
1 
 

Determinants of the price response  1 

to residential water tariffs: meta-analysis and beyond 2 

 3 

 4 

Riccardo Marzanoa 5 

Charles Rougéb 6 

Paola Garronea 7 

Luca Grillia 8 

Julien Haroub 9 

Manuel Pulido-Velazquezc 10 

Affiliations 11 

a: Politecnico di Milano, Milan, Italy 12 

b: University of Manchester, Manchester, United Kingdom 13 

c: Universitat Politècnica de València, Research Institute of Water and Environmental 14 

Engineering (IIAMA),Valencia, Spain 15 

 16 

Corresponding author 17 

Riccardo Marzano, Politecnico di Milano, Department of Management, Economics & Industrial 18 

Engineering, Via Lambruschini 4/b, 20156, Milan, Tel. +39 02 2399 2818 19 

riccardo.marzano@polimi.it. 20 

 21 

Final version published as: Marzano, R., Rougé, C., Garrone, P., Grilli, L., Harou, J. J., & 22 

Pulido-Velazquez, M. (2018). Determinants of the price response to residential water tariffs: 23 

Meta-analysis and beyond. Environmental Modelling & Software, 101, 236-248, DOI: 24 

10.1016/j.envsoft.2017.12.017 25 

 26 

  27 

mailto:riccardo.marzano@polimi.it


2 
 

Abstract 28 

 29 

Meta-analyses synthesise available data on a phenomenon to get a broader understanding of its 30 

determinants. This work proposes a two-step methodology. 1) Based on a broad dataset of 31 

residential water demand studies, it builds a meta-regression model to estimate mean and 32 

standard deviation of price elasticity of residential water demand. 2) The resulting meta-model 33 

serves as a basis for implementing an approach that directly simulates the range of price 34 

elasticities resulting from policy-relevant combinations of its determinants. This simulation 35 

approach is validated using the available dataset. Despite evidence of low average price elasticity, 36 

the scenarios simulated using our meta-regression estimates show that increasing block rate 37 

tariffs are associated with higher price elasticity, and stresses the importance of using state-of-38 

the-art methodologies when evaluating the price response. This completes other methodological 39 

insights obtained from the meta-analysis itself. Policy implications on the use of pricing to bring 40 

about water savings are discussed. The dataset is made available along with the paper to facilitate 41 

accumulation and processing of future empirical evidence on the topic.  42 

 43 

Keywords: price-elasticity, residential water demand, discontinuous prices, meta-analysis 44 

 45 

Key points 46 

1) Meta-analysis of residential water price elasticity from largest database yet. 47 
2) Resulting statistical model used to formulate a simulation approach 48 
3) Approach validated using available dataset. 49 
4) Approach can give a primary estimate of the efficiency of new pricing policies 50 
5) Approach shows the impact of tariff structure and estimation methodology  51 
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1. Introduction 52 

Pricing is an appealing instrument to bring about water savings. The increasing emphasis of 53 

water policies on “putting the right price tag on water” (EC, 2012) and the shift to discontinuous 54 

pricing structures such as increasing block rates (IBRs) are two instances of current attitudes 55 

toward water pricing, which is aimed at promoting water conservation while maintaining equity 56 

and affordability (Rogers et al., 2002). This paper offers a synthesis on the existing evidence on 57 

the response of households to water prices by means of a meta-analysis. Contrary to previous 58 

studies on this topic, it also goes beyond by validating an exploratory simulation approach based 59 

on meta-analysis results, and by using it to produce supplementary insights regarding some of the 60 

determinants of price response such as tariff structure. There are three main motivations for this 61 

effort.  62 

First, severe droughts have recently hit a few US states and Latin American countries, and 63 

episodes of water shortage have occurred in Asia and also in Europe (Kummu et al., 2010; 64 

MacDonald, 2010). The debate on water use efficiency and the implementation of conservation 65 

policies has grown in scope and urgency as a result, as it has been extended to more geographical 66 

locations, including countries traditionally unaffected by large-scale water shortage events.  67 

Second, and despite the ongoing debate involving policymakers, scientists and citizens on 68 

water conservation, policy remedies are unclear. On the one hand, demand management has 69 

emerged as a cost-effective complement or even as an alternative to supply-side solutions – the 70 

expansion of infrastructure capacity. On the other hand, command-and-control policies such as 71 

use restrictions or mandatory retrofit programs seem to be less cost-effective than price measures 72 

in the short and long run (Olmstead & Stavins, 2009; Escriva-Bou et al., 2015). 73 
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Finally, despite an extensive literature focusing on estimating the price elasticity of water 74 

demand, it remains unclear whether, to what extent and under which circumstances, consumers 75 

respond to changes in the price of water. This is particularly true when pricing structures move 76 

from traditional two-part tariffs with a uniform, steady and generally low uniform rate to more 77 

complex pricing structures, such as increasing or decreasing block rates, drought prices, or time-78 

of-use prices.  79 

In the absence of a definitive, consensus answer emerging on these issues, syntheses are 80 

helpful. Several reviews have been written on the estimation of the residential water demand, 81 

including Arbués et al. (2003), House-Peters & Chang (2011), Nauges & Whittington (2009), 82 

Worthington & Hoffman (2008). Over the years, literature has enlarged the spectrum of adopted 83 

methodologies, and this, in turn, has led to a better handling of the uncertainties and 84 

nonlinearities that exist between water consumption and its determinants, and more generally, a 85 

better understanding of the complex spatial and temporal patterns of water usage.  86 

A quantitative alternative to reviews are meta-analysis methods, which have become widely 87 

used in the economics and management literature (Stanley & Jarrell, 1989; Moeltner et al., 2007; 88 

Geyskens et al., 2009; Nelson & Kennedy, 2009; Tunçel & Hammitt, 2014). Meta-analysis 89 

allows statistical evidence from different studies to be combined to obtain a quantitative and 90 

systematic overview on the effect size of interest, and to derive common summary statistics with 91 

corresponding confidence intervals. This technique generally results in increased statistical 92 

power, and can result in improved parameter significance and accuracy compared to primary 93 

studies alone. This allows the researcher to provide more reliable within-sample predicted values 94 

of the dependent variable under a particular set of conditions. Moreover, a meta-regression 95 

analysis (MRA) makes it possible to test hypotheses about the relationships between the effect 96 

size of interest and some primary study-specific factors in order to identify what causes study-to-97 
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study variations in empirical results. In doing so, it may offer suggestions on how to improve 98 

primary data, study design, and model specifications and techniques.  99 

Three previous meta-analyses provided summary statistics of water price elasticity. Espey et 100 

al. (1997) used a sample of 124 price elasticity estimates from 24 journal articles produced 101 

between 1967 and 1993. They reported a mean water price elasticity of -0.51. Dalhuisen et al. 102 

(2003) extended the previous sample and ran their meta-regression on 296 estimates taken from 103 

51 studies produced between 1963 and 2001. They obtained a sample mean of -0.41. Sebri (2014) 104 

focused on 100 studies produced between 2002 and 2012 and obtained a mean value of -0.365. 105 

The bulk of the literature indicates that water demand is price inelastic, and few studies have 106 

reported price elasticity estimates larger than -0.25, i.e. smaller in absolute value (see Renwick & 107 

Archibald, 1998; Martínez-Espiñera & Nauges, 2004). 108 

Nevertheless, these systematic reviews highlighted the high heterogeneity that affects water 109 

demand studies. They rely on data at different disaggregation levels, both over time (annual, 110 

monthly and daily data) and over space (household versus municipality or country data). They 111 

focus on either average or marginal prices. They make use of very diverse demand specifications 112 

and estimation techniques.  113 

This work goes beyond the meta-analysis on residential water price elasticity recently carried 114 

out by Sebri (2014) in two respects. First, this analysis is based on a sample of 124 primary 115 

studies produced from 1964 to 2013, whose size in terms of studies is considerably larger than 116 

that of the one used in previous available meta-analyses. In fact, it considers a publication time 117 

span that bridges both Dalhuisen et al. (2003) and Sebri (2014). We estimate a meta-regression 118 

model that is robust to heteroskedasticity stemming from the variation in precision of sampled 119 

price elasticity estimates. As in previous meta-analyses on the same topic, our specifications 120 

include a wide array of study- and location-specific factors (data characteristics, methodologies, 121 
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socio-economic factors, tariff structures, and so on). Our specifications are also robust to the 122 

presence of outlier values. 123 

Second, in this paper, we go beyond the meta-regression model by formulating, validating and 124 

demonstrating a simulation approach that extrapolates the meta-analysis model to evaluate the 125 

plausible range of price elasticity estimates for set values of some of the meta-model 126 

specifications, which we call scenarios. We simulate scenarios aimed at directly answering 127 

policy-relevant questions where a meta-analysis can only tell whether the question is worth 128 

asking. For instance, the meta-analysis shows that using DCC models (discrete-continuous 129 

choice; Hewitt & Hanemann, 1995; Olmstead et al., 2007; Olmstead, 2009) to analyze the price 130 

response with increasing block rates (IBR) leads to values of price elasticity that are greater in a 131 

statistical sense. Yet, this is not a direct quantification of how price elasticities are affected by 1) 132 

tariff structure and 2) methodological choices. The simulation approach we propose provides this 133 

quantification. Besides, it makes it possible to explore the impact of combined impacts of several 134 

variables, whereas a meta-regression model can only yield insights on the influence of individual 135 

variables.    136 

The rest of the paper is organised as follows. Section 2 reviews the studies conducted on water 137 

demand. Section 3 presents the data and describes the methodology for the meta-analysis. Section 138 

3 reports the results of our meta-regression model. Then, Section 4 builds on these results to 139 

formulate, validate and exploit a scenario simulation approach. Section 5 concludes and discusses 140 

the implications of the findings. 141 

2. Meta-analysis: data and methodology 142 

The selection process for the primary studies pertaining to the meta-sample is presented first 143 

(Section 2.1). Then, the data (Section 2.2) and methods (Section 2.3) used in the meta-sample are 144 
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presented and analyzed. This leads to the model used in this meta-analysis, which is then 145 

introduced (Section 2.4). 146 

2.1. Building the meta-sample 147 

The 51 studies included in the dataset from Dalhuisen et al. (2003) were completed by relying 148 

upon two previous review articles on the estimation of residential water demand (i.e. Arbues et 149 

al., 2003; Worthington & Hoffman, 2008) along with a complementary search protocol based on 150 

the following steps. First, we identified a list of keywords that were kept as simple as possible for 151 

the sake of inclusiveness. These keywords were: (1) water, (2) demand and (3) price elasticity. 152 

Second, we conducted a Boolean search and explored the following online databases: (1) Scopus, 153 

(2) ISI Web, (3) RePEc, (4) ScienceDirect, (5) Springer, (6) Wiley, (7) Social Science Research 154 

Network (SSRN), (8) the National Bureau of Economic Research (NBER), and (9) the Centre for 155 

Economic Policy Research (CEPR). Third, we read the abstracts of all articles we obtained from 156 

the queries in order to eliminate those not relevant to the topic. Upon completion of the first three 157 

steps we ended up with a list of 352 articles, which we further filtered based on two criteria. On 158 

one hand, we selected only those articles that made use of econometric techniques, a common 159 

approach since the seminal paper by Howe & Linaweaver (1967), to estimate the residential 160 

water demand. Studies using any other methodology to estimate water price elasticities were 161 

screened out. On the other hand, we included only price elasticities of residential water demand. 162 

When primary studies included residential and non-residential water demand estimates, we 163 

discriminated among various estimates reported in the same study in order to select only those 164 

using data pertaining to residential consumption.  165 

The above described screening process yielded 73 articles which were added to the extant 166 

sample of 51 studies used by Dalhuisen et al. (2003), which also included 12 unpublished studies 167 
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that were kept in our sample. Therefore, our final dataset includes 124 papers produced from 168 

1963 to 2013 comprising 615 estimates of water price elasticities obtained using data from 31 169 

countries (see Figure 1). A coding protocol was designed to operationalise the information 170 

gathered from the sampled studies. Two of the coauthors read all the papers to ensure a reliable 171 

coding of the effect size and all the meta-analysis explanatory variables. A list of the sampled 172 

studies and information coded in the meta-analysis is available upon request.  173 

 174 
Fig. 1a - Distribution of the sampled water demand studies over publication year. 175 

 176 

Fig. 1b - Distribution of the sampled water demand studies over demand locations. 177 

 178 
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 179 

2.2. Data used in primary studies 180 

For approximately 64% of the sample, panel data has been used to estimate water demand. 181 

Although early water demand studies using panel data date back to the eighties (see Hanke & de 182 

Mare, 1982), this approach has become more popular in the last few decades (Dandy et al. 1997; 183 

Nauges & Thomas, 2003; Mansur & Olmstead, 2012). Panel data are commonly used to take into 184 

account household heterogeneity, and they are essential to estimate long-run price elasticities. 185 

Time series data (e.g., Agthe & Billings, 1980; Ruijs et al., 2008) constitute only about 15% of 186 

our meta-sample, whereas cross-section data (e.g. Gottlieb, 1963; Foster & Beattie, 1981; 187 

Hajispyrou et al., 2002) are used to estimate the remaining 20% of the sampled price elasticities. 188 

Aggregated data hide diverging microeconomic effects, and their use can produce biased 189 

estimates, highlighting the interest of data disaggregation over both time and space. Yet, whereas 190 

household-level data are needed to control for all relevant household characteristics, only a few 191 

studies (Dandy et al., 1997; Olmstead et al., 2007; Mansur & Olmstead, 2012) have actually been 192 

able to use them. Most studies resort to aggregated cross-sectional or panel data across a number 193 

of municipalities in a region, and then analyze the price elasticity of demand in a spatially 194 

disaggregated way. Likewise, daily water consumption data would be ideal to disentangle the 195 

effect of price variations on consumption from those of other time-varying determinants such as 196 

weather conditions, yet studies using daily data are even more sporadic than those based on 197 

household-level data (see Olmstead et al. 2007; Grafton & Ward, 2008). Most primary studies 198 

rely on monthly or annual data.         199 

Household-level data has been exploited to estimate only about 36% of the sampled price 200 

elasticities, whereas other estimates rely on aggregate data. Daily data are even more uncommon 201 

(8% of the estimates), as data is more frequently (53%) disaggregated on a monthly basis. 202 
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To estimate residential water demand, the most relevant variable to be measured, together 203 

with water consumption, is the price of water. Water tariffs often have complex structures that 204 

represent a trade-off between multiple objectives such as equity, public acceptability, 205 

transparency and the sustainability of service provision.  As far as tariff schemes are concerned, 206 

approximately 42% of observations refer to price elasticities estimated in locations where 207 

increasing block rates (IBR) were in place. Decreasing block rates (DBR) are far less frequent 208 

and account for less than 6% of our observations. When tariff structures are discontinuous, the 209 

average and marginal prices generally differ. Some authors assume that what actually defines the 210 

price effect is the consumer's perception of it, and that this is best represented by the average 211 

price (e.g. Nauges & Thomas, 2000; Gaudin et al., 2001; Schleich & Hillenbrand, 2009). Others 212 

prefer marginal prices, and then have to deal with the added difficulty that with IBR and DBR 213 

tariffs, marginal prices differ among users according to consumption (Dandy et al., 1997; 214 

Hajispyrou et al., 2002; Martínez-Espiñeira, 2002; Nauges & Van Den Berg, 2009). Several ways 215 

to tackle challenges linked with price effect estimation consist in introducing an intermediary 216 

variable, such as Nordin’s difference variable (Nordin, 1976) or Shin’s price perception variable 217 

(Shin, 1985). Over 36% of price elasticities in the meta-sample are estimated by using the 218 

average price (Grafton et al., 2011), whereas the marginal prices are present in 52% of water 219 

demand estimates. Almost half of those (24% of the meta-sample) include a difference variable to 220 

control for the income effect imposed by discontinuous tariff structures. 221 

In most water demand studies, price elasticity is estimated controlling for other factors that 222 

can influence water consumption. The most common among them are climate and seasonal 223 

factors, income, household characteristics and urban configuration.   224 

Weather and seasonal factors are taken into account in 73% of the demand estimates through 225 

one or more variables measuring temperature (44%), rainfall (61%), evapotranspiration rate 226 
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(11%) and season (11%). Indeed, water consumption usually shows a marked seasonal pattern. 227 

Summer price elasticities are usually larger than winter ones, as discretionary water uses like 228 

outdoor use are more price-sensitive than non-discretionary uses, and they are typically related to 229 

summer activities (Billings & Agthe, 1980; Nieswiadomy & Molina, 1989; Griffin & Chang, 230 

1991; Hewitt & Hanemann, 1995; Hoffman et al., 2006). Less than 10% of the price elasticities 231 

are obtained using only summer data, while winter data are used in approximately 7% of the 232 

cases.  233 

Water bills often represent a small fraction of household income, at least in most developed 234 

countries (Arbués et al., 2003). Therefore, although water is considered a normal good (positive 235 

income elasticity), the water demand has almost universally been found to be income-inelastic in 236 

the literature (see, for instance, Dandy et al., 1997; Gaudin et al., 2001). This remark is 237 

accentuated by the difficulty to gather data on household income – provided data themselves are 238 

collected at household level – and by the fact that only short-run elasticity values are measured in 239 

most studies (approximately 90% of our estimates), whereas retrofitting – the installation of 240 

water efficient devices – is a long-run income-related effect of price variations. Furthermore, 241 

discontinuous volumetric rates encompass changes in consumer surplus that result in reducing the 242 

income effects. Since income is so important in predicting water consumption levels, it is not 243 

surprising that it has been controlled for in 79% of our sampled price elasticity estimates. 244 

Population density and household characteristics are relevant in water demand studies. Per-245 

household consumption increases with household size but per-capita consumption decreases 246 

(Arbués et al., 2004). Urban configuration, including land zoning (e.g. single-family residential 247 

or commercial), total building area, and density of residential developments, also has an influence 248 

on total water consumption (Shandas & Parandvash, 2010). Similarly, household composition is 249 

a relevant factor to consider. For instance, both elder and younger inhabitants may exhibit a 250 
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higher level of water consumption for discretionary uses, gardening for the former, and frequent 251 

laundering and more water-intensive outdoor leisure activities for the latter (Nauges & Thomas, 252 

2000). Variables that reflect both the proportion of the population over 64 years and under 19 253 

years of age can therefore be included (Martínez-Espiñeira, 2003). Household characteristics 254 

such as total number of bedrooms, architectural type (i.e., detached or semidetached) and 255 

presence of a garden might also impact water demand (Fox et al., 2009). Population and 256 

household characteristics are captured by variables measuring population density (in 5% of the 257 

estimates) and household size (in more than 41% of the estimates).  258 

 259 

2.3. Methods used in primary studies 260 

Recall that our meta-sample only contains studies that use econometric modeling to estimate 261 

water demand. The functional forms used are diverse, but even though the most natural approach 262 

is to estimate a linear water demand model (Chicoine & Ramamurthy, 1986; Nieswiadomy & 263 

Molina, 1989), the most recurrent functional form is the double-log, where both water 264 

consumption and price are log-transformed. The log-transformation is a convenient way to deal 265 

with skewed variables; what is more, the coefficient of the price variable in a log-log model is the 266 

price elasticity of the water demand. Models where only water consumption or price is log-267 

transformed are also used (Hughes, 1980; Arbués et al., 2004).     268 

The estimation methodologies present in the meta-sample include ordinary least squares 269 

(OLS; e.g., Billings & Agthe, 1980; Chicoine et al., 1986; Hewitt & Hanemann, 1995; Martínez-270 

Espiñeira, 2003; Schleich & Hillenbrand, 2009) and several instrumental variable approaches 271 

(IV), with specific emphasis on two- and three-stage least squares (2SLS and 3SLS). All of these 272 

techniques can be used with data collected at one or at a few points in time, such as cross-273 

sectional and panel data. Time series, instead, may require more sophisticated approaches, such 274 
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as vector autoregressive models and co-integration techniques (Martínez-Espiñeira, 2007). OLS 275 

is by far the most used estimator in the meta-sample (55% of the estimates).    276 

An innovative approach, used in three sampled primary studies is the discrete/continuous 277 

choice (DCC) model (Hewitt & Hanemann, 1995; Olmstead et al., 2007; Olmstead, 2009). DCC 278 

is a methodology that deals with the endogeneity of price to water consumption arising in 279 

discontinuous tariff schedules such as IBR or DBR. It models the observed demand of water as 280 

the outcome of 1) a discrete choice of the block in which consumption takes place and 2) a 281 

perception error which may place consumption on a different block than intended by the 282 

consumer if it is large. Its main weakness is the assumption that consumers are well-informed 283 

about the tariff structure. 284 

 285 

2.4. Model and estimation technique 286 

The dependent variable of our empirical meta-regression model is represented by the water 287 

price elasticities (𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) reported in each study. We use two vectors of study- and location-level 288 

characteristics as independent variables. The resulting model is as follows: 289 

𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 =  𝛽𝛽𝑗𝑗 + ∑ 𝛼𝛼𝑘𝑘x𝑗𝑗𝑗𝑗𝑘𝑘 + ∑ 𝛾𝛾𝑠𝑠z𝑗𝑗𝑗𝑗𝑠𝑠 + 𝑝𝑝𝑗𝑗𝑗𝑗𝑆𝑆
𝑠𝑠=1

𝐾𝐾
𝑘𝑘=1         j=1,2,…,L; i=1,2,…,Nj                              (1) 290 

where 𝛽𝛽𝑗𝑗 is the baseline value of the residential water price elasticity, net of any study- and 291 

location-specific effect, xij and zij encompass the K study-specific and S location-specific 292 

characteristics, the j indexes L included studies and the i indexes Nj estimates reported in each 293 

study, respectively. The baseline 𝛽𝛽𝑗𝑗 is indexed by j because we allow for heterogeneity across 294 

studies. 𝑝𝑝𝑗𝑗𝑗𝑗 is a stochastic disturbance.  295 

Price elasticity estimates may vary considerably in precision leading to heteroskedasticity 296 

issues. Therefore, applying conventional ordinary least squares (OLS) to the estimation of 297 
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equation (1) can potentially lead to biased estimates of the coefficients’ standard errors. To 298 

mitigate heteroskedasticity, weighted least squares (WLS) have been adopted. When using WLS, 299 

inverse variances should be used as weights in the estimation procedure. Unfortunately, since our 300 

data miss most of the standard errors that are needed to compute the inverse variance matrix, we 301 

use a standard approach in meta-regression analysis whereby we proxy standard errors with a 302 

monotonic transformation of the sample size associated to each reported price elasticity estimate 303 

(Horowitz & McConnell 2002; Stanley & Rosenberger 2009).     304 

The study- and location-specific characteristics included in the meta-analysis model of 305 

equation (1) are those identified as relevant in explaining variations in price elasticity estimates, 306 

such as demand specification, data characteristics, estimation techniques, and so on. The 307 

complete list of the independent variables used in the MRA and their descriptions are presented 308 

in Table 1. The operationalization of most of these variables is analogous to those of previous 309 

meta-analyses in the field (Dalhuisen et al., 2003; Sebri, 2014).  310 

 311 
Table 1 - List of independent variables in MRA and their descriptions. 312 

 313 
Panel A – Demand specification variables 
Variable category 
(baseline) Variable name Variable description 

Type of price elasticity Long-run =1 if long-run elasticity is estimated 
(short-run elasticity) Segment =1 if segment elasticity is estimated 
Price measure Marginal price =1 if the marginal price is used as a price measure  
(average price) Shin price =1 if the Shin price is used as a price measure 
Conditioning variables Number of variables Number of conditioning variables 
 Lagged consumption =1 if lagged consumption included in demand specification 
 Evapotranspiration rate =1 if evapotranspiration rate included in demand specification 
 Season =1 if season is controlled for in the demand specification  
 Household size =1 if household size included in demand specification 
 Population density =1 if population density included in demand specification 
 Income =1 if income level included in demand specification 
 Commercial uses =1 if commercial use is controlled for in demand specification 
 Temperature =1 if temperature included in demand specification 
 Rainfall =1 if rainfall included in demand specification 
 Difference variable =1 if difference variable included in demand specification 
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Functional form Log price =1 if the specification is semi-logarithmic (x is logarithmic) 
(linear) Log consumption =1 if the specification is semi-logarithmic (y is logarithmic) 
 Double log =1 if the specification is double logarithmic 
 Flexible =1 if the specification is flexible 
 314 
Panel B – Data variables 
Variable category 
(baseline) Variable name Variable description 

Disaggregation overtime Daily data =1 if the primary study relies on daily data  
(annual data) Monthly data =1 if the primary study relies on monthly data 
Disaggregation overusers 
(aggregate data) 

Household data =1 if the primary study relies on household-level data 

Data period Summer data =1 if the primary study uses summer data 
(cross-season data) Winter data =1 if the primary study uses winter data 
Data structure Time-series data =1 if the primary study relies on time-series data 
(cross-section data) Panel data =1 if the primary study relies on panel data 
 315 
Panel C – Methodology variables 
Variable category 
(baseline) Variable name Variable description 

Estimator IV =1 if the instrumental variable (IV) approach is used 
(OLS) 2SLS =1 if the two stages least squares (2SLS) approach is used 
 3SLS =1 if the three stages least squares (3SLS) approach is used  
 DCC =1 if the discrete-Continuous choice approach is used  
 316 
Panel D – Publication variables 
Variable category Variable name Variable description 
Publication status Published =1 if the primary study is published  
 Publication year Publication year 
 317 
Panel E – Location-specific variables 
Variable category 
(baseline) Variable name Variable description 

Socio-economic 
indicator 

GDP per capita Gross Domestic Product per capita 

Water tariff scheme IBR =1 if customers are subjected to increasing block rates (IBR) 
(flat rate) DBR =1 if customers are subjected to decreasing block rates (DBR) 
Location US =1 if the location is in the United States  
(other parts of the world) Europe =1 if the location is in Europe 
 318 

3. Results 319 

3.1. Descriptive statistics 320 

Figure 2 shows the typical funnel plot commonly used in meta-analyses, where the sample 321 

size on the y-axis is the number of observations used to estimate the price elasticity (x-axis) in 322 
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each primary study. In the absence of publication bias, studies based on larger samples have near-323 

average elasticity, whereas studies based on smaller samples are spread on both sides of the 324 

average, creating a roughly funnel-shaped distribution. In this respect, it is worth recalling that 325 

we have included also unpublished studies in our meta-sample.1 The funnel plot justifies the 326 

adoption of WLS to mitigate the heteroskedasticity that arises from differences in precision 327 

associated with the price elasticity estimates.  328 

 329 
Fig. 2 - Funnel plot of price elasticity over sample size.  330 

 331 

The average water price elasticity estimate is -0.40, with a standard deviation of 0.72 and a 332 

median of -0.34. Fifty-three out of 615 estimates are smaller than -1, i.e. refer to elastic water 333 

demands. The most price-elastic estimated water demand reports a price elasticity of -7.47. 334 

Thirty-two out of 615 observations are positive, indicating that demand increases with price. 335 

                                                           
1 Unpublished studies include working papers that have not been accepted for publication yet. When existing, we 
have always included a published version of the study.    
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These positive values will be carefully handled in the MRA because they are not consistent with 336 

standard micro-economic theory. 337 

 338 
Fig. 3 - Estimated price elasticities over the publication year (Figure 5a-b) and over the data 339 
collection year (Figure 5c-d) with 95% confidence interval bands computed before and after the 340 
year 2000.  341 

 342 

Price elasticity estimates from the post-2000 studies are closer to the overall mean value 343 

(Figure 3a-b).  This convergence in the most recent estimates is also confirmed when the price 344 
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elasticities are plotted against the data collection years (see Figure 3c-d). The higher 345 

standardization in the use of estimation techniques can partly explain the observed trend. 346 

Table 2 reports the descriptive statistics of the independent variables included in the model 347 

described in equation (1). Sixty-eight primary studies (397 observations) used data collected in 348 

the United States, whereas 26 studies (111 observations) are based on European datasets.2 On 349 

average, water demand is estimated in high income locations (the mean value of GDP per capita 350 

is 25,300 US dollars).  351 

 352 
Table 2 - Descriptive statistics. 353 

 354 
Variable Mean Sd Max Min 
Long-run .0992 .2992 1 0 
Segment .0425 .2019 1 0 
Marginal price .5213 .4999 1 0 
Shin price .0236 .1520 1 0 
Number of variables 8.169 13.67 206 0 
Lagged consumption .1497 .3570 1 0 
Evapotranspiration rate .1035 .3049 1 0 
Season .1083 .3110 1 0 
Household size .4189 .4938 1 0 
Population density .0525 .2233 1 0 
Income .7898 .4078 1 0 
Commercial uses .0350 .1840 1 0 
Temperature .4350 .4962 1 0 
Rainfall .6035 .4896 1 0 
Difference variable .2299 .4211 1 0 
Log price .0252 .1568 1 0 
Log consumption .0173 .1306 1 0 
Double log .5423 .4986 1 0 
Flexible .0835 .2768 1 0 
Daily data .0835 .2768 1 0 
Monthly data .5260 .4997 1 0 
Household data .3669 .4823 1 0 
Summer data .0945 .2927 1 0 
Winter data .0677 .2515 1 0 
Time-series data .1480 .3554 1 0 
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Panel data .6346 .4819 1 0 
IV .0457 .2089 1 0 
2SLS .0756 .2646 1 0 
3SLS .0094 .0968 1 0 
DCC .0205 .1417 1 0 
Published .8976 .3034 1 0 
GDP per capita 25,086 9,929 59,065 762.1 
IBR .4031 .4909 1 0 
DBR .0567 .2314 1 0 
US .6520 .4767 1 0 
Europe .1748 .3801 1 0 

 355 

3.2. Main results from the meta-analysis model 356 

Table 3 presents the results of the model referring to equation (1). The dependent variable is 357 

the price elasticity reported in each estimate of each primary study included in the meta-sample.  358 

The table reports the results of the WLS (columns 1-3) and panel generalised least squares 359 

(GLS, column 4) estimations obtained using the square root of the sample size as analytical 360 

weights (Stanley & Rosenberger, 2009). In fact, the studies included in the meta-dataset report 361 

multiple estimates, depending on whether they use different subsamples, specifications, 362 

estimators and so on. We correct the standard errors by clustering the estimates within studies 363 

(columns 1-3) to account for data dependency across estimates from the same study. An 364 

alternative approach applies panel data estimators to a panel that observes multiple estimates for 365 

single studies (Rosenberger & Loomis 2000; Stanley & Doucouliagos 2012). 366 

 367 
Table 3 - WLS and panel GLS estimates. 368 

 WLS  Panel GLS 

 (1) (2) (3)  (4) 

GDP per capita   .0088  .0040** 

   (.0115)  (.0018) 

US   -.0521  -.0531 

   (.3235)  (.0624) 

Europe   .0405  .0395 
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   (.3574)  (.0542) 

IBR  -.0528 -.0456  -.1130** 

  (.0600) (.0505)  (.0445) 

DBR  .5569* .5567  .0401 

  (.3334) (.3432)  (.1105) 

Long-run -.0084 -.0129 -.0361  -.0768 

 (.1028) (.0963) (.0738)  (.0657) 

Segment -.0036 .0464 .0477  .0696 

 (.4936) (.4848) (.4957)  (.1954) 

Marginal price .1963 .1777 .1852  .1262*** 

 (.1281) (.1200) (.1228)  (.0390) 

Shin price 1.022** .7647 .8143  .0576 

 (.4216) (.4838) (.5531)  (.1746) 

Number of variables .0112*** .0117*** .0123***  .0054*** 

 (.0021) (.0021) (.0022)  (.0014) 

Lagged consumption -.0503 -.0454 -.0274  -.0711 

 (.1056) (.1008) (.0801)  (.0556) 

Evapotranspiration rate -.0006 -.0291 -.0277  .0099 

 (.2345) (.2100) (.2263)  (.0617) 

Season .3009** .2697** .2684*  .0280 

 (.1331) (.1267) (.1424)  (.0528) 

Household size -.2367 -.1923 -.1575  -.0316 

 (.2659) (.2455) (.2635)  (.0305) 

Population density .0959 .0872 .1421  .0631 

 (.2651) (.2549) (.3074)  (.0595) 

Income .2917 .2124 .2721  .0635 

 (.3631) (.3474) (.3219)  (.0472) 

Commercial uses .7604*** .6964*** .6816***  .3192*** 

 (.2330) (.2007) (.2052)  (.0783) 

Temperature -.0247 -.0558 -.0854  .0216 

 (.1871) (.1692) (.1918)  (.0366) 

Rainfall .1630 .1994 .1247  .0191 

 (.2256) (.2000) (.2032)  (.0436) 

Difference variable .2364 .2542 .2704  .0247 

 (.3048) (.2948) (.3198)  (.0516) 

Log price .8797 .9449 1.078  .0661 

 (.8271) (.8004) (.8294)  (.1517) 
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Log consumption .3716 .3772 .3715  .4569*** 

 (.4049) (.4229) (.4154)  (.1294) 

Double log -.2587 -.2027 -.1777  -.1252*** 

 (.2188) (.2020) (.2188)  (.0378) 

Flexible -.0204 -.0075 .0001  -.0205 

 (.1935) (.1966) (.2427)  (.0543) 

Daily data -.0441 .0141 .0089  -.0114 

 (.3646) (.3434) (.3451)  (.0612) 

Monthly data -.2064 -.1988 -.1593  -.0194 

 (.2262) (.2145) (.2126)  (.0506) 

Household data .0844 .0685 .0256  -.0696* 

 (.1045) (.1879) (.2005)  (.0379) 

Summer data -.2380 -.2711* -.2715*  -.1054*** 

 (.1454) (.1388) (.1526)  (.0373) 

Winter data .0867 .0543 .0538  .1137*** 

 (.1345) (.1274) (.1452)  (.0380) 

Time-series data .0518 .0295 .2093  .1462** 

 (.4651) (.4465) (.4785)  (.0680) 

Panel data -.2262 -.1770 -.0634  .0014 

 (.3688) (.3654) (.2971)  (.0652) 

IV -1.437* -1.441* -1.512*  -.1983 

 (.8012) (.8013) (.8131)  (.1604) 

2SLS -.2410 -.2133 -.2229  -.0946* 

 (.2174) (.2076) (.2167)  (.0488) 

3SLS 1.791** 1.253 1.262  .5108* 

 (.8164) (.8506) (.8640)  (.2780) 

DCC -.5121** -.5060** -.5577**  -.2291** 

 (.2448) (.2425) (.2478)  (.1068) 

Published -.0940 -.1321 -.2073  -.1348*** 

 (.2948) (.2663) (.3053)  (.0497) 

Constant -.3712 -.3600 -.6642  -.3325*** 

 (.6997) (.6895) (.8140)  (.1080) 

Observations 615 615 598  598 

Studies 122 122 117  117 

The table reports the results of the WLS (columns 1-3) and panel GLS (column 4) estimations obtained using the 369 
square root of the sample size as analytical weights. The dependent variable is the price elasticity reported in each 370 
estimate of each primary study included in the meta-analysis. Depending on the specification, the models control for 371 



22 
 

study-level characteristics, tariff schemes, location of the water demand and gross domestic product per capita. 372 
Standard errors (clustered by studies) are reported in parentheses. *, **, and *** denote significance at 10%, 5% and 373 
1%, respectively. 374 

 375 
 Column (1) reports the estimates that refer to a specification which includes only study-level 376 

characteristics. The variables that control for the tariff scheme faced by customers, i.e. IBR and 377 

DBR, are included in the specification reported in column (2). The location (US and Europe) and 378 

GDP per capita are also added in column (3).   379 

The results reported in Table 3 provide some insights into the sources of variation in price 380 

elasticity estimates. If the most thorough specification in column (3), which was obtained through 381 

WLS, is considered, three variables show highly statistically significant coefficients. First, the 382 

Number of variables employed in the specification of the water demand is found to have a 383 

positive effect on the estimated price elasticity. The coefficient is statistically significant at the 384 

1% level, since when more variables are included in the model specification, the analyst obtains a 385 

less elastic water demand. Second, the presence of Commercial uses also results in a less elastic 386 

water demand, with statistically significance at the 1% level. Third, consistently with Dalhuisen 387 

et al. (2003), other things being equal, primary studies that rely upon the DCC approach – always 388 

applied to cases with IBR in our sample – show a more price-elastic water demand. In this case, 389 

the coefficient is negative and statistically significant at the 5% level. The three coefficients are 390 

also statistically significant in the specifications reported in columns (1) and (2). The statistical 391 

significance at the 5% level of DCC suggests that as far as DCC can be considered as the most 392 

sophisticated methodology available to estimate water demand under discontinuous prices, IBR 393 

should be considered an effective tool for water conservation.   394 

The application of the DCC approach remains statistically significant in the panel GLS 395 

estimates (column 4) along with the number of variables included in the specification and the 396 
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inclusion of a variable that takes into consideration the commercial uses. In addition, the results 397 

in column (4) suggest that the use of the Marginal price as a price measure may lead to a less 398 

elastic water demand, compared with those obtained using average prices. This suggests that 399 

users are more sensitive to average than marginal price.. As far as the functional form is 400 

concerned, the double-logarithmic (Double log) specification is associated with a more elastic 401 

water demand, whereas the Semi logarithmic specification is conducive to lower price elasticities. 402 

All of the aforementioned effects are statistically significant at the 1% level. Reliance on Time-403 

series data leads to smaller price elasticity estimates (more inelastic water demand) with a 404 

statistical significance level of 5%. A possible explanation is the impossibility to exploit 405 

household-level heterogeneity in the water demand estimation. According to the panel results, the 406 

season in which the data were collected is statistically significant in explaining variations in the 407 

price elasticity estimates. In particular, studies relying on Summer data show a more elastic water 408 

demand, whereas Winter data are more likely to be associated with a less elastic water demand. 409 

As far as the location-specific variables are concerned, GDP per capita is found to be statistically 410 

significant at the 5% level in explaining a less elastic water demand, as economic theory would 411 

predict. Moreover, IBR is found to be conducive to a more elastic water demand (with statistical 412 

significance at the 5% level).  413 

 414 

3.3. Outlier analysis 415 

As shown in Section 3.1, the range of price elasticity estimates from primary studies is very 416 

large. There are observations whose price elasticity is positive in contradiction of basic micro-417 

economic theory, and others that show an extremely elastic water demand. These outliers raise 418 

concerns both about the reliability of these estimates, and about their potential influence on the 419 

meta-regression results. Therefore, we estimate a probit model that predicts the probability of 420 



24 
 

belonging to the outliers’ group and find evidence that using panel data significantly decreases 421 

the odds of obtaining an outlier price elasticity estimate, whereas the water demand location (i.e. 422 

location-specific features) does not have any statistically significant impact (results are 423 

untabulated but available upon request).    424 

In order to rule out the possibility that our estimates may be biased considerably by the 425 

presence of these outlier values, we re-estimate the model on different subsamples. Table 4 426 

reports the results of WLS estimations after having dropped positive price elasticities (column 1), 427 

and after having dropped positive price elasticities and trimmed 1% (column 2) and 2% (column 428 

3) of the observations on the left tail of the price elasticity distribution.  429 

 430 
Table 4 – Outlier-robust estimates. 431 

 Outliers excluded 

 (1) (2) (3) 

GDP per capita .0032 -.0001 -.0008 

 (.0057) (.0058) (.0058) 

US .2723 .3078 .3217 

 (.2023) (.1989) (.1979) 

Europe .5073** .4635* .4732** 

 (.2221) (.2213) (.2187) 

IBR -.0102 -.0082 -.0098 

 (.0370) (.0367) (.0372) 

DBR .2466** .2511* .2537* 

 (.1244) (.1284) (.1315) 

Long-run .0568 .0591 .0554 

 (.0835) (.0843) (.0825) 

Segment -.2171 -.2051 -.2042 

 (.1489) (.1655) (.1677) 

Marginal price .0212 .0390 .0426 

 (.0706) (.0678) (.0671) 

Shin price .0983 .1169 .1156 

 (.1301) (.1352) (.1374) 

Number of variables .0031*** .0028*** .0028*** 
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 (.0010) (.0010) (.0010) 

Lagged consumption -.1322 -.1293 -.1237 

 (.0807) (.0823) (.0807) 

Evapotranspiration rate .2064** .1680* .1502* 

 (.0960) (.0882) (.0862) 

Season .2915*** .2900*** .3028*** 

 (.0914) (.0897) (.0870) 

Household size .1087 .1225 .1348 

 (.0997) (.1025) (.1036) 

Population density .2254 .1919 .2017 

 (.2302) (.2195) (.2203) 

Income -.0253 -.0914 -.0978 

 (.1394) (.1492) (.1506) 

Commercial uses .8610*** .8277*** .8195*** 

 (.1822) (.1841) (.1840) 

Temperature -.1555* -.1832** -.1924** 

 (.0809) (.0810) (.0813) 

Rainfall .1695 .1949* .2093* 

 (.1239) (.1170) (.1145) 

Difference variable -.3338** -.2853** -.2671** 

 (.1288) (.1245) (.1209) 

Log price -.5236*** -.5606*** -.5568*** 

 (.1531) (.1580) (.1600) 

Log consumption .0610 .0908 .1071 

 (.2222) (.2279) (.2311) 

Double log -.3548*** -.3194*** -.3040*** 

 (.0885) (.0870) (.0860) 

Flexible -.0790 -.0413 -.0269 

 (.1186) (.1180) (.1172) 

Daily data -.2492 -.2308 -.2205 

 (.1565) (.1526) (.1530) 

Monthly data -.0263 -.0760 -.0736 

 (.1220) (.1210) (.1199) 

Household data -.1161 -.1106 -.1092 

 (.1183) (.1191) (.1197) 

Summer data -.2601** -.2587** -.2447** 

 (.1110) (.1088) (.1066) 



26 
 

Winter data .0673 .0684 .0821 

 (.1046) (.1015) (.0982) 

Time-series data .8271*** .7256** .7428** 

 (.2878) (.2944) (.2928) 

Panel data .0347 -.0014 -.0008 

 (.1671) (.1674) (.1688) 

IV .2789** .2586* .2502* 

 (.1324) (.1363) (.1359) 

2SLS .0180 .0016 -.0034 

 (.0732) (.0728) (.0730) 

3SLS .1220 .1736 .1929 

 (.2326) (.2486) (.2512) 

DCC -.2245* -.2524* -.2619** 

 (.1321) (.1291) (.1272) 

Published -.6516*** -.6335*** -.6324*** 

 (.1218) (.1236) (.1249) 

Constant -.1493 -.0072 -.0300 

 (.2804) (.3111) (.3089) 

Observations 567 560 555 

Studies 117 117 117 

The table reports the results of the WLS estimations obtained using the square root of the sample size as analytical 432 
weights after having dropped positive price elasticities (column 1), and after having dropped positive price 433 
elasticities and trimmed 1% (column 2) and 2% (column 3) of the observations on the left tail of the price elasticity 434 
distribution. The dependent variable is the price elasticity reported in each estimate of each primary study included in 435 
the meta-analysis. Standard errors (clustered by studies) are reported in parentheses. *, **, and *** denote 436 
significance at 10%, 5% and 1%, respectively. 437 

 438 
Results reported in Table 4 make our main findings more robust. Applying the DCC approach, 439 

including more variables in the specification, and controlling for the commercial uses, are three 440 

methodological features that retain statistical significance on estimated water price elasticities. In 441 

addition, some coefficients that are statistically significant in our panel estimations (but not in our 442 

full sample WLS estimations) are proved to be so in the outlier-robust WLS estimates as well. 443 

This is the case of Double log, Time-series data and Published, for which the outlier-robust 444 

estimates are even stronger than in the panel model; the Double log and Published specifications 445 
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are associated with a more elastic water demand whereas the opposite is true for Time-series 446 

data. Concerning the Published specification, this is a clear evidence of publication bias that we 447 

were not able to discern through the visual aid provided by the funnel plot, simply because we 448 

had no way to distinguish between published and unpublished studies. On the contrary, after 449 

having dropped less reliable estimates that were likely to significantly drive our main results, the 450 

preference for studies that found a more elastic water demand has been detected.  451 

4. Simulation approach 452 

4.1.  Rationale and description 453 

Our meta-sample can be also exploited through the formulation of scenarios aimed at 454 

obtaining predictions of water price elasticity in different contexts and under alternative pricing 455 

policies. In what follows, a scenario simulation is a model prediction obtained using the 456 

estimated coefficients and setting the independent variables at values corresponding to the 457 

scenario’s assumptions. The justification for developing this methodology is two-fold. On one 458 

hand, it can inform demand management policies by providing quantitative estimates of price 459 

elasticity for well-defined scenarios. On the other hand, scenarios can explore the combined 460 

impact of several variables on price elasticity. Although individual coefficients of meta-461 

regressions may not be statistically significant, changes in the corresponding variables used as 462 

inputs to the simulation of the scenario may still play a significant role when jointly 463 

implemented.  464 

We cannot directly propose a meta-regression model as a simulation tool. Given the large 465 

number of included regressors, overfitting would be a concern when using such a model for 466 

predictive purposes (see e.g., Harrell, 2015: p. 72). For that reason, we use a three-step procedure 467 

aimed at taking advantage of our meta-sample in a scenario simulation setting. First, starting 468 
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from the outlier-robust meta-model of Section 3.3, we eliminate the least relevant variables to 469 

select a more parsimonious linear model. Second, we validate the obtained restricted model. 470 

Finally, we use the validated model to obtain scenario simulations exploring the combined 471 

impacts of tariff structure, seasonality, and estimation methodology. 472 

 473 

4.2. Model selection and validation 474 

Model selection has been performed via stepwise regression technique, with a backward 475 

elimination approach (Hocking, 1976). Backward elimination starts with the full meta-regression 476 

model, then iteratively drops independent variables whose p-values are higher than a chosen 477 

threshold and re-estimates the resulting restricted model, until all p-values are under the threshold 478 

(Kennedy & Bancroft, 1971). We chose 0.2 as our p-value threshold, and eliminated the 479 

independent variable with the highest p-value at each iteration. The stepwise regression led to 480 

dropping the following variables in this order: Longrun, Segment, Marginal Price, Shin Price, 481 

Income, Population Density, Log Consumption, Flexible, Monthly data, Household data, Panel 482 

data, 2SLS, 3SLS and GDP per capita.  483 

The selected model has been cross-validated by using studies published before 2000 as 484 

“training set” and those published after 2000 as “test set” (Arlot & Celisse, 2010). This procedure 485 

entails the following sub-steps: i) estimating the predictive model using the training set; ii) 486 

obtaining model predictions relative to observations in the test set; iii) regressing observed price 487 

elasticities against predictions using the test set; iv) testing that predictions are able to explain the 488 

observed values, i.e., the relative coefficient is statistically significant at the conventional 489 

significance level. In order to cope with heteroskedasticity we use WLS both in steps i) and iii). 490 

The model is validated at a 5% statistically significance level. This suggests that the selected 491 
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model exhibits good predictive performance and can be accordingly used to produce reliable 492 

scenario simulations. Table 5 shows the estimates of the predictive model. 493 

 494 
 495 

 496 
Table 5 – Predictive model estimates. 497 

Dependent variable: Price elasticity 

IBR -.0235 

 (.0429) 

DBR .3495*** 

 (.1078) 

Summer data -.2828*** 

 (.1026) 

Winter data .0441 

 (.0959) 

US .1963 

 (.1680) 

Europe .4184** 

 (.1933) 

Number of variables .0026*** 

 (.0009) 

Lagged consumption -.0731*** 

 (.0140) 

Evapotranspiration rate .1395* 

 (.0798) 

Season .2635*** 

 (.0839) 

Household size .0737 

 (.0535) 

Commercial uses .8922*** 

 (.0811) 

Temperature -.1785** 

 (.0786) 

Rainfall .1657** 

 (.0837) 

Difference variable -.2424** 
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 (.1200) 

Log price -.4273*** 

 (.1270) 

Double log -.2630*** 

 (.0769) 

Daily data -.1201 

 (.1035) 

Time-series data .6615*** 

 (.2163) 

IV .2103** 

 (.0905) 

DCC -.2689** 

 (.1207) 

Published -.6011*** 

 (.0587) 

Constant -.1078 

 (.2219) 

Observations 572 

Studies 122 

The table reports the results of the WLS estimations obtained using the square root of the sample size as analytical 498 
weights after having dropped positive price elasticities and trimmed 2% of the observations on the left tail of the 499 
price elasticity distribution. The dependent variable is the price elasticity reported in each estimate of each primary 500 
study included in the meta-analysis. Standard errors (clustered by studies) are reported in parentheses. *, **, and *** 501 
denote significance at 10%, 5% and 1%, respectively. 502 

 503 

4.3. Insights from the simulation approach 504 

After having validated the predictive model, we illustrate the approach by simulating selected 505 

scenarios and comparing the relative price elasticities. Scenarios are simulated by setting all the 506 

independent variables at their means, except for those measuring the tariff structure and the 507 

season during which the water demand has been estimated. Thereafter, we exploit meta-data 508 

variation to produce simulated price elasticities conditional on tariff structure, season, and 509 

estimation methodology – focusing on the use of DCC. Table 6 shows the scenario simulation 510 

results. 511 
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 512 
 513 
 514 
 515 
 516 
 517 

Table 6 – Scenario simulations.  518 

Predicted variable: Price 

elasticity 

   

 Price elasticity Standard error 95% conf. inter. 

All seasons    

Linear -.3692*** .0194 [-.4075;-.3308] 

DBR -.0211 .1060 [-.2309;.1888] 

IBR -.3941*** .0236 [-.4408;-.3473] 

IBR (with DCC) -.6615*** .1188 [-.8967;-.4263] 

Summer    

Linear -.5913*** .0763 [-.7423;-.4403] 

DBR -.2432** .1226 [-.4859;-.0005] 

IBR -.6162*** .0798 [-.7743;-.4581] 

IBR (with DCC) -.8837*** .1341 [-1.149;-.6182] 

Winter     

Linear -.2644*** .0691 [-.4012;-.1276] 

DBR .0837 .1440 [-.2013;.3687] 

IBR -.2893*** .0664 [-.4207;-.1578] 

IBR (with DCC) -.5567*** .1200 [-.7943;-.3192] 

Observations 555 555 555 

Studies 117 117 117 

The table reports the results of scenario simulations based on the validated predictive model. The predicted price 519 
elasticities are obtained by setting all the variables at their means, except for those measuring the tariff structure and 520 
the season. Standard errors (clustered by studies) and 95% confidence intervals are also reported. ** and *** denote 521 
significance at 5% and 1%, respectively. 522 

 523 
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The validated model simulates price elasticities across seasons under linear DBR and IBR 524 

tariff schedules. In the latter case, we compare estimates obtained with and without the DCC 525 

approach, which, on the one hand, properly deals with the endogeneity of price with respect to 526 

water demand, but, on the other hand, rests on the assumption that households are fully informed 527 

about the tariff structure, including block sizes and prices within each block (Olmstead et al, 528 

2007).  529 

Simulated results lead to the following conclusions. First, predicted price elasticities are close 530 

to the sample mean value reported in the Section 3.1 overall, particularly under the linear tariff 531 

schedule (-0.37). Second, the water demand is found to be more price-elastic during summer than 532 

winter months. Price elasticity goes up (in absolute value) by 0.33 when switching from winter to 533 

summer periods. Third, DBR makes water demand less price-elastic. Under DBR the water 534 

consumption seems not to respond to price unless we focus on summer months. Fourth, IBR is 535 

associated with more elastic water demand, provided that water demand is estimated using a 536 

DCC approach. According to our simulations, price elasticity reaches the value of -0.88 when 537 

DCC is employed to estimate the water demand in locations exposed to IBR. This means that 538 

under IBR, if the water demand is properly estimated (and customers are fully informed about the 539 

functioning of the tariff mechanism), it turns out to be price elastic or close to.  540 

5. Discussion  541 

This analysis extends previous meta-analyses in two respects. First, it exploits a larger sample 542 

of primary studies (more than double than that of Dalhuisen et al., 2003, 20% larger than that of 543 

Sebri, 2014) spanning over a longer time period and includes recent analyses that make use of 544 

more advanced methods and better datasets. Second, it uses the resulting meta-regression model 545 

to implement a simulation approach to explore price elasticities under different scenarios. A 546 
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salient finding from this approach is that the more sophisticated the statistical analysis methods 547 

employed- i.e. able to deal with the endogeneity of price to water consumption, the more elastic 548 

the water demand in IBRs schemes. This finding suggests that non-uniform IBR volumetric 549 

prices may be more effective than traditional ones in bringing about water savings. It also stresses 550 

the importance of the estimation methodology. In fact, endogeneity issues are relevant when 551 

estimating water demand under non-linear pricing: price elasticities estimated using OLS can be 552 

shown to be positively (negatively) biased under IBRs (DBRs) schemes (see Hewitt & 553 

Hanemann, 1995). It should be recalled that the latter result is based on a limited number of 554 

observations (13) as only three primary studies in the sample used DCC. 555 

This finding highlights the effectiveness of managing water demand using pricing schemes 556 

more sophisticated than a two-part tariff with a uniform volumetric charge. On the one hand, the 557 

reasons for this finding should be investigated. Previous studies have shown that differences in 558 

the average magnitude of prices across locations adopting IBRs and uniform rates are not 559 

responsible for differences in observed elasticities (see Olmstead et al., 2007). Behavioral 560 

reaction to the water price structure, for instance due to increased attention to price, can be a 561 

more plausible explanation.On the other hand, the result is interesting because technological 562 

innovations, most notably smart meters that can measure consumption at a sub-hourly timescale 563 

and provide real-time feedback to the users through online consumer portals, are bound to 564 

increase interest in more complex pricing schemes (Cominola et al., 2015). Such tariffs would be 565 

dynamic, i.e., prices could vary over short time intervals (Rougé et al., submitted). For instance, 566 

scarcity pricing could help manage demand when water becomes scarce (e.g. linked to available 567 

reservoir storage) by adjusting prices on a weekly or monthly basis, thus sending users a signal of 568 

the true resource value (Grafton & Kompas, 2007; Pulido-Velazquez et al., 2013; Macian-569 

Sorribes et al., 2015); residential prices would be adjusted every week or month as the situation 570 
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evolves. Similarly, peak pricing could modulate sub-daily prices to help shift consumption away 571 

from periods of peak demand in the morning and evening, leading to substantial financial savings 572 

for water utilities (Rougé et al., submitted). In that latter case, the possibility to substitute peak 573 

uses with off-peak uses may lead to a more price-elastic peak demand (Cole et al., 2012). 574 

     Besides, the assumption that consumers have appropriate information about tariff structure, 575 

essential for the DCC model, is bound to see its validity increase with smart metering, as it brings 576 

about new ways for utilities to engage with their customers (Fraternali et al., 2012; Harou et al., 577 

2014; Koutiva & Makropoulos, 2016). More generally, the high-resolution data generated by 578 

smart metering may also enable to verify the assumptions behind estimation methodologies, and 579 

to propose even more sophisticated model that would be able to provide more accurate price 580 

elasticity estimates. 581 

Conversely, when the tariff includes a uniform volumetric charge, the finding from previous 582 

meta-analyses that residential water demand is price inelastic is confirmed, even though the study 583 

also confirms that the elasticity of demand is always significantly different from zero. In addition, 584 

price elasticity is likely to increase for higher prices. Our meta-dataset does not include data on 585 

water prices charged in locations where the water demand has been estimated, but there are 586 

reasons to expect a certain degree of heterogeneity in price elasticity across price levels. This 587 

highlights the need for deeper study of the potential role of dynamic residential water pricing for 588 

managing water scarcity and promoting water conservation in urban water supply. We believe 589 

that this study could help to improve future research on the water demand estimation. First, we 590 

highlight the importance of using panel data, which significantly reduce the probability of 591 

obtaining outlier values when estimating water price elasticity. Second, we show that water price 592 

elasticities significantly differ over season: for this reason, it is of paramount importance to use 593 

cross-season data and control for the season during which data have been collected. Third, we 594 
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stress the worth of using disaggregated data, both over time and over users, Forth, we draw 595 

attention on the relevance of properly taking into account the issues related to the non-linearity of 596 

price structure when estimating the water demand. 597 

6. Conclusions 598 

Meta-analysis is a powerful tool to summarise previous statistical evidence on water price 599 

elasticity, and to get an overall picture of the impacts of heterogeneity in study designs and study 600 

characteristics on the variations of empirical estimates. This study confirmed this; for instance, its 601 

results stressed that including more variables in the specification and controlling for the 602 

commercial uses of water lead to a less elastic water demand, suggesting that the specification 603 

choices are not neutral with respect to price elasticity estimates. 604 

Yet, meta-analyses are not fit for answering direct questions on the range of plausible price 605 

elasticities under given conditions. These are relevant questions when it comes to summarising 606 

previous demand studies to inform demand management policies, as debate rages on the potential 607 

role on water pricing. This is why this work has also validated and demonstrated a simulation 608 

tool designed to serve just that purpose.  It has shown that when customers face IBRs and the 609 

water demand is estimated by relying on state-of-the-art methodological approaches, the 610 

predicted water price elasticity is higher in absolute value. Yet, the DCC methodology that leads 611 

to these more elastic estimates also has weaknesses. This stresses the policy implications of 612 

understanding which methodologies are the most appropriate to evaluate the price response, and 613 

in which circumstances.  614 

  615 
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