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Abstract We study the applicability of a model order

reduction technique to the solution of transport of pas-

sive scalars in homogeneous and heterogeneous porous

media. Transport dynamics are modeled through the

advection-dispersion equation (ADE) and we employ

Proper Orthogonal Decomposition (POD) as a strat-

egy to reduce the computational burden associated with

the numerical solution of the ADE. Our application of

POD relies on solving the governing ADE for selected

times, termed snapshots. The latter are then employed

to achieve the desired model order reduction. We intro-

duce a new technique, termed Snapshot Splitting Tech-

nique (SST), which allows enriching the dimension of

the POD subspace and damping the temporal increase

of the modeling error. Coupling SST with a modeling

strategy based on alternating over diverse time scales
the solution of the full numerical transport model to

its reduced counterpart allows extending the benefit of

POD over a prolonged temporal window so that the

salient features of the process can be captured at a re-

duced computational cost. The selection of the time

scales across which the solution of the full and reduced

model are alternated is linked to the Péclet number

(Pe), representing the interplay between advective and

dispersive processes taking place in the system. Thus,

the method is adaptive in space and time across the
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heterogenous structure of the domain through the com-

bined use of POD and SST and by way of alternating

the solution of the full and reduced models. We find

that the width of the time scale within which the POD-

based reduced model solution provides accurate results

tends to increase with decreasing Pe. This suggests that

the effects of local scale dispersive processes facilitate

the POD method to capture the salient features of the

system dynamics embedded in the selected snapshots.

Since the dimension of the reduced model is much lower

than that of the full numerical model, the methodology

we propose enables one to accurately simulate transport

at a markedly reduced computational cost.

Keywords Proper Orthogonal Decomposition ·Model

Reduction · Heterogeneous Porous Media · Flow and

Transport · Computational Efficiency

1 Introduction

Improving our ability to provide reliable and computa-

tionally efficient approaches to quantify transport pro-

cess in porous media is of major importance to a wide

range of applications. Most notably, these include the

characterization of the feedback between anthropogenic

activities and the subsurface environment, with direct

implications on the assessment of water quality which is

key to physically based development of modern strate-

gies addressing the water-energy-food nexus.

Analysis of flow and transport phenomena in porous

media often involves investigations within domains of

large extent [42,43]. Practical difficulties associated with

the way one can rigorously include pore-scale modeling

in the analysis of typical laboratory and field-scale set-

tings lead to depicting of solute transport in such media
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through effective models [14, 27, 38, 39, 45]. Several al-

ternative modeling options are available in this context,

a common choice being a continuum-based represen-

tation grounded on the standard advection-dispersion

equation (ADE) on which we focus here. Evolution of

transport scenarios of practical interest to industrial

and environmental applications typically occurs over

temporal scales associated with the duration of sev-

eral days, months and sometimes years. High quality

numerical approximations are required to capture ex-

treme values of chemical concentrations, i.e., peak val-

ues and low concentrations, constituting key environ-

mental performance metrics with severe implications

on human health through the proper quantification of

the exceedance of toxicity thresholds at sensitive lo-

cations in the system [3]. Accurate numerical solution

of the ADE typically requires considerable computa-

tional time and the use of appropriate discretization

techniques [19]. Computational time requirements be-

come a major challenge when several transport scenar-

ios needs to be evaluated, as is typical in modern proba-

bilistic risk assessment approaches [34]. It then becomes

relevant to develop methods to decrease the complex-

ity of the discrete model associated with the governing

process equations [15,16], while preserving accuracy of

the solution.

Here, we focus on the analysis of the Proper Or-

thogonal Decomposition (POD) technique [30, 40] and

explore its ability to reduce the computational burden

associated with the solution of the ADE under a variety

of transport conditions characterized by diverse relative

strengths of advective and dispersive processes. POD is

one of the most widely used model order reduction tech-

niques and has been applied to a wide range of problems

in the fields of data analysis, statistics and/or dynamic

systems [12,23,24,32]. The approach has been recently

employed for the solution of fully saturated flow and

transport in subsurface reservoirs [25, 26, 28, 31] and it

has been shown to have the potential to considerably

decrease the discrete problem size while maintaining a

relatively high accuracy with respect to the solution of

the original governing equation. It has also been em-

ployed in the context of preliminary studies addressing

uncertainty quantification of flow in groundwater sys-

tems to speed up numerical Monte Carlo simulations

of flow in the presence of random forcing and system

parameters [35,36].

The key feature of model reduction techniques is

that the solution of a given partial differential equa-

tion (PDE) can be well approximated by a linear com-

bination of a limited number of basis functions which

can be conveniently selected. The coefficients of this

linear combination can then be computed through the

solution of the reduced system obtained via a Galerkin

projection of the governing PDE. In the POD frame-

work, the basis functions identifying the finite subspace

where the model is projected are the eigenfunctions of

an integral operator whose kernel is given by the spa-

tial correlation function of the state variable of inter-

est. A critical feature of the application of the POD

technique to dynamically evolving scalar fields of the

kind described by an ADE is related to the way this

finite subspace is built. This is typically accomplished

through (a) solving the governing PDE at a set of pre-

defined time steps termed snapshots, (b) applying Prin-

cipal Component Analysis (PCA) to the snapshots, and

(c) employing the resulting principal components as ba-

sis functions to characterize the above mentioned finite

subspace [11]. The proper selection of the snapshots is a

critical point in the workflow, because it controls the er-

rors associated with the model reduction. Examples of

studies providing guidelines for snapshot selection can

be found in application related to groundwater [44] and

two-phase [10, 18] flows, mass tranfer in heterogeneous

environments [21, 29] as well as oceanic flows [9]. The

problem is particularly challenging in the presence of

diverse competing physical processes driving the evo-

lution of the system, such as in the case of the ADE

where the space-time distribution of dissolved chemical

concentration is governed by the relative importance

of advective and dispersive/diffusive processes. We in-

vestigate the manner in which the interplay between

these processes impacts the effectiveness of POD-based

model reduction techniques for the computationally ef-

ficient and accurate numerical solution of the ADE in

homogeneous and heterogeneous porous media under

typical subsurface environmental conditions.

In general, the snapshots are extracted from one

or multiple full simulations. Here we build the POD

projection matrix by alternating between the solution

of the full numerical transport model and its reduced

counterpart. Switching from full to reduced model (or

vice versa) is driven by the residual error associated

with the reduced problem. This enables us to control

the magnitude of the modeling error through a user-

defined tolerance. In addition, we introduce a new ap-

proach, termed Snapshot Splitting Technique (SST), to

guide the selection of the snapshots. This technique

leads to an increased capability of the reduced model to

provide accurate approximations for a sustained period

of time.

The structure of this work is as follows. Section 2

includes a brief presentation of the ADE model we con-

sider, the POD method and the mixed Finite Element-

based POD method (FE-POD) we employ. In section

3 we illustrate the use of the mixed FE-POD method
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to the solution of solute transport in homogeneous and

heterogeneous media. Section 4 is devoted to the pre-

sentation and discussion of our model reduction strat-

egy and algorithm in the presence of advective and dif-

fusive/dispersive processes of competing strength. Sec-

tion 5 includes our conclusions and outlines of future

developments.

2 Reduction of the ADE Through Proper

Orthogonal Decomposition

We introduce here the advection-dispersion equation

(ADE), which we employ to describe solute transport

in a porous medium at the continuum scale, and illus-

trate the theoretical basis and workflow for the applica-

tion of the POD for the model reduction. We perform

our analysis by relying on a dimensionless formulation

which enables us to discriminate through the Péclet

number (Pe) the relative importance of advection and

diffusion/dispersion processes on the effectiveness of the

POD approach to model reduction.

2.1 Dimensionless problem formulation

The general format of the n-dimensional ADE employed

to depict the evolution of chemical concentration follow-

ing a continuous point injection within a Darcy-scale

velocity field u is:

∂c∗

∂t∗
−∇ · (D∇c∗) + u · ∇c∗ = c∗inδ (0, t∗) , (1)

where c∗ : Rn → R is the solute concentration, D is

a tensor embedding the effects of diffusive and local-

scale dispersive processes, c∗in is the solute concentration

injected per unit time, δ is the Dirac delta function and

t∗ is the time. We consider a steady-state velocity field

u given by Darcy’s law:

u = −K

φ
∇h. (2)

Here, φ and K are the porosity and the hydraulic con-

ductivity tensor of the porous medium, respectively.

The steady-state spatial distribution of hydraulic head

h is governed by:

∇ · [K∇h] = 0 (3)

equipped with proper boundary conditions.

In a two-dimensional system (i.e., n = 2) with x and

y denoting principal directions, we have:

D =

[
Dx 0

0 Dy

]
, u =

[
ux
uy

]
, (4)

where Dx and Dy are constant. Here, we consider the

average flow direction to be aligned along the x-axis

and define the Péclet number as:

Pe =
〈ux〉L
Dx

, (5)

where 〈ux〉 is the average value of ux, the component of

u along x, and L is a characteristic length scale of the

system. Next, we introduce the following dimensionless

quantities:

x =
x∗

L
, y =

y∗

L
, c =

c∗ux
c∗inL

,

t =
t∗ux
L
, D =

Dy

Dx
, v =

u

〈ux〉
.

(6)

The above dimensionless quantities allow recasting (1)

as:

∂c

∂t
− 1

Pe

(
∂2c

∂x2
+D ∂

2c

∂y2

)
+vx

∂c

∂x
+vy

∂c

∂y
= δ (0, t) . (7)

Finally, we present the algebraic formulation of prob-

lem (7) using a finite element (FE) method and define

the solution by cf (·) and the corresponding vector by

cf . We can formulate the full discrete problem as fol-

lows:

For each k ≥ k0 find ckf ∈ Rnf such that(
M

∆t
+ A

)
ck+1
f = fk+1 +

M

∆t
ckf , (8)

with ckf the solution at time tk = k∆t and with ini-

tial condition ck0f = ck0f,0. The corresponding discrete

problem is characterized by nf degrees of freedom. The

matrix M is the mass matrix, the matrix A is the stiff-

ness matrix which is linked to D, Pe and v, f is a known

vector and ∆t is the time step.

2.2 Proper Orthogonal Decomposition method

The basic idea of Proper Orthogonal Decomposition

(POD) is to reduce the original problem into a new

simpler problem where the solution lies in a subspace

of reduced dimensionality, as compared to the space

where the full model is defined. The construction of

such a subspace is a challenging issue in the model de-

velopment. A commonly adopted technique relies on

solving the full model for a given number of time in-

tervals, usually termed snapshots and then relying on

the information embedded in them to build the desired

subspace. In this context, our strategy starts from the

computation of the snapshots through the solution of

the full model (7) from the initial system state up to a
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given simulation time t0. A key point in this approach

is then to select the snapshots and t0 in a way that the

salient features of the early system dynamics are ade-

quately captured. These are then employed to advance

the solution of the ensuing reduced model beyond t0,

as the concentration further progresses in the domain.

In this sense, the construction of the solution subspace

can be performed by establishing a suitable relation-

ship between a proper space Vnf
in which the solution

of the full model lies and where each element can be

represented by a nf -dimension vector, and a reduced

subspace Vnp
with dimension np � nf . Given a vector

x ∈ Rnf that represents an element of Vnf
, one can

always find its counterpart x̂ ∈ Rnp as:

x̂ = PTx, (9)

where the columns of the nf -by-np projection matrix P
are an orthonormal basis spanning the subspace Vnp

.

From an operational standpoint, computation of P
requires constructing the np basis vectors that span

the subspace Vnp
. We do so by selecting np snapshots

(c1,c2,· · · ,cnp) where ci ∈ Rnf and defining a matrix:

X =
[
s1 s2 · · · snp

]
, (10)

where si is the i-th snapshot ci normalized with respect

to the Euclidean norm. We define:

Cs = XTX, (11)

where Cs is an np-by-np symmetric matrix. Using the

spectral theorem, we can rewrite Cs as:

Cs = GΛGT , (12)

where G is the orthogonal matrix of the eigenvectors

of Cs and Λ is a diagonal matrix whose entries are the

eigenvalues of Cs. Since the dimension of Cs is usually

small, the computation of matrices G and Λ requires a

small amount of time compared to the requirement for

the solution of the full numerical model.

By exploiting the well-known relation between the

spectral decomposition in (12) and the singular value

decomposition of X [25, 26] we obtain that:

P = XGΛ−1/2. (13)

so that PTP = I with I the identity matrix of order np.

The matrix P contains all information about the

relationship between the two spaces Vnf
and Vnp

and

the columns of the projection matrix p̃i are a set of

basis vectors of Vnp
. Note that in general:

PPT 6= I, (14)

where the identity matrix I is here of order nf . Equa-

tion (14) is key to characterize the POD dynamics. A

vector v ∈ Vnf
can be split as v = ṽ+v0, where ṽ and

v0 belong to the subspace generated by P and to the

associated orthogonal subspace, respectively. Therefore

v0 · φ = 0 for every φ linear combination of the POD

basis vectors. Using the properties of the projection ma-

trix P, we can write:

ṽ = PPTv. (15)

The matrix PPT acts as a filter extracting the compo-

nent of a function belonging to the POD subspace. We

note that both vectors ṽ and v have a dimension equal

to nf . In other words, increasing the process dynamics

captured by the POD subspace (e.g., through an ap-

propriate selection of a given number of snapshots or

by increasing the number of snapshots) leads to a de-

creased error induced by the model reduction. Given

the dynamics of the system considered, it is then rele-

vant to derive a flexible formulation which enables us

to increase the dimension of the POD subspace by re-

lying on a fixed number of snapshots, i.e., on a given

computational effort. We do so in the following section

and then assess the benefit of such a formulation by a

suite of computational examples.

In practice, the POD based reduced model is ob-

tained by projecting equations (8) over the subspace

induced by the matrix P, i.e., the subspace containing

all the possible linear combinations of the columns of P.

We introduce the solution of the reduced problem cp(·)
with its corresponding vector cp. The reduced problem

using the POD method reads:

For each k ≥ k0 find ckp ∈ Rnp such that

PT
(

M

∆t
+ A

)
P ck+1

p = PT fk+1 + PT
(

M

∆t

)
P ckp, (16)

with ck0p = PT ck0f,0 the projection of the initial value.

2.3 Snapshot Splitting Technique (SST) for increasing

the POD subspace dimension

Next, we describe a new approach to improve the clas-

sic POD method. Given np snapshots (c1,c2,· · · ,cnp
)

where ci ∈ Rnf , for each snapshot ci we define nl new

snapshots kij such that:

kij = gj(ci), (17)

where gj(·) : Rnf → Rnf for i = 1, · · · , np and j =

1, · · · , nl. If the vectors associated with each snapshot

are independent, then nl basis vectors are obtained for

each snapshot, i.e., the POD subspace will have a di-

mension of np×nl. In such a case, the columns of matrix

(10) are the vectors kij ∈ Rnf normalized with respect
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Fig. 1: Distribution along a longitudinal profile (i.e.,

aligned in the x direction) of the basis functions p̃i
(i = 1, · · · , 7) obtained (a) without and (b) with the

Snapshot Splitting Technique (SST) for a purely diffu-

sive setting. The solute source is located at x = 1.5.

to the Euclidean norm. The POD method can then be

applied as illustrated in 2.2.

The strategy for the selection of the functions gj(·)
is not unique, as long as the generated vectors are in-

dependent. The key concept we employ here for the

definition of gj(·) is that the domain can be partitioned

into areas where the solution dynamics are similar. The

logarithmic sampling is a natural choice considering

that most of the available analytical solutions of the

ADE are expressed in terms of either the exponential

function or the complementary error function [20]. A

logarithmic distribution has the additional benefit of

uniformly sampling the range of relevant concentration

values, without disregarding significant orders of mag-

nitude relevant to industrial and environmental appli-

cations, where the detection of minute chemical con-

centrations can be critical. We define the maximum co-

efficient of the snapshots set as:

cmax = max
i

max
j
cij , (18)

where i = 1, · · · , np and cij is the j-th component of

the vector ci. We partition [0, cmax] into nl intervals

introducing nl + 1 values ξj with j = 0, · · · , nl such

that:

0 = ξ0 < ξ1 < ξ2 < · · · < ξnl−1 < ξnl
= cmax. (19)

Finally, we define the functions gj(·) such that:

[gj(v)]m =

{
vm if vm < ξj ,

0 otherwise,
(20)

where j = 1, · · · , nl, m = 1, · · · , nf and vm is the m-th

component of the vector v ∈ Rnf . Thus, for each j, the

modified snapshots kij will be different from zero in ar-

eas where the concentration is below ξj . In our applica-

tion, we select a logarithmic distribution for ξj allows us

to split the snapshots so that the area covered by each

kij is similar for j = 1, · · · , nl. Since we are studying

the case of continuous injection, the value cmax occurs

at the source location. A logarithmic distribution of ξi
takes into account that the fast solution dynamics are

close to the source. The same strategy is followed, for

example, in the analysis of tracer tests and of pumping

tests (e.g., see [7]). As a consequence, our technique al-

lows enriching the POD subspace in these critical zones

of the evolving solute concentration. A priori, we may

adopt other distributions for ξi, e.g. a Gaussian one,

by ensuring that it is able to equally split the modi-

fied snapshots kij using equation (20). We have found

the logarithmic distribution to be effective for the cases

studied in this paper. However, one may be interested

in modifying this choice to adapt the SST method to

other scenarios.

To highlight the differences between the way the

POD subspace is constructed by employing the typ-

ical approach illustrated in Section 2.2 and our pro-

posed technique to correct such construction by relying

on snapshots defined in (17), we term our approach as

Snapshot Splitting Technique (SST) and exemplify its

beneficial effect by considering a purely diffusive prob-

lem (i.e., u = 0 in (1)) with a continuous point injection

located at x = y = 1.5 in a 3 × 3 rectangular domain

representing a homogeneous porous medium (see also

Section 3 for details about the numerical solution of

the full model). Figure 1 depicts the distribution along

a longitudinal profile (i.e., aligned in the x direction)

of the basis functions obtained without (Figure 1a) and

with (Figure 1b) the application of the SST. In this il-

lustrative example we select the snapshots ci from the

first 10 time steps within which the full model is solved.

Using the approach illustrated in Section 2.2, the results

clearly show that all basis functions are significantly

different from zero solely at locations very close to the

source. This implies that (a) employing the POD sub-

space generated via these basis functions does not lead

to an accurate representation of the system dynamics
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at locations far away from the source, so that (b) the

ensuing reduced model can propagate in time only the

information associated with system states close to the

source. Otherwise, application of the SST to increase

the dimension of the POD subspace (while relying on a

fixed number of snapshots) allows constructing a set of

basis functions which carry significant information at a

variety of locations in the domain.

3 Application of POD to Advective-Dispersive

Transport driven by Continuous Solute

Injection

In this section we apply the methods discussed in Sec-

tion 2 to reduce the dimensionality of a transport prob-

lem described by equation (7). We start by considering

a homogeneous porous medium where a uniform veloc-

ity field (vx = 1 and vy = 0) takes place. We employ a

Finite Element (FE) approach (P1 elements) for spatial

discretization and the Backward Euler scheme for time

discretization with discretization step ∆t = 0.05. We

recall that while we ground our examples on FE, POD

reduction can also be applied in the presence of diverse

numerical methods, e.g., Finite Volumes. The compu-

tational domain is a 5 × 3 rectangle with a structured

triangular mesh. Each length unit is divided into 35 seg-

ments, the computational grid being then composed by

36750 triangles. The number of degrees of freedom of

the P1 space with open boundary conditions coincides

with the number of nodes of the numerical grid, i.e.,

18656. A continuous point injection source is placed at

x = y = 1.5 in all settings we examine here. When the

SST illustrated in Section 2.3 is employed for the con-

struction of the POD subspace, we choose nl = 10 with

a logarithmic distribution for the ξj as explained in 2.3.

In this study, we set D = 1. We explore the effect of

the Péclet number (Pe) on the behavior of the reduced

model, as compared against the full numerical solution

ckf of the model (8). We use the following procedure for

the computation of ckp at time step k:

(S1) For the first Nt time steps (k ≤ Nt), ckp is computed

by solving the full numerical model (8), so ckp = ckf .

(S2) We compute the projection matrix (13) via the POD

method upon relying on the solution computed at

step S1. The snapshots are taken as ckf at time step

k ≤ Nt.
(S3) Using the projection matrix and the discrete prob-

lem defined in (16), we compute ckp for additional

Na time steps.

In all our computational examples we consider Nt =

10 and Na = 90. It is important to notice that Nt and

hence the size of the reduced linear system, np = 10, is

considerably smaller than the size of the system asso-

ciated with the full model nf (i.e., 18656 in this case).

The computational time associated with each step of

the reduced model is negligible when compared to the

time demanded by a step of the full model. The influ-

ence of Nt and Na on the optimization of the procedure

is case dependent and we leave this analysis to future

studies.

We perform computations with the reduced model

in the absence or in the presence of the SST introduced

in Section 2.3. When the SST is employed during step

S2, the solution will be denoted as ckp+SST or ckp+SST .

Note that in case of SST the reduced model dimension is

equal to np×nl = 100 which is still much smaller than

the full numerical model dimension nf . All results in

this study have been generated using Matlab (Windows

10, Intel(R) Core(TM) i7-6700 CPU @ 340GHz 3.41

GHz). A single step using the full linear system (i.e.,

Equation (8)) requires a computation time tf = 0.068s

on average, a single step using the reduced linear system

(i.e., Equation (16)) only requiring tr = 0.00025s. Two

orders of magnitude separate the full from the reduced

model at each time step, so that the run time of the re-

duced problem is virtually negligible, as compared with

the one characterizing the full system.

The quality of the ensuing solutions obtained with

the reduced model is compared by computing the rel-

ative error Eks between the full numerical problem so-

lution cf and the reduced problem solutions, i.e., cp or

cp+SST , which is computed for each time step k as:

Eks =

∥∥∥ckf − cks∥∥∥
L2(Ω)∥∥∥ckf∥∥∥

L2(Ω)

, (21)

where subscript s = p+SST or p depending on whether

the SST is employed or not in the construction of the

reduced model.

Figure 2 depicts the relative error (21) as a function

of the number of time steps k and for three selected

Péclet numbers, i.e., Pe = 30, 60, 90, identifying mildly

to highly advective transport settings. The relative er-

ror increases in a nonlinear fashion with Pe and with

the time elapsed since the last snapshot is computed

from the full numerical model (k = 10 in the example).

The plateau to which the relative errors tends is due to

the open boundary conditions that allow solute mass to

exit the domain at the downstream boundary. Figure 2

reveals that employing the proposed SST enables us

to increase the effectiveness of the information content

embedded in the snapshots extracted from the solution

of the full model, this leading to a remarkable reduc-

tion in the associated relative error. For instance, we
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Fig. 2: Effect of the Snapshot Splitting Technique (SST)

on the evolution of the relative error (21) with the num-

ber of time steps, k, after the reduced model is employed

(full model is run for k ≤ 10) for a homogeneous system

with diverse values of Pe.

observe that for Pe = 30 the relative error is approx-

imately 10% after roughly 35 or 25 simulation steps,

resorting or not resorting to SST, respectively. Thus,

SST yields an improved accuracy of the reduced model

for the same number of full model snapshots.

As a complement to Figure 2, Figure 3 depicts the

spatial distributions of solute concentration ckf , ckp and

ckp+SST along the longitudinal cross-section at y = 1.5

(i.e., passing through the injection point) for Pe = 30

and time step k = 60, i.e., after 50 time steps from the

time at which the latest snapshot from the full model

has been taken. Notably, the reduced solution associ-

ated with the SST, ckp+SST , displays much less severe

spatial fluctuations than its counterpart ckp. This result

confirms the beneficial effect of the proposed SST to

the reduced model even after a considerable time has

elapsed since the observation time associated with the

last snapshot computed via the full model.

Figures 4a, 4b and 4c respectively depict the spa-

tial distributions of solute concentration obtained by

the full model solution and the POD approximation

without and with the use of SST. Numerical results are

illustrated for the observation time corresponding to

k = 60 at which the relative error is high and the ap-

proximation is not so reliable in both cases. Even as se-

vere spatial fluctuations can be observed, it is clear that

employing the SST tends to drive the solution of the re-

duced model towards the behavior displayed by the true

system dynamics, as represented more faithfully by the

full model solution. In particular, the application of the

SST renders an approximation of improved quality in

a larger area around the point source, when compared

against the traditional application of the POD method.
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Fig. 3: Spatial distributions of solute concentration

computed by the full model and the reduced model with

and without activating the Snapshot Splitting Tech-

nique (SST) at simulation time step k = 60. Results

are depicted for the homogeneous test setting along the

longitudinal cross-section passing through the injection

point for Pe = 30.

As an additional and challenging test case, we then

consider the performance of our reduced order model-

ing strategy to model chemical transport in a hetero-

geneous porous medium. In this context, modern prob-

abilistic approaches to environmental risk quantifica-

tion [4,6,22,46] rely on the assessment of the probabil-

ity that concentration of a given chemical species at a

target environmental location exceeds a given threshold

value, which is typically linked to human health or to

environmental constraints. Other environmental perfor-

mance metrics of interest in the context of the environ-

mental risk assessment associated with solute migration

in the subsurface include, e.g., peak values of concen-

trations, and/or early/late times of arrival of solute at

sensitive locations in the aquifer [3]. The stochastic na-

ture of the groundwater flow and transport problems

is typically linked to the spatially heterogeneous dis-

tribution of aquifer hydraulic properties, such as hy-

draulic conductivity K. The latter is typically concep-

tualized as a stochastic process of space and the flow

and transport equations become stochastic differential

equations [42,47]. In this sense, evaluation of the prob-

ability linked with the above described environmental

metrics is typically performed in a numerical Monte

Carlo framework. The Monte Carlo method is essen-

tially based on (a) the synthetic generation of mul-

tiple realizations of spatial distributions of hydraulic

conductivity fields, honoring certain statistical proper-

ties (which are typically estimated from available data),

and (b) the solution of the flow and transport prob-

lem for each of these replicates. Since the accurate as-

sessment of target probability values typically requires
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Fig. 4: Spatial distributions of solute concentration ob-

tained by (a) the full model solution and the POD

approximation (b) without and (c) with the use of

the Snapshot Splitting Technique (SST). Results cor-

respond to the longitudinal profiles depicted in Fig-

ure 3 and refer to k = 60. The relative error is already

markedly high and clearly highlights the need of up-

dating the POD subspace. Colors are associated with a

logarithmic scale.

performing a large number of Monte Carlo simulations

[1, 34, 35], having at our disposal a computationally ef-

ficient methodology for the solution of transport is of

remarkable interest. Consistent with the classical ap-

proach to stochastic groundwater hydrology [13, 42],

we model the (natural) logarithm of hydraulic conduc-

tivity, Y = log K, as a second-order stationary corre-

lated Gaussian random process of space. We then gen-

erate a synthetic random realization of a statistically

isotropic field Y. The latter is characterized by a zero

mean and unit variance, and is associated with an ex-

ponential isotropic covariance model with correlation

scale λ = 2L. Generation of Y is performed through

the widely tested SGeMS software [41].

In practical cases, the Péclet number is computed

using the K correlation scale as characteristic length.

Therefore, we introduce the effective Péclet number P̂ e.

The relation between the effective Péclet number P̂ e

and the Péclet number defined in (5) is:

P̂ e =
〈u〉λ
D
' 2Pe, (22)

where 〈u〉 is the average velocity magnitude over the

domain and D is the diffusion coefficient of the system

(in this case D = Dx = Dy).

The steady-state Darcy velocity field u is obtained

by solving the governing equations (2) and (3) upon

setting permeameter-like boundary conditions to the

system, corresponding to a unit head drop across the

domain.

Following the procedure used for the homogeneous

case, the transport problem is solved by employing the

FE method (P1 elements) for space discretization and

the Backward Euler scheme for time discretization with

∆t = 0.05. The spatial distributions of ckf , ckp are then

calculated for the same value of Pe considered in the ho-

mogeneous setting, corresponding to P̂ e = 60, 120, 180.

Figure 5 depicts the temporal evolution of the relative

error (21), suggesting that, while the overall quality of

the reduced model solution deteriorates with time, it

does so to a lesser extent than the corresponding solu-

tion associated with the homogeneous set-up (see also

Figure 2). This result might be related to the obser-

vation that the solute plume tends to follow the high

conductivity paths in the system [17] and the effect of

these paths close to the source tend to be influential to

the plume behavior over time [5]. As such, capturing

these features by the POD techniques enables the re-

duced solution to mimic the full model for longer time

than in the homogeneous setting, where no preferential

conductivity path is present. The beneficial effects of

the SST for the enrichment of information embedded

in the POD subspace is clear also in the presence of

heterogeneity (Figure 5). This notwithstanding, it can

be noted that one cannot propagate the reduced model

solution in time indefinitely, without incurring in sig-

nificant approximation errors. This is clearly observed

in Figure 6, where the spatial distribution of ckf , ckp and

ckp+SST are depicted at time step k = 60 for Pe = 30.
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Fig. 5: Effect of the Snapshot Splitting Technique (SST)

on the evolution of the relative error (21) with the num-

ber of time steps, k, after the reduced model is employed

(full model is run for k ≤ 10) for a heterogeneous sys-

tem with diverse values of Pe.

4 Updating of the Projection Subspace

The results of Section 3 clearly show that the error be-

tween the reduced and full model solutions tends to

increase with time after the last snapshot has been ob-

served and tends to increase until it becomes not neg-

ligible after a certain time has elapsed. This is due to

the fact that the information content in the generated

POD subspace (even by relying on SST) is not large

enough to capture all of the key details of the dynami-

cally evolving concentration field on the basis of a lim-

ited number of snapshots. As such, the quality of the

approximation tends to deteriorate as time advances

since the solution significantly changes compared to the

early time states. The strategy we follow here, in order

to make optimal use of the POD model reduction strat-

egy in these types of dynamically evolving systems, is

based on alternating between the full model FE and

POD-FE solution of the transport problem. By doing

so, the POD subspace is dynamically updated over dis-

crete temporal intervals where snapshots are extracted

from the FE full problem solution and processed to con-

struct the reduced space basis. Examples of applications

of model updating strategies can be found in [8, 29].

For convenience, and given the results of Section 3,

we illustrate our findings by relying on the projection

matrix (13) constructed through the SST introduced

in 2.3. Figure 7 depicts the temporal evolution of the

error (21) obtained by solving the full model in the

heterogeneous setting previously described for a fixed

number Nt = 10 of time steps and alternating the use

of the full model with the reduced POD-FE solution for

diverse numbers of iterations, i.e., nPOD = 10, 20, 30,

and for Pe = 30, 60, 90. It can be noted that alternating
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Fig. 6: Spatial distributions of solute concentration ob-

tained by (a) the full model solution and the POD ap-

proximation (b) without and (c) with the use of the

Snapshot Splitting Technique (SST) and refer to k = 60.

The relative error is already markedly high and clearly

highlights the need of updating the POD subspace. Col-

ors are associated with a logarithmic scale.

between the two solutions enables one to update the

POD basis in time so that the updated POD subspace

can follow closely the system dynamics. The global error

is seen to consistently decrease after each full problem

iteration cycle. This highlights the need for an update

in time of the POD basis to obtain a reduced model

yielding a good accuracy and suggests that there is a

beneficial cumulative effect to the quality of the reduced

model solution of subsequent basis updates.

The results shown in Figure 7 suggest that setting

the number of iterations nPOD a priori does not allow

a good adaptation of the POD algorithm to the system
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Fig. 7: Temporal evolution of the relative error Ek (21)

for diverse values of Pe and employing a subspace up-

date after a fixed interval nPOD.

dynamics. For example, it is seen that the concentra-

tion configuration in the domain changes rapidly after

a few time steps from the beginning of solute injection

so that the relative distance between the full model so-

lution and the POD subspace increases sharply within

few time steps and a model update is required. Oth-

erwise, the variability of concentration in space tends

to be smooth out after a few time steps so that a re-

duced model based on this type of information is prone

to retain a relatively high global accuracy for a sus-

tained period of time. This behavior can be quantified

and embedded in the dynamic POD update procedure

through the definition of the following residual for each

time step:

Rk =

∥∥( M
∆t + A)Pckp − (fk + M

∆tPc
k−1
p )

∥∥
2∥∥fk + M

∆tPc
k−1
p

∥∥
2

, (23)

where ||·||2 is the Euclidean norm. In general, the resid-

ual (23) is different from the residual of the reduced

model (16). Note that residual (23) does not depend of

the full model solution and it is computed using only

the solution at the current reduced step projected onto

the full discrete space through the matrix P. We then

employ (23) to design the adaptive algorithm for the

update of the POD subspace basis which is described

in the following:

(U1) A solution ckp is computed by solving the full discrete

model, i.e., ckp = ckf , for the firstNt time steps (Nt =

10 in our example, i.e., k ≤ 10).

(U2) The projection matrix is computed via the POD

method relying on the full model solution computed

in U1, ckp representing a snapshot.

(U3) The model is projected to the POD subspace yield-

ing the reduced discrete model which is solved until
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10−2 Pe = 30 : ε = 10−3 , 10−2 , 10−1
Pe = 60 : ε = 10−3 , 10−2 , 10−1

, 10−2Pe = 90 : ε = 10−3 , 10−1

Fig. 8: Temporal evolution of the relative error Ek (21)

for diverse values of Pe and imposing a different thresh-

old on the residual Rk (23). Peaks of the error iden-

tify the times when the POD subspace is updated.

The total number of reduced steps is 60, 40, 30 for

ε = 10−1, 10−2, 10−3, respectively.

the residual Rk in (23) attains a given threshold

value, ε.

(U4) Starting from the last solution obtained in U3, we

switch to the solution of the full discrete model; in

our example, we solve the full model for additional

Nt time steps, a full analysis of the feedback between

Nt and the transport setting being outside the scope

of this work.

(U5) The solution computed in U4 together with the old

snapshots are employed to update the projection

matrix used in the POD reduction method. Trans-

port simulation progresses from step U3 with the

newly constructed reduced model.

Figure 8 depicts the temporal evolution of the global

relative error (21) as a function of k and for different

choices of Pe and of the selected threshold ε, for the

same problem setting associated with Figure 7. It can

be noted that the error is consistently low, due to the

improved efficiency according to which the subspace up-

dating is performed. As expected, the largest global rel-

ative errors are related to the selected threshold. Low-

ering the latter yields to a frequent update, resulting in

an increased computational time.

Note that adding new snapshots to update the pro-

jection matrix during the last step (U5) increases the

size of the reduced problem. However, the snapshot up-

dating takes place only a limited number of times be-

fore the longest simulation time is reached. As a conse-

quence, the dimension of the reduced problem is always

much smaller than that of the full problem. It is further

noted that, depending on the problem, in case of long

simulation times one might need to progressively reduce



POD modeling of solute transport in porous media 11

0

1

2

3

0 1 2 3 4 5x

y

2 1 0 −1 −2 −3 −4 −5 −6 −7

Fig. 9: Spatial distributions of solute concentration ob-

tained by the alternating algorithm solution. Colors are

associated with a logarithmic scale.

the number of snapshots included in the set (otherwise

the size of the projection matrix P can grow in such a

way that the advantage of the method is hampered at

some point). This issue can be handled, for example,

by progressively removing the oldest (in time) snap-

shots as time increases, once a fixed size for P is set.

The choice of the latter is guided by the environmental

setting and goal one selects and by the computational

power available.

Finally, using the subspace update strategy presented

in this section, we can simulate a dispersion and advec-

tion problem for a given time interval using a reduced

amount of computational resources and being able to

control the error through the value of the threshold ε.

With reference to this point, Figure 9 clearly shows

that concentration values computed at k = 60 using

the alternating algorithm with Pe = 30 and ε = 10−1

is almost identical to the solution resulting from the full

numerical problem shown in Figure 6a. It is remarkable

to note that the results for 60 time steps out of 100

have been obtained by way of the reduced model. Since

the linear system associated with the reduced model

is much smaller than the full model system, the com-

putational time associated with the reduced stage is

essentially negligible, thus resulting in a speed-up of

2.5 (ratio between total number of steps, 100, and the

number of full model steps, 40).

5 Summary and Conclusions

Our work leads to the following major conclusions:

1. We present a new algorithm for improving the per-

formance of the numerical solution of transport prob-

lems associated with migration of conservative dis-

solved chemicals in a porous medium under the ac-

tion of advective and diffusive/dispersive processes.

The proposed algorithm is based on a Proper Or-

thogonal Decomposition (POD) model reduction ap-

proach and employs a combination of the full and

reduced model, the solution of which is alternated

in time. The adaptive model reduction strategy we

propose relies on (i) employing a Snapshot Splitting

Technique (SST), which enables us to enrich the

information content associated with the basis em-

ployed to construct the POD subspace on the basis

of a given number of snapshots, and (ii) alternating

between the solution of the full and reduced model

through the definition of a threshold on the alge-

braic residual (23). We remark that the optimiza-

tion of the model alternation sequence as a function

of the domain heterogeneity and transport setting is

outside the scope of the present contribution, which

is keyed to illustrate and demonstrate the viability

of the proposed strategy. As such, our work shows

that using our subspace updating strategy enables

us to simulate an advection-dispersion problem for a

given time interval using a reduced amount of com-

putational resources and with the ability to control

the computational error through a desired threshold

ε.

2. We explore the effect of the Péclet number on the

quality of the reduced model approximation. We

find that the POD method is associated with an

improved performance for low Péclet numbers. This

is related to the observation that the snapshots em-

ployed to build the basis vectors are taken from the

full model solution and the concentration dynamics

for low Péclet numbers are strongly linked to the

past system states. On the contrary, in the presence

of high values for the Péclet number (i.e., when ad-

vection strongly dominates), the method will auto-

matically switch to the solution of the full model.

This causes a minimal computational overhead due

to the POD subspace computation. This apparent

drawback has a negligible impact from an opera-

tive standpoint because the computational time re-

quired to compute the POD basis is much smaller

than the time required for a full simulation step.

As a future development, it would be interesting to

extend the range of applicability of our approach

by using more sophisticated model reduction meth-

ods, e.g., by coupling our strategy with Lagrangian

based model reduction [33] or by resorting to more

recent techniques such as hierarchical model reduc-

tion [2, 37].

3. The improvement associated with the proposed SST

enables us to increase the number of steps within

which the reduced model can provide a viable solu-
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tion of the system behavior in the time-alternating

algorithm, yielding a numerical solution associated

with increased computational efficiency.

The joint use of the Snapshot Splitting Technique

and of the time alternating model reduction algorithm

has the potential to be extended to problems govern-

ing scalar transport in diverse types of flow fields and

media. Cycling between the solution of the full and re-

duced models can provide a marked decrease of the

complexity of a discrete problem characterized by a con-

siderably high physical dimension according to which

an ad hoc fast solver can be built. Additional advan-

tages of the proposed framework can be thus itemized:

– it is adaptive, automatically switching between re-

duced and full model according to the value of the

residual;

– it is independent of the discretization method, being

based on the algebraic formulation;

– it reproduces the solution of the original model when

no reduction is allowed (e.g., with a high advective

field);

– it is possible to localize the reduction by applying

the reduction procedure only in certain regions of

the domain by resorting, for instance, to a domain

decomposition approach;

– it provides a snapshot of the solution at a fixed time,

which can be advantageously exploited when dealing

with coupled system.

Since the proposed approach is directly applied to the

discretized problem, future investigations might include

the treatment of additional complex features associated

with flow and transport in heterogeneous porous media,
such as nonlinear chemical reactions and multi-phase

flows.
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