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Abstract 

The massive urbanization process registered since 1950’s and projected to continue for 

the coming decades, is posing a crucial issue for the management of existing cities and 

for the planning of future ones. Smart cities are often envisioned as ideal urban 

environments where the different dimensions of a city, such as economy, education, 

energy, environment, finance, etc., are managed in an effective and proactive way. 

Nevertheless, in order to reach this remarkable and challenging objective, analysis tools 

are required to create scenarios that are able to inform policy makers’ decisions.  

Focusing on energy, this paper proposes an analysis method, based on exergy, to 

support smart city planning. It may help the decision makers to assess the energy-

smartness of different scenarios, and to address energy urban policies. Possibilities and 



limitations of the analysis method are discussed via the application to the cities of 

London, Milan and Lisbon that committed to become smart cities. 
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Practical Application 

The paper summaries a study on the possibilities and limitations of adopting an 

assessment technique, based on exergy, in order to evaluate the energy-smartness of 

policies in existing and future smart cites. As highlighted in the paper, building’s related 

energy uses have a huge share of many cities’ energy breakdown. Thus, professionals in 

the building industry will be interested in the paper not only because it refers to smart 

cities, but because the built environment plays a pivotal role in them. Professionals may 

also refer to this study to perform similar analysis in other urban environments to 

support decision makers. 

 

Introduction  

According to the Population Division of the Department of Economic and Social Affairs 

at the United Nations Secretariat, the world population living in cities has grown rapidly 



since 1950, from 746 million to 3.9 billion in 2014 [1], [2]. In 2008, for the first time in 

history, the urban population equaled the rural population of the world, and in 2014 

already 54 % of the world’s population was residing in urban areas [1], [2]. It is a trend 

expected to continue in the coming years. In 1950, 30 % of the world’s population was 

urban, whereas by 2050, 66 % of the world’s population is projected to be urban [2]. 

Some geographical distinctions nevertheless exist. Data referred to 2014 shows different 

shares of urban population in different world’s regions [2]: 82 % in Northern America, 

80 % in Latin America and the Caribbean, 73 % in Europe, 48 % in Asia and 40 % in 

Africa. All regions are expected to urbanize further over the coming decades. However, 

Africa and Asia are urbanizing faster than the other regions and are projected to become 

56 % and 64 % urban, respectively, by 2050 [2]. Projections show that urbanization 

combined with the overall growth of the world’s population could add another 2.5 

billion people to urban populations by 2050, with nearly 90 % of the increase 

concentrated in Asia and Africa [2]. This is particularly important, since Asia, despite 

its current lower level of urbanization, is home to 53 % of the world’s urban population, 

followed by Europe (14 %) and Latin America and the Caribbean (13 %) [2]. 

Almost half of the world’s urban dwellers resides in relatively small settlements of less 

than 500 000 inhabitants, while around the 12.5 % of them live in the 28 mega-cities 

with more than 10 million inhabitants [2]. By 2030, the world is projected to have 41 

mega-cities with more than 10 million inhabitants. However, the fastest growing urban 



agglomerations are medium-sized cities and cities with less than 1 million inhabitants 

located in Asia and Africa [2].  

In the coming decades, we will therefore experience a continuous expansion of the 

major cities in Northern America, Europe and Latin America and the Caribbean, 

whereas this trend will be mixed in Asia and Africa with the fast expansion of mid and 

small size settlements and sometimes also the foundation of new towns. By 2050, a 

large portion of new buildings, equivalent to 40 % of the world’s current building stock, 

will be built in cities in emerging and developing economies, which will also account 

for 85 % of the increase in urban passenger travel globally [3]. 

Cities currently account for about two-thirds of global primary energy demand and 

70 % of total energy-related carbon dioxide (CO2) emissions. The energy and carbon 

footprint of urban areas will increase with urbanization and the growing economic 

activity of urban citizens, which in 2013 accounted for about 80 % of the world’s GDP 

[3]. 

Under current energy system trends, the urban primary energy demand could rise up to 

about 620 exajoules (EJ) by 2050, when it will account for 66 % of the total [3]. In 

parallel, carbon emissions from energy use in cities (including indirect emissions from 

power and heat generation) would increase by 50 % [3]. 

Mass urbanization presents therefore one of the most urgent, worldwide challenges of 

the 21st century. Cities and urban communities have to cope with poor air quality, urban 



heat island effect, low urban environmental quality, energy shortage and other 

interrelated issues. Moreover, urban services substantially rely on energy availability 

and on the reduction of harmful emissions as consequence of energy use. Key 

challenges for smart and sustainable cities are hence to provide solutions that may 

significantly increase cities’ overall energy and resource efficiency through actions 

addressing mostly the building stock, the energy systems and mobility [3]. 

Local policy makers have the levers to drastically shape or reshape the cities where a 

huge part of world’s population will live in the coming decades. However, they need 

adequate analysis tools, able to provide them with reliable forecasting scenarios. 

Smart cities projects and technical committees are at the very heart of the development 

of these tools.  

ITU, the United Nations specialized agency for information and communication 

technologies (ICTs) created a focus group on smart sustainable cities (FG – SSC) acting 

as an open platform for smart-city stakeholders to exchange knowledge with the aim of 

identifying the standardized frameworks needed to support the integration of ICT 

services in smart cities [4]. The FG-SSC concluded its work in May 2015 by approving 

21 technical specifications and reports [4]. ITU also created a parallel study group, the 

ITU-T Study Group 5, about environment, climate change and circular economy [5]. 

The International Organization for Standardization (ISO) also created a technical 

committee about sustainable cities and communities, the ISO/TC 268, which already 



published four standards, and it is developing six new ones [6], and a subcommittee 

about smart community infrastructures, which published three standards and is 

developing six new ones [7]. The most relevant standards are ISO 37120 [8] about 

indicators for city services and quality of life and ISO/TS 37151 [9] about principles 

and requirements for performance metrics. A lot of expectation is also on 

ISO/NP 31722 and 37123 standards, about, respectively, indicators for smart cities and 

indicators for resilient cities, currently under development. 

The technical reports and standards produced by ITU and ISO, and other similar 

organizations, provide, so far, a list of key performance indicators (KPIs) concerning 

the different aspects of a city (e.g., economy, education, energy, environment, finance, 

etc.), but they do not provide specific analysis tools able to support the development of 

local policies. In the case of energy, these KPIs are, moreover, quite general and do not 

allow for a detailed energy breakdown of the city energy uses. 

Although a comprehensive and holistic approach is in the end required to address local 

policies for sustainable development and planning of smart cities, this must be based on 

different analysis tools specific for each city’s dimension. According to the fast 

urbanization scenario depicted above, energy is one of the dimensions that most 

urgently need such a kind of tool.  

Analysis methods and indices are necessary to assess the energy performance of cities 

and to determine if energy is used with appropriate and smart approaches. Almost no 



indication is provided in the literature about the effectiveness of using different energy 

carries to provide different services and about the quality of the conversion processes, 

that is how smartly energy is used within the city.  Targeting this gap, the present paper 

proposes an analysis approach for smart cites, founded on energy and exergy 

efficiencies, with the aim to provide the decision maker with a useful tool to understand 

the energy-smartness of different scenarios, and to address urban energy policies. 

Exergy is an indicator of the energy quality, and, specifically, it provides a quantitative 

basis to measure the degradation of energy (i.e., the decrease of its capacity to generate 

useful work) in conversion processes [10], [11], [12]. By means of the so-called 

extended exergy analysis [13], exergy has also been adopted to evaluate and compare 

countries, regions and economic sectors [14], [15], [16], [17], [18]; early example are 

available also for districts [19], [20], [21], [22]. 

The present work uses data from three relevant European cities participating to Sharing 

Cities [23], a lighthouse smart city project, as a case study to assess the possibilities and 

limitations of the proposed analysis method, and to evaluate its applicability to different 

urban scenarios 

. 

 



Nomenclature 

η energy efficiency 

ψ  exergy efficiency 

o  overall 

pr.en primary energy  

use final energy use  

 

Subscript: 

carr energy carrier 

sec sector  

 

Method 

The goal of the analysis is to estimate the overall energy and exergy efficiencies of a 

city, in order to compare the energy-smartness of different urban policy scenarios. To 

this purpose, the approach presented by Dincer and Rosen [14], [24] has been assumed 

as a reference for the calculations. London, Milan and Lisbon, have been selected as 

case studies, since they substantially committed to become smart cities [23]. Starting 

from the final energy use for each sector (e.g., space heating, public lighting, transport, 

etc.) and from the associated energy carriers1, energy and exergy efficiencies have been 

                                                 
1 In order to simplify the communication of results, the definition of energy carrier provided by ISO 
13600 is here adopted, that is an energy carrier is defined as either a substance or a phenomenon that can 



calculated as weighted average, applying a two-step process. For each energy carrier, 

the weighted means of energy and exergy efficiency have been obtained, where the 

weighting factor is the ratio of energy input for each use to the total energy input for all 

uses (Eq. 1 and 3). Further, the overall weighted mean has been obtained for both 

energy and exergy efficiency, considering all energy carriers; in this case, the weighting 

factor is the ratio of the primary energy input of the considered energy carrier to the 

total primary energy input from all carriers (Eq. 2 and 4). 

Energy efficiency by carrier: 

ηcarr=
∑ (usesec,i

n
i=1 ⋅ηsec,i)

∑ usesec,i
n
i=1

         (1) 

Overall energy efficiency: 

ηo=
∑ (pr.encarr,i

m
i=1 ⋅ηcarr,i)

∑ pr.encarr,i
m
i=1

    (2) 

Exergy efficiency by carrier: 

ψcarr=
∑ (usesec,i

n
i=1 ⋅ψsec,i)

∑ usesec,i
n
i=1

     (3) 

Overall exergy efficiency: 

ψo=
∑ (pr.encarr,i

m
i=1 ⋅ψcarr,i)

∑ pr.encarr,i
m
i=1

     (4) 

 

                                                 
be used to produce mechanical work or heat or to operate chemical or physical processes. It includes 
therefore both fuel oil, diesel oil, gasoline, natural gas, typically labelled as energy sources, and electrical 
energy and thermal fluids, more commonly defined as energy carries. 



To obtain the overall energy and exergy efficiencies according to equations 1 to 4, data 

on city energy breakdown and efficiencies related to each urban sector is necessary. The 

different energy uses at city level may be available from the Sustainable Energy Action 

Plan (SEAP), a key document in which a Covenant of Mayor signatory outlines how it 

intends to reach its CO2 reduction target by 2020 [25]. It defines the activities and 

measures set up to achieve the targets, together with time frames and assigned 

responsibilities.  

The SEAP of Milano has a good level of detail and contains the description of the 

methodology and references adopted to gather data for past and on-going conditions (up 

to year 2013) [26]. The SEAPs of London and Lisbon, unfortunately, do not show the 

same level of detail; for the present study, we had consequently to refer to alternative 

databases.   

In the case of London, we referred to the database of the Department for Business, 

Energy and Industrial Strategy, of the UK government [27], in particular to the sub-

national total final energy consumption statistics for the period 2005-2014, where 

London’s data is included. For Lisbon, we referred to the Matriz Energética de Lisboa 

for year 2014 [28], prepared by Lisboa E-Nova, Instituto Superior Tecnico and Camara 

Municipal de Lisboa and published in July 2016.  

The Baseline scenario adopted in the present study refers, therefore, in the case of 

London and Lisbon to data for year 2014, whereas in the case of Milan to data for year 



2013. The reference to three different databases required to slightly rework some data in 

order to establish a common initial point to perform our analysis. In particular, London 

and Lisbon data did not show a distinction between public and private mobility; we thus 

decided to apply the sharing reported in the SEAP of Milan to London and Lisbon too. 

Moreover, diesel oil and fuel oil used for buildings’ heating have been grouped together 

under the general label “fuel oil” to limit the number of energy carriers. 

Five additional scenarios have been then developed and simulated for the three 

reference cities: Mob, DH, EE Build, LED, and EE Appl. Each one of them has been 

prepared to evaluate the effect of a single action or policy on the energy-smartness at 

city level, by changing either some energy use values or energy and exergy efficiencies 

with respect to the Baseline.  

In the Mob scenario, the focus is on urban mobility only; it includes a reduction of the 

final energy use for transport by 35 %, and a shift toward electric mobility. The sharing 

of public transport per carrier is: 58 % electric, 0 % natural gas, 42 % fuel oil, 0 % 

gasoline, whereas the sharing for private transport is: 2 % electric, 4 % natural gas, 

49 % fuel oil, 45 % gasoline. The percentages of reduction and shift are taken from the 

scenario pictured for 2020 in the SEAP of Milan. In the DH scenario, 10 % of the total 

final energy use for buildings’ heating is assigned to district heating. It is necessary to 

point out that in the Baseline scenario the sharing of district heating is 5 % for Milan, 

and 0 % both for London and Lisbon. Actually, a very small district heating network 



does exist in Lisbon, but energy data is not available. It means that the DH scenario 

pictures a spreading of an existing technology in Milan and to a rather limited extent in 

Lisbon, while the inception of a new technology in London. The EE Build scenario 

assumes the adoption of energy efficiency (EE) measures (i.e., renovation measures) on 

building envelopes and energy systems, resulting in an overall reduction of the final 

energy use by 20 %, with respect to the Baseline scenario. The EE measures on energy 

systems include the complete substitution of old fuel oil boilers with new natural gas 

furnaces and the use of exergy efficient systems such as radiant panels and condensing 

gas boilers, but they do not include interventions on residential appliances (i.e., 

refrigerators, washing machines, etc.). The final energy use for space heating refers to 

residential buildings only for all the three cities. The fourth scenario, named LED, is 

obtained by switching all the public lighting lamps, assumed as metal halide, to light-

emitting diode (LED) lamps, resulting in a reduction of the final energy use and in an 

improvement of energy and exergy efficiencies. The Municipality of Milan effectively 

implemented this action, as from 2014 to present date, and 97 % of the public lighting in 

Milano has already been converted to LED. Unfortunately, data on public lighting was 

not available for London, and this scenario could not be simulated for this city. Finally, 

the EE Appl scenario envisions an improvement for residential appliances only, in terms 

of energy and exergy efficiency. The final energy use is assumed to decrease by 10 %, 



compared to the Baseline, following the efficiency improvement. The criteria adopted to 

build the scenarios are summarized in Table 1. 

Table 1. Simulated scenarios 

 Mob DH EE Build LED2 EE Appl 

Actions on 

energy use 

The final energy 

use for transport is 

globally reduced by 

35% and partially 

shifted from fuel oil 

and gasoline to 

natural gas and 

electricity1 

A share equal to 

10% of the total 

final energy use for 

buildings is shifted 

to district heating 

The final energy 

use for buildings is 

globally reduced by 

20% and shifted 

from fuel oil to 

natural gas and 

electricity 

The final energy 

use for public 

lighting is reduced 

by 52%3 

The electrical use 

of buildings (which 

is assumed to be 

function of 

appliances only) is 

reduced by 10% 

Actions on 

efficiencies 
None None 

Improved 

efficiencies for 

heating systems 

Improved 

efficiencies due to 

LED technology 

Improved 

efficiencies for new 

appliances 
1 The reduction and shifting follow the scenario proposed by Milan’s SEAP for year 2020. In particular, for public transport, the 

share is: 58% electric, 0% natural gas, 42% fuel oil, 0% gasoline; for private transport the share is: 2% electric, 4% natural gas, 49% 

fuel oil, 45% gasoline. 

2 This scenario cannot be applied for London because data on public lighting energy use is not provided. 

3 This is the energy use reduction observed in Milan after the real switch of public lighting to LED technology. 

 

Energy and exergy efficiencies should be evaluated with a common and shared 

procedure, adopting the same reference conditions and starting from a detailed 

characterization of the energy conversion processes and systems within the city. These 

include: the private and public transport fleet with a comprehensive breakdown for 

energy carrier and engine power, the public lighting system with an accurate description 

of terminal devices (including ballast), the entire (private and public) building stock, 

including specifications of building envelopes and energy systems (generation, storage, 



distribution, emission and control), residential appliances and equipment adopted by 

other sectors, etc. Average values for each sector may be eventually derived. This 

approach would nevertheless require an exhaustive and coordinated work, including 

interviews and surveys to operators, on-site inspections and measurements. It could be 

implemented only with a substantial commitment of the municipalities and a 

coordinated involvement of local public and private actors such as energy providers, 

research centers, local committees, professional organizations and other stakeholders. 

Since it was not possible to establish in a short time such a kind of exhaustive and 

coordinated analysis for the three reference cities, and since the aim of the study was 

just to report possibilities and limitations of the analysis method proposed to assess 

energy-smartness at city level, the values of energy and exergy efficiencies adopted in 

this work (Table 2) are taken from the literature, trying to choose the most appropriate 

ones. The validity of the analysis method is independent of the efficiency values 

adopted, and following results and discussion will focus on the method and possible 

outcomes of the procedure, and not on the specific numbers resulting from the 

application of the analysis to the given case studies. 

Electrical energy and exergy efficiencies of residential appliances are critical values to 

be estimated, since they cover a large variety of applications, as highlighted in studies 

for Japan [29]. Lighting systems show an energy efficiency ranging from 20 % to 27 % 

and an exergy efficiency ranging from 17 % to 22 % [30]. Electrical cooking appliances 



may have an average energy efficiency of 32 % and an average exergy efficiency of 6 % 

[29]. Air conditioning appliances may reach energy efficiency up to 200 % and exergy 

efficiency of 5 % [29]. Since no specific study was found for Europe, average values for 

year 2013 and 2030 were set up, assuming an energy efficiency improvement of 50 % 

and an exergy efficiency improvement of 25 %. For district heating, natural gas and 

different couplings of generation and emission systems, energy and exergy efficiencies 

come from Ref. [31]. Values for fuel oil boilers were taken from Ref. [26]. No specific 

data was found in the literature for public lighting; values used in this paper come from 

Ref. [30], assuming the efficiencies of existing street lighting (mostly metal halide 

lamps) to be similar to values for fluorescent lamps, since their range of luminous 

efficacy is comparable. Furthermore, this shows to be a conservative approach [32]. The 

energy efficiency for electric engines come from Ref. [33], while the exergy efficiency 

come from Ref. [34]. Energy and exergy efficiencies for natural gas and gasoline 

engines are taken from Ref. [35], whereas their values for Diesel engines come from 

Ref. [36].  

In order to calculate the overall efficiencies, it was necessary to convert the final energy 

use into primary energy for each energy carrier, by applying the related primary energy 

factor (PEF) valid for each city. The PEF of electricity is 2.92 for London [37], 2.42 for 

Milan [38] and 1.91 for Lisbon [28]. The PEF for natural gas, fuel oil and gasoline is 

assumed to be 1 in all of three cities. The PEF of district heating for Milan is 0.8, 



according to the local energy provider declaration. In the Baseline scenario, London and 

Lisbon do not have energy use related to district heating, the PEF reported for Milan 

was instead used in the DH scenario, where a district heating system is considered for 

London and Lisbon as well. Final energy use and primary energy for the considered 

scenario are summarized in Table 4, Table 5, and Table 6 that are reported in the 

Appendix, including the share for energy carrier. Values derived from SEAP for Milano 

and from Ref. [27] and Ref. [28], for London and Lisbon, respectively, have been 

slightly reworked to fit the purpose of this study and to make the results for the three 

cities comparable. 

Table 2. Energy and exergy efficiencies for each energy use 

DOMESTIC 

APPLIANCIES 
 HEATING + DOMESTIC USES  LIGHTING  TRANSPORT 

 η ψ   η ψ   η ψ   η ψ 

Average 

for 2013 50.0% 6.0% 

 District 

Heating 90.0% 31.9% 

 

Fluor. 20.0% 17.5% 

 

Electric 80.0% 33.5% 

Estimate  

for 2030 75.0% 7.5% 

 Gas boilers + 

radiators 86.0% 6.7% 

 

LED 27.3% 21.8% 

 Natural 

gas 27.0% 31.0% 

   

 Condensing 

gas boilers + 

radiant panels 105.0% 8.5% 

 

   

 

Diesel fuel 36.7% 34.4% 

   

 Fuel oil 

boilers + 

radiators 75.0% 6.7% 

 

   

 

Gasoline 27.1% 30.6% 

 

The analysis is applicable only if the boundary of the system, in this case the city, is 

clearly established. The consulted databases provided final energy values within the 

cities, excluding power plant generation. This is especially important for the case of 



district heating. The efficiencies reported in Table 2 depend only on the thermal fluid 

distribution and heat transfer at the building’s heat exchanger, but do not include the 

generation systems such as combined heat and power, or more traditional thermo-

electric plants. The system’s boundary considered in the present analysis is graphically 

sketched in Figure 1. 

 

Figure 1. System's boundary adopted for the analysis 

 

Results 

Table 3 and Figures 2 to 4 summarize the analysis results in terms of energy and exergy 

efficiency and total primary energy for each considered scenarios. The energy efficiency 



shows the extent of the entering energy flows that is actually transformed in a useful 

energy output within the system (i.e., the city). Whereas the exergy efficiency shows the 

degradation of energy flows within the system by comparing exergy outputs to exergy 

inputs. In scenarios with a higher exergy efficiency, the degradation of the energy flows 

due to conversion processes into the city is low, the city is therefore exploiting better the 

potential of high quality services inherent to the input exergy flows. In this sense, the 

exergy efficiency may be assumed as an indicator of energy-smartness. However, a very 

high exergy efficiency applied to a small energy flow does not affect considerably the 

city’s overall exergy efficiency. Thus, in terms of energy-smartness, it is important to 

couple high exergy efficiencies to the largest final energy uses. 

 

Table 3. Primary energy use, energy and exergy efficiencies for different scenarios 
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London 

ηo 59% 63% 61% 65% 59% 68% 

ψo 13% 13% 15% 15% 13% 14% 

Primary energy (TWh) 107.3 107.3 101.2 91.6 107.3 103.5 

Milan 

ηo 66% 68% 67% 75% 67% 71% 

ψo 13% 13% 14% 15% 13% 14% 

Primary energy (TWh) 16.3 15.7 16.2 14.7 16.2 16.0 

Lisbon 

ηo 45% 50% 46% 46% 42% 52% 

ψo 22% 20% 23% 24% 21% 23% 

Primary energy (TWh) 5.0 4.2 4.9 4.7 5.0 4.9 

 



An early comparison of results gathered in Table 3 and Figures 2 to 4 shows that the 

total primary energy use of Lisbon is roughly one third of the Milan’s one, and that the 

latter is roughly 15 % of the primary energy use of London. Lisbon primary energy use 

represents thus just the 5 % of London’s value. Slight, but not substantial variations are 

reported for the five scenarios. The size of the city is not a limit for the analysis method 

that is applicable to cities with substantially different energy use and size, as in the 

present example.  

The variation of exergy efficiency among different scenarios is limited. The largest 

variation is registered in Lisbon and it is equal to 4 % (Table 3), whereas both in 

London and Milan the variation is limited to 2 %. This is linked to the energy 

breakdown by carrier (Figure 5) and by sector (Figure 6), which are very similar for 

London and Milan and slightly different for Lisbon. The primary energy use in 

residential buildings represents just 37 % of the total in the Portuguese capital, whereas 

it accounts for 74 % and 80 % of the total primary energy use in London and Milan, 

respectively. The share of primary energy due to private transport is therefore 

substantially higher in Lisbon (52 %) than in London (20 %) and Milan (14 %). 

Exergy efficiencies reported in Table 2 are much higher for transport than for space 

heating, because the useful output of the energy conversion in transport is mechanical 

work, having a substantially higher exergy value than thermal energy at buildings’ 

indoor air temperature that is the useful output of the energy conversion for building’s 



space heating. It is then evident that in Lisbon, where transport has a higher share of 

primary energy, the overall exergy efficiency results higher. 

It is worth nothing that in Lisbon the exergy efficiency of the Mob scenario is lower 

than the one of the Baseline scenario. This happens because in Mob the share of primary 

energy use due to buildings’ heating substantially increases to compensate the decrease 

of the mobility share, and the exergy efficiency of building’s heating processes is very 

low. The overall performance of Lisbon is consequently much more sensitive to 

changes in the mobility sector than in the case of London and Milan. 

Conversely, Table 2 shows much higher energy efficiencies for buildings’ heating than 

for transport, thus both London and Milan present overall energy efficiencies higher 

than Lisbon. In particular, the EE Build scenario reports the lowest primary energy use 

for both London and Milan, and substantially higher energy efficiencies. 

A more accurate analysis of Table 3 shows that, for all of the three considered cities, the 

highest overall exergy values are achieved in the case of DH, EE Build and EE Appl 

scenarios. This means that the only way to increase the overall energy-smartness of a 

city is acting on the sector that shows the lowest exergy efficiency (i.e., buildings) and 

decreasing its overall energy use (EE Build and EE Appl scenarios), or promoting a 

switch to a technology that shows a higher exergy efficiency (DH scenario). The first 

solution is, however, more effective because it combines a rise of the exergy efficiency 

to a substantial reduction of the energy use. 



As a direct consequence of these considerations, it is possible to state that local policies 

on mobility may have a higher impact in term of energy in Lisbon, whereas local 

policies on building’s heating may have a larger energy impact in London and Milan, 

although they show to be effective in Lisbon as well. A further development of the 

analysis could provide projections also about harmful gas emissions related to the 

different sectors and carriers. Figure 6 shows that the electricity share of primary energy 

is 36 % in London, 21 % in Milan, and 32 % in Lisbon. The share of natural gas is 

instead 38 % in London, 52 % in Milan, and 11 % in Lisbon. Finally, the fuel oil share 

is 16 % in London, 18 % in Milan, and 42 % in Lisbon.  

As already discussed, the DH scenario poses, moreover, an important economic issue 

because it corresponds to the extension of the exiting district heating system in the case 

of Milan, while to the inception of a new technology in London and of a substantially 

new technology in Lisbon as well. The economic value of these interventions may be 

considerably different. 

 



 

Figure 2. Scenarios for London 

 

Figure 3. Scenarios for Milan 
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Figure 4. Scenarios for Lisbon 

 

 

Figure 5. Primary energy breakdown by carrier for Baseline scenario 
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Figure 6. Primary energy breakdown by sector for Baseline scenarios 

 

Discussions and Conclusion 

The result of the analysis indicated some differences between the three cities. In 

particular, London and Milan showed to be more sensitive to local policies about 

buildings, electrical energy and natural gas, whereas Lisbon resulted more sensitive to 

local policies about transport, electrical energy and fuel oil. This depends on the 

different baseline scenarios used for the three cities. In Lisbon, the highest share of 

primary energy is due to the private transport, whereas buildings show a lower share 

(Figure 6). Actions on transport and on the energy carriers used for it (i.e., mostly fuel 

oil and electricity) show thus, in Lisbon, a larger effect. Both in Milan and London the 

largest share of primary energy is due to buildings (Figure 6). Actions on them and on 
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the energy carriers mostly used for space heating and appliances (i.e., natural gas and 

electrical energy, respectively) show therefore a larger impact in Milan and London. 

As already mentioned, policies meant to rise a city’s energy-smartness, should target the 

sectors that present the highest share of primary energy and the lowest exergy 

efficiency.  

Energy and exergy efficiencies of the single processes, are out of the control of local 

policy makers, as they depend on technological innovation. Local policies may 

nevertheless affect the overall energy and exergy efficiencies of the city (Eq. 2 and 4) 

by fostering energy saving (i.e., higher energy efficiencies and behavioral changes such 

as shifts from individual motorized vehicles to bicycle, pedestrian, public transport, car 

pooling and car sharing modes) in the sectors where energy uses are higher and by 

selecting and promoting the technologies that show higher exergy efficiencies. 

Some limits are, however, peculiar of the single sector. The exergy efficiency of 

whatever space heating process will always be lower than the exergy efficiency of an 

engine for transport, because the useful output of the former process is thermal energy 

at the building’s indoor air temperature, while the useful output of the latter is 

mechanical energy, subsequently transformed into kinetic energy (i.e., the vehicle 

motion). The only way to substantially increase the exergy efficiency for space heating 

processes, is to use energy carries with a low exergy content that is close to the exergy 

content of thermal energy at the building’s indoor air temperature. District heating 



appears hence to be the best available solution in the present analysis. However, results 

could substantially change depending on the system’s boundary (Figure 1): if the 

generation plants were included into the system’s boundary, then the exergy efficiency 

of the district heating would substantially decrease. The choice of the system’s 

boundary is therefore a key aspect of the entire process. We decided not to include the 

power plants into the analysis, (i) because data on the energy carries production is rather 

problematic to be gathered and would therefore increase the uncertainty of the analysis 

outcomes, and (ii) because it would include information that substantially exceeds the 

city’s scale (e.g., the geographical origin of fuel oil or natural gas). 

The preparation phase that aimed at collecting all data necessary for the analysis 

showed that energy data is not yet gathered in a shared and common way among cities. 

This is one of the major barriers hindering a systematic application of energy analyses at 

city level. In order to overcome this issue, a common database for at least European –

and potentially worldwide– cities is required, which might gather all the fundamental 

energy uses in cities, measured with a common accuracy and harmonized procedures 

and metrics. Moreover, a similar database is required for energy and exergy efficiencies, 

evaluated with a common methodology. 

A more comprehensive analysis approach would require information about economic 

and environmental aspects such as harmful gas emissions. Future extension of the 

analysis could therefore target the application of the Extended Exergy Accounting 



method [15] to smart cities. The issue about data quality and availability should, 

however, be tackled in advance. 
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Appendix 

In the following tables, highlighted data represents the final energy use values that 

characterize each scenario. They are obtained by changing either some energy use 

values or energy and exergy efficiencies with respect to the Baseline scenario. 

 
Table 4. Final energy use and total primary energy (GWh) for each scenario, for London. Data reworked from [27].  

BASELINE (2014)           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 13102 41065 197 - - 

Transport - - 16530 11270 - 

Public - - 4140 - - 

Private - - 12390 11270 - 

Total final energy use 13102 41065 16727 11270 - 

Total primary energy 38257 41065 16727 11270 - 

% on total 36% 38% 16% 11% 0% 

      

MOBILITY (Mob)           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 13102 41065 197 - - 

Transport 2721 747 10768 8329 - 

Public 2331 - 1676 - - 

Private 390 747 9093 8329 - 

Total final energy use 15823 41811 10966 8329 - 

Total primary energy 46203 41811 10966 8329 - 

% on total 43% 39% 10% 8% 0% 

      

DISTRICT HEATING (DH)           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 10482 38445 - - 5436 

Transport - - 16530 11270 - 



Public - - 4140 - - 

Private - - 12390 11270 - 

Total final energy use 10482 38445 16530 11270 5436 

Total primary energy 30608 38445 16530 11270 4349 

% on total 30% 38% 16% 11% 4% 

      

ENERGY EFFICIENCY BUILDINGS (EE Build)         

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 10560 32931 - - - 

Transport - - 16530 11270 - 

Public - - 4140 - - 

Private - - 12390 11270 - 

Total final energy use 10560 32931 16530 11270 - 

Total primary energy 30836 32931 16530 11270 - 

% on total 34% 36% 18% 12% 0% 

      

ENERGY EFFICIENCIES APPLIANCES (EE Appl)         

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 11792 41065 197 - - 

Transport - - 16530 11270 - 

Public - - 4140 - - 

Private - - 12390 11270 - 

Total final energy use 11792 41065 16727 11270 - 

Total primary energy 34431 41065 16727 11270 - 

% on total 33% 40% 16% 11% 0% 

 

Table 5. Final energy use and total primary energy (GWh) for each scenario, for Milan. Data reworked from [26] 

BASELINE (2013)           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings (domestic use) 1349 1061 - - - 
Residential buildings (heating) - 6239 1364 - 426 
Public lighting 112 - - - - 



Public transport 281 - 218 - - 
Private transport - 79 1454 1319 - 
Total final energy use 1742 7379 3036 1319 426 
Total primary energy 4216 7379 3036 1319 341 

% on total 26% 45% 19% 8% 2% 

      

MOBILITY (Mob) 

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings (domestic use) 1349 1061 - - - 
Residential buildings (heating) - 6239 1364 - 426 
Public lighting 112 - - - - 
Public transport 281 - 202 - - 
Private transport 47 90 1096 1004 - 
Total final energy use 1789 7390 2662 1004 426 
Total primary energy 4329 7390 2662 1004 341 
% on total 28% 47% 17% 6% 2% 

      

DISTRICT HEATING (DH) 

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings (domestic use) 1349 1061  - - 
Residential buildings (heating) - 7226 - - 803 
Public lighting 112 - - - - 
Public transport 281 - 218 - - 
Private transport - 79 1454 1319 - 
Total final energy use 1742 8366 1672 1319 803 
Total primary energy 4216 8366 1672 1319 642 
% on total 26% 52% 10% 8% 4% 

      

ENERGY EFFICIENCY BUILDINGS (EE Build) 

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings (domestic use) 1349 1061 - - - 
Residential buildings (heating) - 5997 - - 426 
Public lighting 112 - - - - 
Public transport 281 - 218 - - 



Private transport - 79 1454 1319 - 
Total final energy use 1742 7137 1672 1319 426 
Total primary energy 4216 7137 1672 1319 341 
% on total 29% 49% 11% 9% 2% 

      

LED 

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings (domestic use) 1349 1061 - - - 
Residential buildings (heating) - 6239 1364 - 426 
Public lighting 54 -  - - 
Public transport 281 - 218 - - 
Private transport - 79 1454 1319 - 
Total final energy use 1684 7379 3036 1319 426 
Total primary energy 4075 7379 3036 1319 341 
% on total 25% 46% 19% 8% 2% 

      

ENERGY EFFICIENCIES APPLIANCES (EE Appl) 

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings (domestic use) 1214 1061  - - 
Residential buildings (heating) - 6239 1364 - 426 
Public lighting 112 -  - - 
Public transport 281 - 218  - 
Private transport - 79 1454 1319 - 
Total final energy use 1607 7379 3036 1319 426 
Total primary energy 3889 7379 3036 1319 341 
% on total 24% 46% 19% 8% 2% 

 

Table 6. Final energy use and total primary energy (GWh) for each scenario, for Lisbon. Data reworked from [28] 

BASELINE (2014)           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 660 500 4 -  

Public lighting 58 - - -  

Public transport 96 - 262 -  



Private transport - 43 1749 707  

Total final energy use 814 543 2015 707 - 

Total primary energy 1774 543 2015 707 - 

% on total 35% 10,8% 40% 14% 0% 

      

MOBILITY (Mob)           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 660 500 4 -   

Public lighting 58 - - -   

Public transport 192 - 138 - - 

Private transport 32 61 747 684 - 

Total final energy use 942 562 889 684 - 

Total primary energy 2053 562 889 684 - 

% on total 49% 13% 21% 16% 0% 

      

DISTRICT HEATING (DH)           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 594 450 - - 120,44 

Public lighting 58 - - -   

Public transport 96 - 262 -   

Private transport - 43 1749 707   

Total final energy use 748 493 2011 707 120 

Total primary energy 1630 493 2011 707 96 

% on total 33% 10% 41% 14% 2% 

      

ENERGY EFFICIENCY BUILDINGS (EE Build)         

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 528 403,7 - - - 

Public lighting 58 - - - -  

Public transport 96 - 262 -  - 

Private transport - 43 1749 707   

Total final energy use 682 447 2011 707 - 

Total primary energy 1486 447 2011 707 - 



% on total 32% 10% 43% 15% 0% 

      

LED           

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 660 500 4 - - 

Public lighting 28 - - - -  

Public transport 96 - 262 -  - 

Private transport - 43 1749 707  - 

Total final energy use 784 543 2015 707 - 

Total primary energy 1709 543 2015 707 - 

% on total 34% 11% 41% 14% 0% 

      

ENERGY EFFICIENCIES APPLIANCES (EE Appl)         

Sector/Carrier Electricity Natural gas Fuel Oil Gasoline Thermal fluid 

Residential buildings 594 500 4 - - 

Public lighting 58 - - -  - 

Public transport 96 - 262 -  - 

Private transport - 43 1749 707  - 

Total final energy use 748 543 2015 707 - 

Total primary energy 1630 543 2015 707 - 

% on total 33% 11% 41% 14% 0% 
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