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Abstract In this paper, an approach based on the synergistic use of proper orthogonal decomposition 

(POD) and Kalman filtering is proposed for the online health monitoring of damaged structures. The 

reduced-order model of a structure is obtained during an (offline) initial training stage of monitoring; 

afterward, effective estimations of a possible structural damage are provided online by tracking the 

evolution in time of stiffness parameters and projection bases handled in the model order reduction 

procedure. Such tracking is accomplished via two Kalman filters: a first (extended) one to deal with the 

time evolution of a joint state vector, gathering the reduced-order state and the stiffness terms degraded 

by damage; a second one to deal with the update of the reduced-order model in case of damage 

evolution. Both filters exploit the information conveyed by measurements of the structural response to 

the external excitations. 

Results are reported for a (pseudo-experimental) benchmark test on an eight-story shear building. 

Capability and performance of the proposed approach are assessed in terms of tracked variation of the 

stiffness terms of the reduced-order model, identified damage location and speed-up of the whole 

health monitoring procedure. 

 

Keywords structural health monitoring (SHM); reduced-order modeling; damage detection; model 

updating; Kalman filtering; proper orthogonal decomposition (POD). 

                                                 
S. Eftekhar Azam 

Department of Mechanical Engineering, University of Thessaly, Volos, Greece 

S. Mariani (corresponding author) 

Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy 

E-mail: stefano.mariani@polimi.it 

N.K.A. Attari 

Structural Engineering Department, Building and Housing Research Center (BHRC), Tehran, Iran 

 



2 

1. Introduction 

The rapid growth of infrastructure systems in developing countries has led to the creation of large 

inventories of structures, featuring new design techniques or new structural systems. Owners got soon 

aware of the increased safety levels and longevity that can be attained by integrating structural health 

monitoring (SHM) systems [1]. Further to that, a major portion of infrastructures in developed 

countries are approaching the foreseen end of their lifecycle [2]; decisions to ensure safety and optimal 

maintenance strategies, demand once again reliable information on their structural health, see e.g. [3] 

and [4]. 

Data related to the structural health have to be collected via a network of (possibly embedded) sensors. 

As there is no way to directly sense such state of health, data must be interpreted so that meaningful 

information are extracted from them, see [5]. In recent years, a renewed interest has therefore been 

focused on various aspects of SHM, including damage detection [6], inspection scheduling and 

maintenance management [7] and sensor network design [8]. Developments of the sensing method 

have been provided with surface-mounted MEMS sensors [9,10], fiber Bragg grating sensors [11-13], 

microwave remote sensing systems [14,15], laser scanning methods [16], GPS measurement systems 

[17,18] and motion capturing via digital image processing [19-21], to furnish unprecedented dense 

arrays of data. Accordingly, a need is emerging for an enhancement in signal processing and feature 

extraction methods, to handle the continuous stream of data provided by the sensors and identify in 

real-time possible defects. 

The detection of a variation in the mechanical properties of structural members or in some features of 

the measured structural response can be employed as a SHM procedure, see e.g. [22]. If dynamic 

testing is employed, the aforementioned measured response can be adopted to track the evolution of the 

structural state from the initial virgin one. Thereafter, the tracked features can be either used for model 

updating [23-26], or for feeding feature extraction methods and so detecting the location and intensity 

of a possible damage [27]. If high quality data are available, a detailed assessment of the damage state 

can be obtained; otherwise, the methods can only detect the existence of damage, see [28]. For 

additional details on feature extraction in SHM, the interested readers are referred to [29-33]. 

Since damage processes induce a reduction of stiffness parameters (and therefore a shift in the natural 

frequencies of the system) [34], linked to a change of geometry or boundary conditions of the structural 

members or to a degradation of the material properties, damage detection can be viewed as a system 

identification problem. A number of robust, offline procedures has been developed for the 
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identification of linear state-space systems: the data driven stochastic subspace identification (SSI) 

algorithm is the de-facto standard stochastic system identification method for output only scenarios 

[35,36]; the subspace identification algorithm is instead extensively adopted for the identification of 

deterministic input-output systems [37,38]. The two aforementioned methodologies include singular 

value decomposition (SVD) and QR decomposition techniques [39]. To move to online system 

identification schemes, such methodologies have been modified by focusing on moving time windows 

of fixed length: as new observations become available, subspace identification is updated. The costs of 

SVD and QR usually prevent the real-time application of such methods, despite the efforts made to 

minimize the associated computational burden, see e.g. [37]. 

In this paper, the focus is on the development of an online damage detection procedure that can be 

adopted for real-time SHM procedures. The main engine of the proposed method is a recursive 

Bayesian filter, used to simultaneously estimate the state of the system and the stiffness parameters that 

can be subjected to a damage-induced degradation. For linear state-space systems disturbed by white 

Gaussian noises, Kalman filtering is known to provide optimal estimates of the entire state vector upon 

availability of measurements [40]. By also considering the unknown time-varying stiffness parameters, 

a nonlinear state-space equation is obtained; the relevant dual identification task has been usually 

approached via the extended Kalman filter (EKF), which merely relies on a step-by-step linearization 

of the state-space equations. 

In the presence of severe nonlinearities, such linearization was shown to be the cause of instabilities of 

the filtering procedure, resulting in biases or divergence of the estimates. To deal with severe 

nonlinearities and general probability distributions of random variables, nonlinear versions of Bayesian 

filters have been developed, such as the unscented Kalman filter [41] and the particle filter [42]. Both 

these filters have been then applied to the detection of damage in structures with a relatively low 

number of degrees-of-freedom (DOFs), see e.g. [43-46]. In this study, a large number of parameters 

(mostly related to the partially observed structural state) is instead dealt with, and the focus is on a 

synergy of reduced-order modelling and online system identification. Since an on-the-fly linearized 

equation of motion is handled, an EKF is adopted for estimation; nonetheless, any nonlinear recursive 

Bayesian filter could be adopted as well. 

If the number of parameters to be estimated (like e.g. the local time-varying stiffness properties in a 

damaging structure) is small, the above mentioned procedures can provide accurate solutions close to, 

or in real-time. In [47], it has been shown that, as the number of unknown parameters increases, biases 
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in the filter estimates show up and increase as well. Within the frame of dual filtering described above, 

a reduction of the state components looks compulsory and can be obtained with a reduced-order 

modeling procedure. However, at variance with the identification of the full-order model of the system, 

the estimated components of the reduced stiffness do not provide an explicit information concerning 

the intensity and location of damage; so, the identification procedure must be supplemented with 

additional information coming from the bases adopted to project the full-order governing equations 

onto the reduced-order (sub)space. The proper orthogonal decomposition (POD) method is here 

adopted to set the reduced-order model (ROM) of the structural system, so to define the link between 

the number of DOFs and the accuracy of the ROM on one side, and the needed projector on the other 

side. If compared to alternative methods, like e.g. an eigenanalysis providing the vibration modes and 

the relevant frequencies, POD provides some advantages for the online SHM of damaging structures: 

the ROM is tailored to the specific, structure-dependent loading conditions, and so can lead to a smaller 

number of DOFs to be dealt with; the ROM has been shown to be (slightly) more accurate than the 

eigenmode-based one under general loading conditions, see e.g. [60]; the ROM can be experimentally 

obtained in an initial training stage of the monitoring, prior to any identification of a possible damage 

state, see the discussion in [45]; through the use of accuracy indices linked to the so-called oriented 

energy content, see [69], the order of the ROM can be appropriately chosen, and specifically developed 

algorithms with minimal computational costs can be adopted in the training stage, see e.g. [68]. For a 

review of the literature related to the application of POD in structural dynamics, see [48]. 

In [49,50], it was shown that, even in case of highly nonlinear dynamic systems the first two POD 

modes can accurately capture the evolution of the system. Furthermore, it is known that the POD-based 

solution is susceptible to a change in case the parameters of the originating model are subject to 

variations [51]. If POD is adopted to get the ROM, see [52], the mentioned bases, also called proper 

orthogonal modes (POMs), and the proper orthogonal values (POVs) actually contain information 

concerning the sought location and intensity of the damage, see e.g. [53-56]; such properties are 

robustly provided by POD under changing environmental conditions. Taking this feature into account, 

an algorithm is here proposed for the dual estimation of state and parameters of the reduced-order 

model with an EKF, wherein the damage-dependent POMs are continuously updated by a further 

Kalman filter without the need of time consuming re-training stages. A synergy of the two recursive 

Bayesian filters and of POD is exploited in a decoupled two-stage procedure: first, the joint filtering 

scheme is adopted to obtain estimates of the stiffness parameters relevant to the ROM; second, the 
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linear correlation between the subspace spanned by POMs and the observation equation is exploited for 

model updating purposes. 

The remainder of this paper is organized as follows. In Section 2, details are provided on the reduced-

order modeling technique through POD and on the resulting state-space model; since model parameters 

(i.e. stiffness properties of the structure) are to be estimated, it is shown how the state vector has to be 

augmented and how the resulting observation equation, that has to link the reduced-order state with the 

observables of the full-order one, needs to be modified accordingly; the sensitivity to damage of 

features of the POD-based ROM is also addressed. Section 3 deals with the implementational details of 

the concurrent dual estimation of the ROM, and update of the ROM itself due to damage evolution (if 

any); some details are also provided concerning the expected (so-called asymptotic) speed-up in the 

analysis, as furnished by the computational complexity of all the algorithmic stages. In Section 4, the 

capability and performance of the proposed approach are discussed with reference to a shear building. 

Finally, Section 5 collects some concluding remarks on the proposed procedure, and also possible 

strategies to extend its applicability to complex, real-life structures. 

 

2. Reduced-order state-space model of partially observed dynamic systems 

Let us consider a space-discretized structural system. If 𝒖, 𝒖̇ and 𝒖̈ respectively represent the relevant 

displacement, velocity and acceleration vectors that all belong to ℝ𝑚, where 𝑚 is the number of DOFs 

of the full-order model, the (vectorial) equation of motion of the system reads: 

𝑴𝒖̈ + 𝑫𝒖̇ + 𝑲(𝑡)𝒖 = 𝒇(𝑡)      (1) 

where: 𝑴, 𝑫 and 𝑲 are the mass, viscous damping and stiffness matrices belonging to ℝ𝑚×𝑚, 

respectively; and 𝒇 ∈  ℝ𝑚 is the time-varying loading vector. In Eq. (1) we have assumed the mass and 

damping matrices to be time-invariant, whereas the stiffness properties can evolve in time due to 

possible damage phenomena. The term 𝑲(𝑡)𝒖 can be alternatively considered as the internal force 

vector 𝒇𝒊(𝑡) ∈  ℝ𝑚, which is therefore linked to the current mechanical properties of the structure. 

Here, as we do not focus on numerical procedures to model damage and, therefore, stiffness evolution, 

we have explicitly highlighted the stiffness matrix 𝑲 in Eq. (1), and assumed it to be a function of time 

𝑡. For further details readers are referred to [57], where a thorough analysis was reported on the 

identification of a damaging structure. 

In system identification and, specifically, in SHM procedures, the properties in matrices 𝑴, 𝑫 and 𝑲, 

or at least estimations of them, are supposed to be available. Even if such structural properties are 
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affected by uncertainties not explicitly considered in the design phase, the procedure to be proposed 

next for the setting of the ROM can be supported by an identification scheme that finely tunes the said 

full-order matrices; this additional task, not addressed here but already envisaged in [45], can then 

allow to study damage evolution in systems affected by initial uncertainties in their physical properties. 

Within the stochastic framework for system identification to be provided in Section 3, such 

uncertainties in the stiffness matrix 𝑲 are actually accounted for through ad-hoc formulated 

process/model errors. 

By partitioning the time interval of interest according to [𝑡0  𝑡𝑁] = ⋃𝑘=1
𝑁 [𝑡𝑘−1  𝑡𝑘], and by adopting a 

standard Newmark explicit integrator to advance the solution of Eq. (1) in time, a state-space form of 

the fully discretized equation of motion is obtained as: 

𝒛𝑘 = 𝑨𝑘 𝒛𝑘−1 + 𝒃𝑘      (2) 

where 𝒛𝑘 ∈  ℝ3𝑚 is the state vector for the system, which gathers all the displacements, velocities and 

accelerations according to: 

𝒛𝑘 = {

𝒖𝑘

𝒖̇𝑘

 𝒖̈𝑘

}       (3) 

and the algorithmic mapping matrix 𝑨𝑘 ∈  ℝ3𝑚×3𝑚 and vector 𝒃𝑘 ∈  ℝ3𝑚 respectively read: 

𝑨𝑘 =

[
 
 
 𝑰 − 𝛽 ∆𝑡2𝑲𝑘  𝑴−1 ∆𝑡 𝑰 − 𝛽 ∆𝑡2𝑴−1(𝑫 + ∆𝑡 𝑲𝑘) −𝛽 ∆𝑡2𝑴−1(∆𝑡2(1 2⁄ − 𝛽)𝑲𝑘 + ∆𝑡(1 − 𝛾) 𝑫) + ∆𝑡2(1 2⁄ − 𝛽) 𝑰

− 𝛾 ∆𝑡 𝑲𝑘𝑴
−1 𝑰 −  𝛾 ∆𝑡𝑴−1(𝑫 + ∆𝑡 𝑲𝑘) − 𝛾 ∆𝑡𝑴−1(∆𝑡2(1 2⁄ − 𝛽)𝑲𝑘 + ∆𝑡(1 − 𝛾) 𝑫) + ∆𝑡(1 − 𝛾) 𝑰

− 𝑲𝑘𝑴−1 − 𝑴−1(𝑫 + ∆𝑡 𝑲𝑘) −𝑴−1(∆𝑡2(1 2⁄ − 𝛽)𝑲𝑘 + ∆𝑡(1 − 𝛾) 𝑫) ]
 
 
 

  (4) 

𝒃𝑘 = {

𝛽 ∆𝑡2𝑴−1 𝒇𝑘

𝛾 ∆𝑡 𝑴−1𝒇𝑘

𝑴−1𝒇𝑘

}       (5) 

𝛽 and 𝛾 being the Newmark parameters, see e.g. [58]. In these equations: a subscript 𝑘 means that the 

relevant variable is computed at time instant 𝑡𝑘 (the same holds for index 𝑘 − 1 and instant 𝑡𝑘−1); 

∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1 is the time step size, here assumed constant during the whole analysis; and 𝑰 is the 

identity matrix. 

SHM requires the system to be at least partially observed. Accordingly, in a deterministic frame the 

observation equation at time 𝑡𝑘 reads: 

𝒚𝑘 = 𝑯𝒛𝑘      (6) 

where: 𝒚𝑘 ∈  ℝ𝑛 is the vector of the 𝑛 observables; and 𝑯 ∈ ℝ𝑛×3𝑚 is a Boolean matrix of appropriate 

dimensions, which links the state 𝒛𝑘 of the system to the observations in 𝒚𝑘. As the monitoring system 
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collects information on the structural health through sensor measurements, a time-independent matrix 

𝑯 means that the type of sensors adopted and their deployment over the structure are never changed. 

Due to the definition (3) of the state vector 𝒛𝑘, whose dimension is three times the number 𝑚 of DOFs 

of the discrete system, any identification procedure based on the adopted state-space model gives rise 

to a considerable computational burden. Anyhow, as thoroughly discussed in [59], [57] and [45], this 

state-space representation is necessary whenever the nonlinear evolution of the structural system (due 

to, e.g. damage growth) is studied within a stochastic framework: if all the state variables were not 

listed in 𝒛𝑘, part of the information concerning the step-by-step evolution of the statistics of the state 

would be missed. 

2.1. Reduced-order modelling via POD 

To reduce the computational burden, keeping a high accuracy of the numerical model as a target, POD 

is next exploited. It is well recognized that POD provides a model-specific and, somehow, also load-

specific optimal linear subspace, onto which the system dynamics can be projected. This subspace is 

not supposed to evolve in time, once obtained at the end of an initial training stage of the analysis, see 

e.g. [60]. 

To deal with structural systems undergoing damage evolution and therefore requiring an update of the 

subspace itself, the training stage is typically repeated whenever the reduced-order model is no more 

able to provide an accurate input-output relation, see [68]. To avoid the computational costs of repeated 

training stages, an adaptive procedure governed by a Kalman filter will be reported in the forthcoming 

Section 3. 

We now discuss the main technical details of the POD-based reduced-order modeling technique, to also 

highlight the role of the observation equation in the aforementioned adaptive procedure. For linear 

systems, the displacement field can be written in a separable form as: 

𝒖(𝒙, 𝑡) = ∑ 𝝋𝑖(𝑥)𝛼𝑖(𝑡)
𝑚

𝑖=1
      (7) 

where: vectors 𝝋𝑖(𝑥) belong to a set of arbitrary bases spanning ℝ𝑚, called proper orthogonal modes 

(POMs); and coefficients 𝛼𝑖 define the time-varying amplification of such bases. While the system is 

moving due to the external excitation, a “structure” in the response (linked in some sense to the 

vibration modes, see e.g. [69]) usually reduces considerably the number of effective terms in Eq. (7). 

So, if the main variation in the data occurs in a rather small subspace of ℝ𝑚, it is possible to track the 

evolution of the system by keeping only 𝑙 terms in the expansion of Eq. (7), with 𝑙 ≪ 𝑚. Accordingly: 
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𝒖(𝒙, 𝑡) ≈ ∑ 𝝋𝑖(𝑥)𝛼𝑖(𝑡) = 𝜱𝑙  𝜶
𝑙

𝑖=1
     (8) 

where: the matrix 𝜱𝑙 ∈  ℝ𝑚×𝑙 gathers (as columns) the 𝑙 POMs retained in the ROM; and vector 𝜶 

provides the time evolution of the POMs, and so it gathers the DOFs of the model. By substituting Eq. 

(8) into (1), by defining a residual vector linked to the approximation (8), and by eventually adopting a 

Galerkin projection onto the same reduced-order subspace adopted in (8), the equation of motion of the 

system can be written: 

𝓜𝜶̈ + 𝓓𝜶̇ + 𝓚𝜶 = 𝓯(𝑡)     (9) 

where: 

𝓜 = 𝜱𝒍
T𝑴𝜱𝒍,     𝓓 = 𝜱𝒍

T𝑫𝜱𝒍,     𝓚 = 𝜱𝒍
T𝑲𝜱𝒍,     𝓯 = 𝜱𝒍

T𝒇  (10) 

To set the accuracy of the reduced-order model and define the number 𝑙 of POMs to be retained, the 

error linked to the approximation (8) needs to be quantified. According to the snapshot version of POD 

[70], during the initial stage of the analysis snapshots of nodal displacements 𝒖𝑗 = 𝒖(𝑡𝑗) at time 

instants 𝑡𝑗, 𝑗 = 1,… , 𝐽, are collected in the so-called snapshot matrix 𝑼 ∈  ℝ𝑚×𝐽. A singular value 

decomposition of matrix 𝑼 then provides: 

𝑼 = 𝑳𝚲𝑹T      (11) 

where: 𝑳 ∈  ℝ𝑚×𝑚 and 𝑹 ∈  ℝ𝐽×𝐽 are, respectively, the matrices gathering the left and right 

orthonormal singular vectors; 𝚲 ∈  ℝ𝑚×𝐽 is the pseudo-diagonal matrix, whose pivotal entries Λ𝑖𝑖 are 

the singular values of 𝑼. As proved in [71], 𝑳 collects all the POMs and, if singular values Λ𝑖𝑖 are 

sorted decreasingly, 𝑙 can be set by assigning: 

∑ Λ𝑖𝑖
2𝑙

𝑖=1

∑ Λ𝑖𝑖
2𝑚

𝑖=1

≥ 𝑝      (12) 

where 𝑝 ∈ (0  1] is an accuracy index based on the energy content of the ROM. It should be noted that 

the main priority in this study is not the development of a very accurate ROM of the system, but instead 

the setting of a very compact model with a minimal number of parameters to be estimated in real-time. 

It is expected that part of the model inaccuracy can be handled and compensated for by the recursive 

Bayesian filters employed herein for system identification. 

Even though POD is optimal for linear systems only, it can be applied to model order reduction of 

nonlinear systems too, see [61-64]. A number of authors have studied the links between POMs and 

linear normal modes of structural systems, showing that in case of free undamped oscillations the 

POMs converge to the linear normal modes for a sufficiently large number of collected samples or 
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snapshots [65,66]. The POVs have been also used as indicators of modal activity, and it was shown that 

they can accurately determine the number of active modes in the dynamic response of a structure [67]. 

2.2. State-space representation of the ROM 

Similarly to what reported for the full-order model, the reduced-order state-space form of system 

evolution in the time step [𝑡𝑘−1  𝑡𝑘] can now be written as: 

𝜻𝑘 = 𝓐𝑘𝜻𝑘−1 + 𝓫𝑘 + 𝒗𝑘
𝜁
     (13) 

𝒚𝑘 = 𝑯 𝓒 𝜻𝑘 + 𝒗𝑘
𝑦

      (14) 

where the state vector 𝜻𝑘 ∈  ℝ3𝑙  collects the retained DOFs and their time derivatives, according to: 

𝜻𝑘 = {

𝜶𝑘

𝜶̇𝑘

 𝜶̈𝑘

}      (15) 

and: 

𝓒 = [

𝜱𝑙

𝜱𝑙

𝜱𝑙

]       (16) 

𝓒 ∈  ℝ3𝑚×3𝑙 is a matrix introduced to deal with the observation equation (6), and so to move from the 

reduced-order space to the full-order one while sorting out the system DOFs actually observed. Matrix 

𝓐𝑘 ∈  ℝ3𝑙 and vector 𝓫𝑘 ∈  ℝ3𝑙×3𝑙 are not reported here for brevity, as they can be obtained from Eqs. 

(4) and (5) simply by switching from the full-order properties 𝑴,𝑫,𝑲𝑘, 𝒇𝑘 to the reduced-order ones 

𝓜 ∈ ℝ𝑙×𝑙, 𝓓 ∈  ℝ𝑙×𝑙,𝓚𝑘 ∈  ℝ𝑙×𝑙, 𝓯𝑘 ∈  ℝ𝑙, see Eq. (10). 

As real systems evolve in a noisy environment, they are affected by uncertainties. Accordingly, Eqs. 

(13) and (14) have been provided with additive terms 𝒗𝑘
𝜁
 and 𝒗𝑘

𝑦
 respectively representing the time-

varying process and measurement noises. In what developed here above, it is worth noting that the 

process noise also stems from the loss of accuracy of the ROM, as stated in Eq. (12) where it is 

typically set 𝑝 < 1 for reasons linked to the computational costs. 

Each noise source is usually assumed to be white and uncorrelated in time; this assumption largely 

simplifies the analysis, since only the relevant mean and covariance terms need to be handled. In case 

of a colored noise, it is necessary to determine the structure of correlations in the noise sequence and 

auto regressive (AR) models of some order, say 𝑛AR, are used to capture such dependencies. The noise 

process at time 𝑡𝑘 can be then rewritten as a linear combination of a white noise 𝜺𝑘
𝜁
 and of the noise 
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terms at the 𝑛AR preceding time steps, according to 𝒗𝑘
𝜁

= ∑ 𝜏𝑖𝒗𝑘−𝑖
𝜁𝑛AR

𝑖=1 + 𝜺𝑘
𝜁
, where 𝜏𝑖 are the AR 

coefficients. Dealing with colored noise processes, the process itself is commonly added to the state 

vector and the state-space formulation is appropriately reformulated, see [72]; in some cases, an AR 

model may not be adequate and an auto regressive moving average (ARMA) model is required to 

extract the correlations in the noise signals, see [73]. In [47], a detailed statistical investigation was 

reported for errors linked to the formulation of POD-based ROMs; as the accuracy of such models gets 

higher close to the POM frequencies, the residual error due to POD (which is part of 𝒗𝑘
𝜁
) turns out to be 

far from being white. Anyhow, by increasing the number of POMs retained in the analysis, a consistent 

reduction of the amplitude of the noise signal and of its spectral power was reported. Therefore, to 

systematically avoid issues related to colored noise the number of POMs can be increased without 

making recourse to ARMA models, which inherently increase the dimension of the state vector and act 

against reducing the order of the model. As the emphasis of this paper is on how to deal with the curse 

of dimensionality, which shows up if the number of model DOFs get increased, inaccuracies caused by 

colored noise are neglected even if a suboptimal performance of the filter to be introduced next is 

expected. The effects of uncertainties in Eqs. (13) and (14) are thus handled as in any standard 

recursive Bayesian inference algorithm, see [74]. 

In the stochastic framework defined above, stiffness parameters can be assumed affected by 

uncertainties due to imperfections, or incepted damage processes. By estimating their evolution during 

the analysis, the monitoring system is able to provide a forecast of the developed damage pattern. 

Model parameters to be identified are so collected in a vector 𝝑 ∈  ℝ𝑁𝑝, to be considered as material- or 

structure-dependent. Fluctuations of this vector are thus allowed for to improve the estimates or to 

identify the evolution of damage leading to a reduction of the structural stiffness, moving from an 

initial guess at time 𝑡0. To cope with both these goals, the vector is assumed to evolve according to a 

random walk: 

𝝑𝑘 = 𝝑𝑘−1 + 𝒗𝑘
𝜗      (17) 

where 𝒗𝑘
𝜗 is an additional white and uncorrelated artificial noise. 

In the forthcoming numerical examples, we consider the mass properties of the structure to be known 

with a high level of fidelity. Furthermore, the structural response is supposed to be monitored in the 

special case of known damping; the effect of damping on filtering in dynamics was already considered 

in [59], and is not further discussed here. Therefore, all the terms of matrices 𝓜 and 𝓓 are not to be 
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identified and included in the vector 𝝑; parameters to tune are only the entries of the stiffness matrix 

𝓚. It is also to be noted that model-order reduction can detrimentally affect the capability of 

identifying the exact location and amount of damage. In fact, by projecting the stiffness matrix over the 

subspace of the retained POMs according to 𝓚 = 𝜱𝒍
T𝑲𝜱𝒍, see Eq. (10), different damage mechanisms 

can become correlated; in other words, a single POM can excite simultaneously different damaged 

zones of the structure, and the estimated evolution of the entries of 𝝑𝑘 would be a smeared measure of 

the structural damage. Anyhow, as shown in the results Section, the shape of POMs provides 

additional, helpful information concerning the location of possible multiple damage sites. 

To deal with the dual estimation problem, see e.g. [75], we now augment the state vector of the ROM, 

so that at time  𝑡𝑘 it reads: 

𝝌𝑘 = {
 𝜻𝑘

𝝑𝑘
}                 (18) 

By joining together state and model parameters in the vector 𝝌𝑘 ∈  ℝ3𝑙+𝑁𝑝, the state-space equations 

become nonlinear. We therefore formulate the system evolution equations as: 

𝝌𝑘 = 𝝍𝑘(𝝌𝑘−1) + 𝒗𝑘
𝜒

                  (19) 

𝒚𝑘 = 𝑯 𝓛 𝝌𝑘  + 𝒗𝑘
𝑦

               (20) 

where matrix 𝓛 ∈  ℝ3𝑚×(3𝑙+𝑁𝑝) reads: 

𝓛 = [𝓒 𝟎]             (21) 

and links the reduced-order augmented state of the system to the full-order one. Furthermore: function 

𝝍𝑘 ∈  ℝ3𝑙+𝑁𝑝 maps the augmented state of the system in time; and 𝒗𝑘
𝜒

 is the state error, that accounts 

for both the contributions 𝒗𝑘
𝜁
 and 𝒗𝑘

𝜗 introduced before. Errors 𝒗𝑘
𝜒

 and 𝒗𝑘
𝑦

 are still assumed as zero 

mean white Gaussian processes, featuring time-invariant covariance matrices 𝑽𝜒 and 𝑽𝑦. 

In Section 3 an extended Kalman filter will be proposed to handle the state-space model (19)-(20), so 

as to simultaneously track the state  𝜻𝑘 and calibrate the parameters in 𝝑𝑘. In case of damage evolution 

leading to a drift of the structural response, a further Kalman filter is adopted to tune on-the-fly the 

retained POMs, and so matrix 𝜱𝒍 affecting 𝓛. 

2.3. Sensitivity of POMs to damage events 

In vibration-based SHM methods it is assumed that damage may cause changes in the stiffness, 

damping and sometimes mass properties of the system; therefore, it can also modify the vibration 

characteristics of the structure. The sensitivity of POMs to damage has been exploited by several 
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authors, see e.g. [55,56]. Galvanetto and Violaris showed that POMs can be used to detect and locate 

damage in beam-type structures [55]: they plotted the POMs of the reference (undamaged) structure 

versus those of the damaged one, and concluded that the difference between the two can be used to 

identify damage location and severity. Shane and Jha developed an offline algorithm for damage 

identification in composite beams [56]: adopting a finite element model of the composite beam, 

different damage scenarios were created featuring varying degrees of stiffness reduction. Their 

algorithm, which took advantage of POMs as dynamic invariants of the structure, was successfully 

used to identify damage even under changing loading and environmental conditions. 

It is thus clear that POMs can potentially be used for quantifying damage in structures. In contrast to 

former works, the focus of the current study is on the development of an algorithm for the online and 

real-time update of POMs and relevant parameters of the POD-based ROM of a damaging structural 

system, so as damage quantification and location can be automatically (or semi-automatically) obtained 

as a byproduct. 

3. Concurrent dual estimation of the reduced-order model and model updating 

As already pointed out, the dual estimation problem here envisioned consists, at time 𝑡𝑘, in the 

estimation of the whole reduced-order state 𝝌𝑘 of the system, including the stiffness parameters 

collected in 𝝑𝑘. 

For a non-damaging structure, such dual estimation can be pursued without any update of the ROM as 

it never changes; hence, matrix 𝜱𝒍 is calibrated in the initial training stage of the analysis, and handled 

as is along the whole SHM stage. On the contrary, the projection matrix 𝜱𝒍 of a damaging structure 

varies in time due to a possibly non-uniform reduction of the stiffness characteristics, causing a change 

of the POMs. As a consequence, to avoid the state estimates to be affected by drifts in time, the 

aforementioned dual estimation procedure must be backed by an online update of the projection 

subspace, i.e. of all the retained POMs. 

We propose now an approach for the online subspace update, and simultaneous estimation of the 

partially observed state of the system and of model parameters affected by uncertainties. In order to 

accomplish these tasks online, the adopted engines are two Bayesian filters: an extended Kalman filter 

handles the dual estimation task, which turns out to be nonlinear (actually, bilinear) due to the joint 

estimation of terms in 𝓐𝑘 and 𝜻𝑘 in Eq. (13), as summarized by mapping 𝝍𝑘 in Eq. (19); a Kalman 

filter handles instead the subspace update for the ROM. 
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To allow for the time variation of the model subspace, retained POMs (see Eq. 8) are now arranged in 

vector form as: 

𝚵𝑙,𝑘 = {

𝝋1,𝑘

⋮
𝝋𝑙,𝑘

}           (22) 

where 𝚵𝑙,𝑘 ∈  ℝ𝑚𝑙 and the index 𝑘 has been added to explicitly state that POMs can vary in time. 

Accounting for the stochastic environment within which the system evolves, the projection subspace 

evolution is described by: 

𝚵𝑙,𝑘 = 𝚵𝑙,𝑘−1 + 𝒗𝑘
𝜑

         (23) 

where 𝒗𝑘
𝜑

 is a fictitious zero mean white Gaussian noise, whose time-invariant covariance 𝑽𝜑 needs to 

be tuned to get unbiased estimates of the POMs, and so of model parameters to be identified. 

Eq. (23) has now to be supplemented by an observation equation, to drive the update of 𝚵𝑙,𝑘 through the 

acquired measurements in 𝒚𝑘. For this purpose, Eq. (20) is written in a slightly rearranged version so as 

to explicitly highlight the role of POMs. Within the current time step, by assuming the state 𝝌𝑘 to be 

independent of the subspace adopted, the following relation is arrived at: 

𝒚𝑘 = 𝓗𝚵𝑙,𝑘 + 𝒗𝑘
𝑦

     (24) 

where 𝓗 ∈ ℝ𝑛×𝑚𝑙 is the mapping that links the observations to the subspace spanned by POMs. The 

two Eqs. (23) and (24) provides now the state-space model for subspace evolution: due to its linearity, 

a Kalman filter, which is the optimal estimator for linear state-space models, is then adopted for the 

recursive update of the subspace. 

Table 1 provides the algorithmic description of the proposed procedure. As any Bayesian filtering 

scheme, the algorithm consists in the initialization of the solution at time 𝑡0, and the evolution of it at 

all the subsequent discrete time instants 𝑡𝑘, up to 𝑡𝑁. In turn, the evolution of the estimates is 

subdivided into two stages: a prediction one, which rests on the mapping equations (19) and (23) to 

evolve the expected values of augmented state and subspace, and the relevant covariances; an update 

one, which is driven by the Kalman gains 𝑮𝜒,𝑘 ∈  ℝ(3𝑙+𝑁𝑝)×𝑛 and 𝑮𝜑,𝑘 ∈  ℝ𝑚𝑙×𝑛 to account for the 

information provided by measurements. Besides what is already defined above, here: 𝓕𝑘 =

𝜕𝝍𝑘(𝝌)

𝜕𝝌
|
𝝌=𝝌̂𝑘−1

 is the Jacobian of the reduced-order state mapping 𝝍𝑘, computed with the state 

estimation 𝝌̂𝑘−1 available at the beginning of the time step; the superposed hat denotes the estimated 

values of augmented state and POMs, provided by the filtering scheme; the covariance terms for state 
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and subspace are respectively defined as 𝓟𝑘 = 𝔼[(𝝌𝑘 − 𝝌̂𝑘)(𝝌𝑘 − 𝝌̂𝑘)
T] and 𝚷𝑘 = 𝔼 [(𝚵𝑙,𝑘 −

𝚵̂𝑙,𝑘)(𝚵𝑙,𝑘 − 𝚵̂𝑙,𝑘)
T
], where 𝔼 is the expectation operator; gains 𝑮𝜒,𝑘 and 𝑮𝜑,𝑘 respectively drive the 

update of 𝝌̂𝑘 and 𝚵̂𝑙,𝑘; matrix 𝓛 becomes time-dependent too, since POMs in 𝚵𝑙,𝑘 vary in time. A 

summary of the whole procedure is reported in Figure 1, where a possible post-processing phase has 

been also added in case a specific feature extraction step looks necessary to finely identify the damage 

state. 

As already reported in [76] for a different approach, wherein damage indices (each one assumed 

constant inside a sub-domain of the discretized structure) were included into the augmented state vector 

in place of the reduced-order stiffness terms here handled, the main advantage of the splitting of 𝝌𝑘 and 

𝚵𝑙,𝑘 reported in Table 1, in comparison with other methods conventionally used for model updating 

(see, e.g. [77]), is that the linearity of the state-space subspace model of Eqs. (23) and (24) is explicitly 

exploited. For the online estimation of POMs, the Kalman filter therefore provides a closed-form, 

optimal solution to the problem. A problem may anyway arise as the observation equation and the 

relevant innovation term in the update stage, although written in the two slightly different ways 

𝒚𝑘 − 𝑯𝓛𝑘𝝌𝑘
− and 𝒚𝑘 − 𝓗𝚵𝑙,𝑘

−  for the reasons discussed here above, are accounted for twice within a 

single time step. It is therefore supposed that a certain degree of redundancy in the set of measurements 

would help avoid biases in the estimates, or the generally reported filter instability, see [78]. At any 

rate, a thorough discussion on the conditions (in terms, e.g. of sensor deployment and accuracy) to be 

attained to guarantee the convergence of POMs towards a steady-state solution in case of no further 

damage evolution, is out of the scopes of this paper and left for future investigations. 

To assess the analysis speed-up or gain provided by moving from the full-order model to the ROM, a 

note on the computational complexity of the algorithmic prediction-update process of Table 1 is 

discussed next. Within each time step, the aforementioned computational complexity is provided in 

terms of the order of the required floating-point operations. Concerning the reduced-order modeling, as 

training is carried out once and in an offline manner, the complexity associated with it is not included 

in the assessment; Table 2 then summarizes the complexities of all the stages in Table 1. The prediction 

of the state scales quadratically with its dimension 3𝑙 + 𝑁𝑝, whereas the prediction of its covariance 

scales cubically with the same dimension. The prediction of the subspace and of its covariance scales 

instead quadratically with the dimension 𝑚𝑙 of 𝚵𝑙,𝑘. As for the update stage, in the computation of the 

two Kalman gains a square 𝑛 ×  𝑛 matrix must be inverted, and the related computational complexity 
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is 𝑂(𝑛3) if a standard Gauss-Jordan procedure is adopted [79]. Concerning the 𝓗 matrix, the 

complexity associated with its calculation is 𝑂(𝑙𝑚𝑛). In the update of POMs, the procedure also 

includes a normalization of the subspace estimates, whose complexity is 𝑂(𝑙𝑚); however, the 

complexity of this stage is dominated by the other matrix operations. Overall, the computational 

complexity of the whole procedure at time 𝑡𝑘 turns out to be: 

𝑂 (𝑛3 + 𝑛(3𝑙 + 𝑁𝑝)
2
+ 𝑛2(3𝑙 + 𝑁𝑝) + 𝑛(3𝑛 + 3𝑚 + 𝑁𝑝)(3𝑙 + 𝑁𝑝) + 𝑙𝑚𝑛2  + 𝑛(𝑙𝑚)2 + (3𝑙 + 𝑁𝑝)

3
) 

 (25) 

If the full-order model is used within the same framework, the relevant numerical complexity will 

instead read: 

𝑂 ((𝑁𝑝 + 3𝑚)
3
+ 𝑛(𝑁𝑝 + 3𝑚)

2
+ 𝑛2(𝑁𝑝 + 3𝑚) + 𝑛3) (26) 

where account has been taken that POMs do not have to be estimated and updated in time. 

As already discussed in [75], an estimate of the analysis speed-up provided by reduced-order modeling 

can be given as the ratio between the computational complexities furnished by Eqs. (26) and (25); such 

estimate will be adopted in Section 4 to discuss the performance of the proposed procedure. The 

complexities discussed here above anyway refer to asymptotic scenarios; the real CPU times and the 

corresponding speed-ups could be different from them due to, e.g. processor architecture, hardware 

settings, and structure of the matrices. 

It must be finally noted that, within a deterministic setup even small variations of the structural health 

can lead to detectable changes in the measurable structural response 𝒚𝑘 to loadings. In real situations, 

various sources of uncertainty linked to the measurements, to the excitation and to the structural 

properties in the initial state can all lead to significant scattering in the estimates of modal parameters; 

consequently, only the effects of significant levels of damage could be observed and detected. The 

currently proposed intricate Bayesian framework for the online and real-time update of a ROM of the 

structural system is aimed at mitigating the aforementioned issues related to modelling errors and 

observation noises, due to the concurrent use of two Kalman filters that provide estimates of the whole 

state. Accordingly, the proposed approach is expected to be more robust, and to allow detection of 

small levels of damage independently of the structural scheme. 
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4. Numerical results: damage detection in an eight-story shear building 

To assess the capability of the proposed approach, the benchmark problem proposed in [80] is now 

considered. An eight-story shear building features constant floor mass of 625 ton, and inter-story 

stiffness of 106 kN/m; as the problem of nonclassical damping is not addressed here, at variance with 

what reported in [80] a Rayleigh damping with damping ratio of 2% for the first two structural modes 

has been assumed. Concerning the possible detrimental effects of damping on the identifiability of 

dynamic systems, a discussion was already reported in [59]; overall, it was claimed that, if the structure 

is continuously excited, damping has only marginal effects in this regard. Loading is provided by a 

force applied to the last floor of the building and varying sinusoidally for the entire duration of 

monitoring, according to 𝑓(𝑡) = 5 ∙ 106 sin 𝜋𝑡 N. 

Pseudo-experimental data have been created by running a direct analysis, sampling the target structural 

output (in terms of story displacements) every 0.01 s and then corrupting it with uncorrelated zero 

mean, white Gaussian noises featuring a standard variation 0.0032 m to allow for the uncertainties in 

measurements. 

4.1. Pre-processing of the baseline model and damage-sensitive features 

Focusing first on the outcome of the training stage of POD, Figure 2 provides the shape of the retained 

POM for 𝑙 = 1, both for the undamaged structure and when damage of a varying intensity 𝑑 is located 

only between the fourth and fifth floors. The scalar damage variable 𝑑 has to be intended as in standard 

damage mechanics, see [81], so scaling the inter-story stiffness terms according to 𝐾𝑖𝑗
𝑑 = (1 − 𝑑)𝐾𝑖𝑗, 

where 𝐾𝑖𝑗 is the virgin value and 𝐾𝑖𝑗
𝑑 is the corresponding damaged one, and 𝑖𝑗 are the indices relevant 

to the two adjacent storys. This definition of the dependence on damage of the properties of the full-

order model means that only the terms related to a specific inter-story stiffness are affected, while all 

the others are not varied. We do not consider here the simultaneous presence of multiple damage states 

at different storys, so no ambiguity results from what reported here above; alternatively, a different 

damage index would be defined for each inter-story stiffness term. 

The plots in Figure 2 clearly show that a kink shows up only at the inter-story affected by a reduction 

of the stiffness. Similar results, showing kinks in the POMs where a damage or a crack is located, were 

already reported e.g. in [64] for beams. This feature would be of help if training of the ROM were 

continuously carried out after the inception of damage, as it immediately allows locating it and also 

estimating its intensity on the basis of the local change in slope. As such time consuming approach is 
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purposely avoided within the proposed framework, the output of the SHM procedure needs to be post-

processed to get insights into the damage state, see also below. Results of Figure 2 can be easily 

extended to allow for a damage located at different floors: plots of relevant POM shapes are reported in 

Figure 3 for the exemplary case 𝑑 = 0.5. 

If 𝑙 = 2, Figure 4 provides the shapes of both POMs, still in the undamaged case and when 𝑑 = 0.5 at 

the inter-story between the fourth and fifth floors. Although the shape of POM #1 obtained with the 

two ROMs (featuring orders 𝑙 = 1 and 𝑙 = 2) look the same, the model is not necessarily order-

invariant as the projectors onto the two different subspaces are different. A thorough discussion on the 

relationship between POMs and vibration modes in the linear regime was proposed in [69]: for multi-

DOF systems, it was shown that training provides POMs converging towards the eigenmodes at 

resonance. For the considered excitation mentioned above, resonance does not occur and so it can be 

only claimed that POMs and eigenmodes are similar, with the former ones also varying with 𝑙, and they 

can bring similar information concerning the damage location. In fact, the graphs show that damage 

gives rise to kinks in both the damaged POMs, accompanied by a local amplification of the relative 

story displacements. 

As far as the overall accuracy of the two ROMs featuring 𝑙 = 1 and 𝑙 = 2 is concerned, Table 3 gathers 

the relevant values of index 𝑝 (see Eq. 12) for the undamaged and damaged states, the first one as given 

at the end of training and the second one computed (to be reported here even if not handled in the 

proposed procedure) when a steady-state solution is attained by the identified entries of the reduced-

order stiffness matrix. It is shown that, due to the system geometry and loading conditions, one POM 

proves sufficient to obtain an extremely high energetic accuracy, which is indeed not detrimentally 

affected by damage. 

Although this issue is not to be discussed here in details, before the SHM procedure based on the ROM 

is started one needs to ensure that all the POMs has already attained a stationary solution, and so 

training has been completely accomplished (typically, for the initial damage-free state). Two alternate 

proposals were discussed in this regard in [60] and [82]: in the first one, the training duration was 

heuristically set on the basis of the fundamental vibration period of the structure; in the second one, a 

self-setting strategy was proposed, based on the so-called SVD update [83], to allow reducing the 

computational costs of training to a minimum. In what follows, results are presented as obtained with 

the former approach. 
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4.2. Dual estimation and online updating of the ROM 

Moving now to the application of the proposed identification procedure, results are reported next in the 

case of all the floor lateral displacements gathered in the observation vector 𝒚𝑘. It is therefore assumed 

that the system can be fully observed as far as story lateral displacements are concerned; since the full-

order model of the structure gathers not only displacements but also velocities and accelerations for 

tracking purposes in a stochastic environment, the system is accordingly only partially observed. An 

optimization procedure to deploy a minimal amount of sensors on the structure is beyond the scope of 

the present study, and will be addressed in future contributions. 

According to what reported, in the analyses it results to be 𝑚 = 𝑛 = 𝑁𝑝 = 8, and the dimension 

3𝑙 + 𝑁𝑝 of the joint state vector respectively amounts to 11 if 𝑙 = 1 and to 14 if 𝑙 = 2; cases featuring 

larger 𝑙 values have not been considered due to the limited number of storys and to the high energetic 

accuracy 𝑝 of the ROMs with 𝑙 = 1,2. As far as filtering is concerned, the algorithmic covariance 

matrices have been set as follows, 𝑰 being an identity matrix of appropriate dimension: 𝓟0 = 10−10𝑰; 

𝚷0 = 10−12𝑰; 𝑽𝜑 = 10−10𝑰; 𝑽𝑦 = 10−5𝑰; 𝑽𝜒 diagonal with entries on the order of 10−6 − 10−8 for 

the structural state 𝝌𝑘, and 108 − 10−10 (KN/m)
2
 for the stiffness coefficients. The aforementioned 

noise parameters are called the tuning knobs of the Kalman filter, and most often are adjusted via a trial 

and error procedure in an offline stage prior to the application of the filter itself [84]. These parameters 

should be as large as possible to allow the filter to react in real-time (or close to real-time) to the 

changing environment, but cannot be increased beyond critical thresholds to avoid filter instabilities, 

and so divergence of the estimates. Recently, handful approaches have been proposed in the literature 

for the optimal and autonomous tuning of the parameters of recursive Bayesian filters, see [85-89]. 

The damage event foreseen in Section 4.1 and of an assigned intensity 𝑑 = 0.5, is now assumed to 

instantaneously occur at 𝑡 = 20 s. Figures 5 and 6 provide for 𝑙 = 1 and 𝑙 = 2 the final estimation of 

the retained POM(s) at 𝑡 = 200 s, and their evolution along the SHM phase; for comparison purposes, 

also the initial undamaged solutions at 𝑡0 are reported. It is shown that, in both cases, POM #1 is 

modified after damage inception; then, convergence to a steady state solution is soon attained. The 

estimated shape of POM #2 is instead somehow different from the actual one reported in Figure 4; also 

its time evolution does not provide any evidence of a clear switch to a damage-affected solution. As 

discussed in Section 3, the POMs here provided for the damaged case have not been obtained by re-

training the ROM; instead, they have been continuously updated by the Kalman filter to better match 
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the measured structural response. Hence, they are provided by the online procedure and do not require 

additional offline (re-training or post-processing) stages to be completed as soon as a damage evolution 

is sensed; right after damage inception, some discrepancies with respect to those obtained by re-

training the ROM are therefore expected. 

In Figure 7, the singular values relevant to the undamaged and damaged states are plotted. This graph is 

provided to compare the features of the two states, but it must be noted that the values related to the 

damaged case are never computed in the proposed approach, since the ROM is never re-trained to 

avoid a loss of computational efficiency. Although the hierarchy of singular values relevant to the 

virgin state is somehow broken by the considered damage, as evidenced e.g. by the couples of values 

getting closer in the damaged state, the ROMs built with 𝑙 = 1 and 𝑙 = 2 provide a reasonably high 

accuracy, always featuring 𝑝 > 99 % as reported in Table 3. So, even if POVs and also natural 

frequencies are affected by damage, the accuracy of the ROMs does not get reduced significantly by it, 

thanks to the beneficial effect of Kalman filtering. Such accuracy could be further increased by 

procedures like that proposed in [62], and based on Ritz vectors possibly featuring appropriate 

discontinuities at the damage location(s). The relevant topic of ROM enhancement is not addressed in 

this work, due to the following reasons: as reported, the ROMs given by 𝑙 = 1,2 are already accurate 

enough to represent the full displacement field, as testified by the relevant 𝑝 values; Ritz vectors 

featuring appropriate discontinuities would require the a-priori knowledge of damage location or, 

conversely, the handling of a set of vectors, each one with a discontinuity at a single inter-story level, 

with an increase of the overall computational burden. In place of additional modes or pre-defined 

vectors, the Kalman filter is exploited to progressively increase the accuracy of the ROMs when 

damage inception/growth gives rise to a drift of the measured structural response away from the 

expected undamaged one. 

The relatively lower contribution of POM #2 to the whole structural response, as shown by Figure 7, is 

supposed to detrimentally affect the solution in terms of estimated components of the reduced-order 

stiffness matrix 𝓚. Figures 8 and 9 provide charts of the time evolution of such stiffness components, 

once again for 𝑙 = 1 and 𝑙 = 2 respectively. Although the displayed convergence rate is not high, if 

𝑙 = 1 the information content brought by observations allows attaining an almost invariant and 

unbiased solution within around 50 s. The reduced-order model obtained with 𝑙 = 2 is supposed to 

feature a higher accuracy concerning the dynamic behavior of the structure and the effects of damage. 

Accordingly, the convergence rate shown by the 𝓚 terms is higher if compared to the case 𝑙 = 1, and a 
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quasi-stationary solution for the damaged state is attained after around 20 s. But, somehow surprisingly 

in view of the mentioned higher content of information about the structural properties, the damaged 𝓚 

terms converge towards a biased solution, which cannot be improved even if observations are 

continuously handled by the filters. The convergence rates shown in the figures can be somehow 

improved by increasing the values of the algorithmic filter parameters given above and related to model 

uncertainties, but at the risk of estimation instability. As already mentioned, the adopted setting implies 

a trade-off between convergence rate (and so readiness of the identification procedure to soon track 

damage evolution) and algorithmic stability (to avoid diverging estimates). 

To assess the issue of the biased estimates, it is worth noting again that stability and convergence of the 

Kalman filtering procedure can be difficult to assure in the presence of damage. The stochastic analyses 

described in [90] and [78] have to account for the uncertainty levels in the state-space formulation, 

ultimately linked to the process and measurement noises; for the present approach, the additional 

mutual effects of the two filtering processes running simultaneously and of the reduced-order modeling 

should be accounted for too. What can be seen in Figure 9 is that the addition of POM #2 to the model, 

leads to a bias in the estimate of 𝒦11. To understand the physical reasons of this outcome, the 

sensitivity of 𝒦11, 𝒦12 and 𝒦22 to a damage of varying intensity 𝑑, located at each inter-story or floor 

level, is reported in Figure 10. It emerges that 𝒦11 smoothly depends on both 𝑑 and floor index; hence, 

the identifiability of damage based on the capability of the procedure to discern the effects of damage, 

looks good. 𝒦12 instead does not vary monotonically with the floor index; this is clearly visible for the 

maximum damage value 𝑑 = 0.5 reported in the graph, but it holds true also for smaller damage 

values. Such non-monotonic dependence on the floor index looks even enhanced for 𝒦22; for this 

stiffness component, it is further shown that the dependence on 𝑑 is rather weak if damage is located 

around the fourth floor. 

To show the effects of the mentioned low, or even null sensitivity to damage of 𝓚 components, results 

are depicted in Figure 11 in terms of the lateral displacement at the fifth floor. The time evolution of it 

is given, as provided by the trained ROM and by additional models whose components of the stiffness 

matrix have been in turn artificially modified by ±10%; for comparison purposes and to also assess the 

accuracy of the POD-based model, the same time history is also shown as furnished by the full-order 

model. Graphs show that the variations of 𝒦11 effectively modify the time history, whereas variations 

of 𝒦12 and 𝒦22 do not: in these last two cases, results all look almost perfectly superposed to each 

other. This outcome has been selected to show a kind of pathological feature of the ROM at the 
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considered floor; since all the story displacements are collected in the measurement vector 𝒚𝑘, the null 

sensitivity at this floor is partially compensated for by the algorithm through the exploitation of 

measurements collected elsewhere. Such strategy is in line with the mentioned requirement of 

redundancy in the observables. 

To assess the capability of the approach to track the whole structural dynamics, granted that only 

measurements of the story displacements are collected in 𝒚𝑘, results are reported in Figure 12 in terms 

of estimated displacement, velocity and acceleration at the fifth floor, for 𝑙 = 1 and 𝑙 = 2; the target 

time evolutions are also given for comparison. Very similar results can be reported for all the other 

storys. The figure provides close-ups at three different stages of the analysis: at the beginning of the 

excitation, where a steady-state solution is not attained yet, and ROMs might fail to catch the effects of 

higher-order vibration modes; around the inception of the damage event, to show that within a short 

time interval after 𝑡 = 20 s the estimated state converges towards the target; close to the end of the 

analysis, to also show that in the long-time range the estimates are not spoiled by error accumulation, 

and so do not lead to dangerous artificial drifts from the target structural response that can be 

interpreted by the SHM procedure as a growing damage. As for this task, graphs clearly show that, by 

increasing the order 𝑙 of the model, the accuracy of the estimates gets increased too. 

In Figure 13 phase-space plots relevant to the same fifth floor are reported, to further assess the 

performance of the proposed approach in tracking the structural state. As already shown by Figure 12, 

the accuracy in terms of tracked displacement (the observed state component) is the highest. The plot 

provided by the proposed filtering procedure does not perfectly match the target solution, especially in 

the case 𝑙 = 1; anyhow, as in any joint system identification procedure, the overall accuracy of state 

tracking gets enhanced as time grows and additional observations are handled. This outcome, which is 

partially hidden in Figure 13 by the discrepancy between target and identified solutions at the 

beginning of the identification phase, has been clearly shown by the time histories of Figure 12. 

As discussed in Section 4.1, a change in the value of the stiffness parameters or in the slope of POMs 

of the ROM is a damage signal. However, in order to quantify the severity of the damage one needs to 

establish a relationship among a set of damage indices, the POMs and the stiffness parameters in the 

damaged state(s). A common method for damage identification by exploiting the tracked changes in the 

vibration characteristics of the structure, is based on artificial neural networks, see e.g. [91,92]. 
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Finally, concerning the speed-up provided by the reduced-order modeling, results are compared in 

Table 3 as obtained through both floating-point operation and CPU time metrics. Data have been 

obtained by running the procedure implemented in MATLAB (release 2010a) on a personal computer 

featuring an Intel Core (TM) i7-2630 QM @ 2.00 GHz processor, with 8.00 GB of RAM and Windows 

7 64-bit as OS. As already highlighted in [76], Table 3 shows that the speed-up computed through the 

algorithmic complexity represents an upper bound on the real one; although an implementational 

optimization of the code can be foreseen to provide better outcomes, a noteworthy computational gain 

is reported. 

 

6. Conclusion 

In this paper, an approach for the concurrent dual estimation and reduced-order modelling of a 

damaging structure has been proposed. As for the reduced-order modelling task, proper orthogonal 

decomposition has been adopted to define the subspace that optimally captures the dynamics of the 

system. As for the dual estimation task, an extended Kalman filter has been instead adopted. When the 

identification of a ROM is studied, a reconstruction of full state of the system is required to compare 

the latest observations with the relevant filter prediction; this looks possible only if the subspace is 

known. 

In the case of a damaging structure, the proposed approach can automatically update the ROM through 

an additional Kalman filter. The relevant online tuning of the ROM, without any need of time 

consuming re-training stages, has been shown to allow the detection of damage in the structure, in 

terms of both location and (potentially) intensity. 

In future works, the proposed approach will be extended to deal with more complex, real-life 

applications. An explicit identification of the damage state will be allowed for by appropriately 

modifying the augmented state vector handled by the intricate Bayesian procedure: identifiability of 

damage, linked to the optimal deployment of a sensor network, and reduced-order modeling featuring 

minimal dimension, will be fully addressed. 
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Figure 1. Simplified flowchart of the proposed procedure. 
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Figure 2. 𝑙 = 1: trained POM for the undamaged structure (black line), and for a damage of varying 

intensity 𝑑 located at the inter-story between fourth and fifth floors. 
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Figure 3. 𝑙 = 1: trained POM for the undamaged structure (black line), and for a damage 𝑑 = 0.5 

(orange line) located at a varying inter-story level. 
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Figure 4. 𝑙 = 2: trained POMs for the undamaged structure (black line), and for a damage 𝑑 = 0.5 

(orange line) located at the inter-story between fourth and fifth floors. 
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(a) 

         (b) 

Figure 5. 𝑙 = 1, damage 𝑑 = 0.5 located at the inter-story between fourth and fifth floors: (a) 

comparison between the trained POM for the undamaged structure (black line) and the finally 

indentified POM for the damaged structure (orange line); (b) time evolution of the POM estimate. 
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(a) 

    (b) 

 

Figure 6. 𝑙 = 2, damage 𝑑 = 0.5 located at the inter-story between fourth and fifth floors: (a) 

comparison between the trained POMs for the undamaged structure (black lines) and the finally 

indentified POMs for the damaged structure (orange lines); (b) time evolutions of the POM estimates. 
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Figure 7. Damage 𝑑 = 0.5 located at the inter-story between fourth and fifth floors: singular values for 

the undamaged and damaged states. 
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Figure 8. 𝑙 = 1, damage 𝑑 = 0.5 located at the inter-story between fourth and fifth floors: time history 

of the estimated component 𝒦11 of the reduced-order stiffness matrix. 
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Figure 9. 𝑙 = 2, damage 𝑑 = 0.5 located at the inter-story between fourth and fifth floors: time history 

of the estimated components 𝒦11, 𝒦12 and 𝒦22 of the reduced-order stiffness matrix. 
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Figure 10. 𝑙 = 2: sensitivity of the components 𝒦11, 𝒦12 and 𝒦22 of the reduced-order stiffness matrix 

to a damage of varying location and intensity 𝑑. 
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(a) 

 

(b) 

 

(c) 

Figure 11. 𝑙 = 2: sensitivity of the time history of displacement at the fifth floor to a damage-induced 

variation of the components (a) 𝒦11, (b) 𝒦12 and (c) 𝒦22 of the reduced-order stiffness matrix. 
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Figure 12. Damage 𝑑 = 0.5 located at the inter-story between fourth and fifth floors: time histories of 

dispacement, velocity and acceleration at the fifth floor, and comparison among the target solution 

(black dotted line) and estimated ones at varying order 𝑙 of the ROM. 
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Figure 13. Damage 𝑑 = 0.5 located at the inter-story between fourth and fifth floors: phase-space plots 

relevant to the fifth floor, and comparison among the target solution (black dotted line) and estimated 

ones (orange lines) for (left) 𝑙 = 1 and (right) 𝑙 = 2. 
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Table 1. Algorithm for the cuncurrent dual estimation of the ROM, and subspace update. 

- At time 𝑡0: 

1. Initialization of state and its covariance: 𝝌̂0, 𝓟0  

2. Initialization of subspace and its covariance: 𝚵̂𝑙,0, 𝚷0 

 

- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁: 

 Prediction stage: 

1. Prediction of state and its covariance: 

𝝌𝑘
− = 𝝍𝑘(𝝌̂𝑘−1)

𝓟𝑘
− = 𝓕𝑘𝓟𝑘−1𝓕𝑘

𝑇 + 𝑽𝜒 

where 𝓕𝑘 =
𝜕𝝍𝑘(𝝌)

𝜕𝝌
|
𝝌=𝝌̂𝑘−1

 

2. Prediction of subspace and its covariance: 

𝚵𝑙,𝑘
− = 𝚵̂𝑙,𝑘−1

𝚷𝑘
− = 𝚷𝑘−1 + 𝑽𝜑 

 

 Update stage: 

1. Computation of Kalman gains: 

𝑮𝜒,𝑘 = 𝓟𝑘
−𝓛𝑘

T𝑯T(𝑯𝓛𝑘𝓟𝑘
−𝓛𝑘

T 𝑯T + 𝑽𝑦)
−1

𝑮𝜑,𝑘 = 𝚷𝑘
−𝓗T(𝓗𝚷𝑘

−𝓗T  + 𝑽𝑦)−1
 

2. Update of state and its covariance: 

𝝌̂𝑘 = 𝝌𝑘
− + 𝑮𝜒,𝑘(𝒚𝑘 − 𝑯𝓛𝑘𝝌𝑘

−)

 𝓟𝑘 = 𝓟𝑘
− − 𝑮𝜒,𝑘𝑯𝓛𝑘𝓟𝑘

−  

3. Update of subspace and its covariance: 

𝚵̂𝑙,𝑘 = 𝚵𝑙,𝑘
− + 𝑮𝜑,𝑘(𝒚𝑘 − 𝓗𝚵𝑙,𝑘

− )

𝚷𝑘 = 𝚷𝑘
− − 𝑮𝜑,𝑘𝓗𝚷𝑘

−
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Table 2. Computational complexity of each stage of the proposed algorithm (for stage indices, 

see Table 1). 

 stage Computational Complexity (Flops) 

prediction 
1 𝑂 ((𝑙 + 𝑁𝑝)

3
) 

2 𝑂(𝑚2) 

update 

1 
𝑂 (𝑛3 + 𝑛(𝑙 + 𝑁𝑝)

2
+ 𝑛(3𝑙 + 𝑁𝑝)

2
+ 𝑛2(3𝑙 + 𝑁𝑝) + 𝑛(3𝑛 + 𝑁𝑝)(3𝑙 + 𝑁𝑝) + 𝑙𝑚𝑛2

+ (𝑙𝑚)2 𝑛) 

2 𝑂 (𝑛 (3𝑙 + 𝑁𝑝)(3𝑚 + 𝑁𝑝) + (3𝑙 + 𝑁𝑝)
3
) 

3 𝑂(𝑙𝑚𝑛2 + (𝑙 𝑚)2 𝑛) 
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Table 3. Effect of the order 𝑙 of the ROM on its accuracy, as measured via index 𝑝 for both the 

undamaged and damaged states, and on the analysis speed-up, as provided by computational 

complexity and CPU time. 

order accuracy speed-up 

𝑙 𝑝undamaged 𝑝damaged computational 

complexity 

CPU time 

1 99.983 % 99.894 % 22.6 6.5 

2 99.999 % 99.999 % 8.6 4.4 

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/316566096



