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A two-layer stochastic Model Predictive Control
scheme for microgrids

S. Raimondi Cominesi, M. Farina, L. Giulioni, B. Picasso, R. Scattolini

Abstract—A two-layer control scheme based on Model Pre-
dictive Control (MPC) operating at two different timescales is
proposed for the energy management of a grid-connected micro-
grid (MG), including a battery, a microturbine, a photovoltaic
system, a partially non predictable load, and the input from
the electrical network. The high-level optimizer runs at a slow
timescale, relies on a simplified model of the system, and is in
charge of computing the nominal operating conditions for each
MG component over a long time horizon, typically one day, with
sampling period of 15 minutes, so as to optimize an economic
performance index on the basis of available predictions for the
PV generation and load request. The low-level controller runs at
higher frequency, typically 1 minute, relies on a stochastic MPC
(sMPC) algorithm, and adjusts the MG operation to minimize
the difference, over each interval of 15 minutes, between the
planned energy exchange and the real one, so avoiding penalties.
The sMPC method is implemented according to a shrinking hori-
zon strategy and ensures probabilistic constraints satisfaction.
Detailed models and simulations of the overall control system
are presented.

Index Terms—Distributed generation, hierarchical control,
stochastic model predictive control, uncertainty.

I. INTRODUCTION

THE optimal management of energy in grid-connected
micro-grids (MG) is of paramount importance due to the

widespread and ever increasing diffusion of MG in energy
production systems, see [1], [2], [3], [4] and references
therein. However, the efficient use of MG is difficult due to
the presence of distributed energy resources, which can be
controllable (or dispatchable), such as gas turbines or Diesel
engines, but also non dispatchable, such as wind turbines
or photovoltaic (PV) generators, whose production heavily
depends on the weather conditions, which in turn can be
forecasted with some uncertainty over long time periods,
typically 24 hours. In addition, also the loads suffer from the
same problem: while some loads can be easily predicted, other
critical loads can have a significant stochastic component to
be accounted for. To mitigate these uncertainties, one can
import/export power from/to the utility grid or include in the
MG storage devices, like batteries, which have to be properly
managed as well.
The planned use of the MG elements over the prediction
horizon of 24 hours, usually with sampling period of 15
minutes, can be computed as the solution of an optimization
problem, based on the Model Predictive Control (MPC)
approach, where an economic performance index is minimized
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and the available deterministic forecasts of the renewables
power production and of the loads are considered. By resorting
to Mixed Logical Dynamical (MLD) models [5], also logical
constraints can be included in the optimization problem to
take into account the operating conditions of the elements of
the grid, such as latency times or charge/discharge constraints.
Based on this initial plan, computed at the beginning of each
day, a reference profile, sampled every 15 minutes, of the
power and energy exchanges with the national power grid for
the whole day ahead is agreed with the network manager and
should be strictly followed to avoid penalties and additional
costs. The effectiveness of this approach has already been
tested both in simulation and in real benchmarks [3], [4],
[6], [7], [8].
Although this deterministic solution is a significant aid in
the planning of the MG resources over the day, the inherent
uncertainty of the forecast of the renewables production
and critical loads can lead to a large discrepancy between
the energy really exchanged with the utility grid and the
planned one. For this reason, several stochastic MPC (sMPC)
algorithms have been presented, see e.g. [9], [10], [11], [12],
[13], [14], to account for the uncertainty of non-dispatchable
generation and loads. The proposed solutions usually rely on
a two stage stochastic programming approach: a deterministic
MPC problem is first solved, typically at a rate of 15 min,
to plan the future use of the microgrid energy resources
based on nominal profiles of loads and distributed generation.
Then, stochastic MPC is applied at the same frequency (15
min) and with the same prediction horizon to compensate for
unpredictable fluctuations of loads and renewable generators.
In this paper, we propose a different approach based on
the two-layer structure shown in Figure 1. At the higher
layer, and similarly to the solutions described in [3], [4],
[6], deterministic MPC is used to plan the use of the MG
elements over the prediction horizon of 24 hours and with
a sampling rate of 15 minutes. At the lower layer, a sMPC
regulator runs at higher frequency, typically 1 minute,
with the scope of compensating for the uncertainties and
maintaining, over each interval of 15 minutes, the total
energy exchange with the network as close as possible
to the planned value. In this framework, according to
the sMPC algorithm described in [15], [16], probabilistic
constraints on the manipulated and/or controlled variables
are considered. A shrinking-horizon implementation is used
to set the terminal conditions of the MG elements, at the
end of each period of 15 minutes, to the values assigned
by the high-level regulator. The proposed approach is also
capable of replanning at the higher layer the use of the
MG elements when the constraints imposed at the lower
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Fig. 1. Control scheme architecture.

layer cannot be fulfilled due to excessive deviations of the
uncertain variables with respect to their initial nominal values.

A preliminary version of the the two-layer control scheme
developed in the paper has been proposed in [17], where
however, the models of the MG and their components were
greatly simplified as well as the fundamental constraint on
the energy exchange over the 15 minutes sampling time. The
method we propose is of general validity for MG connected
to the national grid and can be easily adapted to cope with
different MG configurations. However, to present in detail the
main steps of the design procedure, reference is made to a
specific MG structure, described in Section II. The design
of the high level layer is reported in Section III-B, while
the core of the proposed approach is described in Section
IV, where the adopted sMPC algorithm is presented. The
results of simulation experiments are summarized in Section
V, where different control strategies for the update of the high-
level planning are discussed and commented. Finally, some
conclusions are drawn in Section VI.

II. THE MICRO-GRID

The basic elements of a MG are dispatchable generators,
such as microturbines or Diesel engines, non dispatchable gen-
erators, such as photovoltaic panels or wind turbines, energy
storage systems, such as batteries or flywheels, controllable
and noncontrollable (critical) loads, and thermal systems. The
control design method proposed in this paper is of general
validity and can be used for any MG configuration, however,
in order to more clearly describe its main features, in the
following we will consider a MG, consistent with the test
facility (TF) available at R.S.E. S.p.A. and equipped with
all the elements typical of microgrids. Specifically, the MG
is equipped with a gas microturbine (T), a battery (B), a
photovoltaic panel (P), a critical load (L), and the connection
to the national power grid (N).

A. General description of the MG

The dispatchable units T and B are endowed with embed-
ded controllers. Thus their setpoints uT and uB are control
variables for the two-layer control structure here considered.
The output variables are the actual generated power signals

yT, yB.
The photovoltaic panels are supposed not to be adjustable
so that the totality of its produced power yP flows through
the MG. The loads are not controllable as well: let yL be
the electrical power to be supplied by the MG system. Daily
predictions of both PV power production and load consump-
tion are assumed to be available. Both variables are, however,
affected by uncertainties.
The connection to N is bidirectional and allows for both
purchase and sale of electric power. The net power exchanged
between the MG and N (positive if power is absorbed) is
denoted by yN. The purchase cost and the sale price are known
but not constant, being subject to market fluctuations.

B. Model of the MG

In this Section the dynamic models of the devices and
the stochastic description of the uncertainties are illustrated.
The microturbine and the battery are continuous-time systems.
However, since the two-level sMPC algorithm described in
the following sections runs at different sampling times for the
low and the high layers, their models must be discretized with
different sampling periods, namely τ`` = 1 min for the lower
layer and τH` = 15 min for the higher one. Correspondingly,
two different discrete-time indices must be used: the one
related to the fast time scale will be denoted by h, while the
one related to the slow time scale will be denoted by k.
The microturbine behavior, together with the one of its embed-
ded controller, is based on a finite-state automata composed of
four states, namely: starting, running, stopping and stopped.
When the system is in the running mode, experimental tests
carried out on T allowed us to identify the relationship between
machine set point uT and actual output yT in terms of the
following continuous-time transfer function:

GT(s) =
(1 + 11.25s)

(1 + 6.41s)(1 + 1.36s)
e−26.4s. (1)

According to a standard discretization procedure with sam-
pling period τ``, see [18], the third order discrete-time real-
ization of the continuous-time model (1) takes the form

ΣT :

{
xT(h+ 1) = ATxT(h) +BTuT(h)

yT(h) = CTxT(h),

where, consistently with (1)

CT(I −AT)−1BT = 1. (2)

The battery can be essentially modeled as a continuous-time
integrator with internal state xB representing its normalized
state of charge (SOC) and with different charge ηCH and
discharge ηDCH efficiencies. In order to model it in the short
time scale, it is useful to define the discrete-time inputs

uB(h) =

[
uCH

B (h)
uDCH

B (h)

]
, (3)

where uCH
B (h) ≥ 0 and uDCH

B (h) ≥ 0 represent the absolute
value of the power absorbed and released, respectively, from
the battery in a time period of one minute. The asymmetry
of ηCH, ηDCH leads to a number of problems and subtleties in
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their management which will be deeply analyzed in the sequel.
In the fast discrete-time scale, the SOC dynamics is then
described by the following system.

ΣB :

{
xB(h+ 1) = xB(h) +BCH

B uCH
B (h)−BDCH

B uDCH
B (h)

yB(h) = uDCH
B (h)− uCH

B (h).

In matrix form, recalling (3), ΣB = (AB, BB, CB, DB) =
(1, BB, 0, DB) where

BB = [BCH
B −BDCH

B ] = τ``
Cmax

B
[ ηCH − ηDCH ] and

DB = [−1 1 ].

where Cmax
B is the nominal capacity of the battery. For

consistency it must be verified that, for all h ≥ 0

uCH

B (h) · uDCH

B (h) = 0. (4)

Photovoltaic production forecast is a problem that has been
amply discussed in the literature. The most prominent ap-
proaches consist in the combination of the data available from
any suitable technique of solar forecasting (e.g. mathematical
models simulation, total sky imaginery, satellite cloud motion
vector, etc.) together with a characterization of the photovoltaic
panels, in order to obtain an estimate of its contribution to
the power balance. The reader might refer to [19] for a more
detailed description of the problem. In this way it is possible, at
the beginning of each day, to derive the predicted PV nominal
daily production profile y∗P(h), h = 0, . . . , 14391. The real
production yP(h) is given by

yP(h) = y∗P(h) + ŷP(h),

where ŷP(h) is a stochastic process described by

ΣP :

{
x̂P(h+ 1) = APx̂P(h) +BPvP(h)

ŷP(h) = CPx̂P(h) +DPvP(h)

and vP is a white noise whose characteristics have been
estimated from the available historical time series.

The model of the real load profiles is obtained similarly.
Letting y∗L(h), h = 0, . . . , 1439, be the nominal load profile,
we have that

yL(h) = y∗L(h) + ŷL(h),

where

ΣL :

{
x̂L(h+ 1) = ALx̂L(h) +BLvL(h)

ŷL(h) = CLx̂L(h) +DLvL(h)

and vL is a white noise whose characteristics have been
estimated from the available historical time series.

Finally note that, in this work, we rely on the following
standing assumption.

Assumption 1: The load is constantly balanced by the
network, namely, for all h ≥ 0

yL(h) = yT(h) + yB(h) + yP(h) + yN(h). (5)

This is achieved either by drawing power from, or by selling
the overproduced power to, the national grid N.

1For simplicity, h = 0 denotes the time 00:00, while h = 1439 corresponds
to time 23:59.

III. HIGH-LEVEL MODEL AND REFERENCE PLANNING

Based on the nominal predictions of both PV power pro-
duction ȳP and load consumption ȳL, at the beginning of each
day, the high-level control unit solves an optimization problem
with the aim to set, for the future 24 hours and with sampling
period τH`, the nominal operation of T (power request, start
and stop commands) and of B so as to guarantee the load
balance while minimizing the operating costs of the MG.

A. Models for high-level optimization
Simplified and static models (where possible), including

logic variables, of the available devices are used by the high-
level optimizer. The modeling approach is quite standard and
is summarized in this section. For consistency of notation, the
nominal value of a generic variable y is denoted by ȳ. The
discrete-time index for the high-level models is k.

1) High-level model of the turbine: The settling time of the
model (1) of T is approximately 1 minute and motivates the
adoption of a zero order model for the high-level problem.
Therefore, in the running mode, consistently with (2)

ȳT(k) = ūT(k). (6)

The setpoint and, consequently, the steady-state power output
of T, are bounded between the values umin

T = 50 kW and
umax

T = 100 kW.
Taking the consumption of the auxiliary actuators into account
(i.e., the fuel pump and the cooling system), the net contri-
bution of the microturbine to the microgrid power balance is
negligible during the transient phases constituted either by the
starting or by the stopping state. The stopping operation lasts
an amount of time comparable with τH`, while the duration of
the starting phase changes according to the current machine’s
status. In particular, depending on whether it is cold or hot,
the time required for the start-up (latency time) takes value
tcold or thot, respectively. We define by t̄ the time taken
by T to become cold when stopped. Furthermore, to avoid
damages and improper use of the device, the turbine must
be in operation, once started, at least for a given minimum
operation time tdelay.
The input of the model are the boolean on/off signal δT(k)
and the power setpoint ūT(k). In order to model the logical
states of T, two integer variables, namely ton(k), and toff(k),
are introduced. In particular, variable ton denotes the number
of further time steps required to complete the latency time
from the start signal, while toff denotes the time steps spent
since the last switch off. Consistently with (6), when T is on
(i.e., if δT(k) = 1 and ton(k) ≤ 0), then ȳT(k) = ūT(k); on
the contrary, if δT(k) = 0 (i.e., no switch-on signal has been
delivered) or ton(k) > 0 (i.e., T is in the latency state), then
ȳT(k) = 0.
At each time step, the auxiliary variables are updated as
follows:

ton(k + 1) =


ton(k)− 1 if δT(k) = 1
thot if

(
δT(k) = 0

)
∧
(
toff(k) < t̄

)
tcold if

(
δT(k) = 0

)
∧
(
toff(k) ≥ t̄

)
,

toff(k + 1) =

{
toff(k) + 1 if δT(k) = 0
0 if δT(k) = 1.
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Finally, if −tdelay ≤ ton(k) ≤ 0, then δT(k) = 1.
2) High-level model of the battery: Denote with x̄B the

normalized nominal SOC of B and

ūB(k) =

[
ūCH

B (k)
ūDCH

B (k)

]
,

where ūCH
B (k) ≥ 0 and ūDCH

B (k) ≥ 0 represent the absolute
value of the nominal power absorbed and released, respec-
tively, from the battery. The nominal model of the battery is x̄B(k + 1) = x̄B(k) +

τH`

Cmax
B

(
ηCHū

CH
B (k)− ηDCHū

DCH
B (k)

)
ȳB(k) = ūDCH

B (k)− ūCH
B (k),

(7)
where, in the available TF, Cmax

B = 70 kWh. The output ȳB(k)
is the power exchange between the battery and the micro-grid
(if ȳB < 0, then the battery is absorbing power - hence, it is in
the charging mode - whereas ȳB > 0 in case of power release
- thus, the battery is in the discharging mode).
The following constraint, imposing that the battery is either
absorbing or releasing power, has to be considered.

ūCH

B (k) · ūDCH

B (k) = 0. (8)

Notice that, under condition (8), model (7) is equivalent to
a piecewise linear system. The charge and discharge power
setpoints are upper bounded as well, so that, for all k ∈ N,
the constraints {

0 ≤ ūCH
B (k) ≤ umax

B

0 ≤ ūDCH
B (k) ≤ umax

B

are enforced. In the considered test facility, umax
B = 70 kW.

Finally, in order to reduce the risk of damaging the storage
unit, the state of charge is bounded between x̄min

B (k) = 0.15
and x̄max

B (k) = 0.9.
3) High-level model of the photovoltaic panels: As it has

been mentioned in the Introduction, the high-level optimizer
is fed with the nominal PV production signal ȳP(k), k =
0, . . . , 95, for the day ahead (with high-level sampling time),
defined as

ȳP(k) =

∑n−1
t=0 y

∗
P(nk + t)

n
. (9)

where n = 15. We also define dP(h) = y∗P(h) − ȳP(bh/nc),
so that, in view of (9),

∑n−1
t=0 dP(bh/nc · n+ t) = 0.

4) High-level model of the load: The nominal load profile
needed for the high-level optimization problem is denoted by
ȳL(k) and, similarly to Section III-A3, it is defined as

ȳL(k) =

∑n−1
t=0 y

∗
L(nk + t)

n
. (10)

Also, we define, for all h ≥ 0, dL(h) = y∗L(h)− ȳL(bh/nc).
5) High-level model of the distribution network: We define

the variable ȳN(k) as the nominal power exchange with the
network over the k-th sampling interval. Consistently with
Assumption 1, the following load balance equation holds for
the variables of the high-level models:

ȳL(k) = ȳT(k) + ȳB(k) + ȳP(k) + ȳN(k). (11)

6) High-level model of the MG: The previously described
models and the logic/algebraic relations between the relevant
variables, can be cast as a mixed logical dynamical (MLD)
system [5]. Such reformulation is based on the definition
of a set of auxiliary variables (either continuous or binary)
included in a vector wMLD, which allow for converting all logic
relations to a set of linear inequalities with binary variables.
This is done by resorting to the freely available software tool
HYSDEL [20]. Thus, letting

xMLD(k) =

 ton(k)
toff(k)
x̄B(k)

 and uMLD(k) =


δT(k)
ūT(k)
ūCH

B (k)
ūDCH

B (k)


be the state and input vectors, respectively, for the overall
system and

yMLD(k) = ȳN(k),

the MLD model used for the high-level optimization takes the
form xMLD(k + 1) = ĀxMLD(k) + B̄uuMLD(k) + B̄auxwMLD(k)

yMLD(k) = C̄xMLD(k) + D̄uuMLD(k) + D̄auxwMLD(k)
Ēaff ≥ ĒxxMLD(k) + ĒuuMLD(k) + ĒauxwMLD(k)

(12)
Notice that the output variable ȳN, which is defined by
equation (11), is the only interaction element between the MG
components that are otherwise not dynamically coupled.

B. High-level optimization

The aim of the upper layer is to optimize the cost of the
electric production during the day, while satisfying the nominal
load request profile, and subject to the operational constraints
on the devices.
At the beginning of the day, the high-level optimizer returns
the initial operation plan of each MG element for the whole
day ahead. The initial planned energy exchange with the utility
grid, which is shared with the network manager, is called
reference plan and denoted by

ȳref
N (k), k = 0, 1, . . . , 95.

The corresponding high-level setpoints, though, could not
be always tracked by the low-level controllers due to the
uncertainties affecting the critical load and the PV production.
If this occurs, the high-level controller should be able to
update its plan accordingly in an event triggered fashion.
More specifically, the high-level optimizer has the possibility
to update its overall plan during the day but, in order to avoid
penalties from the network manager, the difference between
the component ȳN of its new issue and the reference plan ȳref

N

should be limited. As we shall see in Section III-B2, to account
for this further constraint, the event-triggered updating high-
level optimization takes a different form from the initial one.

1) Initial high-level optimization: The cost function to be
minimized accounts for the turbine operational cost (denoted
by cT), the start-up cost (c st

T ), the cost of the energy absorbed
by the network (c a

N), and the price of the sold electric power
(c s

N). As for the battery, a fictitious cost (c v
B ) has been

introduced on the absolute value of the setpoint variation in
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order to preserve the life expectancy of the device. The cost
function is hence defined by

J ref
H`=

95∑
k=0

cT(k)ȳT(k) + c st
T (k) max

{
δT(k)− δT(k − 1), 0

}
+

+ c a
N(k) max

{
ȳN(k), 0

}
+ c s

N(k) min
{
ȳN(k), 0

}
+

+ c v
B (k)

∣∣ȳB(k)− ȳB(k − 1)
∣∣, (13)

and the optimization problem to be solved is

min
uMLD(0:95)

J ref
H`, (14)

where uMLD(0 : 95) stands for the sequence of inputs
uMLD(0), . . . , uMLD(95), subject to: the dynamics (12), the
load balance (11) and the operational constraints of the de-
vices. In detail, for all k = 0, . . . , 95, ūT(k) ∈ [ūmin

T , ūmax
T ],

ūCH
B (k) ∈ [ūmin

CH , ūmax
CH ], ūDCH

B (k) ∈ [ūmin
DCH, ū

max
DCH], x̄B(k) ∈

[0.15, 0.9] and ūCH
B (k) = 0 ∨ ūDCH

B (k) = 0.
Problem (14) is a mixed-integer linear program (MILP), which
can be readily solved by available software tools.

2) Updated high-level optimization: During the day, it may
be helpful to review a preceding high-level plan so as to better
compensate for the unpredicted disturbances and/or possibly
incorporate up-to-date nominal profiles of the PV production
and load request. To this end, a boolean signal

F : {k ∈ N|1 ≤ k ≤ 95} → {0, 1}

is introduced and the high-level optimization is updated at each
time k in which the event-trigger is on, i.e. such that F(k) = 1.
For instance, if the updating occurs at all time instants (i.e.,
F(k) = 1 for all k), then one has a closed-loop high-level
controller. Any choice for F is possible and, in particular,
it is interesting the case of signals F that are specified by
some algorithm taking the effective behavior of the lower-
layer system into account: e.g., if the lower-layer algorithm
encounters systematic difficulties in guaranteeing feasibility, it
may send an alert to the top layer optimizer by setting F equal
to 1 and thus asking for a replanning of the MG operation.
Different performance resulting from various updating policies
F shall be compared in the simulations reported in Section V.

Let k̄ be such that F(k̄) = 1. The cost function associated
with the updating optimization problem is defined by

Jupd
H` (k̄)=

95∑
k=k̄

cN(k)
∣∣yref

N (k)− yN(k)
∣∣+ cT(k)ȳT(k)+

+ c st
T (k) max

{
δT(k)− δT(k − 1), 0

}
+

+ c v
B (k)

∣∣ȳB(k)− ȳB(k − 1)
∣∣, (15)

where the terms appearing in (13) and quantifying the
cost/price for the energy exchanged with the network are re-
placed by a term penalizing the discrepancy from the reference
plan. The updated plan to be passed to the low–level controller
is then the issue of the following optimization problem:

min
uMLD(k̄:95)

Jupd
H` , (16)

subject to: the dynamics (12), the load balance (11) and the
same operational constraints of the devices as in problem (14).

IV. LOW-LEVEL MODEL AND CONTROL

The aim of the low-level controller is to compensate for the
uncertainties on the load and PV predictions by refining the
control actions, i.e., inputs uT (h) and uB(h), if both available.
The scope is to minimize the deviations of the real outputs
with respect to the nominal ones computed by the high-level
optimizer and, at the same time, to reduce, under a certain
threshold, the probability that the difference between the real
energy exchanged with the network and the value computed
by the high-level optimizer overcomes a limit value. On the
other hand, the low-level model is not allowed to modify the
state of the turbine (running/non running) computed at the high
level because the prediction horizon considered at the lower
layer is shorter than the start-up/shut-down time of the device.
Therefore, the contribution of the turbine is available at the
low level only if the turbine itself is in running mode.
At the lower layer of the proposed architecture, the detailed
dynamic models of the devices and the stochastic description
of the uncertainties presented in Section II are used.

A. Low-level modelling

The sampling time for the low-level controller is τ``. For
better clarity, note that we have n = τH`/τ`` = 15 samples of
each high-level step [k, k + 1) and, at time kτH` + tτ``, one
has h = nk + t.
Indeed, the result of the low–level controller complements the
control values ūB and ūT obtained by the high-level optimizer
in such a way that, at time h = nk+t, the corresponding inputs
to the real system are uB(nk+ t) = ūB(k) + ûB(nk+ t) and
uT (nk + t) = ūT (k) + ûT (nk + t).
Regarding T in running mode, the following variables are
considered by the low-level controller.

ûT(h) = uT(h)− ūT(bh/nc) (17a)
x̂T(h) = xT(h)− xeq

T (bh/nc) (17b)
ŷT(h) = yT(h)− ȳT(bh/nc) (17c)

where xeq
T (k) = (I − AT)−1BTūT(k) and ȳT(k) =

CTx
eq
T (k) = ūT(k).

Similarly, recalling (3), the following input variable is consid-
ered by the low-level controller for B:

ûB(h) = uB(h)− ūB(bh/nc) (18a)

Note that the state response of the low-level (fast) model ΣB

to the nominal input ūB(k) with initial condition xB(kn) =
x̄B(k) is not constant in the interval [kn, (k+1)n). This signal,
denoted ¯̄xB(h), takes initial value ¯̄xB(h) = x̄B(bh/nc) and
evolves according to

¯̄xB(h+ 1) = ¯̄xB(h) +BCH

B ūCH

B (bh/nc)−BDCH

B ūDCH

B (bh/nc)

We now define the state x̂B(h) as the variable evolving
according to ΣB with input ûB(h) and with initialization
x̂B(nk) = xB(nk) − x̄B(k). In view of the linearity of the
model one has that

x̂B(h) = xB(h)− ¯̄xB(h) (18b)
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The output variable (which depends solely on the inputs) is

ŷB(h) = yB(h)− ȳB(bh/nc) = ûDCH

B (h)− ûCH

B (h) (18c)

Considering P and L, the variables x̂P, ŷP, x̂L, and ŷL are used
to represent the deviations of the behavior of such systems
with respect to the nominal predictions, as discussed in Section
II-B.

We introduce a new variable, named ε̂(h), which allows to
quantify the integral of the deviation between the real electrical
input from the network and the one resulting from the high-
level optimizer between two subsequent high-level sampling
times. Assuming that ε̂(h) = 0 for any h = kn, i.e., that such
discrepancy is reset to zero at the beginning of any high-level
sampling time, the dynamics of ε̂(h), h = kn, . . . , (k+ 1)n is
then given by the equation

ε̂(h+ 1) = ε̂(h) + ŷN(h)

Regarding the energy exchanged with the network recall that,
in view of the definition of the nominal profiles y∗P(h) and
y∗L(h) and (9)-(10), the signal ȳN(k), generated by the high–
level optimization, represents the average value of the network
electrical input over the k-th interval. Consistently with this
and (5), the nominal electrical input y∗N(h) is then given by
y∗N(h) = ȳN(k) + dN(h) with dN(h) = dL(h) − dP(h). From
this it follows that ŷN(h) = yN(h) − ȳN(bh/nc) − dN(h) =
ŷL(h)− ŷB(h)− ŷT(h)− ŷP(h) for all h ≥ 0.

Letting x̂(h) =
[
x̂B(h) x̂T(h) ε̂(h) x̂P(h) x̂L(h)

]′
,

v(h) =
[
vP(h) vL(h)

]′
, and û(h) =

[
ûB(h)′ ûT(h)

]′
,

the evolution of x̂(h), h = kn, . . . , (k + 1)n, is given by

Σ`` : x̂(h+ 1) = Ax̂(h) +Buû(h) +Bvv(h) (19)

where

A =


1 0 0 0 0
0 AT 0 0 0
0 −CT 1 −CP CL

0 0 0 AP 0
0 0 0 0 AL



Bu =


BB 0
0 BT

−DB 0
0 0
0 0

 , Bv =


0 0
0 0
−DP DL

BP 0
0 BL

 .
(20)

B. The stochastic MPC algorithm for the low–level system

The main goal of the low–level controller is to compensate
for the disturbances on the load profile and on the power
delivered by the PV in a reactive fashion and to guarantee the
fulfillment of the operational constraints. Thus, a stabilization
problem of the origin of system Σ`` is considered. Since the
nominal condition of the system (and also its structure, as the
microturbine can be switched off) can significantly vary at
each high–level sampling time, a “shrinking–horizon” MPC
algorithm is adopted. Moreover, in view of the probabilistic
nature of the model, the control algorithm is cast as a stochas-
tic MPC.

1) The control law and the shrinking–horizon approach:
Consistently with the fact that the model Σ`` is in charge of
the dynamics over the time interval [nk, nk + n) only and
according to the discussion in Section IV-A, at the beginning
of each high-level sampling time (i.e., when h = nk, for all
k ≥ 0) the following initialization of the low-level model is
in order

x̂(nk) =


xB(nk)− x̄B(k)
xT(nk)− x̄T(k)

0
x̂P(nk)
x̂L(nk)

 (21)

For simplicity of presentation, but with a slight abuse of
notation, the time index of the input variables x̂, û, and v
is reset so that, in equation (19), x̂(nk + t), û(nk + t), and
v(nk + t) are replaced by x̂(t), û(t), and v(t), respectively
and our analysis focuses in the interval [0, n) solely.
At any time t < n a measure of the state x̂(t) is as-
sumed to be available and, based on this, an input sequence
{û(t|t) û(t+ 1|t) · · · û(n− 1|t)} of length n− t minimizing
a certain performance index J``, possibly under some state
and input constraints, is looked for2. Hence, letting ûopt(t|t)
be the first element of the optimal sequence, according to the
“shrinking-horizon” principle, the command û(t) = ûopt(t|t)
is applied and, at time t + 1, the optimization procedure is
repeated over shorter input sequences {û(t + 1|t + 1) û(t +
2|t+1) · · · û(n−1|t+1)} of length n−t−1. Because of the
stochastic disturbances acting on the system, similarly to [15]
the adopted control law takes the form, for t, . . . , n− 1

û(j|t) = ũ(j|t) + K̂M
(
x̂(j|t)− x̃(j|t)

)
(22)

where x̃(j|t) is the mean value of the random variable x̂(j|t)
and ũ(j|t) is the mean value of the random variable û(j|t).
Moreover, as it will be clarified in Section IV-B3 (see, e.g.,
constraints (31) on the structure of K̂M), the value taken by
the gain K̂M depends on the adopted battery mode and is such
that FM = A+BuK̂

M is Schur stable.
Under the assumption that v is a zero–mean white noise with
variance V , the variable x̃ evolves as follows.{

x̃(j + 1|t) = Ax̃(j|t) +Buũ(j|t)

x̃(t|t) = x̂(t).
(23)

As for the variance X of x̂, its evolution (i.e., for j ≥ t) is
given by {

X(j + 1) = F̂MX(j)F̂M
′
+BvV B

′
v

X(t) = 0.
(24)

The MPC algorithm at the low level is aimed at minimizing
the performance index

JM

``

(
x̂(t)

)
= E

[ n−1∑
j=t

(
‖x̂(j|t)‖2Q + ‖∆û(j|t)‖2R

)
+ ‖x̂(n|t)‖2S

]
,

with respect to the sequence of control values
{ũ(t|t) · · · ũ(n − 1|t)}, subject to the dynamics (19)

2Where, as usual, the notation z(j|t) stands for the prediction made at time
t of the variable z(j) that, depending on the particular circumstances, can be
either a numerical value or a random variable.
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with (22) and to the state and input (probabilistic) constraints
specified in the following. Matrices Q, R and S are positive
definite and symmetric, while ∆û(j|t) is given by

∆û =

[
ŷB

ûT

]
= D∆û (25)

where

D∆ =

[
−1 1 0
0 0 1

]
∆û is therefore a vector containing: (i) ŷB, i.e., the difference
between the real net power exchanged by B with the network
and its nominal value given by the high-layer optimizer; (ii)
ûT, i.e., the difference between the real input to T and the
nominal one. As shown in [15], JM

``

(
x̂(t)

)
= Jm

(
x̂(t)

)
+

Jv(M), where:

Jm
(
x̂(t)

)
=

n−1∑
j=t

(
‖x̃(j|t)‖2Q +

∥∥∆ũ(j|t)
∥∥2

R

)
+ ‖x̃(n|t)‖2S ,

(26)
where, from (25), ∆ũ(j|t) = E[∆û(j|t)] = D∆ũ(j|t).
Moreover

Jv(M) =

n−1∑
j=t

(
tr
[
(Q+K̂M

′
D′∆RD∆K̂

M)X(j)
])

+tr
[
SX(n)

]
.

(27)
It is worth noting that, since the evolution (including the initial
value) of X(j), for j = t, . . . , n is fully determined as in
(24), the only degree of freedom affecting the value of Jv
is the battery mode M ∈ {CH,DCH} (in view of the fact
that in general K̂CH 6= K̂DCH). Therefore, this term does not
play a significant role in the minimization of JM

`` and will
be discarded in the cost function considered in the low–level
optimization problem.

2) Handling probabilistic state and input constraints: Due
to the stochastic nature of the model, input and state con-
straints must be imposed in a probabilistic sense. According
to [21], a probabilistic constraint of the type

P[b′z ≥ αmax] ≤ p, (28)

where b ∈ Rn, αmax ∈ R and 0 ≤ p ≤ 1 are given and z is a
random vector taking values in Rn, is implied by the condition

b′E[z] ≤ αmax −
√
b′Var[z]b · f(p) (29)

where the function f(p) depends on the a-priori assumptions
on the distribution of z. For example, in vP and vL

are characterized by a Gaussian probability distribution,
f(1 − p) = N−1(1 − p) where N is the cumulative
probability function of a Gaussian variable with zero mean
and unitary variance; on the other hand, according to the
Cantelli-Chebyshev inequality, the more stringent choice
f(p) =

√
1−p
p must be used for unknown distributions.

Therefore, probabilistic constraints of the type (28) are turned
into conditions on the mean value and the variance in the
form (29) that, in view of (23) and (24), can be easily
handled. However, it is worth remarking that, in the current
framework (and differently from [15]), we set x̃(t|t) = x̂(t|t),
and therefore û(t|t) = ũ(t|t) is a deterministic variable, while

x̂(j|t) and û(j|t) are stochastic ones for j = t + 1, . . . , n.
In view of this, condition (29) reduces to a deterministic
constraint on x̂(t|t) and û(t|t). Moreover, since xB(h + 1)
does not depend on v(h)

(
see equation (19)

)
, deterministic

constraints on the battery state of charge at time t + 1 are
enforced as well.

Remark 1: In the literature, many sMPC algorithms have
been proposed, see the recent review [21]. Among them,
the scenario, or randomized, approach (see e.g. [22], [23])) is
one of the most promising, since it does not require specific
assumptions on the model structure and noise distribution.
As a partial drawback, randomized methods can require to
generate a quite large number of samples of the disturbance
realizations, so that the computational effort required can be
huge. For this reason, in this work the deterministic reformu-
lation of the probabilistic constraints according to (28), (29)
has been mainly considered. However, a comparison among
the performance of this method and the one of a scenario
approach derived from [22] is briefly discussed in Section V

3) Input constraints for the battery and mode operation
management: In this section we first present how the nonlinear
constraint (4) is enforced in our setup. Two important facts are
in order.

1) In each optimization step, the prediction is computed
under the assumption that the battery operates in a fixed
mode over the prediction horizon.
This implies that either ūCH

B (k) + ûCH
B (j|t) = 0, for

all j = t, . . . , n − 1 (battery in the discharge mode,
i.e. M = DCH), or ūDCH

B (k) + ûDCH
B (j|t) = 0, for

all j = t, . . . , n − 1 (battery in the charge mode, i.e.,
M = CH). In view of this, the low-level optimization
problem is decomposed into two problems that are
solved in parallel: one corresponding to M = CH and
one corresponding to M = DCH, and the selected
battery operation mode is the one corresponding to the
minimum cost function.
It is worth remarking that, however, in view of the closed
loop nature of the proposed low-level control scheme
and the adopted shrinking-horizon implementation, at
each time step only the first element of the optimal
sequence is applied and afterwards the low-level op-
timization is repeated. Therefore the resulting control
law can alternate between the charge and the discharge
mode. This possibility is important especially when the
high–level optimizer selects a small value for the power
exchange between the battery and the micro–grid.

2) The battery operation mode adopted by the real system
(denoted with symbol M) may be not consistent with
the one selected by the high layer: in a few words, for
example ūCH

B (k) = 0 does not imply that uCH
B (h) = 0

for all h = 0, . . . , n− 1. This first implies that, for each
mode, a different set of inequalities is induced. More
specifically

{
ûCH

B (j|t) ≥ −ūCH
B (k)

ûDCH
B (j|t) = −ūDCH

B (k)
if M = CH (30a)
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{
ûCH

B (j|t) = −ūCH
B (k)

ûDCH
B (j|t) ≥ −ūDCH

B (k)
if M = DCH (30b)

The second main implication of this fact is that, as a
matter of fact, one of the two battery input variables of
the low-level model (19) (i.e., either ûCH

B or ûDCH
B ) must

verify an equality constraint.
For instance, in charge mode M = CH, this means
that we must set ûDCH

B = ũDCH
B = −ūDCH

B . Since the
only degree of freedom is ũDCH

B , while the relationship
between ũDCH

B and ûDCH
B is given by (22), the former

equality can be enforced by letting the second column
of the gain matrix K̂CH (i.e., the column corresponding
with input uDCH

B ) be zero. This, indeed, is not critical
as far as the controllability properties of the system are
concerned, since the two battery inputs are, in a way,
redundant.
Summing up, the gains K̂M must be designed in such a
way that, for all M ∈ {CH,DCH}, A+BK̂M is Schur
stable and, at the same time

kCH
i2 = 0 for all i = 1, . . . , 5
kDCH
i1 = 0 for all i = 1, . . . , 5

(31)

where kM
ij is the (i, j)-th entry of matrix K̂M.

Finally recall that, from the definition of matrices K̂M

and D∆, and from the control law (22), in operation
mode CH, ûCH

B (j|t)− ũCH
B (j|t) = −e′1D∆K̂

CH(x̂(j|t)−
x̃(j|t)) while, in operation mode DCH, ûDCH

B (j|t) −
ũDCH

B (j|t) = e′1D∆K̂
DCH(x̂(j|t) − x̃(j|t)), where ei

denotes the i-th orthonormal basis vector. From this we
derive that, in general, in operation mode M, UM

B (j) =
Var[ûM

B (j|t)] = e′1D∆K̂
MX(j)K̂M ′

D′∆e1.

In addition to constraint (4), a further input constraint for the
battery is that both the charge ūCH

B (k) + ûCH
B (j|t) and the

discharge ūDCH
B (k) + ûDCH

B (j|t) power values are bounded by
a maximal value umax

B .
Summing up, the overall constraints to be imposed on the
battery inputs are therefore the following.
If M=CH ũCH

B (j|t) ≥ −ūCH
B (k) +

√
UCH

B (j)f(pu,B)

ũCH
B (j|t) ≤ −ūCH

B (k) + umax
B −

√
UCH

B (j) · f(pu,B)
ũDCH

B (j|t) = −ūDCH
B (k)

(32a)

If M=DCH
ũCH

B (j|t) = −ūCH
B (k)

ũDCH
B (j|t) ≥ −ūDCH

B (k) +
√
UDCH

B (j)f(pu,B)

ũDCH
B (j|t) ≤ −ūDCH

B (k) + umax
B −

√
UDCH

B (j)f(pu,B)
(32b)

where pu,B is the tolerated probability that the thresholds are
infringed. Finally, recall that, at step j = t, X(t) = 0 and
therefore UM

B (t) = 0, meaning that the constraints are indeed
deterministic for j = t.

4) State constraints on the battery: Recall that variable
¯̄xB(j) describes the evolution of the battery SOC in the fast
timescale, under the nominal input ūB(j). To impose that the

battery state of charge xB(j) = ¯̄xB(j) + x̂B(j) is confined
within [xmin

B , xmax
B ], the following constraints are enforced{

¯̄xB(j) + x̃B(j|t) ≤ xmax
B −

√
e′1X(j)e1 · f(px,B)

¯̄xB(j) + x̃B(j|t) ≥ xmin
B +

√
e′1X(j)e1 · f(px,B)

(33)
where px,B is the tolerated probability that the thresholds

xmin
B or xmax

B are infringed.
5) Input constraints on the turbine: If ūT(k) > 0 (i.e., the

high–level optimizer has planned to use the turbine during the
k-th sampling interval), then the preview power request to the
turbine ūT(k)+ûT(j|t) should be confined within a prescribed
interval [umin

T , umax
T ].

In details, the random variable ûT(j|t) = e′3û(j|t) is the
component relative to the turbine input of the total in-
put vector û(j|t) = ũ(j|t) + K̂M

(
x̂(j|t) − x̃(j|t)

)
. The

mean value of ûT(j|t) is ũT(j|t), while its variance is
UT(j) = e′3Var[û(j|t)]e3 = e′3K̂

MX(j)K̂M ′
e3. Thus, accord-

ing to (29), the input constraints on the turbine are{
ūT(k) + ũT(j|t) ≤ umax

T −
√
UT(j) · f(pu,T)

ūT(k) + ũT(j|t) ≥ umin
T +

√
UT(j) · f(pu,T)

(34)

where pu,T is the tolerated probability that the thresholds umin
T

or umax
T are infringed.

6) Final state constraint on ε̂: In order to avoid penalties
due to discrepancies between the real electric input and what
agreed on by the high–level optimizer, it is imposed that, at the
end of the prediction horizon

(
i.e., at the time corresponding

to the (k+1)-th high–level sampling time
)
, the absolute value

of ε̂ is below a tolerance threshold εmax. That is,{
ε̃(n|t) ≤ εmax −

√
e′3X(n)e3 · f(pε)

−ε̃(n|t) ≤ εmax −
√
e′3X(n)e3 · f(pε),

(35)

where pε is the tolerated probability that the thresholds −εmax

or εmax are infringed.
7) The low–level MPC controller: résumé and feasibility

issue: In this section we give an overview of the algorithm for
the selection of the low–level control action û(t). Let ũopt(t|t)
be the first element of the control sequence that solves the
following optimal control problem

min min Jm
(
x̂(t)

)
M ∈ {CH, DCH}

[
ũ(t|t) · · · ũ(n− 1|t)

] (36)

subject to: the dynamics (23)
the constraints (32), (33), (34), (35),

where the expression of Jm
(
x̂(t)

)
is given in equation (26),

then let
û(t) = ũopt(t|t). (37)

It is worth noting that, considering the operational con-
straints (32), (33), (34), since we reset X(t) = 0 for all
t = 0, . . . , n−1, at each time t the correct operativity regions
are indeed satisfied with probability 1. This holds provided
that the optimization problem (36) results feasible. However,
recursive feasibility of problem (36) is not guaranteed as it
may be disrupted by the presence of unusual disturbance
realizations. In particular, constraint (35) may be conflicting
with the operational constraints (32)-(34). On the other hand,
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since it is always possible to obtain the load balance through
the power exchange yN with the electrical network, it is
possible to attain the main operational constraints and to
offload the effects of the disturbance on the variable ε̂ : in
other words, feasibility can be recovered if constraint (35) is
removed. In details, the following procedure is adopted.

Algorithm 1 (Complete low–level controller):

• Step 0. Consider the optimization problem (36): if it is
feasible, compute û(t) as in equation (37), let t = t+ 1
and go to step 0; if it is infeasible, go to step 1.

• Step 1. Set to 1 the probabilities pu,T, pu,B, and px,B in
constraints (32)-(34) and consider problem (36): if it is
feasible, compute û(t) as in equation (37), let t = t+ 1
and go to step 0; if it is infeasible, go to step 2.

• Step 2. Set to 1 the probability pε in constraint (35) and
consider problem (36): if it is feasible, compute û(t) as
in equation (37), let t = t + 1 and go to step 0; if it is
infeasible, go to step 3.

• Step 3. Remove constraint (35), solve problem (36) and
get û(t) as in equation (37), let t = t+ 1 and go to step
0.

Recursive feasibility of the complete low–level control algo-
rithm is established by the following result.

Proposition 1: If x̂B(t) is such that xmin
B ≤ ¯̄xB(t)+ x̂B(t) ≤

xmax
B , then the optimization problem considered in step 3 is

feasible and the state at time t + 1 satisfies xmin
B ≤ ¯̄xB(t +

1) + x̂B(t+ 1) ≤ xmax
B .

Proof. It suffices to show that the optimization problem
in step 3 is feasible, since the subsequent condition on
x̂B(t + 1) follows from the main operational constraint (33).
As a consequence of step 1, f(pu,T) = 0 and the intervals
defining constraint (34) on ũT(j|t) are nonempty. The result
is then achieved by showing that the sequence of battery
inputs ũCH

B (j|t) = −ūCH
B (k), for all j = t, . . . , n − 1, is

admissible: indeed, in view of step 1, f(pu,B) = 0 and
constraint (32) is satisfied; as for constraint (33), there also
holds that f(px,B) = 0, then notice that the considered input
sequence ensures that ¯̄xB(j) + x̃B(j|t) is constant and hence
equal to ¯̄xB(t) + ˆ̂xB(t).

Remark 2 (Turbine switched off): If ūT(k) = 0, i.e.,
the high–level optimizer has planned not to use the turbine
during the k-th sampling interval, then this decision cannot
be contradicted by the low–level optimizer. In this case, the
control algorithm described in the previous sections should be
simply modified by removing, both in model (19) and in the
subsequent presentation, all the equations and terms involving
the state and the control of the turbine. Notice, however, that
it is no more possible to select the control gain K̂M so that
F̂M = A + BuK̂

M is a Schur matrix because the system is
single–input and has two integrators (i.e., the dynamics of both
x̂B and ε̂). Nonetheless, the main role of K̂M is to maintain
the variance X of x̂ as contained as possible and there are not
specific properties required to K̂M (in principle, any matrix is
a feasible choice). Thus, when the turbine is switched–off, a
good choice for K̂M is one ensuring the best possible variance
reduction of the ε̂ component of the state. For this reason, in
the proposed implementation of the algorithm described in

Section V, K̂M has been chosen so as to act as a deadbeat
controller on ε̂. �

8) Properties guaranteed by the algorithm: As it has been
already discussed in Section IV-B7, the main operational
constraints ensure that the system is correctly and safely
operated.
As far as the terminal value of ε̂ is concerned, the guaranteed
properties depend on the implemented step of the algorithm
at time t = n− 1: if the complete low–level controller selects
the control action by resorting to step 0 or 1, then constraint
satisfaction is guaranteed in probability

(
specifically, condi-

tion (35) implies that P[|ε̂(n)| > εmax] ≤ min{2pε , 1}
)
; if

the control action is selected by resorting to step 2, then con-
dition (35) reduces to −εmax ≤ ε̃(n|t) ≤ εmax, which merely
implies that P[|ε̂(n)| > εmax] ≤ 1. As such, condition (35)
does not guarantee anything, in general, unless a particular
distribution is assumed on the random variable v (e.g., if v is a
Gaussian white-noise, condition ε̃(n|t) ≤ εmax also guarantees
that P[ε̂(n) > εmax] ≤ 1

2 ). Finally, nothing can be ensured on
ε̂(n) if the algorithm is forced to resort to step 3: in this case,
one can only attempt to minimize the damage by modifying
the weighting matrix Q in the performance index so as to
considerably penalize the component related to the variable ε̂.
On the other hand, it is apparent that in front of sudden and
large variations of the load and of the PV power, the only way
to instantaneously guarantee the power balance is to modify
the power exchange with the grid.

V. SIMULATION STUDY

In this section, simulation tests are presented that
witness the effectiveness of the proposed control approach.
Specifically, the advantages deriving by the introduction of
the low-level controller are first discussed. Then a comparison
between the presented stochastic algorithm and a scenario-
based approach is presented. Finally, the results achievable
by means of different high level plan update policies are
illustrated. Representative examples have been selected
among an extensive collection of algorithm executions.

a) Benefits of the two-level structure: According to
the procedure illustrated in Section III-B1, realistic forecast
data of both the photovoltaic production and the load
consumption, as well as the market prices, are needed to
solve the high-level optimization problem. These profiles are
represented by the dashed blue lines in Figure 2 (the actual
data are also represented therein by a solid red line), while
Figure 3 collects the unitary energy production and trade
prices. The microturbine start-up cost – c st

T in equation (13)
– is considered to be constant and equal to e 0.175. The
resulting optimal setpoint of the MG devices and the profile
of the power exchange with the network are jointly reported
in Figure 4.
Figure 5 shows the difference between the nominal setpoint
profiles of the MG devices and those obtained with the
low-level control action compensating for the fluctuations
of the real photovoltaic generation and load consumption.
In order to emphasize the contribution of the lower layer
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Fig. 2. (a) Photovoltaic forecast (dashed blue line) and real production (solid
red line); (b) Load forecast (dashed blue line) and real consumption (solid
red line).
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Fig. 3. Unitary energy price used in the cost function Jref
H` of equation (13):

cT (dashed red line), c aN (blue dotted line), c sN (green solid line), c vB (yellow
dash-dot line).
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Fig. 4. Profiles generated from the high-level controller: ȳB(k) (dotted blue
line), ȳT(k) (dashed red line), ȳN(k) (solid yellow line); power is positive
when flowing from the component to the MG.

controller, the deviation from the nominal profile of the
energy exchange with the distribution network, i.e., the
values ε̂(n) at the end of each k-th time instant, is shown
in Figure 6 in two cases: (i) when the low-level control is
active; (ii) when only the nominal profiles are applied to the
MG devices. Note that the action of the low-level controller
allows to reduce both the number of discrepancies with the
original plan (i.e., occurrences of

∣∣ε̂(n)
∣∣ > εmax) and the

total unpredicted energy exchange, while maintaining the
power production profile of each MG component close to
the nominal values, thus contributing to the economically
optimal energy management. In particular, in this example,
the number of discrepancies drops from 76 to 4 while the
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Fig. 5. (a) Turbine power production: ȳT(k) (dashed blue line), yT(h) (solid
red line); (b) Battery power production: ȳB(k) (dashed blue line), yB(h) (solid
red line).
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Fig. 6. Discrepancy between the exchanged energy with the network and the
nominal one during the high-level control intervals

(
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: controlled vs uncontrolled case (red circles
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total amount of unplanned energy exchanges with the network
is reduced from 22.95 kWh to 1.83 kWh.
Notice that in this simulation, as much as in the following one,
an additional constraint has been added to the optimization
problems specifying the final value of the battery state of
charge, so as to ensure that the shown results are exclusively
ascribable to the effect of the control action.

b) Comparison with the scenario approach: To imple-
ment the low-level control problem according to a scenario-
based optimization approach, both the constraint on the un-
predicted energy exchange with the main grid, and the cost
function have been modified. Specifically, the condition on
ε̂ has been reformulated by means of the following soft
constraints in order to guarantee feasibility.

ε̂(n) ≤ εmax + ρ ∧ −ε̂(n) ≤ εmax + ρ ρ ≥ 0,

where ρ represents a slack variable and ε̂ depends, through
(19), on both the input sequence û(t : n − 1), and the Kn

sample extractions of v(t : n− 1).
Concerning the cost function, finally, we adopted the sampled
average over Kn noise realizations.
The performance achievable with the two different approaches
in the same framework of the previous example have been
compared in Table I, where the number of discrepancies and
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TABLE I
COMPARISON OF THE TWO LOW-LEVEL IMPLEMENTATION

sMPC scenario-based
approach

N discrepancies 4 4

Energy [kWh] 1.83 1.89

the value of unexpected energy exchange are collected.
It appears that the results are definitely comparable. However,

note that, with the scenario-based approach, the number of
samples to be generated might become quite large in order to
guarantee some properties of the method. For instance, in our
case and according to [22], taking p = 0.05, and a confidence
parameter θ = 10−6, 326 samples are needed, introducing a
total of 652 constraints for each of the two MPC problems to
be solved at any time instant.

c) Update of the high level plan: As described in Sec-
tion (III-B2), the introduction of updates of the high-level op-
timization during the control phase allows to better counteract
the effect of significant and unpredicted deviation of the real
data from the forecasted values. Performance improvements
obtainable via suitable updating policies F are exemplified by
the following simulation test, in which we assumed the case
of a large variation of the photovoltaic power production from
its forecasted values.
Three different update strategies have been considered: (i)
periodic, with a one hour period (i.e., F(k) = 1 for all
k = 4i, with i = 1, 2, . . . , 23); (ii) triggered by the low layer
performance (this happens, in particular, if at the end of the
control horizon the algorithm is forced to implement one of
the backup solution 2–3 or if the difference between the actual
and the estimated state of charge of the battery x̂B is greater
or equal to the 10% of its total capacity); (iii) triggered by the
availability of more reliable forecast data (in the following
example we considered just one update between 9.15 and
9.30 A.M). Figure 7 collects the initial photovoltaic production
forecasts (dashed blue line) and the real data (solid red line),
together with the updated forecast that is made available to
the control structure in case (iii) and identified by the dotted
green line. We considered the same load profiles and the
same unitary costs reported in Figures (2)(b)–(3). Figure (8)-
(10) show the nominal profiles of the MG devices and the
network power exchange obtained by the algorithm with the
alternative high-level plan update strategies. The results of the
corresponding control action is then collected in table (II) and
compared, in terms of discrepancy in the energy exchange
with the distribution network, to those achieved without any
update of the initial setpoint. As reasonably expected, the
algorithm performs better with realistic forecast data; it is
quite interesting, although, in the authors’ opinion, to observe
how the introduction of a periodic update policy or, even
better, the interaction between the two layers of the algorithm
can improve the results of the controlled system, partially
compensating for unreliable input data.
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Fig. 7. Initial photovoltaic forecast (dashed blue line) and updated (dotted
green line), together with the real production (solid red line).
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Fig. 8. Turbine high-level setpoint ȳT(k): initial (solid green line) and
updated profiles for strategy (i) (dashed red line), strategy (ii) (dotdashed
blue line) and strategy (iii) (dotted yellow line).
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Fig. 9. Battery setpoint ȳB(k): initial (solid green line) and updated profiles
for strategy (i) (dashed red line), strategy (ii) (dotdashed blue line) and strategy
(iii) (dotted yellow line).
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Fig. 10. Nominal power exchange with the network ȳN(k): initial (solid
green line) and updated profiles for strategy (i) (dashed red line), strategy (ii)
(dotdashed blue line) and strategy (iii) (dotted yellow line).

VI. CONCLUSIONS

This work presents a two-layer algorithm for the optimal
energy management in micro-grids. The high-level off-line
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TABLE II
COMPARISON OF THE DIFFERENT UPDATE STRATEGIES RESULTS

No
Update

strategy
(i)

strategy
(ii)

strategy
(iii)

N discrepancies 11 11 13 1

Energy [kWh] 15.07 5.49 5.42 0.39

economic optimization is combined with a low-level online
stochastic MPC. The optimizer produces a solution based
on the nominal forecasts of the PV production and of the
load consumption, while the MPC algorithm allows for the
minimization of the discrepancies with the optimal plan in the
presence of stochastic disturbances. The update of the high-
level plan consent to re-define the nominal profiles according
to the temporarily optimal solution, enhancing the performance
of the whole control algorithm and contributes to compensate
for any forecast error. The potential of the proposed approach
is witnessed by the illustrated simulations and motivates
further research on this topic. At the moment an extension
to account for the thermal energy needs of the MG is under
investigation. Preliminary results concerning the high-level
implementation are available in [24].
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