ≤ Q(R).

Proof. We preliminarily observe that, owing to (6.1)-(6.3),

(6.7) ‖zτn‖Hτ ≤ ‖zτ‖Hτ ≤ R.

For t ∈ [τ, Tn], we define the energy functional

En(t) = ‖un(t)‖
2
1 + ‖∂tun(t)‖

2 + 2〈F (un(t)), 1〉,

where

F (u) =

∫ u

0

f(s)ds.

Exploiting (4.1),
2〈F (un), 1〉 ≤ C

(

1 + ‖un‖
4
1

)

.

Besides, condition (4.2) implies that

2〈F (un), 1〉 ≥ −(1− θ)‖un‖
2
1 − C,

for some 0 < θ < 1. Thus we have the two-side control

(6.8) θ
[

‖un(t)‖
2
1 + ‖∂tun(t)‖

2
]

− C ≤ En(t) ≤ Q(‖un(t)‖1 + ‖∂tun(t)‖).

Testing (6.4) with ϕ = ∂tun, we draw the equality

d

dt
En + 2〈ηn, ∂tun〉Mt = 2〈g, ∂tun〉.
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Since by (6.8)

2〈g, ∂tun〉 ≤ 2‖g‖‖∂tun‖ ≤ C + CEn,

an integration on [τ, t] with t < Tn yields

En(t) + 2

∫ t

τ

〈ηyn, ∂tun(y)〉Mydy ≤ En(τ) + C + C

∫ t

τ

En(y)dy.

Knowing that un ∈ W 1,∞(τ, Tn; H
1), ητn ∈ Mτ and ηn fulfills (6.5), we are allowed to

apply Theorem 5.1 for σ = 0, so obtaining

‖ηtn‖
2
Mt

≤ ‖ητn‖
2
Mτ

+M

∫ t

τ

‖ηyn‖
2
My

dy + 2

∫ t

τ

〈ηyn, ∂tun(y)〉Mydy.

Therefore, setting

En(t) = En(t) + ‖ηtn‖
2
Mt

and adding the latter two integral inequalities, using again (6.8) we end up with

En(t) ≤ En(τ) + C + C

∫ t

τ

En(y)dy.

The claim follows from the Gronwall Lemma and a further application of (6.8), together
with (6.7). �

Since the estimates for (un, ∂tun, ηn) do not depend on n, we conclude that the solutions
to the approximate problems are global, namely,

Tn = T, ∀n ∈ N.

6.3. Passage to the limit. From Lemma 6.3 we learn that

un is bounded in L∞(τ, T ; H1) ∩W 1,∞(τ, T ; H).

Hence, there exists u ∈ L∞(τ, T ; H1) ∩W 1,∞(τ, T ; H) such that, up to a subsequence,

un
w∗

−→ u in L∞(τ, T ; H1),(6.9)

∂tun
w∗

−→ ∂tu in L∞(τ, T ; H).(6.10)

By the classical Simon-Aubin compact embedding [29]

L∞(τ, T ; H1) ∩W 1,∞(τ, T ; H) ⋐ C([τ, T ],H),

we deduce (up to a further subsequence)

(6.11) un → u in C([τ, T ],H),

along with the pointwise convergence

un → u a.e. in [τ, T ]× Ω.

Thanks to the continuity of f , this also yields

(6.12) f(un) → f(u) a.e. in [τ, T ]× Ω.

At this point, having u and ητ , we merely define the function ηt for t ∈ [τ, T ] by (1.8).
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Remark 6.4. Since u ∈ L∞(τ, T ; H1) and uτ ∈ H1, recasting word by word the proof of
Lemma 5.2 we find the bound

(6.13) η ∈ L∞(τ, T ;Mτ).

In turn, we infer from (3.1) that ηt ∈ Mt for almost every t ∈ [τ, T ].

Lemma 6.5. The function z(t) = (u(t), ∂tu(t), η
t) fulfills point (iv) of Definition 4.1.

Proof. Let ϕ ∈ Hm be fixed. Then, for every n ≥ m, we have

〈∂ttun, ϕ〉+ 〈un, ϕ〉1 +

∫ ∞

0

µt(s)〈ηn(s), ϕ〉1ds+ 〈f(un), ϕ〉 = 〈g, ϕ〉.

Multiplying the above equality by an arbitrary ζ ∈ C∞
c ([τ, T ]) and integrating on the

interval [τ, T ] we are led to

−

∫ T

τ

ζ̇(t)〈∂tun(t), ϕ〉dt+

∫ T

τ

ζ(t)〈un(t), ϕ〉1dt

+

∫ T

τ

ζ(t)

∫ ∞

0

µt(s)〈η
t
n(s), ϕ〉1ds dt+

∫ T

τ

ζ(t)〈f(un(t)), ϕ〉dt

= 〈g, ϕ〉

∫ T

τ

ζ(t)dt.

We claim that we can pass to the limit in this equality, getting

−

∫ T

τ

ζ̇(t)〈∂tu(t), ϕ〉dt+

∫ T

τ

ζ(t)〈u(t), ϕ〉1dt(6.14)

+

∫ T

τ

ζ(t)

∫ ∞

0

µt(s)〈η
t(s), ϕ〉1ds dt +

∫ T

τ

ζ(t)〈f(u(t)), ϕ〉dt

= 〈g, ϕ〉

∫ T

τ

ζ(t)dt.

Owing to the density of Hm in H1 as m→ ∞, this finishes the proof of the lemma.

Coming to the claim, we see that the only nontrivial terms to control are the nonlinear
one containing f(un) and

(6.15)

∫ T

τ

ζ(t)

∫ ∞

0

µt(s)〈η
t
n(s), ϕ〉1ds dt.

Concerning the first, the convergence to the corresponding one with f(u) follows by ob-
serving that

f(un)
w
−→ f(u) in L2(τ, T ; H).

Indeed, by the growth condition (4.1) and Lemma 6.3

‖f(un)‖ ≤ C
(

1 + ‖un‖
3
1

)

≤ Q(R),

and the result is a consequence of the Weak Dominated Convergence Theorem, in light
of the pointwise convergence (6.12).

We are left to pass (6.15) to the limit. To this aim, we set

ūτn = uτn − uτ , η̄τn = ητn − ητ ,
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and, for every t ∈ [τ, T ],

ūn(t) = un(t)− u(t), η̄tn = ηtn − ηt.

Besides, we consider the map pn : [τ, T ] → R defined as

t 7→ pn(t) = 〈ūn(t), ϕ〉1,

In light of (6.9),

(6.16) pn
w∗

−→ 0 in L∞(τ, T ).

Writing explicitly η̄tn as

(6.17) η̄tn(s) =

{

ūn(t)− ūn(t− s), s ≤ t− τ,

η̄τn(s− t + τ) + ūn(t)− ūτn, s > t− τ,

we have
∫ T

τ

ζ(t)

∫ ∞

0

µt(s)〈η̄
t
n(s), ϕ〉1ds dt

=

∫ T

τ

ζ(t)κ(t)pn(t)dt−

∫ T

τ

ζ(t)

∫ t−τ

0

µt(s)pn(t− s)ds dt

+

∫ T

τ

ζ(t)

∫ ∞

t−τ

µt(s)〈η̄τn(s− t+ τ)− ūτn, ϕ〉1ds dt.

It is easy to see that the first term in the right-hand side goes to zero. Indeed, by (M2)
and (2.1),

∫ T

τ

|ζ(t)κ(t)|dt ≤ Cκ(τ)

∫ T

τ

Kτ (t)dt ≤ C,

and (6.16) readily gives
∫ T

τ

ζ(t)κ(t)pn(t)dt→ 0.

Concerning the second term, an application of the Fubini Theorem yields
∫ T

τ

ζ(t)

∫ t−τ

0

µt(s)pn(t− s)ds dt =

∫ T

τ

ζ(t)

∫ t

τ

µt(t− s)pn(s)ds dt

=

∫ T

τ

pn(s)

∫ T

s

µt(t− s)ζ(t)dt ds.

Appealing again to the Fubini Theorem and exploiting (M2), we obtain
∫ T

τ

∣

∣

∣

∣

∫ T

s

µt(t− s)ζ(t)dt

∣

∣

∣

∣

ds ≤

∫ T

τ

|ζ(t)|

∫ t

τ

µt(t− s)ds dt

≤ C

∫ T

τ

∫ t−τ

0

µt(s)ds dt

≤ Cκ(τ)

∫ T

τ

Kτ (t)dt ≤ C,

and (6.16) ensures the convergence
∫ T

τ

ζ(t)

∫ t−τ

0

µt(s)pn(t− s)ds dt→ 0.
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Finally, recalling that µt is nonincreasing, owing to (M2) and using (6.1) and (6.3), we
draw

∣

∣

∣

∣

∫ T

τ

ζ(t)

∫ ∞

t−τ

µt(s)〈η̄τn(s− t + τ)− ūτn, ϕ〉1ds dt

∣

∣

∣

∣

≤ C‖ϕ‖1

∫ T

τ

∫ ∞

0

µt(s+ t− τ)
[

‖η̄τn(s)‖1 + ‖ūτn‖1
]

ds dt

≤ C

[
∫ ∞

0

µτ (s)‖η̄τn(s)‖1ds+ κ(τ)‖ūτn‖1

]
∫ T

τ

Kτ (t)dt

≤ C
[
√

κ(τ)‖η̄τn‖Mτ + ‖ūτn‖1
]

→ 0.

In summary,
∫ T

τ

ζ(t)

∫ ∞

0

µt(s)〈η̄
t
n(s), ϕ〉1ds dt→ 0,

which completes the proof of the claim.

6.4. Regularity. We already know that u ∈ L∞(τ, T ; H1), ∂tu ∈ L∞(τ, T ; H), ηt ∈ Mt

for almost every t ∈ [τ, T ]. In particular, z(t) ∈ Ht for almost every t ∈ [τ, T ]. In order
to comply with Definition 4.1, we are left to verify that

∂ttu ∈ L1(τ, T ; H−1).

We need a useful observation.

Lemma 6.6. Let σ ∈ R and T > τ ∈ R be arbitrarily fixed. If η ∈ L∞(τ, T ;Mσ
τ ), then

the map

t 7→

∫ ∞

0

µt(s)Aη
t(s)ds ∈ L1(τ, T ;Hσ−1).

Proof. A simple computation yields

∫ T

τ

∥

∥

∥

∫ ∞

0

µt(s)Aη
t(s)ds

∥

∥

∥

σ−1
dt ≤

∫ T

τ

∫ ∞

0

µt(s)‖η
t(s)‖σ+1ds dt

≤

∫ T

τ

Kτ (t)

∫ ∞

0

µτ(s)‖η
t(s)‖σ+1ds dt

≤
√

κ(τ)‖η‖L∞(τ,T ;Mσ
τ )

∫ T

τ

Kτ (t)dt,

and the thesis follows from (M2).

In light of (6.13), by applying Lemma 6.6 for σ = 0, the claimed regularity for ∂ttu is
obtained by comparison in (6.14). As a byproduct, we deduce the continuity

∂tu ∈ C([τ, T ],H−1).
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6.5. Initial values. Here we show that the initial conditions are fulfilled, i.e.

(6.18) u(τ) = uτ and ∂tu(τ) = vτ .

We take any ϕ ∈ H1 and ζ ∈ C2([τ, T ]) satisfying ζ(T ) = ∂tζ(T ) = 0. Observing that
∫ T

τ

ζ(t)〈∂ttu(t), ϕ〉dt = −ζ(τ)〈∂tu(τ), ϕ〉+ ζ̇(τ)〈u(τ), ϕ〉+

∫ T

τ

ζ̈(t)〈u(t), ϕ〉dt,

we obtain

− ζ(τ)〈∂tu(τ), ϕ〉+ ζ̇(τ)〈u(τ), ϕ〉+

∫ T

τ

ζ̈(t)〈u(t), ϕ〉dt+

∫ T

τ

ζ(t)〈u(t), ϕ〉1dt(6.19)

+

∫ T

τ

ζ(t)

∫ ∞

0

µt(s)〈η
t(s), ϕ〉1ds dt+

∫ T

τ

ζ(t)〈f(u(t)), ϕ〉dt

=

∫ T

τ

ζ(t)〈g, ϕ〉dt.

On the other hand, arguing in a similar manner with the approximate problem (6.4),

− ζ(τ)〈∂tun(τ), ϕ〉+ ζ̇(τ)〈un(τ), ϕ〉+

∫ T

τ

ζ̈(t)〈un(t), ϕ〉dt+

∫ T

τ

ζ(t)〈un(t), ϕ〉1dt

+

∫ T

τ

ζ(t)

∫ ∞

0

µt(s)〈η
t
n(s), ϕ〉1ds dt+

∫ T

τ

ζ(t)〈f(un(t)), ϕ〉dt

=

∫ T

τ

ζ(t)〈g, ϕ〉dt.

Passing to the limit in the latter identity and comparing the limiting equality with (6.19)
yields

ζ(τ)〈∂tu(τ), ϕ〉 − ζ̇(τ)〈u(τ), ϕ〉 = ζ(τ)〈vτ , ϕ〉 − ζ̇(τ)〈uτ , ϕ〉.

Being ζ(τ) and ζ̇(τ) arbitrarily chosen, (6.18) holds.

6.6. Uniform estimates. To complete the proof of Theorem 6.1, we have to prove that
z(t) ∈ Ht for every t ∈ [τ, T ] and

sup
t∈[τ,T ]

‖z(t)‖Ht ≤ Q(R),

whenever ‖zτ‖Hτ ≤ R. This is obtained by passing to the limit in the uniform estimate

of Lemma 6.3. Due to the convergence (un, ∂tun)
w
−→ (u, ∂tu) in H1 × H (at any fixed t),

together with the (weak) continuity u ∈ C([τ, T ],H) ∩ C1([τ, T ],H−1), which allows us to
select the continuous representative in the equivalence classes of u and ∂tu, we have that
(u(t), ∂tu(t)) ∈ H1 × H for every t ∈ [τ, T ] and

sup
t∈[τ,T ]

[

‖u(t)‖1 + ‖∂tu(t)‖
]

≤ Q(R).

The only difficult part is showing that ηt ∈ Mt for every t ∈ [τ, T ] and

sup
t∈[τ,T ]

‖ηt‖Mt ≤ Q(R).

For every fixed t ∈ [τ, T ], Lemma 6.3 provides the convergence (up to a subsequence)

ηtn
w
−→ qt in Mt,
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for some qt ∈ Mt. Accordingly,

‖qt‖Mt ≤ lim inf
n→∞

‖ηtn‖Mt ≤ Q(R).

Consequently, if we prove the equality qt = ηt in Mt we are done. To see that, it is
enough to show that

ηtn → ηt in M−1
t .

But, since ūn ∈ C([τ, T ],H), this follows by applying Lemma 5.2 and the subsequent
Remark 5.3 for σ = −1 to the difference η̄tn = ηtn − ηt given by formula (6.17), yielding

‖η̄t‖2
M−1

t
≤ Φ(ūn, η̄τn)Kτ (t) → 0.

Indeed, ūn → 0 in C([τ, T ],H) by (6.11), and η̄τn → 0 in Mτ by construction.

The proof of Theorem 6.1 is completed.

7. Uniqueness

Uniqueness is an immediate consequence of the following weak continuous dependence.

Proposition 7.1. Let z1(t) = (u1(t), ∂tu1(t), η
t
1) and z2(t) = (u2(t), ∂tu2(t), η

t
2) be any

two solutions on [τ, T ]. There exists a positive constant C, depending only on T, τ and
the size of the initial data in Hτ , such that

‖z1(t)− z2(t)‖H−1
t

≤ C‖z1(τ)− z2(τ)‖Hτ

for every t ∈ [τ, T ].

Proof. Thanks to Theorem 6.1,

(7.1) sup
t∈[τ,T ]

[

‖u1(t)‖1 + ‖u2(t)‖1
]

≤ C,

where here and along the proof, C > 0 will stand for a generic constant (possibly) de-
pending on T, τ and the size of the initial data in Hτ . For t ∈ [τ, T ], we denote by

z̄(t) = (ū(t), ∂tū(t), η̄
t) = z1(t)− z2(t)

the difference of the two solutions, and we set

Λ(t) = ‖ū(t)‖2 + ‖∂tū(t)‖
2
−1.

For every ϕ ∈ H1 and almost every t ∈ [τ, T ] we have

(7.2) 〈∂ttū(t), ϕ〉+ 〈ū(t), ϕ〉1 +

∫ ∞

0

µt(s)〈η̄
t(s), ϕ〉1ds+ 〈f(u1(t))− f(u2(t)), ϕ〉 = 0,

with

η̄t(s) =

{

ū(t)− ū(t− s), s ≤ t− τ,

η̄τ (s− t+ τ) + ū(t)− ūτ , s > t− τ.

Using ϕ = A−1∂tū(t) as a test function in (7.2), we obtain

d

dt
Λ + 2

∫ ∞

0

µt(s)〈η̄(s), ∂tū〉ds = 2〈f(u2)− f(u1), ∂tū〉−1.
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Exploiting (4.1) and the uniform boundedness (7.1), we have the estimate

‖f(u2)− f(u1)‖−1 ≤ C‖
(

1 + |u1|
2 + |u2|

2
)

|ū|‖L6/5(Ω)

≤ C
(

1 + ‖u1‖
2
1 + ‖u2‖

2
1)‖ū‖

≤ C‖ū‖.

Accordingly,

2〈f(u2)− f(u1), ∂tū〉−1 ≤ C‖ū‖‖∂tū‖−1 ≤ CΛ,

and we arrive at
d

dt
Λ(t) + 2〈η̄t, ∂tū(t)〉M−1

t
≤ CΛ(t).

An integration on [τ, t], with t ≤ T , entails

Λ(t) + 2

∫ t

τ

〈η̄y, ∂tū(y)〉M−1
y
dy ≤ Λ(τ) + C

∫ t

τ

Λ(y)dy.

Since ū ∈ W 1,∞(τ, T ; H) by Theorem 6.1, we can apply Theorem 5.1 to η̄ for σ = −1, to
get

‖η̄t‖2
M−1

t
− ‖η̄τ‖2

M−1
τ

≤ M

∫ t

τ

‖η̄y‖2
M−1

y
dy + 2

∫ t

τ

〈η̄y, ∂tū(y)〉M−1
y
dy.

Adding the two inequalities, we end up with

‖z̄(t)‖2
H−1

t
≤ ‖z̄(τ)‖2

H−1
τ

+ C

∫ t

τ

‖z̄(y)‖2
H−1

y
dy,

and the conclusion follows from the Gronwall Lemma and the embedding Hτ ⊂ H−1
τ . �

8. Time Continuity and Continuous Dependence

To complete our program, we are left to prove the continuity in time of the solution,
along with the strong continuous dependence estimate of Theorem 4.6. The proofs of
both results are obtained by approximating the solutions originating from fixed initial
data in Hτ with smoother solutions departing from more regular data.

8.1. Two preliminary lemmas. We begin to prove further regularity properties of the
solutions with initial data in H1

τ .

Lemma 8.1. If zτ ∈ H1
τ then the (unique) solution z(t) is uniformly bounded in H1

t as
t ∈ [τ, T ], and

u ∈ C([τ, T ],H1) ∩ C1([τ, T ],H).

Proof. Define the energy functionals

L(t) = ‖u(t)‖21 + ‖∂tu(t)‖
2 + 2〈f(u(t))− g, Au(t)〉

and

L(t) = L(t) + ‖ηt‖2M1
t
.

Within the Galerkin approximation scheme, we test the equation by ϕ = A∂tu. This gives

d

dt
L+ 2〈η, ∂tu〉M1

t
= 2〈f ′(u)∂tu,Au〉.
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Since ‖u(t)‖1 is uniformly bounded by Theorem 6.1, owing to (4.1) we find the controls

‖f(u)‖ ≤ C
(

1 + ‖u‖31
)

≤ C,

‖f ′(u)‖L3(Ω) ≤ C
(

1 + ‖u‖21
)

≤ C,

where, along this proof, C denotes a positive constant depending on the size of zτ . From
the first inequality, we easily conclude that

(8.1)
1

2
‖z(t)‖2H1

t
− C ≤ L(t) ≤ 2‖z(t)‖2H1

t
+ C.

In turn, from the second inequality we deduce the estimate

2〈f ′(u)∂tu,Au〉 ≤ 2‖f ′(u)‖L3(Ω)‖∂tu‖L6(Ω)‖Au‖ ≤ C‖∂tu‖1‖u‖2 ≤ C + CL,

so obtaining

(8.2)
d

dt
L+ 2〈η, ∂tu〉M1

t
≤ C + CL.

At this point, we apply Theorem 5.1 for σ = 1, and we get

‖ηt‖2M1
t
≤ ‖ητ‖2M1

τ
+M

∫ t

τ

‖ηy‖2M1
y
dy + 2

∫ t

τ

〈ηy, ∂tu〉M1
y
dy.

Adding this inequality to (8.2) integrated in time over [τ, t] for t ≤ T , on account of (8.1),
we end up with

L(t) ≤ L(τ) + C + C

∫ t

τ

L(y)dy.

Then, the Gronwall Lemma together with a subsequent application of (8.1) yield the
desired estimate

sup
t∈[τ,T ]

‖z(t)‖H1
t
≤ C.

In particular,

u ∈ L∞(τ, T ; H2) ∩W 1,∞(τ, T ; H1) ⊂ C([τ, T ],H1).

Besides, paralleling Remark 6.4 and Subsection 6.4, we learn that η ∈ L∞(τ, T ;M1
τ), and

appealing to Lemma 6.6 for σ = 1 we draw by comparison

∂ttu ∈ L1(τ, T ; H).

Hence,

∂tu ∈ L∞(τ, T ; H1) ∩W 1,1(τ, T ; H) ⊂ C([τ, T ],H),

as claimed.

Lemma 8.2. Let z1(t), z2(t) be two solutions. If z1(τ), z2(τ) ∈ H1
τ , then

‖z1(t)− z2(t)‖Ht ≤ C‖z1(τ)− z2(τ)‖Hτ

for every t ∈ [τ, T ], where the positive constant C, beside τ and T , depends (increasingly)
only on the norms of z1(τ) and z2(τ) in Hτ .
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Proof. We argue as in the proof of Proposition 7.1, the only difference being that now we
can use ϕ = ∂tū ∈ H1 as a test function in (7.2). Accordingly, we obtain

d

dt
(‖ū‖21 + ‖∂tū‖

2) + 2

∫ ∞

0

µt(s)〈η̄(s), ∂tū〉1ds = 2〈f(u2)− f(u1), ∂tū〉.

Leaning on (4.1) and exploiting the boundedness of ‖u1‖1 and ‖u2‖1, we estimate

2〈f(u2)− f(u1), ∂tū〉 ≤ C
(

1 + ‖u1‖
2
1 + ‖u2‖

2
1

)

‖ū‖1‖∂tū‖ ≤ C
(

‖ū‖21 + ‖∂tū‖
2
)

,

where C depends on the size of the initial data in Hτ only. The conclusion follows as in
the proof of Proposition 7.1, making use of Theorem 5.1 for σ = 0. �

8.2. Approximating the solution. Let zτ ∈ Hτ be any fixed initial datum, and let

z(t) = (u(t), ∂tu(t), η
t)

be the unique solution satisfying z(τ) = zτ . Then, we choose a sequence zτn ∈ H1
τ such

that
zτn → zτ in Hτ ,

and we denote by
zn(t) = (un(t), ∂tun(t), η

t
n)

the corresponding sequence of solutions satisfying zn(τ) = zτn. For every n ∈ N, we know
from Lemma 8.1 that

(8.3) un ∈ C([τ, T ],H1) ∩ C1([τ, T ],H).

Let now t ∈ [τ, T ] be arbitrarily fixed. Proposition 7.1 entails the strong convergence

(8.4) zn(t) → z(t) in H−1
t .

Besides, we claim that, up to a subsequence,

(8.5) zn(t)
w
−→ z(t) in Ht.

Indeed, by Theorem 6.1, zn(t) is bounded in Ht with a bound independent of n (for zτn
is a bounded sequence in Hτ ). Accordingly, up to a subsequence, zn(t) has a weak limit
in Ht. Due to (8.4), such a limit equals z(t).

8.3. Conclusion of the proofs. First, we prove the continuity of the solution in the
phase space.

Lemma 8.3. The function u satisfies

u ∈ C([τ, T ],H1) ∩ C1([τ, T ],H).

Proof. It is convenient to introduce the product spaces

W−1 = H×H−1 and W = H1 × H,

and set
w(t) = (u(t), ∂tu(t)) and wn(t) = (un(t), ∂tun(t)).

In light of (8.3),
wn ∈ C([τ, T ],W).

Besides, for every n,m ∈ N, by Lemma 8.2 we have in particular the inequality

‖wn(t)− wm(t)‖W ≤ C‖zτn − zτm‖Hτ , ∀t ∈ [τ, T ],
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telling that wn is a Cauchy sequence in the space C([τ, T ],W). Hence, it converges to
some χ ∈ C([τ, T ],W). At the same time, we see from (8.4) that wn(t) → w(t) in W−1

for every t, which yields the equality χ = w. Thus w ∈ C([τ, T ],W). �

This finishes the proof of Theorem 4.5. With a similar argument, we establish the
continuous dependence estimate of Theorem 4.6.

Proof of Theorem 4.6. Let z1(t), z2(t) ∈ Ht be two solutions, and let z1n(t), z2n(t) ∈ H1
t

be their respective approximating sequences. For an arbitrarily fixed t ∈ [τ, T ], we know
from (8.5) that

z1n(t)
w
−→ z1(t), z2n(t)

w
−→ z2(t) in Ht.

Thus, exploiting Lemma 8.2 and the semicontinuity of the norm (observe that C is inde-
pendent of n),

‖z1(t)− z2(t)‖Ht ≤ lim inf
n→∞

‖z1n(t)− z2n(t)‖Ht

≤ C lim inf
n→∞

‖z1n(τ)− z2n(τ)‖Hτ

= C‖z1(τ)− z2(τ)‖Hτ ,

ending the proof.

Appendix: A Rheological Model for Aging Viscoelastic Materials

As already mentioned in the Introduction, the rheological model usually employed in the
description of a standard viscoelastic solid consists of a Hookean spring and a Newtonian
dashpot in series with each other (the so-called Maxwell element) in parallel with a lone
spring. Here, the idea is to reproduce the effects of the material aging via a progressive
stiffening of the spring in the Maxwell component. This will lead to a concrete realization
of equation (1.5) for a particular kernel ht(·), which will be shown to comply with our
assumptions (M1)-(M4).

I. The model. We consider axial deformations of a linear homogeneous viscoelastic body
occupying a volume Ω ⊂ R

3 at rest. Since the material is homogeneous, we can represent
its mechanical behavior by means of the same rheological model at every point x ∈ Ω. In
particular, all the physical parameters turn out to be independent of spatial coordinates.
A typical example encompassed by our analysis is a viscoelastic specimen in the form of a
rectilinear rod deforming under the action of tensile forces applied to its ends. The aging
of the material will be translated by replacing the Hooke constant of the spring in the
Maxwell element with a nondecreasing positive function. Precisely (see fig. 2), we denote
by K > 0 the rigidity of the lone spring, whereas, concerning the Maxwell component, we
denote by γ > 0 the viscosity of the damper and by K0(t) the rigidity of the spring at
time t, where the function K0 ∈ C1(R) is supposed to be nondecreasing and to satisfy the
“initial” condition

(A.1) lim
t→−∞

K0(t) = β > 0.
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fig. 2 Mechanical scheme of an aging standard viscoelastic solid

Remark A.1. In light of our previous discussion, the most interesting case from a physical
point of view is when

(A.2) lim
t→∞

K0(t) = ∞,

translating the fact that the spring in the Maxwell element becomes completely rigid in
the longtime, so that the Kelvin-Voigt viscoelastic model is recovered.

II. The constitutive equation. A constitutive equation is a relation between the uni-
axial strain ǫ = ǫ(x, t) : Ω × R → R

3 and the tensile stress σ = σ(x, t) : Ω × R → R
3

at each point (x, t). As usual, in a rheological framework these fields are assumed to be
uniform in Ω, hence their dependence on x will be omitted. With reference to fig. 2, it is
convenient to denote by ǫ0(t) and ǫ1(t) the strains at time t of the Maxwell spring and of
the damper, respectively. Since the true (logarithmic) strain is additive, we get

(A.3) ǫ(t) = ǫ0(t) + ǫ1(t).

Besides, let σS(t) be the stress of the lone spring, and σM (t) the stress of the Maxwell
component. Due to the fact that the lone spring and the Maxwell element are in parallel,
we have the relation

(A.4) σ(t) = σS(t) + σM(t).

Recalling that the material is homogeneous, we now write the constitutive equations for
each of the rheological elements. For the lone spring, the Hooke law reads

(A.5) σS(t) = Kǫ(t).

Concerning the Maxwell element, as the Hookean spring and the Newtonian damper are
in series, they are subject to the same stress, namely,

(A.6) σM (t) = K0(t)ǫ0(t) = γǫ̇1(t),

where the dot stands for derivative with respect to time. Substituting (A.6) into (A.3),
we draw the differential identity

γǫ̇1(t) + K0(t)ǫ1(t) = K0(t)ǫ(t),

which, integrated on [r, t], gives

ǫ1(t) = ǫ1(r)e
− 1

γ

∫ t−r
0 K0(t−y)dy +

1

γ

∫ t−r

0

e−
1
γ

∫ s
0 K0(t−y)dy

K0(t− s)ǫ(t− s)ds.

On account of (A.1), for every fixed t ∈ R and p ≥ 0,

(A.7) 0 ≤ e−
1
γ

∫ p
0
K0(t−y)dy ≤ e−

βp
γ .
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Thus, under the reasonable assumption that ǫ1 is uniformly bounded in the past, letting
r → −∞ we have

ǫ1(r)e
− 1

γ

∫ t−r
0 K0(t−y)dy → 0,

and we conclude that

ǫ1(t) =
1

γ

∫ ∞

0

e−
1
γ

∫ s
0
K0(t−y)dy

K0(t− s)ǫ(t− s)ds.

On the other hand, making use of (A.3)-(A.6), we can write ǫ1 in terms of ǫ and σ as

ǫ1(t) =

[

1 +
K

K0(t)

]

ǫ(t)−
σ(t)

K0(t)
.

Collecting the two equalities above, we end up with

(A.8) σ(t) = (K0(t) + K)ǫ(t)−
1

γ
K0(t)

∫ ∞

0

e−
1
γ

∫ s
0
K0(t−y)dy

K0(t− s)ǫ(t− s)ds.

At this point, an integration by parts together with a further use of (A.7), assuming ǫ
uniformly bounded in the past, lead to the integral-type constitutive equation

(A.9) σ(t) = Kǫ(t) + K0(t)

∫ ∞

0

e−
1
γ

∫ s
0
K0(t−y)dy ǫ̇(t− s)ds.

III. Mechanical evolution of the body. The final goal is to determine the kinematic
equation of the viscoelastic body. Denoting by u : Ω×R → R the axial displacement field
relative to the reference configuration Ω, the balance of linear momentum in Lagrangian
coordinates reads

̺∂ttu = ∇ · σ + ̺F,

where ̺ is the reference density of the body and F is an external force per unit mass. Hence,
from the explicit form (A.9) of σ, and recalling that ǫ is related to the displacement as
ǫ = ∇u, we obtain

(A.10) ∂ttu− k∞∆u−

∫ ∞

0

kt(s)∆∂tu(t− s)ds = F,

where we set

k∞ =
K

̺

and

kt(s) =
1

̺
K0(t)e

− 1
γ

∫ s
0 K0(t−y)dy .

Equivalently, using (A.8) in place of (A.9),

∂ttu− ht(0)∆u−

∫ ∞

0

h′t(s)∆u(t− s)ds = F,

with

ht(s) = kt(s) + k∞.

The original equation (1.5) is then recovered when F is a displacement-dependent external
force of the form F = g − f(u).
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Remark A.2. Observe that kt(·) is convex. Indeed, for every fixed t ∈ R,

k′′t (s) =
K0(t)

̺γ

[

K̇0(t− s) +
1

γ
[K0(t− s)]2

]

e−
1
γ

∫ s
0 K0(t−y)dy ≥ 0,

where we are exploiting the fact that K0 is nondecreasing. Besides, owing to (A.7),
∫ ∞

0

kt(s)ds ≤
1

̺
K0(t)

∫ ∞

0

e−
βs
γ ds =

γ

̺β
K0(t),

proving that kt(·) is summable.

Remark A.3. In the particular case when K0(t) = β for every t ∈ R, we recover the
classical time-independent kernel

k(s) =
β

̺
e−

βs
γ

widely used in the modeling of (non-aging) standard viscoelastic solids. See e.g. [3, 17, 28].

IV. Verifying the assumptions on the memory kernel. We now show that the
time-dependent memory kernel µt(·) = −k′t(·) = −h′t(·) given by

µt(s) =
1

̺γ
K0(t)K0(t− s)e−

1
γ

∫ s
0 K0(t−y)dy

complies with assumptions (M1)-(M4) of Section 2.

• Assumption (M1) is fulfilled, for kt(·) is convex and summable (hence vanishing at
infinity). In particular,

κ(t) =

∫ ∞

0

µt(s)ds =
K0(t)

̺
.

• Assumption (M2) is fulfilled with

Kτ (t) =
1

β

[K0(t)]
2

K0(τ)
.

Indeed, let t > τ . Since K0 is nondecreasing and (A.1) holds,

µt(s) ≤
1

̺γ
K0(t)K0(t− s)e−

1
γ

∫ s
0 K0(τ−y)dy =

K0(t)K0(t− s)

K0(τ)K0(τ − s)
µτ (s) ≤ Kτ (t)µτ (s).

• Assumption (M3) is obviously true as K0 ∈ C1(R). In particular,

µ̇t(s) =
1

̺γ

[

K̇0(t)K0(t− s) + K0(t)K̇0(t− s)

−
1

γ
[K0(t)]

2K0(t− s) +
1

γ
K0(t)[K0(t− s)]2

]

e−
1
γ

∫ s
0 K0(t−y)dy .

• Assumption (M4) holds with

M(t) =
K̇0(t)

K0(t)
.
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Indeed,

µ̇t(s) + µ′
t(s) =

1

̺γ

[

K̇0(t)−
1

γ
[K0(t)]

2

]

K0(t− s)e−
1
γ

∫ s
0 K0(t−y)dy

≤
1

̺γ
K̇0(t)K0(t− s)e−

1
γ

∫ s
0 K0(t−y)dy

=
K̇0(t)

K0(t)
µt(s).

V. Recovering Kelvin-Voigt. The aim of this final subsection is to render Remark A.1
more rigorous. Namely, we prove that within (A.1)-(A.2) the distributional convergence

kt →
γ

̺
δ0

generically occurs as t→ ∞, so that the equation with memory (A.10) collapses into the
Kelvin-Voigt viscoelastic model

∂ttu− k∞∆u−
γ

̺
∆∂tu = F.

More precisely, this will happen under the additional very mild assumption

(A.11) lim
t→∞

K̇0(t)

[K0(t)]2
= 0.

This is always the case, for instance, when K0 is eventually concave down as t→ ∞. Since
the function kt(·) is nonnegative for every t, our claim follows by showing that, for every
fixed ν ≥ 0,

lim
t→∞

∫ ∞

ν

kt(s)ds =

{

γ/̺ if ν = 0,

0 if ν > 0.

To this end, introducing the antiderivative

H(t) =

∫ t

0

K0(y)dy,

let us write

kt(s) =
1

̺
K0(t)e

− 1
γ
H(t)e

1
γ
H(t−s)

and denote, for t ≥ ν,

I1(t) =

∫ ∞

t

kt(s)ds and I2(t) =

∫ t

ν

kt(s)ds.

• We first establish the convergence I1(t) → 0. Indeed, for s ≥ t, we infer from (A.1) that

H(t− s) ≤ β(t− s).

Accordingly,
∫ ∞

t

e
1
γ
H(t−s)ds ≤

γ

β
,

which readily gives

I1(t) ≤
γ

̺β
K0(t)e

− 1
γ
H(t).
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In order to reach the desired conclusion, we note that (A.11) implies that the nonnegative
function

Q(t) = K0(t)e
− 1

γ
H(t)

is eventually decreasing, hence bounded at infinity. Therefore, de l’Hôpital’s rule and a
further exploitation of (A.11) give

lim
t→∞

Q(t) = γ lim
t→∞

K̇0(t)

K0(t)e
1
γ
H(t)

= γ lim
t→∞

K̇0(t)

[K0(t)]2
Q(t) = 0.

• As far as I2(t) is concerned, we write

I2(t) =
1

̺
Q(t)

∫ t−ν

0

e
1
γ
H(y)dy.

Then, since we showed that Q(t) → 0, applying de l’Hôpital’s rule and exploiting (A.11)
we get

lim
t→∞

I2(t) =
1

̺
lim
t→∞

∫ t−ν

0
e

1
γ
H(y)dy

1
Q(t)

=
1

̺
lim
t→∞

e−
1
γ
[H(t)−H(t−ν)]

1
γ
− K̇0(t)

[K0(t)]2

=
γ

̺
lim
t→∞

e−
1
γ
[H(t)−H(t−ν)].

The latter limit clearly equals 1 when ν = 0, whereas when ν > 0

e−
1
γ
[H(t)−H(t−ν)] → 0.

Indeed, recalling (A.2) and the fact that K0 is nondecreasing,

H(t)− H(t− ν) =

∫ t

t−ν

K0(y)dy ≥ νK0(t− ν) → ∞.

The claim is proven.

Remark A.4. We point out that the function kt(·) has an independent interest. Indeed,
for ̺ = γ, it provides an approximation (from the right) of the Dirac delta function, which
does not seem to be known in the literature.
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Università di Brescia - DICATAM

Via Valotti 9, 25133 Brescia, Italy

E-mail address : giorgi@ing.unibs.it (C. Giorgi)




