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1. Introduction

Global mass customization and products servitization push
robotized assembly and manufacturing systems to evolve in the
direction of customer-oriented and personalized production, while
trying to guarantee the advantages of mass production systems in
terms of both productivity and costs [1]. These systems are actually
based, on the one hand, on high flexible and reconfigurable machines
[2] and, on the other hand, on having humans in the loop [3].
Specifically, in line with the concept of factory 4.0 [4], the presence of
human operators in flexible and reconfigurable environments is
considered essential (i) for the accomplishment of all those operations
that require excessive investments to be automatized and (ii) for the
manual and “intellectual” dexterity that characterizes humans when
compared to machinery. However, even if human-in-the-loop could
boost system flexibility and performance, it increases the complexity
underlying planning and scheduling (P&S) activities [5].

This complexity further increases in human–robot collaborative
(HRC) assembly systems (Fig. 1) for two reasons. First, problem
complexity is dramatically high even for a small number of tasks.
Indeed, a generic HRC task can be accomplished through many
robot trajectories (nominally, an infinite number of trajectories
with the same start and end position exists) and each trajectory

of a HRC task can be estimated using statistical models [7], task 

result to be coupled with robot motion planning, and complex t
solved using available task planners and schedulers [8]. Furth
more, available A.I. techniques are not currently able to cope w
temporal and spatial constraints as well as the goal of achiev
HRC taking into account temporal uncertainty [5].

This paper aims at presenting an innovative methodol
leveraging a temporally flexible A.I. planning approach 

addressing robot motion planning, task planning and schedu
in an integrated way. The approach represents a novelty since
the first time, a task planner and scheduler is able to man
human unpredictably and robot temporal uncertainty, exploi
the integration with a robot motion planning approach. The ro
motion planner provides the trajectories as well as an estimatio
the expected robot execution time during HRC tasks. The sys
deployed to control the working cell is then capable of dramatic
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A B S T R A C T

Step-changes in safety technologies have opened robotic cells to human workers in real indus
scenarios. However, the lack of methodologies for a productive and effective motion planning 

scheduling of human–robot cooperative (HRC) tasks is still limiting the spread of HRC systems. Stand
methods fail due to the high-variability of the robot execution time, caused by the necessity to continuo
modify the robot motion to grant human safety. In this context, the paper introduces an innova
integrated motion planning and scheduling methodology that (i) provides a set of robot trajectories for e
task as well as an interval on the robot execution time for each trajectory and (ii) optimizes, at relevant t
steps, a task plan, minimizing the cycle time through trajectory selection, task sequence and task alloca
The application of the approach to an industrial case is presented and discussed.
could be executed concurrently to different human tasks. Second,
robot execution time may be different from the expected one, since
robot speed may be reduced until robot stop to avoid collision with
the human, granting his/her safety [6]. Although the time interval
Fig. 1. Human–robot collaboration in assembly.
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easing flexibility in HRC assembly systems as demonstrated by
pplication in an industrial HRC case study. The paper is structured
llows: Section 2 describes the state of art and the contributions of
paper; Section 3 presents the pursued approach; Section 4
ents a test case and the results; Section 5 gives conclusions.

elated work and contribution

iterature shows how robot motion planning and task P&S,
yzed singularly, are computationally complex, making difficult
r integration in an unified approach, without relying on
ting hypothesis and applicability contexts [9,10].

 hierarchical approach to address task and motion planning
lems is proposed by Refs. [11,12] where a task plan is constructed

 abstract, high and discrete level and recursively re-evaluated in
ils just before the execution, taking into account robot motion
ning. In Ref. [13], symbolic planners are merged with geometric
ners to check the geometric feasibility of the actions proposed by
bolic plans. In Ref. [14], motion planning of collision-free
ctories and task reasoning over discrete valued actions are
bined. Moreover, Refs. [12–14] do not provide temporal planning
res and, thus, they result as not fully suitable to address temporal
bility of human/robot coordinated tasks. The limitations of these
oaches in terms of unfeasibility of the plan have been faced in
. [15,16]. Dantam et al. [17] discussed a probabilistically complete
hod to extend constraint-based task planning, incrementally and
mically incorporating motion feasibility at the task level.
he HRC methodologies presented above are not able to
age the coupling of motion planning and dynamic task P&S
er time uncertainty. This paper aims at addressing this issue by
grating the methodology in Ref. [7] with the improvement of a
ble temporal planning framework [18] based on timelines [19].
ndeed, Pellegrinelli et al. [7] presented a probabilistic model of
an tasks that is integrated with robot motion planning. The
hod describes each robot task by a set of trajectories with
rent probability of collision risks, and the execution time of

 trajectory is described by an interval confidence time. Such
hodology displays a double benefit: the human is modeled as a
stically controllable dynamic obstacle; human tasks and robot
s (i.e., the trajectories) are characterized by a confidence
rval on execution time. A further benefit of this methodology is

 the provided probabilistic model copes with the assumptions
e basis of flexible timeline based approaches [18], that is an A.I.
hodology extremely powerful when the decision variables of
problem display partially known time variability.
ased on these considerations and on an extension/integration
fs. [7,18,20], this paper introduces a novel methodology able to

 with both temporal and spatial constraints as well as with the
evement of human–robot cooperation taking into account
poral uncertainty. Specifically, the main novelties presented
ist in the (i) extension of Ref. [7], able to provide an estimation
e robot execution time in HRC tasks, for the generation of map
he human–robot tasks that are unlikely to be executed
ltaneously; (ii) extension of the system proposed in Ref. [20]
lementing the flexible temporal planning framework presented
ef. [18] for addressing temporal uncertainty of human–robot
borative tasks during both task plan generation and execution;
definition of a novel framework for the integration of the motion
ning and task planning methodologies.

The proposed methodology is composed by a sequence of steps.
The first step (Step 0) consists in the analysis of the considered
industrial process to identify the relevant tasks, the resources that can
perform the tasks (human, robot or both), and the relations among the
tasks (e.g., precedence or synchronization constraints). Each human
task is off-line studied through the use of a Kinect in order to identify
the HOV and the execution time. For all the possible robot tasks, a set
of robot trajectories [7] is defined by the Motion Planner (Step 1). The
identified tasks coupled with the information of the duration of
trajectories execution are encoded in a temporal planning model (Step
2) as alternatives for implementing a robot task. Namely, the in-
formation of the temporal duration of trajectories execution
generated by the Motion Planner is exploited to characterize the
temporal uncertainty of duration for tasks in the task planning model.
Then, the Flexible Temporal Task Planner generates a suitable task
plan (Step 3) for coordinating over time the robot and the human
activities and selecting the most suitable trajectory for robot motion
actions according to the actual collaborative context. The Plan
Executive executes and monitors the task plan execution (Step 4)
dealing with the uncertainty introduced by the variability in the
duration of human tasks possibly also requiring to replan in case of
unexpected behaviors. For each robot motion task, the execution of
the selected trajectory is requested to the Motion Planner (Step 5) that
is also responsible to realize the trajectory avoiding collisions with the
human (Step 6). Hereafter, robot motion and task P&S are analyzed in
terms of extensions of Refs. [7,18] and of changes for their integration.

3.1. Robot motion planner

Robot motion planner has to (i) identify 3 collision-free
trajectories for each human–robot task (with different risk level);
(ii) provide an estimation of the robot execution time when the
human is cooperating with the robot; (iii) generate a map of the
human tasks and robot tasks that are unlikely to be executed
simultaneously. Goals (i) and (ii) are fully covered by Ref. [7] and,
thus, are hereafter not addressed. Goal (iii) represents an extension
that allows the reduction of the problem complexity underlying task
P&S problems. Specifically, the approach in Ref. [7] has been modified
and extended to extract also information relevant for task P&S.

First, given a couple of human–robot tasks, i.e. a robot task and a
human task to be simultaneously executed, the Motion Planner has
to identify a set of trajectories considering HOV as an obstacle.
When the HOV is large, the robot may fail in the definition of the
entire set of trajectories. This information is shared with the Task
Planner that will not allow any simultaneity between the two tasks.

Second, the set of trajectories generated by Ref. [7] stands on the
hypothesis of having possible interferences between the human
and the robot. In this work, the Motion Planner tries first to
generate a robot trajectory without considering the human (empty
HOV considered). Then, possible collisions between the trajectory
and the HOV are checked. In case of no collision, the planner can

Fig. 2. The methodology blocks.
he proposed methodology

 framework (Fig. 2), implements the proposed methodology
eans of three main modules: a Motion Planner, relying on off-

 analysis of the volume occupied by the human during the
ution of a task, i.e. human occupancy volume (HOV), and
rating robot trajectories entering at different levels the HOV as
f. [7]; a Flexible temporal Task Planner and a Plan Executive that,
uing the timeline-based planning approach, provide a unified
tion to planning and execution with uncertainty.
state that robot and human do not share the working space and the
robot trajectory should not present any time variability. In this
case, Task Planner simultaneously schedules the tasks.

3.2. Flexible temporal Task Planner and Plan Executive

According to Ref. [18], a timeline-based planning model is com-
posed by multi-valued state variables, representing the set of features
to be controlled over time and specifying causal and temporal
constraints characterizing their allowed temporal behaviors. A state
variable describes the set of values v2V the related feature may
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assume over time with flexible temporal duration. For each value v2V,
a transition function T: V ! 2V describes the set of values v2V that
may follow v. A controllability function g(v) = {c,u} characterizes the
controllability property. Namely, if a value v2V is tagged as
controllable, i.e. g(v) = c then the system can decide the actual
duration of the value. If a value v2V is tagged as uncontrollable, i.e.
g(v) = u, the system cannot decide the duration of the value. The state
variables behavior may be further restricted by means of synchroni-
zation rules specifying temporal constraints among different values.

Within the above framework, the pursued modeling approach
considers three hierarchical levels (see Fig. 3). The Supervision level
models the production processes in terms of general tasks needed
to realize them. The Coordination level models the behaviors of the
human and the robot by means of two state variables, named
Human (with all uncontrollable values) and Robot Controller (with
some partially controllable values, i.e., the value start time is
controllable while the value stop time depends on the actual
behavior of the robot e.g., whether the robot stops to avoid
collisions or not), that represent the tasks that the planner can
assign to the human and to the robot, respectively. A set of
synchronization rules model possible assignments of tasks to the
human/robot and the related operational requirements. The
Implementation level models the internal constraints that allow
the robot to actually execute the assigned tasks. This level is
composed by several state variables, i.e., Robot Tool Controller, T1,
T2 and Robot Arm Controller, that corresponds to the robot tools
(Table 1) and the robot arm. The temporal characterization of the
planning model leverages the information generated by the
Motion Planner concerning the available motion trajectories and
their execution time variability. For each task, the Task Planner
classifies the related trajectories according to the given temporal
duration bounds and define different execution modalities for
them. Specifically, three execution modalities are defined and
modeled by means of the Execution Modality state variable: slow,
fast and normal modalities for the selection of the fastest, slowest
and intermediate robot trajectory, respectively. The trajectory mean

time is taken into account. Then, once a task plan is generated,
Plan Executive executes robot tasks and notifies the human of his
tasks agenda monitoring their actual execution through di
human’s feedback. The plan executive adapts robot beha
according to the observed behavior of the human maintain
the temporal consistency of the plan. In case the observed hum
behavior does not comply with the model (human task dura
longer than expected) a new task plan is replanned/rescheduled

4. Experiments and discussion

4.1. Setup & tasks description

The proposed methodology was tested in a scenario of h
skill preparation of complex pallets in flexible manufactu
systems. The considered setup (Figs. 1 and 4) is composed by
UR10 by Universal Robots mounted on a carrier, a multi-fixtu
system (pallet) placed on a table and representing the load/unl
station. The robot can mount two different tools: a vacuum grip
(for handling) or a camera (for quality inspections). A disp
positioned close to the pallet, is used to inform the human of
task assigned to him/her by the planner. The human wears a M
[21] that allows him/her to confirm the start and the end of e
assigned task in an ergonomic way through simple hand gestu
The human safety is granted by robot speed modulation [22]

The case considers 12 tasks, among which 3 must be execu
by the robot, 4 by the human and 5 can be allocated to the hum
or to the robot. The tasks are described in Table 1, with robot ta
(and trajectories) identified by their starting/ending po
(position Pi in Fig. 4) and human tasks identified by Hk (wit
being the task number). Human task duration (inclusive of 

gestures to communicate task start/end) is evaluated through
off-line study of human gestures by a Kinect (Table 1) [7].

A heuristic for the selection of the execution modali
minimizes the assembly cycle time.

4.2. Experiment, results and discussion

The experiment aims at demonstrating the advantages o
better usage of the resource in terms of total execution time. 

experiment consists in running six configurations (#1–#6) w
5 repetitions per configuration displaying an increasing numbe
non-pre-allocated tasks (Table 1), thus giving to the planner m
degrees of freedom for the optimization. Each configuration alw
leads to a change tool, so that this activity is not differential in te
of cycle time. The allocable tasks are released one at a ti
considering their duration (decreasing order).

Fig. 3. An example of planning model with controllability property.

Table 1
Human tasks description (left), tool IDs (bottom-left), possible tasks description (
center), number of tasks allocated over configuration (right).

Task H1 H2 H3 H4 H5 H6 H7 H8 H9
Min [s] 19.2 61.0 26.7 3.6 10.8 10.5 14.5 4.5 15.5
Max [s] 25.2 67.0 32.7 9.5 16.8 16.5 21.5 21.5 21.5

Tools T1: Camera T2:
Vacuum

T3:
Screwer

T4:
Calber

Configuration #1 #2 #3 #4 #5 #6
Nr of task
Rob.Hum./to be allocated

3/9/
0

3/
8/1

3/
7/2

3/
6/3

3/
5/4

3/
5/5

Name Description Tool

PiP4 Reach P4 for the tool change –

PiP3 Reach P3 for a quality check T1

Fig. 4. Experimental setup.
P2)
ost
ong
ner

 led
tion

 not
and
ree-
., a

 the

P13P14 Move the part from P13 to P14 T2
H1 Change the robot tool in P4 –

H2 Screw a component in P11 T3
H3 Take to part in P2 and mount in P5 –

H9 Unscrew the part in P10 T3
H4/P1P2 Move the part from P1 to P2 T2/-
H5/PiP6 Quality check on part in P6 T1/T4
H6/PiP7 Check the raw part in P7 T1/T4
H7/PiP8 Quality check on part in P8 T1/T4
H8/P10P9 Move the part from P10 in P9 T2/-

For instance, in #1, 9 tasks are pre-allocated to the human and 3 to the robot. In #6,
3 and 4 tasks are pre-allocated to human and robot, and 5 tasks are not pre-allocated.
Considering task precedence constraints (e.g. H9 after P1
and alternative tasks (e.g. H8 or P10P9), a map with alm
270 possible combinations (and 774 possible trajectories) am
human and robot tasks were identified. The Motion Plan
generated about 400 robot trajectories in less than 5 min, and
to a reduction of 8% of the number of combinations, i.e., mo
planning analysis suggested that for 8% of the cases, the robot is
able to achieve its task, till the human completed his/her task 

released the occupied space. The Motion Planner found a f
collision trajectory for 29% of the possible combinations (i.e
trajectory never colliding with HOV acquired offline), while in
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16.2 s

Fig. 7
of tas
time 
aining tasks, the trajectories enter the HOV to grant task
ibility. In other words, the map states that 71% of the cases
ire to take some risks in order to allow HRC. For example, Fig. 5
ents two trajectories (P7P3 and P4P6) together with the
imum and maximum expected execution times.
he Task Planner was able to on-line reschedule in case of
reseen event, i.e. when the robot or the human require more time
 the foreseen. The time required for the plan generation/replan
s from 4 s (configuration #1) to 40 s (conf. #6) mainly depending
he number of non-pre-allocated tasks. Such planning costs are
patible with usual HRC latencies. Fig. 6 respectively presents an
ple of the generated timelines. Fig. 7 describes the mean and

dard deviation of the total execution time over the different
gurations. The mean highly decreases in the first four configura-
s #1–4 (from 256 s to 172 s), where 3 tasks previously allocated to
uman are gradually allocated by the planner to the robot. This is
rent with the fact that the bottleneck is the human: the human has
idle time and is the last resource to finish his/her tasks. Standard
ation is due to the variability of the human while executing his/her
s. There are no appreciable differences among the results of
gurations #4–#6 since the duration of the tasks that can be freely
ated by the planner is around 5 s, i.e., really close to the standard
ation of the process. The mean of configuration #6 is slightly
er than the mean of configurations #4 and #5. This may be due to
act that, in #6, a simultaneous action of the human and the robot is
ired in order to complete all the tasks, i.e. the robot and the human
borate to jointly perform a same task. This creates a point at which
urce variabilities in time execution become coupled: if one of the
urce is late, its latency has to be summed to the execution time of
second resource. Thus, final execution time may increase. This
ible cause will be further investigated in future studies.
inally, the ANOVA analysis confirms that there is a statistically
ificance in the means of the six experiments (F(5,24) = 50.36,
0.0001). Post-hoc pairwise comparisons reveal differences
ng configurations #1–#3 and all the remaining configuration

 0.003). The post-hoc pairwise comparison between configura-
s #3 and #6 does not show a statistically significant difference
0.067). This can be explained by the last repetition in
guration #6 that presents a higher time than the previous

repetitions. Finally, there are no differences among configurations
#4–#6 (p = 1.0). This confirms that is useless to pre-allocate a very
high number of tasks: the initial reduction of the total execution time
(+12% in the first configurations) becomes, in the end very, small (�1%
in the last configurations). Remarkably, the results suggest that as the
here presented framework is able to reduce the payback time of a
robot, even when not saturated: the allocation to the robot of the 50%
of the total operations (and 25% of non-pre-allocated operations)
leads to a reduction of the total execution time of 33% (configuration
#4) and, thus, to an increase of the system throughput.

5. Conclusion

This paper contributes to the definition of a new framework for
integrated task and motion planning capable of coordinating
human and robot tasks as well as harmonize in a timely manner
the execution of the whole production process preserving the
safety of the human. The paper shows experimentally how motion
planning can be used to support task P&S decisions as well as task
P&S are able to optimize task allocation and timing in order to
minimize lead time and maximize system performance.

Acknowledgment

Authors are partially funded by the European Commission within
the FourByThree project, GA No. 637095, H2020-FoF-06-2014.

References

[1] Monostori L, Kádár B, Bauernhansl T, Kondoh S, Kumara S, Reinhart G, Sauer O,
Schuh G, Sihn W, Ueda K (2016) Cyber-physical systems in manufacturing. CIRP
Annals—Manufacturing Technology 65(2):621–641.

[2] Tolio T (2009) Design of Flexible Production Systems, Springer, Milano, Italy.
[3] Abramovici M, Göbel JC, Bao Dang H (2016) Semantic Data Management for the

Development and Continuous Reconfiguration of Smart Products and Systems.
CIRP Annals—Manufacturing Technology 65(1):185–188.

[4] Flatscher M, Riel A (2016) Stakeholder Integration for the Successful Product–
process Co-design for Next-generation Manufacturing Technologies. CIRP
Annals—Manufacturing Technology 65(1):181–184.

[5] Freitag M, Hildebrandt T (2016) Automatic Design of Scheduling Rules for
Complex Manufacturing Systems by Multi-objective Simulation-based Opti-
mization. CIRP Annals—Manufacturing Technology 65(1):433–436.

[6] Wang L, Schmidt B, Nee AY (2013) Vision-guided Active Collision Avoidance for
Human–robot Collaborations. Manufacturing Letters 1(1):5–8.

[7] Pellegrinelli S, Moro FL, Pedrocchi N, Molinari Tosatti L, Tolio T (2016) A
Probabilistic Approach to Workspace Sharing for Human–robot Cooperation
in Assembly Tasks. CIRP Annals—Manufacturing Technology 65(1):57–60.

[8] Fox M, Long D (2003) PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research (JAIR) 20:61–124.

[9] Michalos G, Kaltsoukalas K, Aivaliotis P, Sipsas P, Sardelis A, Chryssolouris G
(2014) Design and Simulation of Assembly Systems with Mobile Robots. CIRP
Annals—Manufacturing Technology 63(1):181–184.

[10] Pellegrinelli S, Pedrocchi N, Molinari Tosatti L, Fischer A, Tolio T (2014) Multi-
robot Spot-welding Cells: An Integrated Approach to Cell Design and Motion
Planning. CIRP Annals—Manufacturing Technology 63:17–20.

[11] Marthi B, Russell S, Wolfe J (2010) Combined Task and Motion Planning for
Mobile Manipulation. ICAPS.

[12] Kaelbling LP, Lozano-Pérez T (2011) Hierarchical Task and Motion Planning in
the Now. Proceedings—IEEE Int Conf on Robotics and Automation 1470–1477.

[13] Srivastava S, Fang E, Riano L, Chitnis R, Russell S, Abbeel P (2014) Combined
Task and Motion Planning Through an Extensible Planner-independent Inter-
face Layer. Proceedings—IEEE Int Conf on Robotics and Automation 639–646.

[14] Wolfe J, Marthi B, Russell S (2010) Combined Task and Motion Planning for
Mobile Manipulation. Proc of the Int Conf on Automated Planning and Scheduling
(ICAPS). (AAAI).

[15] Toussaint M (2015) Logic-geometric Programming: An Optimization-based
Approach to Combined Task and Motion Planning. IJCAI International Joint
Conference on Artificial Intelligence 1930–1936.

[16] Nedunuri S, Prabhu S, Moll M, Chaudhuri S, Kavraki LE (2014) SMT-based
Synthesis of Integrated Task and Motion Plans from Plan Outlines. Proceed-

. Trajectories in the first run of conf. #4: P7P3 (left)—min time 3.8 s, max time
 and P4P6 (right)—min time 4.4 s, max time: 10.1 s.

Fig. 6. Timelines in a plan of the first run of configuration #4.

Execu�on Time [s] Saved Time [%] Robot Allocated Task [%]
257

225

195
171 169 172

0%

10%

20%

30%

40%

50%

60%

70%

80%

50

100

150

200

250

300

0 1 2 3 4 5 6 7

Ex
ec

u�
on

 T
Im

e [
s]

. Total execution time, percentage of saved time and percentage of the number
ks allocated to the robot in each configuration. The vertical line represents the
variability.
ings—IEEE Int Conf on Robotics and Automation 655–662.
[17] Dantam NT, Kingston ZK, Chaudhuri S, Kavraki LE (2016) Incremental Task and

Motion Planning: A Constraint-based Approach. Robotics: Science and Systems 1–6.
[18] Cialdea M, Mayer A, Orlandini A (2015) Umbrico Planning and Execution with

Flexible Timelines: A Formal Account. Acta Informatica 53(6):649–680.
[19] Muscettola N HSTS: Integrating Planning and Scheduling, in Zweben M, Fox MS

(Eds.) Intelligent Scheduling, Morgan Kauffmann.
[20] Umbrico A, Orlandini A, Cialdea Mayer M (2015) Enriching a Temporal Planner

with Resources and a Hierarchy-based Heuristic. AI*IA 2015, Advances in Artificial
Intelligence, Springer: 410–423.

[21] https://www.myo.com/ (Visited on March 2017).
[22] Vicentini F, Giussani M, Molinari Tosatti L (2014) Trajectory-dependent Safe

Distances in Human–robot Interaction. Emerging Technology and Factory Auto-
mation (ETFA), 2014, IEEE, 1–4.

http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0005
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0005
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0005
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0010
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0015
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0015
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0015
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0020
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0020
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0020
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0025
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0025
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0025
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0030
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0030
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0035
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0035
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0035
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0040
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0040
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0045
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0045
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0045
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0050
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0050
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0050
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0055
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0055
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0060
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0060
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0065
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0065
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0065
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0070
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0070
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0070
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0075
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0075
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0075
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0080
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0080
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0080
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0085
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0085
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0090
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0090
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0100
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0100
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0100
https://www.myo.com/
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0110
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0110
http://refhub.elsevier.com/S0007-8506(17)30095-1/sbref0110

	00
	0Motion planning and scheduling for human and industrial-robot collaboration

