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Abstract

Monitoring the compliance of the execution of multi-party business processes
is a complex and challenging task: each actor only has the visibility of the
portion of the process under its direct control, and the physical objects that
belong to a party are often manipulated by other parties. Because of that,
there is no guarantee that the process will be executed — and the objects be
manipulated — as previously agreed by the parties.

The problem is usually addressed through a centralized monitoring entity
that collects information, sent by the involved parties, on when activities are
executed and the artifacts are altered. This paper aims to tackle the problem
in a different and innovative way: it proposes a decentralized solution based
on the switch from control- to artifact-based monitoring, where the physical
objects can monitor their own conditions and the activities in which they
participate.

To do so, the paradigm is exploited by equipping physical objects with
sensing hardware and software, turning them into smart objects. To instruct
these smart objects, an approach to translate classical process models into
a set of artifact-centric process models, rendered in (our extension of the
notation), is proposed.

The paper presents the approach, based on model-based transformation,
demonstrates its soundness and correctness, and introduces a prototype mon-
itoring platform to assess and experiment the proposed solution. A simple
case study in the domain of advanced logistics is used throughout the paper
to exemplify the different parts of the proposal.
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1. Introduction

Modern organizations are more and more required to become open, re-
active, and flexible entities able to satisfy the ever-changing needs of their
customers. This is why they are redesigning their internal structures and
business processes to increase dynamism and be open to cooperate with new
organizations. Many business processes — once internal to single organi-
zations — now cross the boundaries of single organizations and require the
coordination among different, potentially changing actors. This transforma-
tion heavily impacts on how the process is executed. Organization no longer
have full control on the whole process. Instead, they control only the portion
of that process that is assigned to them. At the same time, the physical
objects belonging to an organization can now be manipulated by the other
actors, and the ownership of these objects can change while the process is
performed.

To ensure proper coordination among organizations, the correctness and
compliance of these distributed processes has to be monitored. In particular,
the execution order and the successful execution of the activities composing
the process have to be checked. To automate and keep track of business
processes, organizations deploy . In fact, today’s include a monitoring mod-
ule to oversee the execution of fully automated business processes that can
be confined within a single party. also provide dashboards to inform the
process owner of the current status, bottlenecks, and possible alerts.

Unfortunately, when moving to multi-party processes, the of each or-
ganization can only manage the activities under its control, but it has no
jurisdiction on the activities carried out by the other parties. Consequently,
it can only monitor the process portions carried out by the organization.
This limitation is traditionally addressed by federating the , or by deploy-
ing a centralized one. However, these solutions lack flexibility, as whenever
a new party is introduced, leaves, or the process changes, the underlying
infrastructure must be heavily reconfigured.

When activities are automated, the is in charge of executing them. There-
fore, it exactly knows when such activities start and when they finish, and
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which is their outcome. However, when dealing with non-automated ac-
tivities, a relies on human operators to know about the outcome of such
activities. As these operators could forget to notify the events of interest,
they could make mistakes, or they could even intentionally postpone, fake, or
alter provided inputs, monitoring manual activities can be unreliable. This
has an impact not only to the party in charge of executing these activities,
but also to the other connected parties.

To overcome these issues, this paper proposes a novel approach to au-
tonomously and continuously monitor multi-party business processes in a
distributed way. To this aim, we move the monitoring tasks directly onto the
artifacts, i.e., the physical objects that participate to the process, which are
equipped with sensors and computing devices, thus becoming “smart”.

By doing so, these smart objects can autonomously keep track of all
the activities in which they were involved, regardless of the organization
performing them. Additionally, smart objects can track all the changes in
their states, i.e., their conditions, throughout the execution of the process.
This way, a smart object can autonomously monitor the compliance of the
process it participates to, as well as its own lifecycle, that is, the transitions
from one state to a new one that are expected to occur while the process
is executed. On this basis, the characterizing contributions of the proposed
solution are the following:

• We combine control-flow analysis, as defined using (), and artifact-
centric analysis, as defined using (), our extended version of the ()
notation [? ]. The user starts defining the multi-party process in ,
a widely known process modeling language. Then, for each artifact,
models suited to monitor the process and the lifecycle of the artifact
are semi-automatically derived from the model. The combination of
these two perspectives allows one to predicate on both executions and
involved artifacts. If we say that an execution is compliant if it evolves
through the foreseen control flow, and an artifact is compliant if it
evolves according to its lifecycle, our solution can distinguish among
(i) compliant executions that produce compliant artifacts, (ii) non-
compliant executions that lead to compliant artifacts, and (iii) non
compliant executions that lead to non-compliant artifacts.

• We adopt smart objects (a-la ) to transform artifacts into active entities
that can both enact the models and communicate with the others. The
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former capability means that each artifact (smart object) can: (i) infer
its current state, (ii) know the admissible next states, and (iii) know
the order in which the process’ activities should manage it.

• We propose an innovative architecture for the distributed execution
and monitoring of multi-party processes that embed the characteristics
highlighted above. The proposed architecture is based on the use of
simple boards, such as the Raspberry PI and the Intel Galileo, and
exploits Node.js as implementation language.

All the key features of the proposed solution are exemplified through a
(simplified without being trivial) real example process borrowed from the
domain of advanced logistics. The same process is also used for accessing the
solution.

With respect to our previously published articles, this paper extends the
based process monitoring approach presented in [? ] by proposing a struc-
tured approach to instruct the monitoring platform, and providing an imple-
mentation of the solution. It also extends the to translation presented in [?
] and [? ] by also taking artifacts and their lifecycle into consideration.

The rest of the paper is organized as follows. Sect. ?? discusses the
limitations of current monitoring approaches and presents the main elements
of our solution by means of a concrete case study, then used consistently
throughout the paper. Sect. ?? describes the proposed extensions to the
notation, then exploited in Sect. ??, which presents our approach. Sect. ??
argues about the correctness of the automated transformation of models
into ones, while Sect. ?? introduces the distributed architecture defined for
supporting the presented process compliance monitoring solution. Sect. ??
analyzes the state of the art and Sect. ?? concludes the paper.

2. Motivations

Fig. ?? shows the representation of a real multi-party process, taken from
the logistics domain. It describes the initial phase of a multimodal transport.
At first, the Carrier, the entity responsible for the physical shipment of the
goods, collects an empty shipping container from the warehouse of the , which
is in charge of organizing the entire shipment, and ships it to the Producer
of the goods. In parallel, the Producer prepares the goods and produces the
documentation for the shipment. Once the Carrier reaches the Producer ’s
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site, the Producer loads the goods onto the container, verifies that all the
documents are correct and, if not, updates them. Finally, the Carrier starts
the shipment. Both the and the Producer verify the identity of the Carrier
before granting it access to their sites.

This model is treated as an agreement between the various organizations.
Process portions carried out by each organization (i.e., the ones inside the
pools) are disclosed, and the other organizations agree on how the whole
process is executed. Therefore, no privacy restriction holds on this process
model, which is shared among the participating organizations.
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Figure 1: BPMN diagram of the running example (artifacts that should be monitored are
highlighted).

To know if this process is correctly executed, organizations have to both
monitor their internal activities (i.e., the ones under their control) and verify
that their objects were correctly manipulated by the other organizations.
Since each party can already monitor its own process portions, the focus of
this paper is on monitoring the objects. To this aim, for each object (e.g., the
goods, the container), it is necessary to monitor the activities involving that
object. This way, it is possible to know the exact steps that caused an object
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to be in its current conditions. It is worth noting that, since an object may be
manipulated by organizations other than the owner, monitoring only internal
activities is not sufficient. For example, although it belongs to the , the
container is manipulated by both the Carrier and the Producer. Therefore,
activities belonging to other organizations, as long as they interact with the
objects, should be monitored as well.

Additionally, the conditions of the objects have to be also monitored,
and anomalies have to be promptly notified. For example, in case of drugs,
the producer may want to be sure that the temperature of the goods re-
mains stable during the whole transportation. These objects (i.e., those that
must be monitored) are rendered as artifacts, while their conditions are dis-
cretized into a set of states. For example, a container may be empty, at the
wharehouse, and unhooked, thus having state [empty,warehouse,unhooked].
The states that an artifact can assume at a certain point in time and the tran-
sitions from one state to another one represent the lifecycle of that artifact
(i.e., how it can evolve while the process is executed).

A comprehensive solution must be able to monitor both the execution of
processes and the evolution of their artifacts, and to reason on the mutual
effects since a deviation in the execution may have no impact on the artifacts,
and vice versa.

2.1. Imperative vs. declarative process models

The vast majority of business processes is modeled by means of imperative
languages, like . These languages require the user to model all the possible
execution flows, and consider any other unspecified flow as non-compliant
(with the model). Such models can then render standardized business pro-
cesses properly and guide the to enact the process.

When a deviation in the process’ execution occurs (e.g., an activity that
is not supposed to be executed begins), a detects a failure in the execution
since it does not comply with the model any longer. The does not know
how to continue the execution, and it can only stop it or continue with no
guarantees. This is not an issue when the process is managed by a single .
The autonomously decides when activities should be executed, and as such
it knows when they were started or finished. However, when the process is
executed by multiple parties, each needs explicit notifications to determine
when activities outside its jurisdiction are executed. When a process involves
multiple parties, and their are not configured to exchange information, or
when one party does not have a , this information is not available. Therefore,
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the monitoring either cannot take place or is partial and inaccurate. In
addition, the process may comprise activities carried out by humans, who
are also in charge of informing the about their execution. If they forget, or
do not do it intentionally, the is not be able to know it.

Conformance checking tools try to overcome these limitations by infer-
ring process models from execution traces, where have clearly marked the
beginning and end of each activity. These models are then compared against
the original ones to identify both correct executions and deviations. Most
of these tools work offline and thus can only perform post-mortem analy-
sis, while it would be desirable that organizations were informed as soon as
violations materialize to be able to take countermeasures. In addition, con-
formance checking tools can only know about activities whose execution was
recorded in the traces. Therefore, the problem of identifying when activities
start or end without relying on explicit notifications remains unsolved.

The aforementioned issues do not apply to declarative languages as they
do not impose the complete identification of all the possible execution flows,
but they only require the identification of the conditions that determine when
an activity should be executed. This way, it is possible to detect the execution
of activities regardless of the execution flow, and it is also possible to define
under which conditions an activity will be executed, thus not relying solely
on start and end notifications. However, [? ] points out that declarative
models are usually more complex to define and harder to understand than
imperative ones. This is why most of the existing process models have been
defined using imperative languages, either to ease their documentation or to
enable their execution by means of conventional .

To balance ease of design and effectiveness of monitoring, our approach
includes: (i) an extension of the notation [? ], called , which augments
the original notation with the control flow defined in 1 (see Sect. ??); (ii) a
complete, tool-supported solution for translating a model into an equivalent
specification (see Sect. ??).

2.2. IoT as monitoring means

The role of artifacts in multi-party business process is twofold. On the
one hand, they define how an object, owned by one party, should also be

1We chose because it is the de-facto standard for imperative process modeling. How-
ever, our approach can also be applied to some extent to other imperative process models,
such as or Activity Diagrams.
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managed by other parties. On the other hand, their state can suggest if an
activity has started or finished. For example, an empty container parked at
the loading area (state [empty,loading area,hooked] in Fig. ??) suggests that
the activity in charge of picking up the container (Pick up container) has
terminated, while activity Go to producer is ready to start when container
has the same state as before and truck is in state [producer,still]).

Nowadays, the [? ] provides readily-available solutions for interacting
with distributed objects remotely. In particular, the turns physical objects
into smart objects, equipped with sensors, , and network connectivity inter-
faces. This is why we argue that the can be used to “augment” the artifacts
of interest, and become able to trace and control how they evolve, that is,
their state. The sensing capabilities help collect all the information relevant
to the state of artifacts. The computational capabilities allow one to run the
monitoring solution directly onto the objects, thus removing the bottleneck
of centralized monitoring. Network connectivity capabilities allow objects to
communicate both with each other in a peer-to-peer way and with the infor-
mation systems of involved parties to easily distribute state information.

As result, instead of having a centralized entity in charge of enabling the
communication among the parties needed to monitor the artifacts, we pro-
pose an approach where the monitoring is directly performed on the artifact
themselves, by turning them into smart objects. The proposed approach (see
Sect. ??) shows how the models that result from transforming the original
one are assigned to the smart objects. This requires that each smart object
be equipped with an engine (see Sect. ??) able to process the assigned model.
The engine is then able to monitor the execution of the process, as well as
the lifecycle of the artifact.

3. E-GSM

We selected the notation [? ] as starting point for our solution since it
natively provides constructs — Guards and Milestones — to identify when
a process portion, called Stage, should start or end, respectively. Guards
and Milestones are rules that can predicate on control flow dependencies,
external events, or data. Therefore, can use both the information that is
generated from inside the engine that runs the model (e.g., execution state)
and the one coming from the outside (e.g., sensor data) to infer when Stages
are executed. Stages represent the units of work that are carried out during
the execution of a process. Stages can be nested and, if a Stage has no
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Figure 2: E-GSM meta-model (bottom left), graphical representation (top left) and life-
cycle of a Stage (right).

nested ones, it is atomic and represents a single task. As soon as one of the
associated Guards is satisfied, a Stage is declared opened, that is, it starts
its execution. When one of its Milestones is met, the Stage is declared
closed, that is, its execution ends.

However, lacks constructs to define the expected execution flow, which is
required to model the execution order among activities (i.e., Stages) and thus
to detect compliance violations. Also, there is no way to detect if something
goes wrong while executing a Stage. Our extension, called [? ] aims to
cover these limitations. Fig. ?? shows a graphical representation of the main
elements proposed by that are relevant for the purposes of this paper2.

While only uses Guards to decorate a Stage, distinguishes between
Data Flow Guards and Process Flow Guards. The former borrow their
semantics from Guards. The latter are boolean expressions that predicate
on the activation of Data Flow Guards and Milestones. As such, they
allow one to define control flow dependencies among Stages. Process Flow
Guards are evaluated when one of the Data Flow Guards associated with

2The interested reader can refer to [? ] for a detailed presentation of the proposed
notation.
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the same Stage is triggered, and before the Stage becomes opened, that
is, it starts executing. If the predicate is true, the Stage complies with the
expected execution, otherwise the activation of the Stage does not respect
the execution flow. Note that Process Flow Guards differ from Data
Flow Guards as they do not cause a Stage to become opened, and as such
they do not force any execution flow.

For example, to determine when the carrier starts going to the producer
based on the state of the container and the truck, Stage GoToProducer

is decorated with a Data Flow Guard requiring the truck to have state
[mto,moving] and the container [empty,loading area,hooked]. This way, when
the truck and the container assume these states, GoToProducer is opened.
On the other hand, to indicate that the carrier should normally start going to
the producer after the container has been picked up, GoToProducer is deco-
rated with a Process Flow Guard requiring the achievement of one of the
milestones of stage PickUpContainer. This way, whenever GoToProducer

starts, the execution and completion of PickUpContainer is verified and,
if PickUpContainer was not executed or completed, GoToProducer can be
flagged as incorrectly executed.

also adds Fault Loggers, which are rules that cause the associated
Stages to be declared faulty. In other words, they define when the execution
of Stages should be considered irregular. The satisfaction of a Fault Logger
does not imply the termination of the Stage, as the termination is only
determined by Milestones.

For example, to determine when the producer stops verifying the iden-
tity of the carrier, Stage VerifyIdentity is decorated with a Milestone
requiring the authorization to have state [approved]. On the other hand, to
determine if the verification was unsuccessful, a Fault Logger predicating
on the occurrence of event unauthorized is added to VerifyIdentity.

Finally, each Stage must be augmented with at least one Data Flow
Guard and one Milestone, and may have one or more Process Flow
Guards and Fault Loggers.

The right portion of Fig. ?? sketches the lifecycle of an Stage, that is,
all the possible states that a stage may assume, organized around three main
orthogonal execution perspectives: status, outcome, and compliance:

• The status is driven by Data Flow Guards and Milestones. Ini-
tially, every Stage is unopened. An unopened or closed Stage becomes
opened once one of its Data Flow Guards is triggered (S.DFGi), if
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its parent Stage is opened. An opened Stage becomes closed if either
one of its Milestones is achieved (+S.Mj), or its parent Stage becomes
closed.

• The outcome is driven by Fault Loggers. Initially, every Stage is
regular and becomes faulty when one of its Fault Loggers is triggered
(S.FLl).

• The compliance is driven by Process Flow Guards. Initially, every
Stage is onTime. An onTime Stage becomes outOfOrder when one
of its Data Flow Guards is triggered, but none of its Process Flow
Guards holds (S.DFGi and not(S.PFGk)). Once a Stage S’ is de-
clared outOfOrder, every other onTime Stage S that should precede
S’ (S.Mj or Active(S) ∈ S’.PFGk) is declared skipped. A skipped
Stage becomes outOfOrder once one of its Data Flow Guards is
triggered (S.DFGi).

4. From a BPMN Process to the Monitored Artifacts

The proposed approach starts from a multi-party process modeled in and
guides towards the definition of the models used to oversee the execution
of both the process and its artifacts. More precisely, as shown in Fig. ??,
the starting point is a collaboration diagram [? ], that specifies which
portions of the process are carried out by which organizations, and how
these organizations coordinate with each other. Artifacts are included in
the collaboration diagram and represent resources that are manipulated and
exchanged by the parties. Since the whole process has to be transparently
shared among organizations, the collaboration diagram has to include all
the activities interacting with artifacts.

Besides monitoring their process portions, organizations may be inter-
ested in knowing how an artifact is managed, and if its state evolves as
expected. We call these artifacts monitored artifacts (mArtifacts hereafter).
For each mArtifact, our solution requires that: (i) the mArtifact-oriented
view of the process (i.e., the portion of the process relevant for that arti-
fact) be extracted and, based on that process view, the models representing
(ii) the process model (i.e., the activities and their relationships) and (iii) )
the lifecycle of the mArtifact (i.e., all the admissible states and transitions)
be generated. To monitor the mArtifact, smart objects related to it embed
an engine fed with the two processes derived from the initial process. This
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way, the mArtifact can autonomously monitor the correct execution of the
process and the evolution of its lifecycle.

The transformations performed in these steps are described in Sect. ??,
Sect. ??, and Sect. ?? respectively. Since steps (ii) and (iii) do not require
human intervention, a dedicated tool3 is in charge of them. Finally, Sect. ??
gives details on the characteristics of the engine running on the smart object.

4.1. Extraction of the mArtifact-oriented process view

This step identifies the minimum set of information needed for monitoring
a mArtifact, thus it excludes all the activities that do not affect or are not
affected by the mArtifact. We start from a collaboration diagram and the
following assumptions:

• Each artifact must be modeled in the process using data objects. The
different states that the artifact may assume when the process is exe-
cuted are expressed with the data state property of data objects.

• Each activity must have at least one input (output) data object. The
activity is supposed to start (finish) only when all its input (output)
data objects exist and are in the specified state. If an activity has two

3The translator is publicly available at https://bitbucket.org/polimiisgroup/

bpmn2egsm.
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input (output) data objects that refer to the same artifact in different
states, the artifact must assume one of these states.

• Data associations must not contradict the semantics of the control flow,
as they are used to identify when activities start or end. For example,
two activities cannot share the same set of data objects in the same
data state as input if they belong to a sequence. They would always be
detected to be executed at the same time, which would contradict the
control flow. In contrast, if they were executed in parallel, they could
share the same inputs.

• In case of parallel or inclusive branches, output data objects that refer
to the same artifact must only be associated with activities that belong
to the same branch. Otherwise, it would not be possible, based only
on the process model, to determine which change in the state of the
artifact occurs first. Therefore, the behavior of the artifact would be
non-deterministic.

Given these hypotheses and a mArtifact, thank to Algorithm ??, ??
and ??, we derive a process model where the activities are organized ac-
cording to the mArtifact’s standpoint. This new representation will be the
one monitored by the mArtifact. To derive this process, only the elements
directly related to the mArtifactare considered. So, we:

• Keep only those activities that act as inputs or outputs to the mArti-
fact.

• Maintain the events that refer to the mArtifact, as well as all the
events responsible for the collaboration among stakeholders (i.e., mes-
sage events that have an inbound or outbound message flow).

• Keep those data objects that do not represent the mArtifact, but that
are inputs to (outputs from) the activities that refer to the mArtifact.

In addition, to ensure that the model representing the mArtifactview is
well-formed and, except for the absence of activities and events not related
to the mArtifact, dependencies among activities are analogous to the ones in
the original collaboration diagram, we:
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• Replace the boundary blocking (non-blocking) events attached to dis-
carded activities with exclusive (inclusive) split gateways with no branch
condition.

• Remove pools, as well as the control flow that directly connects a mes-
sage throw event to a message catch event, and replace message flows
with control flows.

• Delete message throw (catch) events or replace them with parallel split
(merge) gateways if they have multiple outbound (inbound) flows.

• Add a generic start (end) event if the resulting model has no start
(end) event, and connect it to elements with only outbound (inbound)
control flows.

The result of this transformation is a process model for each mArtifactof
interest that complies with a process diagram. Note that this new model may
not be well-structured. Remarkably, when message exchanges in the original
collaboration diagram are not synchronous (i.e., after sending a message the
process executes an activity instead of waiting for a response), the result-
ing process is always unstructured. In such a case, manual intervention is
required to make it well-structured.
Example. Fig. ?? shows the process model obtained by applying these steps
onto the process presented in Sect. ??, where the shipping container and
the truck are the mArtifacts of interest. For the container, activities Go

to MTO site, Prepare goods, Produce documents, and Verify identity

have been removed since they do not use the container. Similarly, all timer
and signal events have been removed. Data objects Truck[carrier,moving]
and Goods[unpacked,undamaged] have also been removed, since none of the
remaining activities uses them. Likewise, for the truck, activities Prepare

goods, Produce documents, Load goods, Verify identity, Check documents,
and Update documents, all timer and signal events, and data objects Goods[unpacked,undamaged],
Goods[packed,undamaged], ShipmentDocs[ready], ShipmentDocs[complete],
and ShipmentDocs[incomplete] have been removed.

4.2. Generation of the E-GSM process model

Due to the limitations of using imperative languages for monitoring pur-
poses, as discussed in Sect. ??, the derived mArtifact-oriented process view
cannot be directly used to instrument the monitoring platform. However,
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Algorithm 1 BPMN collaboration diagram to process view (simplified)
translation

1: targetBPMNModel = copy(sourceBPMNModel);
2: discardedElements = new int[];
3: for all i=1: targetBPMNModel.elements.count do
4: if targetBPMNModel.elements.get(i).type == ’AtomicActivity’ or targetBPMNModel.elements.get(i).type ==

’Event’ then
5: keep = false;
6: for all j=1: targetBPMNModel.elements.get(i).inputDataObjects.count do . keep element if it references

artifact
7: if targetBPMNModel.elements.get(i).inputDataObjects.get(j).artifact == artifact then
8: keep = true;
9: end if

10: end for
11: for all j=1: targetBPMNModel.elements.get(i).outputDataObjects.count do . keep element if it references

artifact
12: if targetBPMNModel.elements.get(i).outputDataObjects.get(j).artifact == artifact then
13: keep = true;
14: end if
15: end for
16: if targetBPMNModel.elements.get(i).type == ’StartEvent’ or targetBPMNModel.elements.get(i).type ==

’EndEvent’ or targetBPMNModel.elements.get(i).type == ’IntermediateEvent’ then . element is an event
responsible for the collaboration

17: if targetBPMNModel.elements.get(i).messageTo != null then . replace message throw event with
parallel split gateway

18: target = targetBPMNModel.elements.get(i).messageTo;
19: replace(targetBPMNModel.elements.get(i),’ParallelSplitGateway’);
20: targetBPMNModel.elements.get(i).successors.add(target);
21: target.predecessors.add(targetBPMNModel.elements.get(i));
22: keep = true;
23: else
24: if targetBPMNModel.elements.get(i).messageFrom != null then . replace message catch event with

parallel merge gateway
25: source = targetBPMNModel.elements.get(i).messageFrom;
26: replace(targetBPMNModel.elements.get(i),’ParallelMergeGateway’);
27: targetBPMNModel.elements.get(i).predecessors.add(source);
28: target.successors.add(targetBPMNModel.elements.get(i));
29: keep = true;
30: end if
31: end if
32: end if
33: if keep==false then . discard element
34: discardElement(targetBPMNModel,i); . discard irrelevant elements
35: end if
36: end if
37: end for
38: removePools(targetBPMNModel); . remove pools from process model
39: removeOrphans(targetBPMNModel); . remove discarded elements (i.e., not connected)
40: makeWellformed(targetBPMNModel); . make target model well-formed (if not already so)

this view can be translated into , which supports a higher level of flexibility
than . In particular, control flow dependencies, which are prescriptive in
, are relaxed in the model and used only to assess compliance. Similarly,
data objects, which in are only used for documentation, are used to define
the conditions that determine the activation or termination of associated ac-
tivities. It would then be impossible to use to achieve the same level of
flexibility as the model without adopting a new semantics for the notation,
and thus a new engine.

To perform such a translation, the following rules, which are automated
in Algorithm ??, are applied:

• We create an Stage S for each activity A in the model.
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Algorithm 2 Helper function to discard elements not relevant to the process
view

1: function discardElement(BPMNModel,i)
2: if BPMNModel.elements.get(i).boundaryEvents.count == 0 then . element has no boundary event, directly

connect predecessors to successors
3: for all j=1: BPMNModel.elements.get(i).predecessors.count do
4: BPMNModel.elements.get(i).predecessors.get(j).successors.remove(BPMNModel.elements.get(i));
5: BPMNModel.elements.get(i).predecessors.get(j).successors.add(BPMNModel.elements.get(i).successors);
6: end for
7: for all j=1: BPMNModel.elements.get(i).successors.count do
8: BPMNModel.elements.get(i).successors.get(j).predecessors.remove(BPMNModel.elements.get(i));
9: BPMNModel.elements.get(i).successors.get(j).predecessors.add(BPMNModel.elements.get(i).predecessors);

10: end for
11: else . turn boundary events into gateways
12: exclusiveGW = add(BPMNModel,’ExclusiveSplitGateway’); . create exclusive gateway
13: inclusiveGW = add(BPMNModel,’InclusiveSplitGateway’); . create inclusive gateway
14: for all j=1: BPMNModel.elements.get(i).boundaryEvents.count do
15: if BPMNModel.elements.get(i).boundaryEvents.get(j).interrupting == true then . connect successors

to interrupting events to exclusive split gateway
16: exclusiveGW.successors.add(BPMNModel.elements.get(i).boundaryEvents.get(j).successors);
17: for all k=1: BPMNModel.elements.get(i).boundaryEvents.get(j).successors.count do
18: BPMNModel.elements.get(i).boundaryEvents.get(j).successors.get(k).predecessors.remove( BPM-

NModel.elements.get(i).boundaryEvents.get(j));
19: BPMNModel.elements.get(i).boundaryEvents.get(j).successors.get(k).predecessors.add(exclusiveGW);
20: end for
21: else . connect successors to non interrupting events to inclusive split gateway
22: inclusiveGW.successors.add(BPMNModel.elements.get(i).boundaryEvents.get(j).successors);
23: inclusiveGW.successors.add(BPMNModel.elements.get(i).boundaryEvents.get(j).successors);
24: for all k=1: BPMNModel.elements.get(i).boundaryEvents.get(j).successors.count do
25: BPMNModel.elements.get(i).boundaryEvents.get(j).successors.get(k).predecessors.remove( BPM-

NModel.elements.get(i).boundaryEvents.get(j));
26: BPMNModel.elements.get(i).boundaryEvents.get(j).successors.get(k).predecessors.add(inclusiveGW);
27: end for
28: end if
29: end for
30: if exclusiveGW.successors.count > 0 then . activity has one or more interrupting boundary events
31: exclusiveGW.successors.add(BPMNModel.elements.get(i).successors); . connect successors to activity to

exclusive gateway
32: for all j=1: BPMNModel.elements.get(i).successors.count do
33: BPMNModel.elements.get(i).successors.get(j).predecessors.remove(BPMNModel.elements.get(i));
34: BPMNModel.elements.get(i).successors.get(j).predecessors.add(exclusiveGW);
35: end for
36: if inclusiveGW.successors.count > 0 then . activity has also one or more non interrupting boundary

events
37: exclusiveGW.predecessors.add(inclusiveGW); . connect inclusive gateway to exclusive gateway
38: inclusiveGW.successors.add(exclusiveGW);
39: inclusiveGW.predecessors.add(BPMNModel.elements.get(i).predecessors); . connect predecessors to

activity to inclusive gateway
40: for all j=1: BPMNModel.elements.get(i).predecessors.count do
41: BPMNModel.elements.get(i).predecessors.get(j).successors.remove(BPMNModel.elements.get(i));
42: BPMNModel.elements.get(i).predecessors.get(j).successors.add(inclusiveGW);
43: end for
44: else . activity has no non interrupting boundary events
45: exclusiveGW.predecessors.add(BPMNModel.elements.get(i).predecessors); . connect predecessors to

activity to exclusive gateway
46: for all j=1: BPMNModel.elements.get(i).predecessors.count do
47: BPMNModel.elements.get(i).predecessors.get(j).successors.remove(BPMNModel.elements.get(i));
48: BPMNModel.elements.get(i).predecessors.get(j).successors.add(exclusiveGW);
49: end for
50: end if
51: else . activity has only non interrupting boundary events
52: inclusiveGW.successors.add(BPMNModel.elements.get(i).successors); . connect successors to activity to

inclusive gateway
53: for all j=1: BPMNModel.elements.get(i).successors.count do
54: BPMNModel.elements.get(i).successors.get(j).predecessors.remove(BPMNModel.elements.get(i));
55: BPMNModel.elements.get(i).successors.get(j).predecessors.add(inclusiveGW);
56: end for
57: inclusiveGW.predecessors.add(BPMNModel.elements.get(i).predecessors); . connect predecessors to

activity to inclusive gateway
58: for all j=1: BPMNModel.elements.get(i).predecessors.count do
59: BPMNModel.elements.get(i).predecessors.get(j).successors.remove(BPMNModel.elements.get(i));
60: BPMNModel.elements.get(i).predecessors.get(j).successors.add(inclusiveGW);
61: end for
62: end if
63: end if
64: BPMNModel.elements.get(i).successors = null; . disconnect element to predecessors
65: BPMNModel.elements.get(i).predecessors = null; . disconnect element to successors
66: end function
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Algorithm 3 Helper function to make the process model well-formed
1: function makeWellformed(BPMNModel)
2: startEvents = new element[];
3: endEvents = new element[];
4: for all i=1: BPMNModel.elements.count do
5: if BPMNModel.elements.get(i).type = ’StartEvent’ then . find start events already present in the model
6: startEvents.add(BPMNModel.elements.get(i));
7: else
8: if BPMNModel.elements.get(i).type = ’EndEvent’ then . find end events already present in the model
9: endEvents.add(BPMNModel.elements.get(i));

10: end if
11: end if
12: end for
13: if startEvents.count == 0 then . if no start event is present, introduce a new one
14: startEvent = add(BPMNModel,’StartEvent’)
15: startEvents.add(startEvent);
16: end if
17: for all i=0: startEvents.count do . connect to start events all the elements that have no predecessor
18: for all j=1: BPMNModel.elements.count do
19: if BPMNModel.elements.get(j).type != ’StartEvent’ and BPMNModel.elements.get(j).predecessors.count

== 0 then
20: BPMNModel.elements.get(j).predecessors.add(startEvents.get(i));
21: startEvents.get(i).successors.add(BPMNModel.elements.get(j));
22: end if
23: end for
24: end for
25: if endEvents.count == 0 then . if no end event is present, introduce a new one
26: endEvent = add(BPMNModel,’EndEvent’)
27: endEvents.add(endEvent);
28: end if
29: for all i=0: endEvents.count do . connect to end events all the elements that have no successor
30: for all j=1: BPMNModel.elements.count do
31: if BPMNModel.elements.get(j).type != ’EndEvent’ and BPMNModel.elements.get(j).successors.count ==

0 then
32: BPMNModel.elements.get(j).successors.add(endEvents.get(i));
33: endEvents.get(i).predecessors.add(BPMNModel.elements.get(j));
34: end if
35: end for
36: end for
37: end function

• The rule that defines the Data Flow Guard (Milestone) of S is
triggered when a change in the state of one of the artifacts Ar associated
with each input (output) data object of A occurs, and Ar enters the
current (leaves the previous) state. It will only be fired if the state
assumed by all artifacts Ar is the one indicated by the input (output)
data objects of A.

• If the activity has a boundary event, we add a Fault Logger triggered
by the event, attach it to the Stage, and, if the boundary event is
interrupting, we define an additional Milestone triggered by the event.

• We create an Stage S ′ for each start, end, or intermediate event. The
rules that correspond to the Data Flow Guard and Milestone of S ′

will be fired as soon as the event occurs.

• Finally, if the original process model is organized in nested blocks, a new
Stage is created and wraps the Stages derived from the inner blocks.
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Figure 4: BPMN process model from the viewpoint of the container (top) and the truck
(bottom).

Control flow and exceptional flow patterns are managed accordingly [?
].

Example. Fig. ?? shows the process model derived from the mArtifact-
oriented process view of the container (see top of Fig. ??). StartShipment.DFG1
is triggered whenever artifacts Truck or Container, respectively, enter a
new state (which is represented by trucke or containere). Furthermore,
StartShipment.DFG1 requires that Truck and Container are in states [pro-
ducer,moving] and [full,shipping,hooked], respectively. StartShipment.M1,
on the other hand, is triggered whenever the truck leaves the current state
(truckl), and requires that Truck be in state [highway,moving].
This process model allows one to detect control flow violations. For exam-
ple, if we assumed that once the goods are loaded in the container, the
carrier leaved the producer’s site without waiting for the shipment doc-
uments to be checked, StartShipment would become outOfOrder (being
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Algorithm 4 BPMN to E-GSM (simplified) translation
1: processTree = decomposeProcess(sourceBPMNModel); . decompose source BPMN process model into nested

blocks, return root block of process tree
2: targetEGSMModel = translate(processTree);
3: function translate(block)
4: stage = new stage();
5: stage.name = block.name;
6: if block.parent is not null then
7: stage.processFlowGuard = generateProcessFlowGuard(block.parent) . generate process flow guard based on

parent block
8: end if
9: if block.type == ’AtomicActivity’ then . block is an atomic activity

10: dataFlowGuard = generateDataFlowGuard(block.inputDataObjects); . generate a data flow guard based
on input data objects

11: stage.dataFlowGuards.add(dataFlowGuard);
12: milestone = generateMilestone(block.outputDataObjects); . generate a milestone based on output data

objects
13: stage.milestones.add(milestone);
14: for all l=1: block.BoundaryEvents.count do . generate a fault logger for each boundary event attached to

the activity
15: faultLogger = generateFaultLogger(block.boundaryEvents.get(l));
16: stage.faultLoggers.add(faultLogger);
17: if block.boundaryEvents.get(l).type = ’interrupting’ then . if the boundary event is interrupting,

generate an additional milestone
18: milestone = generateMilestone(block.boundaryEvents.get(l));
19: stage.milestones.add(milestone);
20: end if
21: end for
22: else
23: if block.type == ’StartEvent’ or block.type == ’EndEvent’ or block.type == ’IntermediateEvent’ then .

block is an event
24: dataFlowGuard = generateDataFlowGuard(block.trigger); . generate a data flow guard based on the

event trigger
25: stage.dataFlowGuards.add(dataFlowGuard);
26: milestone = generateMilestone(block.trigger); . generate a data flow guard based on the event trigger
27: stage.milestones.add(milestone);
28: else . block contains child blocks
29: for all k=1: block.children.count do
30: child = translate(block.children.get(k)); . recursively invoke the function for each child block
31: stage.substages.add(child); . add substages produced from child blocks
32: stage.dataFlowGuards.add(child.dataFlowGuards); . add data flow guard from child block
33: end formilestone = generateMilestone(block); . generate milestone based on block type
34: stage.milestones.add(milestone);
35: end if
36: end if
37: end function
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StartShipment.DFG1 triggered before StartShipment.PFG1 becomes active)
and Loop would become skipped (being Loop.M1 required in StartShipment.PFG1).
Since these Stages are not onTime, a compliance violation is detected and,
given the model, we can understand that StartShipment was executed before
Loop.

4.3. Generation of the E-GSM lifecycle model

The process model derived in Sect. ?? does not consider the lifecycle of
the mArtifact, and this limits the possibility of monitoring its compliance.
For example, still referring to the process presented in Sect. ??, let assume
that, while reaching the producer’s site, instead of having an empty con-
tainer, the container is used for an unauthorized shipment. In this case, no
compliance violation is detected, since all activities are executed in the right
order, even if the container was not handled as expected: instead of being
filled once, it has been filled somewhere, then emptied before reaching the
producer, and finally filled again at the producer’s premises.

To identify when the mArtifact is not handled as defined in the model, its
lifecycle is taken into account. Starting from the mArtifact-oriented process
model (Sect. ??), we produce a finite state machine that considers all the
possible states that the mArtifact can assume, along with admissible transi-
tions, (see left side of Fig. ??). Such a state machine is obtained by adopting
the approach in [? ], without labeling transitions as we are not interested in
identifying the activities responsible for causing them to fire.

For the container, there is a single initial state, [empty,warehouse,unhooked].
This means that the process should start with an empty container that resides
in the warehouse and is not hooked to any means of transport. The two final
states, [empty,shipping,hooked] and [full,shipping,hooked], correspond to the
process that terminates with a container that is either empty or full, outside
the site, and hooked to a means of transport. Transitions among states allow
the container to evolve linearly, as the container is supposed not to enter a
state it had left previously. Similarly, for the truck, there is only a single
initial state, [carrier,moving], indicating that the process should start when
the truck is at the carrier’s site, and is moving. The two final states, [pro-
ducer,still] and [inland terminal,moving], are expected to be reached when
the process ends with the truck either still at the producer’s site, or moving
to an inland terminal. The evolution of the truck has a cyclic portion, since
it is possible to move from state [mto,still] to [mto,moving] and vice versa.
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truck[m,m]

D

DFG2: on (container_e 
and truck_e) if 

container[e,w,u] and 
truck[m,m]

D

DFG2: on (container_e 
and truck_e) if 

container[e,w,u] and 
truck[m,m]

D

DFG5: on (container_e 
or truck_e) if 

container[e,s,h] and 
truck[p,s]

D

DFG5: on (container_e 
or truck_e) if 

container[e,s,h] and 
truck[p,s]

D
DFG1: if true and not 

Seq1.M1 D
DFG1: if true and not 

Seq1.M1

D

DFG6: on 
(authorization_e or 

goods_e or container_e) 
if authorization[a] and 

goods[p,u] and 
container[e,s,g]

D

DFG6: on 
(authorization_e or 

goods_e or container_e) 
if authorization[a] and 

goods[p,u] and 
container[e,s,g]

D

DFG7: on (container_e 
or docs_e) if 

container[f,s,h] and 
docs[r]

D

DFG7: on (container_e 
or docs_e) if 

container[f,s,h] and 
docs[r]

D

DFG8: on (container_e 
or docs_e if 

container[f,s,h] and 
docs[i]

D

DFG8: on (container_e 
or docs_e if 

container[f,s,h] and 
docs[i]

D

DFG9: on (container_e 
or truck_e) if 

container[f,s,h] and 
truck[p,m]

D

DFG9: on (container_e 
or truck_e) if 

container[f,s,h] and 
truck[p,m]

M1: if Start.M1 and 
ProvideContainer.M1 
and 
PickUpContaner.M1 
and GoToProducer.M1 
and VerifyId.M1 and 
EExc.M1 and End.M1

M1: if Start.M1 and 
ProvideContainer.M1 
and 
PickUpContaner.M1 
and GoToProducer.M1 
and VerifyId.M1 and 
EExc.M1 and End.M1

Seq2
M1: if GoToWH.M1 and 
LoadGoods.M1 and 
Loop.M1 and 
StartShipment.M1

M1: if GoToWH.M1 and 
LoadGoods.M1 and 
Loop.M1 and 
StartShipment.M1

PPFG1: not VerifyId.Me and not Seq2.M1 
and not Active(PickUpFailure)

PPFG1: not VerifyId.Me and not Seq2.M1 
and not Active(PickUpFailure)

D

DFG1: on (authorization_e or goods_e 
or container_e) if authorization[a] and 

goods[p,u] and container[e,s,g] D

DFG1: on (authorization_e or goods_e 
or container_e) if authorization[a] and 

goods[p,u] and container[e,s,g]

D
DFG2: on (container_e or docs_e) 

if container[f,s,h] and docs[r]
D

DFG2: on (container_e or docs_e) 
if container[f,s,h] and docs[r]

D
DFG3: on (container_e or docs_e if 

container[f,s,h] and docs[i] D
DFG3: on (container_e or docs_e if 

container[f,s,h] and docs[i]

D
DFG4: on (container_e or truck_e) 

if container[f,s,h] and truck[p,m] D
DFG4: on (container_e or truck_e) 

if container[f,s,h] and truck[p,m]

Figure 5: E-GSM process model of the container (top). For the sake of clarity, Stages
inside Seq2 are shown separately (bottom).
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[empty,warehouse,unhooked][empty,warehouse,unhooked]

[empty,loading_area,unhooked][empty,loading_area,unhooked]

[empty,loading_area,hooked][empty,loading_area,hooked]

[empty,shipping,hooked][empty,shipping,hooked]

[full,shipping,hooked][full,shipping,hooked]

EWU
[empty, 

warehouse, 

unhooked]

D
DFG1: on container_l if 

container[e,w,u] D
DFG1: on container_l if 

container[e,w,u]

M1: on 
container_e if not 
container[e,w,u]

M1: on 
container_e if not 
container[e,w,u]

ELU
[empty, 

loading_area, 

unhooked]

D
DFG1: on container_l if 

container[e,l,u] D
DFG1: on container_l if 

container[e,l,u]

M1: on 
container_e if not 
container[e,l,u]

M1: on 
container_e if not 
container[e,l,u]

PPFG1: Active(EWU) PPFG1: Active(EWU)

ELH
[empty, 

loading_area, 

hooked]

D
DFG1: on container_l if 

container[e,l,h] D
DFG1: on container_l if 

container[e,l,h]

M1: on 
container_e if not 
container[e,l,h]

M1: on 
container_e if not 
container[e,l,h]

PPFG1: Active(ELU) PPFG1: Active(ELU)

ESH
[empty, shipping, 

hooked]

D
DFG1: on container_l if 

container[e,s,h] D
DFG1: on container_l if 

container[e,s,h]

M1: on 
container_e if not 
container[e,s,h]

M1: on 
container_e if not 
container[e,s,h]

PPFG1: Active(ELH) PPFG1: Active(ELH)

FSH
[full, shipping, 

hooked]

D
DFG1: on container_l if 

container[f,s,h] D
DFG1: on container_l if 

container[f,s,h]

M1: on 
container_e if not 
container[f,s,h]

M1: on 
container_e if not 
container[f,s,h]

PPFG1: Active(ESH) PPFG1: Active(ESH)

Final
D

DFG1: if Active(ESH) or 
Active(FSH) D

DFG1: if Active(ESH) or 
Active(FSH)

M1: if not 
(Active(ESH) or 
Active(FSH))

M1: if not 
(Active(ESH) or 
Active(FSH))

P
PFG1: not (Active(ELU) or 

Active(ELH) or Active (ESH) or 
Active(FSH) or active(Error))

P
PFG1: not (Active(ELU) or 

Active(ELH) or Active (ESH) or 
Active(FSH) or active(Error))

Error
D

DFG1: on container_l if not 
(container[e,w,u] or container[e,l,u] or 

container[e,l,h] or container[e,s,h] or 
container[f,s,h])

D

DFG1: on container_l if not 
(container[e,w,u] or container[e,l,u] or 

container[e,l,h] or container[e,s,h] or 
container[f,s,h])

M1: on container_e if 
(container[e,w,u] or 
container[e,l,u] or 
container[e,l,h] or 
container[e,s,h] or 
container[f,s,h])

M1: on container_e if 
(container[e,w,u] or 
container[e,l,u] or 
container[e,l,h] or 
container[e,s,h] or 
container[f,s,h])

PPFG1: false PPFG1: false

[carrier,moving][carrier,moving]

[mto,still][mto,still]

[mto,moving][mto,moving]

[producer,still][producer,still]

[producer,moving][producer,moving]

CM
[carrier, 

moving]

D
DFG1: on truck_l if 

truck[c,m] D
DFG1: on truck_l if 

truck[c,m]
M1: on truck_e if 
not truck[c,m]
M1: on truck_e if 
not truck[c,m]

MS
[mto, still]

D
DFG1: on truck_l if 

truck[m,s] D
DFG1: on truck_l if 

truck[m,s]
M1: on truck_e if 
not truck[m,s]
M1: on truck_e if 
not truck[m,s]

PPFG1: Active(CM) or 
Active(MM)

PPFG1: Active(CM) or 
Active(MM)

MM
[mto, moving]

D
DFG1: on truck_l if 

truck[m,m] D
DFG1: on truck_l if 

truck[m,m]
M1: on truck_e if 
not truck[m,m]
M1: on truck_e if 
not truck[m,m]

PPFG1: Active(MS) PPFG1: Active(MS)

PM
[producer, 

moving]

D
DFG1: on truck_l if 

truck[p,m] D
DFG1: on truck_l if 

truck[p,m]
M1: on truck_e if 
not truck[p,m]
M1: on truck_e if 
not truck[p,m]

PPFG1: Active(PS) PPFG1: Active(PS)

IM
[Inland_terminal, 

moving]

D
DFG1: on truck_l if 

truck[i,m] D
DFG1: on truck_l if 

truck[i,m]
M1: on truck_e if 
not truck[i,m]
M1: on truck_e if 
not truck[i,m]

PPFG1: Active(PM) PPFG1: Active(PM)

Final
D

DFG1: if Active(PS) or 
Active(HM) D

DFG1: if Active(PS) or 
Active(HM)

M1: if not 
(Active(PS) or 
Active(HM))

M1: if not 
(Active(PS) or 
Active(HM))

P
PFG1: not (Active(MS) or 

Active(MM) or Active (PS) or 
Active(PM) or Active(IM) or 

active(Error))

P
PFG1: not (Active(MS) or 

Active(MM) or Active (PS) or 
Active(PM) or Active(IM) or 

active(Error))

Error
D

DFG1: on truck_l if not 
(truck[c,m] or 
truck[m,s] or 

truck[m,m] or 
truck[p,s] or truck[p,m] 

or truck[i,m])

D

DFG1: on truck_l if not 
(truck[c,m] or 
truck[m,s] or 

truck[m,m] or 
truck[p,s] or truck[p,m] 

or truck[i,m])

M1: on truck_e if 
(truck[c,m] or 
truck[m,s] or 
truck[m,m] or 
truck[p,s] or 
truck[p,m] or 
truck[i,m])

M1: on truck_e if 
(truck[c,m] or 
truck[m,s] or 
truck[m,m] or 
truck[p,s] or 
truck[p,m] or 
truck[i,m])

PPFG1: false PPFG1: false

[inland_terminal,moving][inland_terminal,moving]

PS
[producer, 

still]

D
DFG1: on truck_l if 

truck[p,s] D
DFG1: on truck_l if 

truck[p,s]
M1: on truck_e if 
not truck[p,s]
M1: on truck_e if 
not truck[p,s]

PPFG1: Active(MM) PPFG1: Active(MM)

Figure 6: Finite State Machine (left) and E-GSM model (right) representing the lifecycle
of the container (top) and the truck (bottom).
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To monitor the lifecycle of the mArtifact, is again adopted to model the
admissible state transitions. To this aim, Algorithm ?? translates the finite
state machine to as follows:

• Each state is translated into a Stage S whose Data Flow Guard
(Milestone) is triggered when the mArtifact assumes the state repre-
sented (a state different from the one represented) by that Stage.

• The Process Flow Guard of each Stage S requires that at least one
of the Stages that represent the states that directly precede the one
represented by S be opened (i.e., active). If S represents the initial
state, its Process Flow Guard requires that no Stage be active.

• A Stage named Error is introduced to identify when the artifact is in
a state not included in the state machine. The condition on its Data
Flow Guard (Milestone) is triggered when the mArtifact assumes a
state not defined in the finite state machine. The condition on its Pro-
cess Flow Guard is never satisfied (thus always raising a compliance
violation whenever the mArtifact assumes this state).

• A Stage named Final is introduced to identify which Stages represent
a final state. The condition on its Data Flow Guard (Milestone)
requires that at least one (none) of the Stages that are translated from
final states be active. This way, it is possible to know when the lifecycle
of the mArtifact is concluded: when the mArtifact reaches a final state,
the corresponding Stage becomes active, together with Final.

Data Flow Guards and Milestones allow us to keep track of the cur-
rent state of the mArtifact: when it is in a specific state, the corresponding
Stage are opened and the other ones, but Final, closed. When the mArti-
fact changes state, the Data Flow Guard attached to the Stage that rep-
resents the new state is triggered, and the corresponding Stage is opened.
At the same time, the Milestone attached to the Stage that represents the
previous state is achieved, and the corresponding Stage closed. When an ad-
missible state change occurs, both the Data Flow Guard and the Process
Flow Guard of the Stage that represents the new state are expected to be
triggered. On the other hand, when a non admissible state change occurs,
the condition on the Process Flow Guard is not fulfilled, and therefore
only the Data Flow Guard is triggered.
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Algorithm 5 Finite state machine to E-GSM (simplified) translation
1: fsm = produceFSM(sourceBPMNModel, artifact); . derive artifact’s lifecycle from source BPMN model as finite

state machine
2: targetEGSMModel = new stage();
3: targetEGSMModel.name = artifact.name;
4: for all i=1: fsm.states.count do . generate a stage for each state
5: stage = new stage();
6: stage.name = fsm.states.get(i).name;
7: dataFlowGuard = new dataFlowGuard();
8: dataFlowGuard.condition = ’on ’+artifact.name+’ l if ’+artifact.name+’ [’+fsm.states.get(i).name+’]’; .

trigger data flow guard when the artifact assumes the state
9: stage.dataFlowGuards.add(dataFlowGuard);

10: milestone = new milestone();
11: milestone.condition = ’on ’+artifact.name+’ e if not ’+artifact.name+’ [’+fsm.states.get(i).name+’]’; . trigger

milestone when the artifact assumes a different state
12: state.milestones.add(milestone);
13: processFlowGuard = new processFlowGuard();
14: if fsm.states.get(i).initial == true then
15: nonpredecessors = new string[]; . state is initial
16: for all j=1: fsm.states.count do . find states that are not predecessors
17: if ( thenfsm.states.get(j).successor!=fsm.states.get(i))
18: nonpredecessor = ’Active(’+fsm.states.get(j).name()+’)’;
19: nonpredecessors.add(nonpredecessor);
20: end if
21: end for
22: processFlowGuard.condition = ’not(’+concatStrings(’or’,nonpredecessors)+’)’; . require no non-predecessor

to be active
23: else . state is not initial
24: predecessors = new string[];
25: for all j=1: fsm.states.get(i).predecessors.count do
26: predecessor = ’Active(’+fsm.states.get(i).predecessors.get(j).name()+’)’;
27: predecessors.add(predecessor);
28: end for
29: processFlowGuard.condition = concatStrings(’or’,predecessors); . require at least one predecessor to be

active
30: end if
31: stage.processFlowGuard = processFlowGuard;
32: targetEGSMModel.substages.add(stage); . add state to E-GSM model
33: end for
34: errorStage = new stage();
35: errorStage.name = ’Error’; . generate error stage
36: states = new string[];
37: for all i=1: fsm.states.count do . find all states
38: state = ’+artifact.name+’ [’+fsm.states.get(i).name()+’]’;
39: states.add(state);
40: end for
41: dataFlowGuard = new dataFlowGuard();
42: dataFlowGuard.condition = ’on ’+artifact.name+’ l if not (’ + concatStrings(’or’,states)+’)’; . trigger data flow

guard when artifact assumes a state different from the ones in finite state machine
43: errorStage.dataFlowguards.add(dataFlowGuard);
44: milestone = new milestone();
45: milestone.condition = ’on ’+artifact.name+’ e if ’+concatStrings(’or’,states); . trigger milestone when artifact

assumes a state from the ones in finite state machine
46: errorStage.milestones.add(milestone);
47: processFlowGuard = new processFlowGuard();
48: processFlowGuard.condition = ’false’; . error stage is always non-compliant
49: errorStage.processFlowGuard = processFlowGuard;
50: targetEGSMModel.substages.add(errorStage); . add error stage to E-GSM model
51: finalStage = new stage();
52: finalStage.name = ’Final’; . generate final stage
53: finalStates = new string[];
54: for all i=1: fsm.states.count do . find final states
55: if fsm.states.get(i).final == true then
56: state = ’Active(’+fsm.states.get(i).name()+’)’;
57: finalStates.add(state);
58: end if
59: end for
60: dataFlowGuard = new dataFlowGuard();
61: dataFlowGuard.condition = ’if (’ + concatStrings(’or’,finalStates)+’)’; . trigger data flow guard when artifact

assumes a final state
62: finalStage.dataFlowguards.add(dataFlowGuard);
63: milestone = new milestone();
64: milestone.condition = ’if not (’+concatStrings(’or’,finalStates)+’)’; . trigger milestone when artifact asumes a

non-final state
65: finalStage.milestones.add(milestone);
66: targetEGSMModel.substages.add(finalStage); . add final stage to E-GSM model
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Example. The right portion of Fig. ?? shows the lifecycle model of the
container (top), and of the truck (bottom). For the container, the Data
Flow Guard of Stage Final requires that Stages ESH or FSH be ac-
tive, since these Stages are obtained from states [empty,shipping,hooked]
and [full,shipping,hooked], which are final. For the same reason, its Mile-
stone requires that both be not active. The Process Flow Guard of
Stage ELU requires that Stage EWU be active, since the container is ex-
pected to enter state [empty,loading area,unhooked] only if it exits state
[empty,warehouse,unhooked], as there is only one transition between these
two states in the state machine. On the other hand, the Process Flow
Guard of Stage EWU requires that none of the other Stages be active, since
state [empty,warehouse,unhooked] should be the initial state. For the truck,
the Process Flow Guard of Stage MS requires that either Stage CM or MM
be active. This way, the truck is expected to enter state [mto,still] only if it
exits either state [carrier, moving] or [mto, moving], the latter allowing the
cyclic behavior in the lifecycle of the truck.

5. Correctness of the Translation

The transformation from to presented in Sect. ?? and ?? must be correct.
To this end, we first need to precisely define what to we mean by “correct-
ness”. Intuitively, in our setting correctness captures the fact that, given a
model and a process execution trace, the trace deviates from the model if
and only if the translation detects so. Since our framework is meant to be
used at runtime, we also require this to be prompt, that is, the deviation is
detected as soon as it actually occurs. More specifically, let: (i) B be the
input process model of interest, obtained as a result of the methodological
step shown in Sect. ??, and obeying to the well-structuredeness assumptions
mentioned before; (ii) GPB be the process model encoding the control-flow of B
for monitoring purposes, i.e., the result of the methodological step discussed
in Sect. ??; (iii) GAB be the model encoding the lifecycle of the mArtifact,
i.e., the result of the methodological step discussed in Sect. ??. Correctness
asserts that for every (possibly partial) execution trace over the tasks and
events of B:

• If the trace conforms to B, then none of the Stages of GPB are outO-
fOrder (cf. Fig. ??); conversely, if the trace contains a deviation, then
such a deviation is promptly recognized by GPB , i.e., GPB has at least one
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outOfOrder, opened Stage when the deviation actually occurs. This is
called the control flow alignment between GPB and B.

• By projecting away Data Flow Guards in GAB (i.e., by keeping Pro-
cess Flow Guards only), GAB has an evolution from one Stage to
another if and only if there exists a corresponding transition in the life-
cycle of the mArtifactthat is induced by B. This is called the lifecycle
alignment between B and GAB .

The formal proof showing that our translation mechanism is indeed cor-
rect is given in [? ]. Here we report a relevant excerpt where a high-level
discussion of the proof is presented.

5.1. Trace Conformance

Before proving that the translation preserves control flow and lifecycle
alignment, we need to define what does it mean for a trace to conform to
(and deviate from) the model B, considering in particular the control-flow
constraints present in B. Typically, conformance is tackled by transforming
the process model of interest into a formal behavioral model (such as as a
workflow net), then checking whether a complete trace can be replayed in the
model starting from its initial state, executing all tasks in the order they are
present in the trace, finally reaching the ending state of the process (see, e.g.,
[? ]). This straightforwardly extends to partial traces, by simply checking
whether the partial trace is a prefix of a complete, conforming trace.

In our setting, we leverage the fact that B is well-structured, and adopt
an alternative definition of conformance that has three advantages: (i) it is
modularly defined over the different types of blocks that may be employed
to structure B; (ii) it is applicable also to , thus providing the basis for
comparing B and GPB in terms of control flow alignment; (iii) it is fully
compatible with the aforementioned definition of conformance, i.e., a trace
conforms to B in our sense iif it is the prefix of a trace leading from the
input to the output place of the workflow net corresponding to B4.

To define conformance, we start by noting that no block is repeated twice
in B. This guarantees that tasks/events are unambiguous, and at the same
time ensures that no block directly or indirectly embeds itself (see the left

4The workflow net is constructed using standard mechanisms, leveraging the well-
structuredeness of B, and introducing special transitions for events.
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part of Fig. ?? for an example). As a consequence, we get that the sub-block
relation in B induces a tree-structure, rooted in the top-level, end-to-end
process, and whose leaves are atomic tasks and events. We call such a tree
the process tree of B. On top of this structure, a notion of execution state is
introduced, so as to keep track of the currently active blocks, and of those
that can be activated next. The initial execution state declares that the top
process block is active, and that the start event can be activated next. When
the start event occurs, the immediately consequent block can be activated
next. Given the current activation state, a new activation state is computed
when the next execution step is performed, i.e., an event occurs, a task is
started, or a task is completed. How the new state is computed depends on
the specific types of the active blocks, and is done in two phases. In the
first phase, it is checked whether the execution step is accepted by B in the
current activation state. The start of a task or the occurrence of an event are
accepted only if that task/event can be activated next. The completion of a
task is accepted instead only if that task is currently active. If the execution
step is not accepted, then a deviation occurs. If it is accepted, the execution
step is enforced, leading to update the current state of B, by deactivating
active blocks, and by making new blocks active. Both the “check” and the
“update” phases depend on the semantics of active blocks and of those that
can be activated next. For example, a sequence block containing two tasks
is managed by ensuring that the first task can be activated as soon as the
sequence block is activated, that the second task can activated as soon as the
first task is completed, and that the sequence block is deactivated as soon as
the second task is completed.

5.2. Control Flow Alignment

Given the notions of acceptance of an execution step and of activation of
a block sketched in Sect. ??, it is possible to derive a direct, modular corre-
spondence between B and GPB . More specifically, the translation procedure
(cf. Sect. ??) guarantees that the process tree of B is modularly mirrored in
GPB , in the sense that the sub-stage relation of GPB reconstructs the structure
of B (possibly introducing single, intermediate stages to handle the semantics
of the corresponding block in B). See Fig. ?? for an example. Thanks to
the fact that the translation is modular w.r.t. the blocks of B, and so is the
notion of conformance sketched in Sect. ??, we then proceed by induction
on the structure of the process tree. In particular, we show that, given an
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Figure 7: Block structure of the Seq2 fragment of the model in Fig. ?? and of its corre-
sponding translation in Fig. ??

execution state s where all active blocks in B correspond to opened, onTime
Stages in GPB , and given an execution step t:

• if t is considered as a deviation by B in s, then the execution of t in s
causes a Stage of GPB to become outOfOrder ;

• if t is accepted by B in s, then the new execution state s′ resulting
from the execution of t in s is such that a block b is active in s′ if and
only if the corresponding Stage in GPB is opened, onTime.

The combination of these two properties implies that GPB correctly mon-
itors the control flow of B, promptly detecting a deviation only when the
currently processed execution step is indeed considered so by B.

5.3. Lifecycle Alignment

Lifecycle alignment amounts to check whether GAB is constructed by prop-
erly considering the mArtifact transitions induced by B. However, GAB incor-
porates Data Flow Guards that are not synthesized from B, but are used
to actually monitor the physical reality and obtain the mArtifact state ac-
cordingly. Hence, alignment is circumscribed to Process Flow Guards.

It is immediate to see that GAB is such that each possible mArtifact state
corresponds to a Stage, and that at each moment one and only one of such
Stages is opened. We say that mArtifact may change from state s1 to state s2
according to GAB if GAB foresees an execution step that is applicable when the
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Stage corresponding to s1 is opened, and whose effect is to close that Stage
and to simultaneously open the Stage corresponding to s2. In this light,
lifecycle alignment amounts to check that for every pair of mArtifact states
s1 and s2, the mArtifact may change from state s1 to state s2 according
to GAB if and only if B foresees such a transition. This property, in turn,
can be proven in two steps. In the first step, we rely on the correctness
of the method proposed in [? ], which encodes the state-transitions of the
input model B into a corresponding state machine M. In the second step,
we reformulate the lifecycle alignment by considering the explicit description
provided by M instead of the implicit one obtained from B. It is then
straightforward to see that this reformulation: (i) faithfully encodes the
behavior of M; (ii) produces exactly GAB from B. Correctness of lifecycle
then directly follows.

6. Implementation

Fig. ?? presents the architecture of the monitoring solution we imple-
mented to assess the effectiveness of our approach. For the sake of clarity,
the figure only shows three (out of five) of the mArtifacts included in our
running example, but it is only a matter of replicating elements. Each mArti-
fact is monitored by a dedicated smart object, which embeds the components
in the gray box (bottom part of the figure). Before the process starts, the
owner of the artifact instructs the smart object with the models derived in
Sect. ??. Then, by querying the smart object, the owner can be aware of
violations in the process or the lifecycle and, in case, take countermeasures.
It is worth noting that, if the ownership of the smart object changes, thank
to the monitoring solution the new owner can be aware of the history of the
mArtifact.

6.1. Architecture

The On-board Sensors Gateway is responsible for periodically collecting
the values coming from the sensors attached to the mArtifact and transform-
ing them into messages5. These messages feed the Event Processor, which
is a rule engine that transforms the values from sensors into the states that
the mArtifact may assume (e.g., geographical coordinates can help infer the

5Sampling time and type of interaction (pull/push) can be configured given the types
of the attached sensors.
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Figure 8: Infrastructure of our IoT-based monitoring platform.

state of the Truck). This component, given the complexity of required rules
and the computational power of the smart object, can either execute locally
or outsource the computation to a full-fledged [? ]) that runs on a dedicated
server or in the cloud6. As soon as the mArtifact changes state, the Event
Processor produces two eventsto indicate that the mArtifact has left the old
state and entered the new one.

The different mArtifacts involved in the same inter-organizational process
must evolve in a coordinated way, and the correct monitoring of the process
requires that mArtifacts exchange information about their states. For this
reason, the events produced by the Event Processor are sent to the Events
Router 7 to inform the other mArtifacts about state changes, and be informed
by them. The Events Router must be configured to know the smart objects
it is supposed to communicate with.

6Our prototype adopts the WSO2 CEP running on the GIOTTO cloud plat-
form (http://www.almaviva.it/EN/OurOffering/Information_Technology/Pagine/
giotto.aspx).

7Source code of the Events Router is available at https://bitbucket.org/

polimiisgroup/eventsrouter.
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The Events Router then feeds the Engine8 with the actual state changes
of the mArtifact. The engine hosts the two models derived according to
our methodology and checks whether the mArtifact embodied by the smart
object complies with both the control and data flows defined in the original
process model. The Engine also provides a simple , which allows the owner
of the mArtifact to check the evolution of the process and the artifact.

These components are deployed on the different smart objects, which then
interact through the usual communication means (WiFi or 4G networks).
The whole platform is based on the Node.js runtime environment9 to support
resource-constrained devices. Node.js eases the execution of hardware and
operating system-agnostic JavaScript code, is available for most hardware
and software platforms, and is optimized for systems low on CPU power
and RAM. The communication among smart objects is based on 10, which
is optimized for low-bandwidth and resource-constrained environments. In
addition, to allow the software modules to communicate with each other and
with the parties, we exposed them as services.

6.2. E-GSM Monitoring Platform in Action

To test our solution, we used several process models taken from the lo-
gistics domain, which were validated by domain experts. To simulate sensor
values, as well as external events, we built a web-based test interface11. This
interface allows one to manually define the values that the On-board Sensors
Gateway should receive (upper part of the screen), and also to interact with
the representation of the process12. Changes in the state of the artifacts can
be reported to the monitoring solution (by clicking on the data objects), as
well as events coming from the parties (by clicking on start, end or interme-
diate events). This way, we can demonstrate that, given proper inputs, the
implemented architecture can monitor the execution of the process and the
lifecycle of artifacts according to our approach.

We assumed that a container is mimicked by a smart object equipped

8Source code of the Engine is available at https://bitbucket.org/polimiisgroup/
egsmengine.

9See https://nodejs.org.
10See http://mqtt.org.
11Source code of the test interface is available at https://bitbucket.org/

polimiisgroup/testclient.
12Rendered through the bpmn.js library (https://bpmn.io/toolkit/bpmn-js).
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with an scanner to identify its position on the MTO premises, scales to
detect the load weight, and a switch that closes once the container is hooked
to a means of transport. Similarly, we assume that a truck is a smart ob-
ject equipped with a GPS receiver to identify if it is moving and, if so, its
geographical position. Such smart objects can then be used to monitor the
portion of the process described in Sect. ?? relevant for a container and a
truck. To do so, for both of them, we fed their engine with the models
derived according to our methodology, and provided the Event Processor
with the rules to derive their state based on sensed data. For example, we
infer state [empty,loading area,unhooked] if the scanner detects the tag that
identifies the loading area, the scales detects a weight less than 5 kg and
the hooking switch is open. Finally, we instructed their Events Router to
listen to the events coming from each other, plus the ones coming from other
artifacts involved in the process (i.e., the goods, the shipment documents,
etc.).

These experimental, instrumented container and truck allowed us to as-
sess how our solution can be used to assess the compliance of process ex-
ecutions. For example, suppose that the container has a defective hooking
mechanism, and it detaches from the truck after being loaded.

Before the container detaches, in the process model of the container,
Start, ProvideContainer and PickUpContainer are closed. On the other
hand, in the lifecycle model of the container, EWU and ELU are closed, while
ELH is opened. When the container detaches, its Event Processor detects
that the hooking switch opens, so it infers that the container is in state
[empty,loading area,unhooked] and emits a new event. The Events Router
of the container captures this event and forwards it to the engine of the
container, that detects a violation both in the control flow and in the life-
cycle. In the process model, event [empty,loading area,unhooked] triggers
PickUpContainer.DFG1, which causes PickUpContainer to be opened a sec-
ond time. However, being PickUpContainer.PFG1 not active, PickUpContainer
becomes outOfOrder. In the lifecycle model, on the other hand, event
[empty,loading area,unhooked] triggers ELH.M1 and ELU.DFG1, causing ELH to
close and ELU to reopen. However, being ELU.PFG1 not active, a non admissi-
ble transition in the lifecycle of the container (from [empty,loading area,hooked]
to [empty,loading area,unhooked]) is detected.

The Events Router of the container also propagates the event to the other
smart objects. The Events Router of the truck then receives the event, and
forwards it to the engine of the truck, that detects a violation only in the con-
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trol flow. Similarly to the container, in the process model, PickUpContainer
becomes outOfOrder, since it is executed twice. On the other hand, being
the truck compliant with its lifecycle, no compliance violation is detected in
its lifecycle model.

Fig. ?? shows the interface reporting the status of the smart device related
to the container according to the described scenario. On the left, stages are
represented with different colors with respect to their status, whereas on the
right the detail of the stage is reported. As shown, the process correctly
started and the container provisioning occurred as expected. Differently
from the expected behavior, the PickUpContainer stage is highlighted as
non correctly executed (i.e., outOfOrder) and the details of the involved
Data Flow Guards, Process Flow Guards, and Milestones are reported.

7. Related work

According to [? ], compliance monitoring approaches that analyze both
the execution flow and managed data are able to continuously monitor a pro-
cess even when violations are detected, and can also discriminate compliance
violations according to the impact on the execution. For example, one can
think of ECE Rules [? ], BPath [? ], Mobucon EC [? ], and SeaFlows [? ].
Since ECE rules are not specifically tailored to business processes, they do not
explicitly support the lifecycle of data artifacts or control flow constraints.
BPath, which was conceived to monitor the execution of workflow-like service
compositions, do not deal with the problem of determining when activities
are executed as the lifecycle is captured by the connected service. Mobucon
EC and SeaFlows describe compliance rules with very powerful yet complex
languages, Event Calculus and Compliance Rule Graphs respectively, but
they do not offer advanced mechanisms to determine the degree of compli-
ance of process instances. All these solutions require that compliance rules
be defined by hand, and none of them offers mechanisms to derive such rules
from the process model.

To detect the execution order of activities without relying on explicit
messages, [? ] proposes the integration of a and a engine to detect when
activities are executed based on external events. is extended with to iden-
tify which events produced by the CEP engine determine the activation or
termination of activities, gateways, and events. [? ] proposes an architecture
that implements this solution, while [? ] presents an approach that relies
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Figure 9: Screenshot of the monitoring solution.
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on external data to identify when activities, annotated with attributes that
have to be monitored, are incorrectly executed.

About the usage of artifact-centric process models and the relation with
imperative languages, [? ] proposes transformation rules that transform a
process model into a equivalent enriched with additional stages that group
activities according to business goals. While our work borrowed from these
rules the idea of transforming blocks into nested Stages, the way expressions
on Guards and Milestones are derived is completely different from the one
presented in these articles. The main reason behind such a discrepancy is that
our model is monitoring-oriented, rather than execution-oriented. Therefore,
our model must not allow to detect only the executions performed exactly
as defined in the model, but potentially every possible execution.

[? ] defines a semi-automated approach to transform a process modeled
using Activity Diagrams into a model that captures the lifecycle of each
involved artifact. Similarly, [? ], [? ] and [? ] propose a language-agnostic
algorithm to derive the lifecycle of artifacts based on an imperative process
model. This is possible as long as each activity has input and output in-
formation entities explicitly defined in the model. Our work differentiates
from the one presented in these articles, which use control flow information
to model the interactions among data artifacts, by keeping such information
in the target process model to assess compliance.

[? ] defines a translator from Petri Nets to . The main purpose of that
translator is to transform the outcome of process mining algorithms, which
is often represented as a Petri Net, to a model. This way, process mining
techniques can be used to identify business artifacts that the translator rep-
resents in a language that is easier to understand by domain experts than
Petri Nets.

To ease the definition of models, [? ] proposes to start modeling the
process with graphs, and then translate them into . While graphs allow
to model the process in a completely graphical way, they are still way more
complex to understand than imperative languages (as mentioned in [? ]).

Concerning the usage of to monitor multi-party processes, [? ] proposes
a collaboration hub running a engine to facilitate the coordination of logis-
tics processes. With respect to our work, information on the execution of
activities must be explicitly notified to the hub either by interacting with its
interface or via web service calls. [? ] overcomes this limitation by adopting
the paradigm: they take advantage of Guards and Milestones to identify
when Stages are being executed by predicating on sensor data coming from
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smart objects. However, with respect to our work, they lack a methodology
to ease the definition of the model. Furthermore, they do not decouple the
process model from the rules to infer the state of an artifact based from sen-
sor data. Finally, they use the paradigm only to collect and forward sensor
data to a centralized engine. All these solutions require the parties to rely on
a single entity who owns the monitoring infrastructure, thus not allowing to
independently check the process compliance. Also, they lack mechanisms to
detect deviations in the execution of the process with respect to the model.

As for the integration of both an activity-centric and a data-centric per-
spectives in business processes, [? ] and [? ] propose to use information
about the process control flow to define how data should be manipulated.
Both approaches use such information in a prescriptive way, and assume
that the process respects the execution order of activities. , in contrast, does
not enforce any predefined flow and uses control flow information only to
detect compliance violations.

8. Conclusion

This paper explained how monitoring multi-party business processes is a
challenging activity: needs for coordination among the involved , limited vis-
ibility on the whole process by the different parties, differences in monitoring
artifacts and control flows are some of the aspects that traditional monitor-
ing solutions are not able to cope with. Moreover, when physical objects are
exchanged by the parties, monitoring these objects add new challenges.

The proposed approach shows how a properly mix between imperative
languages, used to easily model the process, and declarative languages, used
to configure a monitoring system, and the adoption of the paradigm can
overcome these limitations. In particular, starting from a multi-party process
defined using , the paper proposed a methodology to translate this process to
the notation. Smart objects are properly instrumented with the code needed
to monitor different portion of the public process shared by the parties. As
each smart object is referring to one of the physical artifacts involved in the
multi-party process, it will keep the owner of the artifact informed about the
progression of its state and how the process is evolving. Correctness of the
transformation from to has been proved, thus guaranteeing that a violation
is promptly detected by the engine if and only if the last processed execution
step deviates from the input model.
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Currently, the proposed approach requires organization to transparently
share among the other participants how their process portions are performed.
Additionally, smart objects exchange information on their state to the other
ones participating to the same execution. This does not allow organizations
to keep part of their process private: either they share this information, or
the private portion is omitted from the collaboration diagram and, conse-
quently, it cannot be monitored with our approach. To address these issues,
future work will focus on integrating our approach with security and privacy
frameworks.

Future work will also concentrate on categorizing violations with respect
to their impact on the execution, and on using such a classification to de-
termine the overall health of process instances. Finally, we aim to extend
the methodology considering costs, and scalability issues which may become
important when a process involves numerous artifacts or a given artifact has
to deal with numerous events.
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