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Abstract. In this paper, we develop a shape optimization-based algo-
rithm for the electrical impedance tomography (EIT) problem of deter-
mining a piecewise constant conductivity on a polygonal partition from
boundary measurements. The key tool is to use a distributed shape de-
rivative of a suitable cost functional with respect to movements of the
partition. Numerical simulations showing the robustness and accuracy
of the method are presented for simulated test cases in two dimensions.

1. Introduction

Electrical Impedance Tomography (EIT) is a noninvasive technique, which
aims to detect the conductivity inside a body from voltage and current
boundary measurements. The mathematical problem arising from EIT,
known as the inverse conductivity problem, was introduced for the first time
by A.-P. Calderón in the early 80’s [1]. Even though it was first motivated
by an application in geophysical prospecting [2], EIT has been having big
impact also in medical imaging and nondestructive testing of materials [3].

The conductivity problem can be stated mathematically as follows. Con-
sider a bounded domain Ω ⊂ Rd, with d = 2, 3, equipped with an elec-
trical conductivity σ ∈ L∞(Ω) such that σ(x) ≥ λ > 0. The correspond-
ing Neumann-to-Dirichlet (ND) or current-to-voltage map is the operator
Nσ : H

−1/2
0 (∂Ω)→ H

1/2
0 (∂Ω), defined by

(1.1) Nσ(g) = u|∂Ω,

where Hs
0(∂Ω) = {f ∈ Hs(∂Ω) :

∫
∂Ω f ds = 0}, g ∈ H−1/2

0 (∂Ω) and u is the
unique H1(Ω)-weak solution of the Neumann problem for the conductivity
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equation

(1.2)


−∇ · (σ∇u) = 0, in Ω,

σ
∂u

∂ν
= g, on ∂Ω,

where ν is the unit outward normal to ∂Ω, satisfying the normalization
condition ∫

∂Ω
u ds = 0.

The following inverse boundary value problem arises from this framework.

Inverse conductivity problem. Given Nσ, find σ in Ω.

Since the seminal paper by A.-P. Calderón, much interesting mathematics
has been developed in order to address the issues of uniqueness, stability and
reconstruction for this problem. Concerning uniqueness and reconstruction,
we mention the breakthrough results in [4, 5, 6].

The conductivity problem is severely ill-posed as was noted by G. Alessan-
drini in [7]. Despite a-priori smoothness assumptions on the unknown con-
ductivity, a logarithmic-type continuous dependence of the conductivity on
the data is the best possible one [7, 8]. This fact makes crucial the anal-
ysis of the instability and of suitable regularization strategies in order to
obtain successful computational reconstructions. Several recovery methods
and procedures have been developed in the last decades. Without being ex-
haustive, the possible approaches to reconstruction can be divided into two
main streams:

(1) iterative methods, based on ad-hoc regularization strategies;
(2) direct methods, where an explicit reconstruction formula of the so-

lution is used.

The first group includes variational-type methods, which reduce the inverse
problem to a minimization problem for a least-squares constrained type func-
tional with a suitable regularization. A pioneering paper in this direction
is represented by [9], which applies one step of a Newton method with a
constant conductivity as an initial guess. In [10] the authors introduce a
Mumford-Shah type functional, in [11, 12] a level set representation and a
total variation regularization is introduced, while in [13] an augmented La-
grangian method is proposed. All these methods are particularly suited to
recover piecewise constant conductivities.

Concerning direct methods, we would like to mention the factorization
method [14, 15], the D-bar method [16], the enclosure method [17], and the
monotonicity method [18].
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Finally, statistical inversion has shed interesting insights into EIT recon-
struction as well [19].

Despite the impressive progress, there remains a big interest in developing
new algorithms that take advantage of a-priori information arising from ap-
plications. An a-priori assumption physically relevant in many applications
is to assume the conductivity to be of the form

(1.3) σ =
N∑
j=1

σjχPj ,

where P = {Pj}Nj=1 is a polygonal (polyhedral) partition of the background
body Ω, χP denoting the characteristic function associated with the generic
region P ⊂ Ω. Such an assumption arises, for example, in geophysics, medi-
cal imaging, and nondestructive testing of materials, where the body under
investigation contains regions, represented by the subdomains {Pj}Nj=1, with
different electrical properties.

Additionally, this kind of a-priori information restores the well-posedness
of the inverse problem; in particular, in the case of a given known partition,
Lipschitz dependence estimates of the coefficients from the data can be shown
[20]. From the results obtained for the Helmholtz equation in [21] and [22],
where Lipschitz stability holds, we expect that a similar result should be
true also when the partition is unknown. As shown in [21], a crucial role to
prove Lipschitz stability is played by the differentiability properties of the
Neumann-to-Dirichlet map with respect to motions of the partition and by
the derivation of an explicit formula for the derivative. This is also a crucial
step towards reconstruction if we use an optimization approach to solve the
inverse conductivity problem.

In this paper, we consider a cost functional, J(σ), representing the L2-
norm of the difference between the potential due to the applied current and
the measured potential on the boundary. This functional will be minimized
in the class of conductivities σ of the form (1.3). To solve this minimization
problem, we introduce an iterative gradient type method which requires the
computation of the shape derivative of the functional J(σ). This deriva-
tive has been obtained rigorously by several authors in the case of a single
sufficiently smooth inclusion ω ⊂ Ω, i.e. for σ = σ1χω + σ2χΩ\ω (see, for
example, [23, 24, 25]).

In our case, to implement the optimization procedure, we need to differ-
entiate J(σ) with respect to variations of a partition. In [26], the authors
derived, for the first time, a rigorous formula for the shape derivative of the
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functional J(σ) in the planar case and for conductivities of the form

σ = σ1χP + σ2χΩ\P

where P is a polygon strictly contained in Ω. The shape derivative is ex-
pressed in terms of an integral over the boundary of P and has, surprisingly,
exactly the same form as the one derived in [23] in the case of a smooth
interface, despite the presence of singularities of the gradient of the solu-
tions to the conductivity equation at the vertices of P . The extension of
this boundary formula seems not to be possible in the case of an arbitrary
partition since the singularity of the gradient might become too strong at
the vertices [27, 28].

In this paper, we follow the idea suggested in [29] and in [30] of using a
more general distributed shape derivative of the functional expressed in terms
of an integral over Ω. The advantage of this formula is twofold: on the one
hand, it allows to consider piecewise constant conductivities on very general
partitions; on the other hand, it is numerically more accurate (we refer to
[31] for a thorough comparison of the two formulas from a numerical point
of view). In [29], the authors establish the distributed shape derivative in
the case of a single measurable conductivity inclusion strictly contained in Ω

by using a Lagrangian approach. Here, we establish the formula computing
directly and rigorously the derivative of J in terms of the material derivative
of the solution to a certain boundary value problem (see Lemma 2.1). The
formula is valid for any partition P in dimension d = 2, 3. Successively, we
take advantage from this result to implement our reconstruction procedure
in the two dimensional case, based on a gradient type method.

The reconstruction algorithm we present is very similar to the one in-
troduced in [32, 30]. Nevertheless, there are two major differences in the
implementation, which greatly affect the numerical results. The first one is
a regularization step, applied at each iteration, where the number of the sides
of each polygon in the partition P changes in order to preserve a uniform
length. This considerably reduces the artifacts that typically appear in EIT
reconstructions. The second major difference lies in the choice of the descent
direction for the shape of the partition. While this was done by solving an
additional variational problem, we propose a more direct computation which
exploits the assumptions made on the conductivity.

The plan of the paper is the following one. In Section 2, we state the
problem with the main assumptions, derive the shape derivative of the cost
functional and show the equivalence with the boundary shape derivative
established in [26] for suitable two-dimensional partitions. In Section 3,
we describe the reconstruction algorithm. In Section 4 we present some
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numerical examples which corroborate the reliability and the accuracy of
the proposed approach.

2. Mathematical framework

2.1. Main Assumptions. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain
with Lipschitz boundary. Let P = {Pj}Nj=1 be a polytopal partition of Ω,
i.e., Pj are open bounded polytopes (i.e., polygons in 2D, polyhedra in 3D)
such that:

(2.1)
N⋃
j=1

Pj = Ω, Pj ∩ Pk = ∅ for j 6= k.

Definition 2.1. Let N ∈ N be an integer with N > 1, and λ > 0 be a
positive real number. We define the space L∞(Ω, N, λ) as the collection of
conductivities σ ∈ L∞(Ω) such that σ(x) ≥ λ > 0 for all x ∈ Ω, and such
that there exists a polytopal partition P = {Pj}N

′
j=1 with N ′ ≤ N , such that

σ can be written as

(2.2) σ =

N ′∑
j=1

σjχPj , with σl 6= σm if Pl is adjacent to Pm.

Now let σ̂, σ ∈ L∞(Ω, N, λ). We denote by σ̂ the unknown conductivity
and by σ a (generally) different one, which will be used in the reconstruction
scheme.

Let M be the number of measurements. For 1 ≤ j ≤ M , let gj ∈
H
−1/2
0 (∂Ω) be a given function representing the applied current density on

∂Ω, and fj ∈ H1/2(∂Ω) the corresponding measurement of the voltage on
∂Ω. More precisely, fj = ûj |∂Ω, where ûj is a solution of

−∇ · (σ̂∇ûj) = 0, in Ω,

σ̂
∂ûj
∂ν

= gj , on ∂Ω.

In order to recover σ̂, we minimize the following Dirichlet least-squares fitting
cost functional:

(2.3) J(σ) =
1

2

M∑
j=1

∫
∂Ω
|uj − fj |2 ds,

for σ ∈ L∞(Ω, N, λ), where the state function uj solves
−∇ · (σ∇uj) = 0, in Ω,

σ
∂uj
∂ν

= gj , on ∂Ω,
(2.4)
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with the normalization condition

(2.5)
∫
∂Ω
uj ds =

∫
∂Ω
fj ds.

Notice that the functional J(σ) depends on the values {σj}Nj=1 and the
partition P = {Pj}Nj=1, where σ =

∑N
j=1 σjχPj . The next subsections are

devoted to the computation of the gradient of J(σ) with respect to the above
variables.

2.2. Gradient of J with respect to P – the shape derivative. The
gradient of J with respect to the partition P is actually a shape derivative.
We thus want to compute the shape derivative 〈∇PJ, U〉 of the functional
J at the partition P in the direction of a vector field U = (U1, . . . , Ud). We
assume that U ∈ W 1,∞(Rd) and U = 0 in a neighborhood of ∂Ω. This
derivation has already been carried out in [24, 25, 29] in the case of smooth
inclusions, and in [26] for a single polygonal inclusion. We present here a
more general formula that is valid for any finite partition of a domain.

In order to compute the derivative, consider the transformation Φt(x) =

x+ tU(x) : Rd → Rd, as smooth as U . We assume that t ≤ 1/(2‖U‖W 1,∞) so
that Φ−1

t exists globally. For instance, Φt is a piecewise affine function that
moves the nodes of the partition P (i.e., the vertices of the Pj ’s). Note that
Φt|∂Ω = Id, Id denoting the identity mapping. This assumption is not a real
restriction since in EIT the boundary ∂Ω is always assumed to be known
and fixed. Nevertheless, it is crucial in the derivation of the main results of
this section.

The following matrix-valued functions will be useful in the following:

A(t) = (DΦ−1
t )(DΦ−1

t )T det(DΦt),(2.6)

A =
dA

dt

∣∣∣∣
t=0

= div(U)I − (DU +DUT ),(2.7)

where DΦ−1
t and DU are the Jacobian matrices of Φ−1

t and U , respectively.
Consider the deformed partition Pt = Φt(P) and σt = σ ◦ Φ−1

t the corre-
sponding conductivity. Let G(t) be defined as

(2.8) G(t) = J(σt).

Let now u be any of the solutions uj , with Neumann data g, where g is
any of the currents gj , j = 1, . . . ,M , and let f be a boundary measurement
corresponding to g. First, we need to study the material derivative of the
solution u.
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Lemma 2.1. The solution u to problem (1.2) has a material derivative u̇ ∈
H1(Ω) that solves

(2.9)
∫

Ω
σ∇u̇ · ∇w dx = −

∫
Ω
σA∇u · ∇w dx, ∀w ∈ H1(Ω),

with the normalization condition
∫
∂Ω u̇ ds = 0.

Proof. We follow Step 1 and 2 of the proof of [24, Theorem 3.1]. Let ut be
the solution of  −∇ · (σt∇ut) = 0, in Ω,

σt
∂ut
∂ν

= g, on ∂Ω,

with the normalization condition
∫
∂Ω ut ds =

∫
∂Ω f ds. Then the transported

solution ũt = ut ◦ Φt solves the variational equation:

(2.10)
∫

Ω
σA(t)∇ũt · ∇w dx−

∫
∂Ω
gw ds = 0, ∀w ∈ H1(Ω).

Subtracting to (2.10) the variational equation solved by u and dividing by t,
we find
(2.11)∫

Ω
σA(t)

∇ũt −∇u
t

· ∇w dx =

∫
Ω
σ
I −A(t)

t
∇u · ∇w dx, ∀w ∈ H1(Ω).

Using ũt − u as test function we obtain

(2.12)
1

2
min
x∈Ω

σ(x)

∥∥∥∥∇ũt −∇ut

∥∥∥∥
L2(Ω)

≤
∥∥∥∥A(t)− I

t

∥∥∥∥
∞
‖∇u‖L2(Ω).

Thus, we have found that (ũt − u)/t is bounded in H1(Ω). Therefore, the
sequence is weakly convergent in H1(Ω) and its weak limit is the material
derivative u̇ of u. Passing to the limit in (2.11), we find that u̇ solves the
desired variational formulation (2.9).

By the Lax-Milgram lemma, since the right-hand side is an H−1(Ω) func-
tion (because of our assumptions on U), every solution to the variational
problem (2.9) lies in H1(Ω). In particular, the trace on ∂Ω is well defined.

Actually, we have strong convergence. Plugging w = (ũt−u)/t into (2.11),
we obtain

(2.13)
∫

Ω
σA(t)∇w · ∇w dx =

∫
Ω
σ
I −A(t)

t
∇u · ∇w dx = B1,t +B2,t,

where
(2.14)

B1,t =

∫
Ω
σ(A(t)− I)∇w · ∇w dx and B2,t =

∫
Ω
σ
I −A(t)

t
∇ũt · ∇w dx.
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Thanks to the weak convergence of (ũt − u)/t, we obtain

(2.15) B1,t → 0 and B2,t → −
∫

Ω
σA∇u · ∇u̇ dx as t→ 0.

Now, the variational formulation (2.9) yields B2,t →
∫

Ω
σ∇u̇ · ∇u̇ dx. So we

have found that
∇ũt −∇u

t
converges strongly to ∇u̇ in L2(Ω). Using the

normalization conditions for u̇, u and ũt (which coincides with ut on ∂Ω),

we get the strong convergence of
ũt − u
t

to u̇ in H1(Ω), via the Poincaré
inequality.

Now we can derive the formula for the shape derivative of the functional
J .

Proposition 2.2. We have

(2.16) 〈∇PJ, U〉 =

M∑
j=1

∫
Ω
σA∇uj · ∇zj dx,

where zj solves

(2.17)


−∇ · (σ∇zj) = 0, in Ω,

σ
∂zj
∂ν

= fj − uj , on ∂Ω,

with the normalization
∫
∂Ω zj ds =

∫
∂Ω fj ds.

Proof. We need to compute the derivative
dG

dt
|t=0, where G is defined in

(2.8). Let uj,t, ũj,t be defined as ut, ũt in the proof of Lemma 2.1, with
Neumann data gj . By the assumption that Φt|∂Ω = Id, we have

G(t) =
1

2

M∑
j=1

∫
∂Ω

(uj,t − fj)2 ds =
1

2

M∑
j=1

∫
∂Ω

(ũj,t − fj)2 ds.

Note that

(2.18)
G(t)−G(0)

t
=

M∑
j=1

∫
∂Ω

(
ũj,t − uj

t

)(
ũj,t + uj

2
− fj

)
ds.

Using the strong convergence
ũj,t − uj

t
→ u̇j in H1(Ω) and the convergence

ũj,t → uj in L2(∂Ω) (which follows from the fact that ũj,t = uj,t on ∂Ω

and uj,t → uj in H1(Ω)), we can pass to the limit as t → 0 in (2.18), thus
obtaining

〈∇PJ, U〉 =
dG

dt
|t=0 =

M∑
j=1

∫
∂Ω

(uj − fj)u̇j ds,
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where u̇j is the material derivative of uj . Using the variational formulation
of the adjoint zj ,

(2.19)
∫

Ω
σ∇zj · ∇w dx+

∫
∂Ω

(uj − fj)w dσ = 0, ∀w ∈ H1(Ω),

and of the material derivative, (2.9), we find

〈∇PJ, U〉 = −
M∑
j=1

∫
Ω
σ∇zj · ∇u̇j dx =

M∑
j=1

∫
Ω
σA∇uj · ∇zj dx,

which is the desired formula.

We now recall also the gradient of J with respect to {σj}Nj=1, that will be
used in the reconstruction algorithm:

(2.20)
dJ

dσj
=

M∑
k=1

∫
Pj

∇uk · ∇zk dx, j = 1, . . . , N,

where zk solves (2.17) with a normalization (e.g.,
∫
∂Ω
zk ds =

∫
∂Ω
fk ds).

2.3. Equivalence of the distributed and of the boundary integral
formulas in the case of a single polygonal inclusion. We emphasize
that, in the case of a single polygonal inclusion, the shape derivative of the
functional J(σ) has been computed rigorously in [26], and expressed as an
integral on the boundary of such an inclusion. It is unclear if this boundary
representation of the shape derivative is still valid in the case of an arbitrary
partition.

Let P be a polygon strictly contained in Ω and let

u+ = u|Ω\P̄ , z+ = z|Ω\P̄ .

and
u− = u|P , z− = z|P .

Proposition 2.3. Assume Ω = P ∪ (Ω\P ), with P a polygon strictly con-
tained in Ω, and let σ|P = k and σ = 1 outside P . Then, we have the
following equivalent formulas for the shape derivative of the functional J at
P in the direction given by U :

dG

dt

∣∣∣∣
t=0

=
M∑
j=1

∫
Ω
σ(x)A∇uj(x) · ∇zj(x) dx

= (k − 1)

M∑
j=1

∫
∂P

(
1

k

∂u+
j

∂ν

∂z+
j

∂ν
+∇τuj · ∇τzj

)
Uν ds,
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where ν is the unit outward normal vector to ∂P , ∇τ is the tangential gra-
dient, Uν = U · ν, functions uj , zj satisfy (2.4) and (2.17), respectively.

Proof. We can assume, without loss of generality, M = 1 and denote by u
and z the solutions corresponding to the datum f . Let Bε be the union of
balls of radius ε centered at each vertex of P , and let us consider the splitting

∫
Ω
σA∇u · ∇z dx =

∫
Ω\Bε

σA∇u · ∇z dx+

∫
Bε

σA∇u · ∇z dx.

Denote by

Ω+
ε = Ω\P ∪Bε, Ω−ε = P\Bε,

and observe that, by standard regularity results (see, for example, [33]), it
can be shown that u+, z+ ∈ H2(Ω+

ε ), and u−, z− ∈ H2(Ω−ε ). Then, applying
Green’s formula in Ω±ε , observing that U has compact support in Ω, and using
the following identity

A∇u · ∇z = −div(b) + (U · ∇u)∆z + (U · ∇z)∆u

= −div(b) in Ω+
ε ∪ Ω−ε = Ω\B̄ε,

where

b = (U · ∇u)∇z + (U · ∇z)∇u− (∇u · ∇z)U,

we easily derive

∫
Ω\B̄ε

σA∇u · ∇z dx =

∫
∂P\B̄ε

[σb] · ν ds+

∫
∂Bε

σb · ν ds,

where we use notation [f ] = f+ − f− to denote the jump off across ∂P .
Using the transmission conditions satisfied by u and z across ∂P , we end up
with the following relation

∫
Ω\B̄ε

σA∇u · ∇z dx = (k − 1)

∫
∂P

(
1

k

∂u+

∂ν

∂z+

∂ν
+∇τu · ∇τz

)
Uν ds

− (k − 1)

∫
∂P∩B̄ε

(
1

k

∂u+

∂ν

∂z+

∂ν
+∇τu · ∇τz

)
Uν ds+

∫
∂Bε

σb · ν ds,
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where Uν = U · ν. Hence,∫
Ω
σA∇u · ∇z dx = (k − 1)

∫
∂P

(
1

k

∂u+

∂ν

∂z+

∂ν
+∇τu · ∇τz

)
Uν ds

−(k − 1)

∫
∂P∩B̄ε

(
1

k

∂u+

∂ν

∂z+

∂ν
+∇τu · ∇τz

)
Uν ds︸ ︷︷ ︸

R1

+

∫
∂Bε

σb · ν ds︸ ︷︷ ︸
R2

+

∫
Bε

σA∇u · ∇z dx︸ ︷︷ ︸
R3

= (k − 1)

∫
∂P

(
1

k

∂u+

∂ν

∂z+

∂ν
+∇τu · ∇τz

)
Uν ds+R1 +R2 +R3.

From [34], we have the following upper bounds of the gradients of u and z
in a neighbourhood of the vertices:

(2.21) |∇u(x)| ≤ C|x− x̃|α−1, |∇z(x)| ≤ C|x− x̃|α−1,

for some constant C > 0, α > 1/2 and x sufficiently close to a vertex x̃, with
x 6= x̃. This, jointly with the regularity assumptions on the vector field U ,
implies that∫

Ω
σA∇u · ∇z dx = (k − 1)

∫
∂P

(
1

k

∂u+

∂ν

∂z+

∂ν
+∇τu · ∇τz

)
Uν ds+O(ε2α−1),

and, since α > 1/2, letting ε→ 0 in the last equation, we finally obtain∫
Ω
σA∇u · ∇z dx = (k − 1)

∫
∂P

(
1

k

∂u+

∂ν

∂z+

∂ν
+∇τu · ∇τz

)
Uν ds,

which ends the proof.

Remark 1. It is straightforward to check that the boundary formula derived
in [26] (and hence also the last proposition) extends to the case of a finite
number of well separated, polygonal inclusions at a positive distance to the
boundary of Ω.

Remark 2. The formula for the shape derivative of the functional J can also
be obtained following the Lagrangian approach as in [29]. In fact, defining
the following Lagrangian

L̃(u, z, t, U) =
1

2

∫
∂Ω
|u− f |2 dσ +

∫
Ω
σA(t)∇u · ∇z dx−

∫
∂Ω
gz dσ,

where A(t) is defined as in (2.6), while functions u and z satisfy (2.4) and
(2.17), respectively corresponding to a given Neumann datum g, it is possible
to show that

dG

dt
|t=0 =

∂

∂t
L̃(u, z, t, U)|t=0 =

∫
Ω
σ(x)A∇u(x) · ∇z(x) dx.
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3. Reconstruction algorithm

We use the descent gradient method to solve the minimization problem
involving the functional J in (2.3). Although the algorithm holds in dimen-
sion 2 and 3, we focus on the planar case, since computational experiments
are in 2D.

The algorithm adopted in this paper differs from reconstruction algorithms
available in the literature ([32, 30]) because of two major features, which are
separately addressed in the next sections.

3.1. Regularization. The first novelty adopted in the reconstruction al-
gorithm consists in increasing or decreasing the number of vertices of the
polygons in the partition in order to impose some regularity on the recon-
struction. This simple trick considerably improves the reconstruction qual-
ity, smoothing out artifacts and irregularities that often characterize EIT
reconstructions (see Section 4 below for practical examples).

3.2. Construction of the descent direction. The second distinguishing
feature of the adopted reconstruction algorithm concerns the computation
of the descent direction associated with the partition vertices. A standard
approach consists in solving a discretized version of the equation

(3.1) 〈θk, δθ〉+ 〈∇PJ(σk), δθ〉 = 0 for every δθ ∈ X,

where θk ∈ X is the descent direction at iteration k, σk is the conductivity
obtained at the iteration k (see Section 3.3 for a precise definition), while
X ⊂ W 1,∞(Ω,R2). There are several approaches to discretize and solve
equation (3.1). We refer to [30, 35] for a thorough discussion on this subject.
Here we propose a different, more straightforward, derivation. Since the
partition is defined by its vertices, we compute the descent direction for each
vertex individually, and then we update the partition. The formula we use
at iteration k to define the descent direction, θkl ∈ R2, for a given vertex, V k

l ,
l = 1, . . . , Nk

V , with N
k
V the number of the partition vertices at the iteration

k, is:

(3.2) θkl = −
(
〈∇PJ(σk), Ukl,1〉, 〈∇PJ(σk), Ukl,2〉

)
,

where the vector fields Ukl,1, U
k
l,2 are chosen as follows:

(1) Ukl,1, U
k
l,2 ∈W 1,∞(Ω,R2) with support strictly contained in Ω

(2) Ukl,1, U
k
l,2 piecewise linear on the edges of the partition and such that

(3.3) Ukl,1(V k
j ) = (δjl, 0), Ukl,2(V k

j ) = (0, δjl),
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where δjl indicates the Kronecker delta. With this choice, the vector

(
〈∇PJ(σk), Ukl,1〉, 〈∇PJ(σk), Ukl,2〉

)

represents, at the iteration k, the gradient of the functional J with respect
to the position of a single vertex, V k

l . In practice, in view of a finite element
discretization, we choose the vector fields Ukl,1 and Ukl,2 as

(3.4) Ukl,1 = (ϕkl , 0), Ukl,2 = (0, ϕkl ),

where ϕkl is the hat function associated with the node V k
l of a coarse mesh

that contains both the vertices and the edges of the partition P but with
no additional nodes on the sides of the polygons. More precisely, φkl (V

k
j ) =

δjl, and it is piecewise linear. Examples of coarse meshes adapted to a
partition can be seen in every plot in Section 4. Thus, any other hat function
corresponding to such a coarse mesh would produce the same results, since
the shape derivative is supported on the edges of the partition.

We remark that we need to assume the knowledge of the number N of
polygons in the partition, since the algorithm is unable to make changes
in the topology. A possible approach to overcome this limitation, using
topological derivatives and a level set formulation, has been studied in [36].

3.3. The reconstruction algorithm. Let Nk
V be the number of vertices of

the partition Pk = {P kj }Nj=1 at iteration k, and {V k
l }

Nk
V

l=1 be the corresponding
set of vertices. Let Nk

j be the number of vertices of the polygon P kj , for j =

1, . . . , N . At each iteration, we consider the conductivity σk =
∑N

j=1 σ
k
j χPk

j
.

In the algorithm we introduce the parameters δ1, δ2 > 0 as threshold for
the distances between consecutive vertices in the regularization step and a
tolerance tol > 0 is chosen to control the size of the shape gradient as a
stopping criterion. Finally, the step sizes αjk > 0 and βk > 0 can be fixed
or obtained by line search. However, in all numerical experiments below, we
keep them fixed.
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Algorithm 1 Reconstruction algorithm

Choose an initial guess {σ0
j }Nj=1, {V 0

l }
N0

V
l=1; set k = 0 and iterate:

1: For all consecutive vertices V k
l , V

k
l+1 in each polygon:

2: if ‖V k
l − V k

l+1‖ < δ1 then remove V k
j ;

3: if ‖V k
l − V k

l+1‖ > δ2 then introduce the new vertex, 1
2(V k

l + V k
l+1);

4: Generate a coarse mesh corresponding to this new set of vertices identi-
fying the partition Pk, and the corresponding conductivity σk;

5: Compute the solutions of the state (2.4) and adjoint (2.17) problem on
a refined mesh;

6: Compute the gradient w.r.t. the coefficients dJ
dσj

(σk), for j = 1, . . . , N

via (2.20);
7: Compute the descent directions θkl via (3.2), corresponding to each ver-

tex, V k
l , l = 1, . . . , Nk

V ;
8: Update the coefficients and the partition: σk+1

j = σkj − αjk
dJ
dσj

(σk),

V k+1
l = V k

l + βkθ
k
l ;

9: If maxl=1,...,Nk
V
‖θkl ‖ > tol, set k = k + 1 and repeat.

The stopping criteria for the algorithm may be improved following the
error analysis in [30]. For the sake of simplicity, in the present work, we
decided to focus on the new shape updates in the algorithm, neglecting other
issues already investigated in earlier works. The inclusion of an advanced
stopping criterion as well as of a robust line search algorithm for the step
sizes constitute possible topics for a future investigation.

4. Numerical tests

In this section, we show the effectiveness of the proposed reconstruction
scheme. A series of numerical experiments have been carried out in order
to assess numerically that the algorithm enable us to recover simultaneously
the partition and the values of the conductivity for some significant config-
urations.

For the sake of simplicity, we consider Ω = (0, 1)2. For each test, we
create a mesh adapted to the unknown conductivity that is used to provide
the boundary data. For the reconstruction, a coarse mesh adapted to the
approximate partition is generated at each iteration. A refined mesh is also
constructed in order to compute the state and the adjoint problem.

The boundary data are generated in the following manner. We set σ ∂u∂ν = 1

on one of the four sides of Ω, −1 on another side and 0 elsewhere. In this way,
we obtain 6 independent current patterns, corresponding to 4 electrodes, one
for each side. Then, we divide each side of Ω in half. We set σ ∂u∂ν = 1 on one
half, −1 on another half side and 0 elsewhere. This gives 28 independent
current patterns, corresponding to 8 electrodes. We iterate this procedure
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Figure 1. From left to right: electrodes (in gray) corre-
sponding to the three data sets of 6, 28 and 120 boundary
measurements, respectively.

one more time. In this way, we construct sets of 6, 28 and 120 boundary
data, corresponding to 4, 8 and 16 electrodes, respectively. See Figure 1 for
a scheme of the electrode position corresponding to the data sets.

We also add a uniform noise to the data. More precisely, given a noiseless
boundary measurement fj ∈ H1/2(∂Ω), j = 1, . . . ,M , the noisy data f̃j is
obtained by adding to fj a uniform noise in the following way:

f̃j(x) = fj(x) + ε‖f‖L2(∂Ω),

where x ∈ ∂Ω is a boundary vertex of the mesh that generated fj and ε is a
uniform random real in (−γ, γ), where γ > 0 is chosen according to the noise
level. To measure the noise level, we use the relative error on the boundary
in the L2-norm, that is the following quantity:√∑M

j=1 ‖f̃j − fj‖2L2(∂Ω)√∑M
j=1 ‖fj‖2L2(∂Ω)

.

The regularization parameters, δ1 and δ2, are chosen experimentally. Since
the initial guess is always a regular polygon (or a collection of regular poly-
gons), we choose δ1 = α1δ, δ2 = α2δ, where δ is the length of the side of the
initial guess, with α1 < 1, α2 > 1.5. This is done in order to have, at each
iteration, a partition with edges of similar length.

All the computations are performed using FreeFem++ [37].

4.1. Shape reconstruction. In this first set of examples, we assume to
know the values of the conductivity, and we only reconstruct the shape of
the partition.

In Figure 2, we consider a piecewise conductivity which is equal to 10 on a
convex pentagon and to 1 in the background. The reconstruction is carried
out using 6 boundary measurements. The initial guess is a regular polygon
of 14 sides (top-left). We present a noiseless reconstruction, with (top-right)
and skipping (bottom-left) the regularization step, and a reconstruction with
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Figure 2. Reconstruction of a piecewise constant conduc-
tivity on an asymmetric pentagon starting from 6 measure-
ments. The blue line represents the target shape. The values
of the conductivity are known. Initial guess (top-left). Re-
construction from noiseless data with (top-right) and without
(bottom-left) the regularization step. Bottom Right: recon-
struction with regularization for 3% noisy data.

regularization when 3% of noise is added to the data (bottom-right). The
regularization parameters are set to δ1 = 0.7 δ and δ2 = 1.8 δ, where δ is
the length of the side of the initial guess. Figure 2 shows that the three
reconstructions well identify the shape with a comparable precision.

A non-convex polygon is considered in Figure 3, where the target conduc-
tivity is 10 inside and 1 in the background. Here, we employ 28 boundary



17

Figure 3. Reconstruction of a piecewise constant conduc-
tivity on a non-convex polygon starting from 28 measure-
ments. The blue line represents the target shape. The values
of the conductivity are known. Initial guess (top-left). Re-
construction from noiseless data with (top-right) and without
(bottom-left) the regularization step. Bottom Right: recon-
struction with regularization for 3% noisy data.

measurements. The initial guess is a regular polygon of 24 sides (top-left).
For this phantom, we present a noiseless reconstruction with (top-right) and
without (bottom-left) the regularization step, and a reconstruction post reg-
ularization in the presence of a 3% of noise added to the data. The regular-
ization parameters are chosen as δ1 = 0.85 δ and δ2 = 1.8 δ, where δ is the
length of the side of the initial guess. We notice here that the regularization
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Figure 4. Reconstruction of the heart and lung phantom
starting from 6 measurements. The blue lines highlight the
target shapes. The values of the conductivity are known.
Initial guess (top-left). Reconstruction from noiseless data
with (top-right) and without (bottom-left) the regularization
step. Bottom Right: reconstruction with regularization for
3% noisy data.

step helps to reconstruct more precisely the non-convex part of the unknown.
It is also interesting to observe that the shape is well identified also in the
noisy case.

In Figure 4, we consider the so-called heart and lung phantom [38], with
background conductivity 1, two ellipses with conductivity 0.5 and a disk with
conductivity 2 (both ellipses and the disk are approximated with 16-sided
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polygons). The initial guess coincides with three identical regular polygons
of 16 sides each (top-left). The regularization parameters are δ1 = 0.9 δ

and δ2 = 1.8 δ, where δ is the length of the side of one of the initial guess
polygons. The reconstruction is done using 6 boundary measurements. Here,
the difference between the regularized (top-right) and the non-regularized
(bottom-left) reconstruction is significative. Moreover, the reconstruction is
very robust to the 3% noise added to the data (bottom-right).

Remark 3. The three phantoms just presented have different contrast. It
is therefore natural to study the dependence of the reconstruction on the
contrast. We observed that the algorithm converges faster in case of higher
contrast, yet the reconstruction quality is the same. For this reason we
decided to not include reconstructions of the same phantom with different
contrast values.

4.2. Reconstruction from a misplaced initial guess. With the exam-
ple in Figure 5, we show the robustness of the algorithm in recovering an
unknown shape from a misplaced initial guess. The target is a piecewise
conductivity with value 10 inside a square and 1 in the background. The
initial guess is an octagon, far from the exact square (top-left). The regu-
larization parameters are set to δ1 = 0.8 δ and δ2 = 1.7 δ, being δ the length
of the side of the octagon. The algorithm is able to recover the square
(bottom-right). The striking result strongly depends on the choice of the
regularization parameters. Indeed, after the first few iterations, the octagon
becomes a triangle (top-right). This reduction in the degrees of freedom
avoids potential degeneracy of the shape. The triangle eventually changes
and becomes a square when approaching the target (bottom-left).

4.3. Simultaneous reconstruction. In this section, we present reconstruc-
tions obtained with the full algorithm, i.e., the conductivity values are also
unknown and updated at each iteration.

We focus on the heart and lung phantom, this configuration being char-
acterized by more interesting features compared with the other ones. The
background is assumed to be known and is equal to 1, while the coefficients
to be recovered are the lungs, with value 0.5, and the heart, with value 2.
The reconstructions presented in Figure 6 are obtained from 28 boundary
data. The initial guess (top-left) identifies the shapes the algorithm acts
on, while three different values are adopted for the initial conductivity dur-
ing the reconstruction procedure. The regularization parameters are set to
δ1 = 0.9 δ and δ2 = 1.8 δ independently of the run, with δ the length of the
side of one of the initial guess polygons.
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Figure 5. Reconstruction of a piecewise conductivity on
a square from 28 measurements. The blue line represents
the target shape. The values of the conductivity are known.
Initial guess (top-left). Intermediate configurations (top-right
and bottom-left). Final reconstructed conductivity (bottom-
right).

The first reconstruction deals with noiseless data. The values of the initial
guess are 0.55 in the lungs and 2.05 in the heart. The reconstructed values are
0.49 and 2.05, respectively, and the shape is well reconstructed for the three
inclusions (top-right). The second reconstruction starts from the same initial
guess, by adding a 5% noise to the data. The reconstructed conductivity
values are 0.37 in the lungs and 2.06 in the heart. The shape of the lungs is
better recovered than the heart (bottom-left).
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Figure 6. Reconstruction of the heart and lung phantom
starting from 28 measurements. The blue lines highlight the
target shapes. The values of the conductivity are unknown.
Shape of the initial guess (top-left). Reconstruction from
noiseless (top-right) and 5% noisy (bottom-left) data. Blind
reconstruction from 1% noisy data (bottom-right).

The last reconstruction is essentially blind, where we assume that the ini-
tial guess is provided by a constant conductivity equal to 1 (the background).
Moreover, data contains 1% of additive noise. Despite the challenging set-
ting, some features are correctly recovered. The reconstructed values are 0.44
in the lungs and 0.94 in the heart. The shape and the values of the lungs are
well reconstructed, whereas this is not the case for the heart (bottom-right),
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Figure 7. Reconstruction of the heart and lung phantom
starting from 6 (top-right), 28 (bottom-left) and 120 (bottom-
right) measurements. The blue lines highlight the target
shapes. The values of the conductivity are known. Shape
of the initial guess (top-left).

due to the lack of a priori information and the central position of the middle
polygon in the initial guess.

4.4. Sensitivity to the number of measurements. Using the heart and
lung phantom (always with value 0.5 in the lungs, 2 in the heart, and 1 in the
background), we check now how the reconstructions change using a different
set of measurements. The regularization parameters are always chosen as
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δ1 = 0.9 δ and δ2 = 1.8 δ, with δ the length of the side of one of the initial
guess polygons.

In Figure 7, we present shape reconstructions (conductivity values are
known) starting from noiseless data sets of 6, 28 and 120 boundary measure-
ments. While there is an evident improvement passing from 6 to 28 data, the
reconstruction quality obtained from 28 and 120 measurements looks very
similar in this example. This is due to the ill-posedness of the problem that
limits the resolution.

4.5. Sensitivity to the noise level. In this section, we show how the
algorithm is stable to noise in the measurements. In Figure 8, we present
reconstructions using the full algorithm (unknown shape and values) for the
heart and lung phantom. The regularization parameters are always chosen
as δ1 = 0.9 δ and δ2 = 1.8 δ, being δ the length of the side of one of the initial
guess polygons.

The initial guess has values 0.7 for the lungs and 1.5 for the heart, far from
the exact values 0.5 and 2, respectively. Data contain 0.5% (top-right), 5%
(bottom-left) and 20% (bottom-right) of additive noise, respectively. The
tolerance in the stopping criterion is chosen experimentally, according to the
noise level: 0.004 for both 0.5% and 5% of noise, 0.02 for 20% of noise. We
observe that the shape of the lungs is well recovered even with very noisy
data, whereas the heart is poorly recovered, due to the values of the initial
guess and the central position of the middle disk. The reconstructed values
exhibit a low sensitivity to the noise level. They are 0.4 in the lungs and
1.51 in the heart for both 0.5% and 5% of noise, while we obtain 0.37 in the
lungs and 1.49 in the heart when considering 20% of noise.

5. Conclusions

We have presented a new shape optimization approach that is able to well
identify a piecewise constant conductivity on a polytopal partition in elec-
trical impedance tomography. Despite the ill-posedness of EIT, the a-priori
assumption on the conductivity to be piecewise constant on a polygonal par-
tition regularizes the problem. This fact, coupled with the effectiveness of
the algorithm, allows us to recover an unknown partition (or at least a subset
of it) even in the case of noisy data and a wrong initial guess. This is possible
due to the use of a distributed shape derivative, to a new regularization step
and a new computation of the descent direction. The algorithm performs
better when a good approximation of the values of the conductivity is avail-
able. When the coefficients are not known, we noticed that it takes more
iterations to approximate their values than to identify the shapes. These val-
ues could be obtained, for instance, from a one-step reconstruction [16] and
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Figure 8. Reconstruction of the heart and lung phantom
starting from noisy measurements. The blue lines highlight
the target shapes. The values of the conductivity are un-
known. Shape of the initial guess (top-left). Reconstruction
starting from 0.5% (top-right), 5% (bottom-left) and 20%
(bottom-right) noisy data.

used as a first guess to recover the interfaces more accurately (see also [39]
for a hybrid one-step method). The algorithm can be accelerated using more
advanced minimization methods and more efficient forward solvers. Possi-
ble approaches to accelerate the minimization include Newton-type methods
and also reduced order models to speed up the forward and adjoint problems.
This would be crucial with a view to practical applications.
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