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We consider a Cahn-Hilliard–type equation with degenerate mobility and
single-well potential of Lennard-Jones type. This equation models the evolution
and growth of biological cells such as solid tumors. The degeneracy set of the
mobility and the singularity set of the cellular potential do not coincide, and
the absence of cells is an unstable equilibrium configuration of the potential.
This feature introduces a nontrivial difference with respect to the Cahn-Hilliard
equation analyzed in the literature. We give existence results for different classes
of weak solutions. Moreover, we formulate a continuous finite element approx-
imation of the problem, where the positivity of the solution is enforced through
a discrete variational inequality. We prove the existence and uniqueness of the
discrete solution for any spatial dimension together with the convergence to the
weak solution for spatial dimension d = 1. We present simulation results in 1
and 2 space dimensions. We also study the dynamics of the spinodal decom-
position and the growth and scaling laws of phase ordering dynamics. In this
case, we find similar results to the ones obtained in standard phase ordering
dynamics and we highlight the fact that the asymptotic behavior of the solution
is dominated by the mechanism of growth by bulk diffusion.
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1 INTRODUCTION

The Cahn-Hilliard (CH) equation has originally been proposed as a phenomenological model for phase separation in
binary solutions due to cooling processes in Cahn and Hilliard1 and Cahn.2 In this phenomenon, the 2 phases sponta-
neously separate to form domains where pure components dominate (see, for instance, Lee et al,3 Novick-Cohen,4 and
their references). The CH equation can be written as a mass continuity equation with a flux J, namely,

𝜕c
𝜕t

+ divJ = 0, (1)

where c ∈ [0, 1] is the (relative) concentration of one component of the binary solution and J is given by

J = −b(c)∇𝛿F
𝛿c

,
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where b(c) is the mobility and F is the total Helmholtz free energy defined by

F(c) = ∫Ω

(
𝛾

2
|∇c|2 + 𝜓(c)

)
dx. (2)

Here, 𝛾 is a positive material parameter related to the thickness of the diffuse interface separating the 2 phases and 𝜓(c)
is the homogeneous Helmholtz free energy density defined by

𝜓(c) = 𝜃

2

(
c log(c) + (1 − c) log(1 − c)

)
− 𝜃∗

2

(
c − 1

2

)2

,

where 0 < 𝜃 < 𝜃*, 𝜃 being the absolute temperature and 𝜃* a given critical temperature below which the phase separation
takes place. We recall that this logarithmic potential is often approximated by a smooth double-well potential defined on
the whole real line.

Consequently, Equation 1 can be written as a fourth-order nonlinear evolution equation as follows:

𝜕c
𝜕t

= div(b(c)∇(−𝛾Δc + 𝜓 ′(c))). (3)

The theoretical aspects of Equation 3 have been investigated in many contributions, especially in the case where the
mobility is a positive constant and 𝜓 is a smooth double-well potential. Regarding the latter, we just mention the pioneer-
ing results obtained in Elliott and Zheng,5 while, for the logarithmic potential, the reader is referred to the review paper
of Cherfils et al.6 If the mobility is degenerate at the pure phases, namely, b(c) = c(1−c), and 𝜓 is of logarithmic type, then
a well-known result is the existence of a suitably weak solution, which has been established in Elliott and Garcke7 (see
also Cahn et al8 for the interpretation of the sharp interface limit). Recently, in the case in which the singular character
of the potential dominate over the degeneracy of the mobility, the existence of a weak solution in a suitable dual mixed
formulation has been estabilished in Schimperna and Zelik.9

Cahn-Hilliard–type equations have been used in several different contexts. From the original one (ie, binary alloys)
introduced in Allen and Cahn,10 to multicomponent polymeric systems in McMaster,11 and lithium-ion batteries in Zeng
and Bazant,12 but also in modeling nanoporosity during dealloying in Erlebacher et al,13 or inpainting of binary images
in Bertozzi et al,14 and even the formation of Saturn rings in Tremaine.15 Further generalizations include extensions to
deformable elastic continua, as in Gurtin,16 binary fluids (see, eg, Gurtin et al17 and Lowengrub and Truskinovsky18). In
the last years, CH-type equations have also been used to model pattern formation in biological systems (see, for instance,
Khain and Sander19 and Liu et al20). Moreover, a CH equation with degenerate mobility obtained from the application
of mixture theory to solid tumors, which are modeled as elastic fluids with a free energy functional characterized by a
double-well potential 𝜓 , is described in Wise et al.21

The standard initial and boundary value problem associated with (3) is the following:

Problem P. Find c(x, t) such that
𝜕c
𝜕t

= div(b(c)∇(−𝛾Δc + 𝜓 ′(c))) in ΩT ∶= Ω × (0,T), (4)

c(x, 0) = c0(x) ∀x ∈ Ω, (5)

∇c · 𝝂 = b(c)∇(−𝛾Δc + 𝜓 ′(c)) · 𝝂 = 0 on 𝜕Ω × (0,T), (6)

where Ω ⊂ Rd, d = 1, 2, 3 is a given bounded domain with a Lipschitz boundary 𝜕Ω, 𝝂 is the unit normal vector
pointing outward to 𝜕Ω and c0 is a given initial concentration.

A remarkable property of the solution of Problem P in the degenerate case with the smooth or the logarithmic
double well potential is the positivity property, ie, if 0 ⩽ c0(x) ⩽ 1, then 0 ⩽ c(x, t) ⩽ 1 almost everywhere in ΩT. See,
for instance, other works7,9,22 for details. As we will see in the following, this property is not satisfied in general by the
solution of a finite element approximation of Problem P. See, for instance, Barrett et al23 and Grün and Rumpf24 for
details.

Finite element discretizations of Problem P using continuous elements have been studied first in Copetti and
Elliott25 for a constant mobility and in Barrett et al23 and Grün and Rumpf24 for degenerate mobility (for more recent
contributions, see, eg, previous studies26,27 where an isogeometric analysis of the CH equation has been performed;



FIGURE 1 Plot of the single well potential (7) corresponding to the value c* = 0.6, with c̄ ∼ 0.44 [Colour figure can be viewed at
wileyonlinelibrary.com]

other studies28-30 where a finite element discretization with discontinuous elements has been studied, and another
two studies,31,32 where polygonal methods are used). Whereas, in Barrett et al,23 the positivity property of the discrete
solution is imposed as a constraint by means of a variational inequality, in Grün and Rumpf,24 a suitable approxi-
mation of the degenerate mobility by means of an harmonic average on a structured mesh is used, to guarantee the
validity of a discrete positivity property.

In these papers, 𝜓 is always a double-well smooth or logarithmic type potential. However, in modeling tumor
growth, such a choice seems unphysical for biological cells, since it has been observed that cell-cell interactions are
attractive at a moderate cell volume fraction (for c < c*), where c∗ ∈ R, 0 < c∗ < 1, and repulsive at a high volume
fraction (for c > c*), with a zero for c = 0 and an infinite cell-cell repulsion as c → 1, (see, eg, Byrne and Preziosi33).
Here, c stands for the volume fraction of cancerous cells.

Accordingly, in this work, we propose to study the existence of a suitable weak solution and the convergence of
a finite element approximation of Problem P, using a single-well potential of Lennard-Jones type, as introduced in
Chatelain et al34 (cf also Colombo et al35). More precisely, we take

𝜓(c) = 𝜓1(c) + 𝜓2(c), (7)

where
𝜓1(c) = −(1 − c∗) log(1 − c),

𝜓2(c) = −c3

3
− (1 − c∗)c2

2
− (1 − c∗)c + k.

(8)

Here, c* is the volume fraction at which the cells would naturally be at mutual equilibrium and k > 0. The spin-
odal decomposition can be triggered if c < c̄, where 𝜓 ′′(c̄) = 0. In Figure 1, a plot of the single well potential (7),
corresponding to the value c* = 0.6, is shown.

Moreover, we have

𝜓 ′(c) = c2(c − c∗)
1 − c

. (9)

Correspondingly, the mobility introduced in Chatelain et al36 is given by

b(c) = c(1 − c)2. (10)

Note that 𝜓1 is a convex function defined on [0, 1) while 𝜓2 is a concave function defined on [0, 1]. The particular
form of the mobility (10) is derived in Chatelain et al36 as a result of the application of mixture model to solid tumors.
We observe in particular that the product b𝜓 ′′ is a continuous function in [0, 1]. We remark the fact that the analysis
of Problem P could be extended easily from the one derived in the present work also to the case in which the mobility
has the more general form b(c) = cm(1−c)n, with 1 ⩽ m < 2 and n ⩾ 2. In the case m ⩾ 2, the only difference would be
that the set {x ∈ Ω|c(x, t) = 0} would have zero measure for each time t, so that no compactly supported solutions of
Problem P would be admitted in this case (see in particular the estimate (49) derived in Section 2.2 and the corollary
of Lemma 2 in Elliott and Garcke7).
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Therefore, the CH equation we want to analyze degenerates on the set {c = 0; c = 1}, but the singularity is concen-
trated on the set {c = 1} only. This feature introduces a nontrivial difference with respect to the CH equation analyzed
in the literature. For instance, in the degenerate cases studied in Elliott and Garcke7 and Schimperna and Zelik,9 the
degeneracy and the singularity sets coincide and the singularity behavior compensates the degeneracy of the mobil-
ity. In Barrett et al,23 a finite element approximation of Problem P is studied in the case of a degenerate mobility and a
smooth double well potential and in the case of a degenerate mobility and a logarithmic double well potential. In the
former case, the positivity condition of the discrete solution is imposed as a constraint through a discrete variational
inequality, while, in the latter case, a classical formulation without constraints is studied for the discrete approxima-
tion, because the degeneracy and the singularity sets coincide and the positivity property is ensured also at a discrete
level. In this case, an acute partitioning of the domain is required to study the existence of a discrete solution (see
Theorem 4.1 in Barrett et al23).

In our case, we cannot exploit the relationship between b and𝜓 at 0 to ensure that c ⩾ 0 at a discrete level. Therefore,
we impose this condition as a constraint and formulate a discrete variational inequality, as done in Barrett et al23 in the
case of a degenerate mobility combined with a smooth double well potential. Differently from the cited paper, we have
a variational inequality with a singular term in the potential, which we approach via a regularization method. Using
properties of convex calculus, we generalize the requirements introduced in the cited paper to guarantee existence
of a discrete solution in the case of the singular potential; in particular, in Theorem 4, we do not require an acute
partitioning of the domain.

The paper is organized as follows. In Section 2, we study the existence of a weak solution of (4) to (9) and its positivity
properties for the cases of spatial dimension d = 1 and d = 2, 3 separately. In particular, to handle the singular
cellular potential, we introduce and study a regularized problem as an intermediate step. In Sections 3 and 4, we
introduce a continuous Galerkin finite element approximation of (4) to (9), we show its well posedness and we prove
its convergence in one spatial dimension. Section 4 is devoted to the convergence analysis in one space dimension.
In Section 5, we present the iterative scheme we have used to solve the discrete variational inequality and we present
some numerical experiments in dimensions one and two. We also discuss the growth of the coarsening domains in 2
dimensions. Section 6 contains a discussion of the main results.

1.1 Notation and functional setting
For a given domain 𝜔 ⊂ Ω, d = 1, 2, 3, we indicate with Lp(𝜔),Wm,p(𝜔),Hm(𝜔) = Wm,2(𝜔) and Lp((0,T);V) the usual
Lebesgue, Sobolev, and Bochner spaces, (see, eg, Adams37), for p ∈ [1,∞] and m ∈ N, endowed with the corresponding
canonical norms and seminorms ||·||m,p,𝜔, ||·||m,𝜔, |·|m,p,𝜔 and |·|m,𝜔, respectively. Throughout, (·, ·)𝜔 denotes the standard
L2 inner product over 𝜔, and < ·, · >𝜔 denotes the duality pairing between (H1(𝜔))′ and (H1(𝜔)). We omit the index 𝜔

when 𝜔 = Ω. We indicate with C(Ω̄),Cn(I1, I2),n ⩾ 0, and Cs1,s2
x,t (Ω̄T), 0 < s1, s2 < 1 the space of continuous functions from

Ω̄ to R, the space of Cn continuous functions from interval I1 ⊂ R to interval I2 ⊂ R, and the space of Hölder continuous
functions from Ω̄T to R with Hölder exponents s1 and s2 in the arguments x and t, respectively. Moreover, we introduce
the following set notation: {0 < q < 1} ∶= {(x, t) ∈ ΩT ∶ 0 < q(x, t) < 1}, for a given function q ∶ ΩT → R.

Furthermore, C denotes throughout a generic positive constant independent of the unknown variables, the discretiza-
tion and the regularization parameters, the value of which might change from line to line; C1,C2, … indicate generic
positive constants whose particular value must be tracked through the calculations; C(a) denotes a constant depending
on the nonnegative parameter a, such that, for C1 > 0, if a ⩽ C1, there exists a C2 > 0 such that C(a) ⩽ C2.

It is useful to introduce the inverse Laplacian operator  ∶  → V such that

(∇v,∇𝜂) =< v, 𝜂 > ∀𝜂 ∈ H1(Ω), (11)

where  = {v ∈ (H1(Ω))′ ∶< v, 1 >= 0} and V = {v ∈ H1(Ω) ∶ (v, 1) = 0}. The existence and uniqueness of an element
v ∈ V , for any v ∈  , follows from the Lax-Milgram Theorem and the Poincaré's inequality.

We can define a norm on  by setting

||v|| ∶= |v|1 ≡< v,v>1∕2 ∀v ∈  . (12)



We will use the following Sobolev interpolation result, (see, eg, Adams37). Let p ∈ [1,∞],m ⩾ 1, we set

r ∈
⎧⎪⎨⎪⎩
[p,∞] if m − d

p
> 0,[

p,∞) if m − d
p
= 0,[

p,− d
m−(d∕p)

]
if m − d

p
< 0,

and 𝜇 = d
m

(
1
p
− 1

r

)
. Then there is a constant C such that

||v||0,r ⩽ C||v||1−𝜇0,p ||v||𝜇m,p ∀v ∈ W m,p(Ω). (13)

Let h be a quasi-uniform conforming decomposition of Ω into d−simplices K, d = 1, 2, 3, and let us introduce the
following finite element spaces:

Sh ∶= {𝜒 ∈ C(Ω̄) ∶ 𝜒|K ∈ P1(K) ∀K ∈ h} ⊂ H1(Ω),
Kh ∶= {𝜒 ∈ Sh ∶ 𝜒 ⩾ 0 in Ω},

where P1(K) indicates the space of polynomials of total order one on K.
Let J be the set of nodes of h and {xj}j∈J be the set of their coordinates. Moreover, let {𝜙j}j∈J be the Lagrangian basis

functions associated with each node j ∈ J. Denoting by 𝜋h ∶ C(Ω̄) → Sh the standard Lagrangian interpolation operator
we define the lumped scalar product as

(𝜂1, 𝜂2)h = ∫Ω
𝜋h(𝜂1(x)𝜂2(x))dx ≡∑

j∈J
(1, 𝜒j)𝜂1(xj)𝜂2(xj), (14)

for all 𝜂1, 𝜂2 ∈ C(Ω̄). We also introduce the L2 projection operator Ph ∶ L2(Ω) → Sh and its lumped version P̂h ∶ L2(Ω) → Sh

defined by

(Ph𝜂, 𝜒) = (𝜂, 𝜒) ∀𝜒 ∈ Sh,

(P̂h𝜂, 𝜒)h = (𝜂, 𝜒) ∀𝜒 ∈ Sh.
(15)

We recall the following well-known results, (see, eg, Barrett et al23).

Lemma 1. The following properties hold

|𝜒|m,p2 ⩽ Ch−d
(

1
p1
− 1

p2

)|𝜒|m,p1 ∀𝜒 ∈ Sh, 1 ⩽ p1 ⩽ p2 ⩽ ∞, m = 0, 1; (16)

|𝜒|1,p ⩽ Ch−1||𝜒||0,p ∀𝜒 ∈ Sh, 1 ⩽ p ⩽ ∞; (17)

lim
h→0

||(I − 𝜋h)𝜂||0,∞ = 0 ∀𝜂 ∈ C(Ω̄); (18)

||(I − Ph)𝜂||0 + h|(I − Ph)𝜂|1 ⩽ Chm|𝜂|m ∀𝜂 ∈ Hm(Ω), m = 1, 2; (19)

||𝜒||20 ⩽ (𝜒, 𝜒)h ⩽ (d + 2)||𝜒||20 ∀𝜒 ∈ Sh (20)

|(vh, 𝜒)h − (vh, 𝜒)| ⩽ Ch1+m||vh||m||𝜒||1 ∀vh, 𝜒 ∈ Sh, m = 0, 1; (21)

|(I − 𝜋h)𝜂|m,r ⩽ Ch1−m|𝜂|1,r ∀𝜂 ∈ W 1,r(Ω), m = 0, 1, r ∈ [1,∞] if d = 1; (22)

lim
h→0

||(I − 𝜋h)𝜂||1 = 0 ∀𝜂 ∈ H1(Ω) if d = 1. (23)



Similarly to (11), we define the operators h ∶  → V h and ̂h ∶ h → V h as follows:

(∇hv,∇𝜒) =< v, 𝜒 > ∀𝜒 ∈ Sh, (24)

(∇̂hv,∇𝜒) = (v, 𝜒)h ∀𝜒 ∈ Sh, (25)

where h = {v ∈ C̄(Ω) ∶ (v, 1) = 0} and Vh = {vh ∈ Sh ∶ (vh, 1) = 0}.

2 EXISTENCE OF WEAK SOLUTIONS

In this section, we will give the existence proof for different classes of weak solutions in the cases of spatial dimensions
d = 1 and d = 2, 3. To do that, we introduce a suitable regularization of the original problem.

2.1 Regularized problem
Given 𝛿 ∈ (0, 1) and 𝜖 ∈ (0, 1), we define a regularized mobility as follows:

b𝛿,𝜖(r) ∶=

{ b(𝛿) for r ⩽ 𝛿,
b(r) for 𝛿 < r < 1 − 𝜖,
b(1 − 𝜖) for r ⩾ 1 − 𝜖,

(26)

for all r ∈ R. We also define a regularized potential by setting

𝜓 ′′
1,𝜖(r) ∶=

{
𝜓 ′′

1 (1 − 𝜖) for r ⩾ 1 − 𝜖,

𝜓 ′′
1 (r) for r < 1 − 𝜖,

(27)

for all r ∈ R. We note that the two parameters 𝛿 and 𝜖 could be identified in a single regularization parameter in the anal-
ysis. Since in Section 3.1, we will introduce a discrete problem in which only the regularization of the singular potential
near c = 1 will be considered in the form (27), without considering any regularization near c = 0, we prefer for clarity to
separate the regularization parameters for the mobility and the potential around c = 0 and c = 1. By expanding 𝜓1(r) in
(8) in a neighborhood of (1 − 𝜖) when r ⩾ 1 − 𝜖, we obtain 𝜓1,𝜖 , ie,

𝜓1,𝜖(r) ∶=
{

−(1 − c∗) log𝜖 + 3
2
(1 − c∗) − 2

𝜖
(1 − c∗)(1 − r) + 1−c∗

2𝜖2 (1 − r)2 for r ⩾ 1 − 𝜖,

𝜓1(r) for r < 1 − 𝜖,
(28)

and 𝜓 ′
1,𝜖 , ie,

𝜓 ′
1,𝜖(r) ∶=

{ 2
𝜖
(1 − c∗) − 1−c∗

𝜖2 (1 − r) for r ⩾ 1 − 𝜖,

𝜓 ′
1(r) for r < 1 − 𝜖.

(29)

Furthermore, expanding 𝜓1,𝜖(·) in the Taylor series around (1 − 𝜖), with an argument s > 1 and with 𝜖 < 1, using (27),
(28), and (29), we obtain

𝜓1,𝜖(s) = 𝜓1,𝜖(1 − 𝜖) + 𝜓 ′
1,𝜖(1 − 𝜖)(s − (1 − 𝜖)) + 1

2
𝜓 ′′

1,𝜖(1 − 𝜖)(s − (1 − 𝜖))2

= −(1 − c∗) log𝜖 + 1 − c∗
𝜖

(s − (1 − 𝜖)) + 1 − c∗
2𝜖2 (s − (1 − 𝜖))2

⩾ 1 − c∗
2𝜖2 (s − 1)2.

Hence, we have that

𝜓1,𝜖(s) ⩾
1 − c∗

2𝜖2 ([s − 1]+)2 ∀s ∈ R, (30)

where [·]+ = max{·, 0}.



Introducing the extension �̄�2 ∈ C2(R) of 𝜓2 ∈ C2([0, 1]),

�̄�2(r) ∶=
{

𝜓2(1) + (r − 1)𝜓 ′
2(1) +

1
2
(r − 1)2𝜓 ′′

2 (1) for r ⩾ 1,
𝜓2(r) for r ⩽ 1, (31)

we set 𝜓𝜖(r) ∶= 𝜓1,𝜖(r) + �̄�2(r). We note that 𝜓1(r) + 𝜓2(r) ⩾ 0 for r ⩽ 0, and that

𝜓1,𝜖(r) + �̄�2(r) = −(1 − c∗) log𝜖 − 1
3
+
[

2
𝜖
(1 − c∗) + (2c∗ − 3)

]
(r − 1) +

[
1 − c∗

2𝜖2 + c∗ − 3
2

]
(r − 1)2 (32)

for r ⩾ 1. Since there exists a sufficiently small positive value 𝜖0 such that the expressions in the square brackets in (32)
are both positive ∀𝜖 ⩽ 𝜖0, we obtain that

𝜓𝜖(s) ⩾ −C ∀s ∈ R, 𝜖 ⩽ 𝜖0, (33)
where the constant C is independent of 𝜖. Moreover, from (8), (29), and (31), we get that|𝜓 ′

𝜖(s)| ⩽ C + C|s| + C|s|2 ∀s ∈ R. (34)

We now introduce the following regularized version of (4) to (6):

Problem P𝛿𝜖. Find c𝛿,𝜖(x, t) such that
𝜕c𝛿,𝜖
𝜕t

= div(b𝛿,𝜖(c𝛿,𝜖)∇w𝛿,𝜖) in ΩT , (35)

w𝛿,𝜖 = −Δc𝛿,𝜖 + 𝜓 ′
𝜖(c𝛿,𝜖) in ΩT , (36)

c𝛿,𝜖(x, 0) = c0(x) ∀x ∈ Ω, (37)

∇c𝛿,𝜖 · 𝝂 = b𝛿,𝜖(c𝛿,𝜖)∇w𝛿,𝜖 · 𝝂 = 0 on 𝜕Ω × (0,T). (38)

We have the following existence result for P𝛿,𝜖 .

Theorem 1. Let 𝜕Ω ∈ C1,1 or Ω is convex, with d = 1, 2, 3, and suppose that c0 ∈ H1(Ω). Then for every 0 < T < ∞,
there exists a pair (c𝛿,𝜖,w𝛿,𝜖) such that

c𝛿,𝜖 ∈ L∞(0,T;H1(Ω)) ∩ H1(0,T; (H1(Ω))′), (39)

w𝛿,𝜖 ∈ L2(0,T;H1(Ω)), (40)

which satisfies (35) to (38) in the following mixed weak formulation:{ ∫ T
0 ⟨ 𝜕c𝛿,𝜖

𝜕t
(t), 𝜉(t)⟩(H1)′,H1 = −∫ΩT

b𝛿,𝜖(c𝛿,𝜖)∇w𝛿,𝜖∇𝜉,
∫Ωw𝛿,𝜖𝜙 = 𝛾∫Ω∇c𝛿,𝜖∇𝜙 + ∫Ω𝜓 ′

𝜖(c𝛿,𝜖)𝜙, a.e. t ∈ [0,T],
(41)

for all 𝜉 ∈ L2(0,T;H1(Ω)), 𝜙 ∈ H1(Ω), with c𝛿,𝜖(x, 0) = c0(x).

Proof. The proof of the theorem comes from Theorem 2 in Elliott and Garcke.7 It suffices to note that, from (26) to (33),
it follows that b𝛿,𝜖 ∈ C(R,R+), with b1 ⩽ b𝛿,𝜖(r) ⩽ B1, b1,B1 > 0, and (33) and (34) imply that 𝜓𝜖 ∈ C2(R,R), |𝜓 ′

𝜖(r)| ⩽
C|r|2 + C|r| + C, 𝜓𝜖(r) ⩾ −C.

We also get a further regularity, namely,

Lemma 2. In the hypotheses of Theorem 1, we have that c𝛿,𝜖 ∈ L2(0,T;H3(Ω)). The weak solution of (41) thus satisfies
the primal weak formulation

∫
T

0

⟨
𝜕c𝛿,𝜖
𝜕t

, 𝜉

⟩
(H1)′,H1

= −∫ΩT

b𝛿,𝜖(c𝛿,𝜖)∇(−𝛾Δc𝛿,𝜖 + 𝜓 ′
𝜖(c𝛿,𝜖))∇𝜉, (42)



for all 𝜉 ∈ L2(0,T;H1(Ω)), with c𝛿,𝜖(x, 0) = c0(x).

Proof. From (34), (39), and Sobolev inequality (13), with m = 1, r ∈ [1, 6] for d = 3 and m = 1, r ⩾ 1 for d = 1, 2,
we get that 𝜓 ′

𝜖 ∈ L∞(0,T;L2(Ω)). Using then (40) and applying the elliptic regularity theory to the second equation of
(41), we get that c𝛿,𝜖 ∈ L2(0,T;H2(Ω)).

We now show that ∇𝜓 ′
𝜖(c𝛿,𝜖) = 𝜓 ′′

𝜖 (c𝛿,𝜖)∇c𝛿,𝜖 ∈ L2(ΩT). It is enough to show it in the case d = 3. Indeed, from
(27)-(31), (39) we have that

∫
T

0 ∫Ω
|𝜓 ′′

𝜖 (c𝛿,𝜖)∇c𝛿,𝜖|2 ⩽ C||∇c𝛿,𝜖||L2(ΩT ) + C ∫
T

0 ∫Ω
|c𝛿,𝜖∇c𝛿,𝜖|2 ⩽ C + C ∫

T

0 ∫Ω
c2
𝛿,𝜖
|∇c𝛿,𝜖|2.

Since c2
𝛿,𝜖
|∇c𝛿,𝜖|2 is a positive measurable function on ΩT, we can apply Tonelli Theorem, and, from the application of

(13), with r = ∞,m = 2, we get

∫
T

0 ∫Ω
|𝜓 ′′

𝜖 (c𝛿,𝜖)∇c𝛿,𝜖|2 ⩽ C + C ∫
T

0

(||c𝛿,𝜖(t)||2L∞(Ω)∫Ω
|∇c𝛿,𝜖(t, x)|2) ⩽ C + C ∫

T

0

(||c𝛿,𝜖(t)||1∕2||c𝛿,𝜖(t)||3∕2
2,2 ||∇c𝛿,𝜖(t)||2)

⩽ C + C||c𝛿,𝜖||2L∞(0,T;H1(Ω)) ∫
T

0

(||c𝛿,𝜖(t)||1∕2||c𝛿,𝜖(t)||3∕2
2,2

)
.

Using (39), the Young's inequality and the fact that c𝛿,𝜖 ∈ L2(0,T;H2(Ω)), we obtain

∫
T

0 ∫Ω
|𝜓 ′′

𝜖 (c𝛿,𝜖)∇c𝛿,𝜖|2 ⩽ C + ||c𝛿,𝜖||2L2(0,T;H2(Ω)) ⩽ C,

so that ∇𝜓 ′
𝜖(c𝛿,𝜖) ∈ L2(ΩT). Finally, since ∇w𝛿,𝜖 ∈ L2(ΩT), we get that ∇Δc𝛿,𝜖 ∈ L2(ΩT), and this gives the thesis.

To pass to the limit for 𝛿, 𝜖 → 0 in the regularized problem (41), we need to obtain a priori estimates uniform in the
regularization parameters. This is the aim of the next section.

2.2 A priori estimates
Thanks to Theorem 1 and Lemma 2, we have that w𝛿,𝜖 = −𝛾Δc𝛿,𝜖 + 𝜓 ′

𝜖(c𝛿,𝜖) ∈ L2(0,T;H1(Ω)). Then we can take 𝜉 ≡ w𝛿,𝜖
in (42) and obtain, arguing as in Lemma 2 in Elliott and Garcke,7 the following result.

Lemma 3. If 0 ⩽ c0 < 1 and c0 ∈ H1(Ω), there exists an 𝜖0 such that for all 0 < 𝜖 ⩽ 𝜖0 and 𝛿 > 0 the following estimate
holds, for almost all t ∈ [0,T],

∫Ω

(
𝛾

2
|∇c𝛿,𝜖(t)|2 + 𝜓𝜖(c𝛿,𝜖(t))

)
+ ∫ΩT

b𝛿,𝜖(c𝛿,𝜖)|∇w𝛿,𝜖|2 = ∫Ω

(
𝛾

2
|∇c0|2 + 𝜓𝜖(c0)

)
⩽ C. (43)

Note that, given 0 ⩽ c0 < 1, for 𝜖 sufficiently small, we have that 𝜓𝜖(c0) ⩽ 𝜓(c0) ∈ L1(Ω), since c0 ∈ H1(Ω) ⊂⊂ L6(Ω)
(in the case d = 3).

We define now the following Entropy function 𝛷𝛿,𝜖 and its derivative 𝛹𝛿,𝜖 ,

Ψ𝛿,𝜖(r) ∶= ∫
r

A

ds
b𝛿,𝜖(s)

; Φ𝛿,𝜖(r) ∶= ∫
r

A
Ψ𝛿,𝜖(s)ds; Φ′′

𝛿,𝜖
(r) = Ψ′

𝛿,𝜖
(r) = 1

b𝛿,𝜖(r)
, (44)

with A > 1. We note that

Ψ𝛿,𝜖(r) ⩽ 0, Φ𝛿,𝜖(r) ⩾ 0, for r ⩽ A, (45)

and that

Φ𝛿,𝜖(r) ⩽ Φ(r), for 0 ⩽ r ⩽ 1, (46)

where Φ(r) = lim𝛿→0,𝜖→0Φ𝛿,𝜖(r). We define also Ψ(r) = lim𝛿→0,𝜖→0Ψ𝛿,𝜖(r), and observe that, for 0 < r ⩽ A,



Ψ(r) = 1
1 − r

− log(1 − r) + log(r) − C, (47)

Φ(r) = log
(

1
1 − r

)
− r[ log(1 − r) − 1] + log(1 − r) + r log(r) − r + C. (48)

Since Φ′′
𝛿,𝜖

is bounded, we can take 𝜉 ≡ Φ′
𝛿,𝜖
(c𝛿,𝜖) ∈ L2(0,T;H1(Ω)) in (42) and obtain, following again Lemma 2 in Elliott

and Garcke,7 the following result.

Lemma 4. If 0 ⩽ c0 < 1 almost everywhere in Ω, for almost all t ∈ [0,T] and for 𝛿, 𝜖 > 0 the following estimate holds:

∫Ω
Φ𝛿,𝜖(c𝛿,𝜖(t)) + 𝛾∫ΩT

|Δc𝛿,𝜖|2 + ∫ΩT

𝜓 ′′
1,𝜖|∇c𝛿,𝜖|2 = ∫Ω

Φ𝛿,𝜖(c0) − ∫ΩT

�̄� ′′
2 |∇c𝛿,𝜖|2 ⩽ C. (49)

Note from (46) and (48) that ∫ΩΦ𝛿,𝜖(c0) ⩽ ∫ΩΦ(c0) ⩽ C if 0 ⩽ c0 < 1 almost everywhere in Ω.

2.3 Passage to the limit for the case d = 1
Using the a priori estimates (43) and (49), we can take the limit for 𝛿, 𝜖 → 0 in (41) and obtain the following theorem.

Theorem 2. Let d = 1 and c0 ∈ H1(Ω), with 0 ⩽ c0 < 1. Then there exist a subsequence of (c𝛿,𝜖,w𝛿,𝜖) and functions

c ∈ L∞(0,T;H1(Ω)) ∩ H1(0,T; (H1(Ω))′) ∩ C
1
2
,

1
8

x,t (Ω̄T) and w ∈ L2
loc(0 < c < 1) with 𝜕w

𝜕x
∈ L2

loc(0 < c < 1), such that, for
𝛿, 𝜖 → 0,

c𝛿,𝜖 ⇀ c weakly in L2(0,T;H1(Ω)), (50)

c𝛿,𝜖 → c uniformly on Ω̄T , (51)

w𝛿,𝜖 ⇀ w,
𝜕w𝛿,𝜖

𝜕x
⇀

𝜕w
𝜕x

weakly in L2
loc(0 < c < 1). (52)

Moreover, we have
0 ⩽ c < 1 a.e. in ΩT . (53)

The limit point (c,w) satisfies the weak formulation⎧⎪⎨⎪⎩
∫ T

0 ⟨ 𝜕c
𝜕t
, 𝜂⟩dt + ∫0<c<1

(
b(c) 𝜕w

𝜕x
,
𝜕𝜂

𝜕x

)
dt = 0,

∫0<c<1𝛾

(
𝜕c
𝜕x
,
𝜕𝜃

𝜕x

)
dt + ∫0<c<1(𝜓

′(c), 𝜃)dt − ∫0<c<1(w, 𝜃)dt = 0,
(54)

for all 𝜂, 𝜃 ∈ L2(0,T;H1(Ω)), with c(·, 0) = c0(·).

Proof. The proof follows Bernis and Friedman,38 with suitable modifications since we are working with a dual mixed
formulation of Problem P instead of a primal formulation.

From (43) and from Poincaré's inequality, we get that c𝛿,𝜖 ∈ L2(0,T;H1(Ω)), from which (50) follows. Since d = 1,
from (43), Poincaré's inequality and Sobolev embedding results we get that c𝛿,𝜖 is uniformly bounded on Ω̄T , and

that its C
1
2
,

1
8

x,t (Ω̄T) norm is uniformly bounded (see Bernis and Friedman38 for details). Hence, every sequence c𝛿,𝜖 is
uniformly bounded and equicontinuous on Ω̄T , and, by the Ascoli-Arzelá Theorem, we get (51).

To prove that c ⩾ 0 in ΩT, let us suppose that there exists a point (x̄, t̄) ∈ ΩT such that c(x̄, t̄) < 0. From the uniform
continuity of c𝛿,𝜖 and c and from the uniform convergence (51), we get that there exist 𝛾1, 𝛾2 and (𝛿0, 𝜖0) such that

c𝛿,𝜖(x, t̄) < −𝛾1 if |x − x̄| < 𝛾2, 𝛿 ⩽ 𝛿0, 𝜖 ⩽ 𝜖0.

Hence, from (45) and (46), we get

Φ𝛿,𝜖(c𝛿,𝜖(x, t̄)) = ∫
c𝛿,𝜖(x,t̄)

A
Ψ𝛿,𝜖(s)ds ⩾ −∫

0

−𝛾1

Ψ𝛿,𝜖(s)ds.



Since 0 ⩽ −Ψ𝛿′,𝜖′ (r) ⩽ −Ψ𝛿′′,𝜖′′ (r) for −𝛾1 ⩽ r ⩽ 0 when 𝛿′
′ ⩽ 𝛿′, 𝜖′′ ⩽ 𝜖′, by applying the Beppo Levi Theorem and

due to the presence of the term log(r) in (47), we get

lim
𝛿→0,𝜖→0

Φ𝛿,𝜖(c𝛿,𝜖(x, t̄)) ⩾ −∫
0

−𝛾1

Ψ(s)ds = ∞.

Using the fact that 𝛷𝛿,𝜖(r) ⩾ 0 for r ⩽ A, we get that

lim
𝛿→0,𝜖→0 ∫Ω

Φ𝛿,𝜖(c𝛿,𝜖(x, t̄))dx = ∞,

which contradicts (49). Hence c ⩾ 0 in ΩT. With a similar argument and due to the presence of the term log(1 − r)
in (47), we can show that c ⩽ 1 in ΩT. Thanks to the presence of the term log(1 − r) in (48) or, equivalently, in (28),
we prove that, for each t ∈ [0,T], the set {x ∈ Ω|c(x, t) = 1} has measure zero. Indeed, suppose that there exists a
t̄ ∈ [0,T] such that the set S ∶= {x ∈ Ω |c(x, t̄) = 1} has positive measure. From the uniform continuity of c𝛿,𝜖 and
c and from the uniform convergence (51), we get that there exist a modulus of continuity 𝛾1(𝜖), with 𝛾1(0) = 0, and
(𝛿0, 𝜖0) such that

c𝛿,𝜖(x, t̄) ⩾ 1 − 𝛾1(𝜖) ∀x ∈ S, 𝛿 ⩽ 𝛿0, 𝜖 ⩽ 𝜖0.

From (28), we have that
𝜓1,𝜖(c𝛿,𝜖(x, t̄)) ⩾ −(1 − c∗) log𝛾1(𝜖) −

2
𝛾1(𝜖)

(1 − c∗), ∀x ∈ S.

Using the fact that 𝜓1,𝜖(r) ⩾ 0 for r ⩾ 0 if 𝜖 is sufficiently small, we get that

lim sup
𝛿→0,𝜖→0 ∫Ω

𝜓1,𝜖(c𝛿,𝜖(x, t̄))dx ⩾ lim sup
𝜖→0

(
− (1 − c∗) log𝛾1(𝜖) −

2
𝛾1(𝜖)

(1 − c∗)
)|S|→ ∞,

which contradicts (43). Hence, 0 ⩽ c < 1 almost everywhere in ΩT.
We now show the boundedness of w𝛿,𝜖 and 𝜕w𝛿,𝜖

𝜕x
on L2

loc({0 < c < 1}). For any 𝜂 > 0, we set

D+
𝜂 = {(x, t) ∈ Ω̄T ∶ 𝜂 < c(x, t) < 1},

D+
𝜂 (t) = {x ∈ Ω̄ ∶ 𝜂 < c(x, t) < 1}.

On account of the uniform convergence (51), for a fixed 𝜂 > 0, it follows that there exist 𝛿, 𝜖 such that, for all
𝛿 ⩽ 𝛿, 𝜖 ⩽ 𝜖, |c𝛿,𝜖| < 2𝜂 ∀(x, t) ∉ D+

𝜂 ,

1
8
𝜂 ⩽ c𝛿,𝜖 ∀(x, t) ∈ D+

𝜂

4
.

(55)

From (43) and from (55) we have

b𝛿,𝜖,min(
𝜂

8
)∫D+

𝜂
4

|𝜕w𝛿,𝜖

𝜕x
|2dxdt ⩽ ∫D+

𝜂
4

b(c𝛿,𝜖)|𝜕w𝛿,𝜖

𝜕x
|2dxdt ⩽ C, (56)

where b𝛿,𝜖,min(𝜂) ∶= min𝜂⩽z<1b𝛿,𝜖(z).
We now introduce a cutoff function 𝜃𝜂 ∈ C∞

0 (D+
𝜂

4
) such that

𝜃𝜂(·, t) ≡ 1 on D+
𝜂

2
(t), 0 ⩽ 𝜃𝜂(·, t) ⩽ 1. (57)

Noting that, since c ∈ C
1
2
,

1
8

x,t (Ω̄T), we have that C𝜂 ⩽ |x2 − x1|1/2 for x1, x2 ∈ D+
𝜂

4
∖D+

𝜂

2
, then we can choose a 𝜃𝜂(·, t) such

that |∇𝜃𝜂(·, t)| ⩽ C𝜂−2. (58)
Since 𝜃2

𝜂w𝛿,𝜖 ∈ H1(Ω), we can take 𝜙 = 𝜃2
𝛿
w𝛿,𝜖 in (41) and integrate over time in the interval (0,T). On account of the

uniform convergence (51), given c(x, t) < 1, we have c𝛿,𝜖(x, t) < 1 for sufficiently small 𝛿 and 𝜖; hence, 1
8
𝜂 ⩽ c𝛿,𝜖 < 1

on D+
𝜂

4
, and thus 𝜓 ′

𝜖(c𝛿,𝜖) is bounded. We obtain

∫ΩT

𝜃2
𝜂 (w𝛿,𝜖)2dxdt ⩽ C||c𝛿,𝜖||L2(0,T;H1(Ω))|| 𝜕

𝜕x
(𝜃2

𝜂w𝛿,𝜖)||L2(ΩT ) + C||𝜓 ′
𝜖(c𝛿,𝜖)||L2(ΩT ) ||𝜃𝜂w𝛿,𝜖||L2(ΩT )

⩽ C(1 + 𝜂−2)||𝜃𝜂w𝛿,𝜖||L2(ΩT ) + C||𝜕w𝛿,𝜖

𝜕x
||L2(D+

𝜂
4
).



Using now Young's inequality and (56), we infer

∫ΩT

𝜃2
𝜂 (w𝛿,𝜖)2dxdt ⩽ C + C(𝜂−4). (59)

Therefore, combining (56) and (59) and recalling the definition of 𝜃𝜂(·, t), we have that, for all 𝜂 > 0,||w𝛿,𝜖||L2(0,T;H1(D+
𝜂
4
(t))) ⩽ C + C(𝜂−4). (60)

Applying (60) on compact subsets of the set {0 < c < 1} ≡ D+
0 , we eventually obtain (52).

From the boundedness of c𝛿,𝜖 on ΩT and from (43), we get that b(c𝛿,𝜖)
𝜕w𝛿,𝜖

𝜕x
∈ L2(ΩT); hence, from (41), we deduce

that
𝜕tc𝛿,𝜖 ⇀ 𝜕tc weakly in L2(0,T; (H1(Ω))′). (61)

Finally, we pass to the limit for 𝛿, 𝜖 → 0 in each term in (41), to show that we can extract a subsequence of the
approximating functions (c𝛿,𝜖,w𝛿,𝜖), which converges to a solution of (54). Using (50), (52), and (61), we can pass to
the limit for 𝛿, 𝜖 → 0 in the first term of the first equation of (41) and in the first and second terms in the second
equation of (41), obtaining easily the corresponding terms in (54). From the facts that 𝜓1,𝜖(·), �̄�2(·) ∈ C2(R,R), that
𝜓𝜖(r) → 𝜓(r) uniformly for r < 1, from the uniform convergence (51) and the fact that c < 1 almost everywhere in ΩT,
we have that 𝜓𝜖(c𝛿,𝜖) → 𝜓(c) almost everywhere in ΩT. We can thus pass to the limit for 𝛿, 𝜖 → 0 in the third term in
the second equation of (41), obtaining the corresponding limit term in (54). Finally, we can rewrite the second term
in the first equation of (41) as

∫ΩT

b𝛿,𝜖(c𝛿,𝜖)∇w𝛿,𝜖∇𝜉 = ∫ΩT∖D+
𝜂
4

b𝛿,𝜖(c𝛿,𝜖)∇w𝛿,𝜖∇𝜉 + ∫D+
𝜂
4

[b𝛿,𝜖(c𝛿,𝜖) − b(c)]∇w𝛿,𝜖∇𝜉 + ∫D+
𝜂
4

b(c)∇w𝛿,𝜖∇𝜉. (62)

Taking the limit for 𝛿, 𝜖 → 0 in the right-hand side of (62), we use (43), the Cauchy-Schwarz inequality and the first
inequality in (55) to bound the first term; we moreover use the uniform convergence (51), together with the fact that
b𝛿,𝜖(·), b(·) ∈ C0(R,R), (56), and the Cauchy-Schwarz inequality to bound the second term. Using (52), we obtain, for
𝜂 → 0, the corresponding limit term in the weak formulation (54)

Finally, from the uniform convergence (51), we have that c(·, 0) = c0(·).

2.4 Passage to the limit for the case d = 2, 3
In the present case, we do not have the uniform convergence of the regularized solution as a consequence of Sobolev
embedding theorems. Hence, the term ∇w𝛿,𝜖 might not have a limit in L2(ΩT); therefore, we use the entropy estimate (49)
to identify a suitable class of weak solutions, for which we can take the limit for 𝛿, 𝜖 → 0 in (41). More precisely, we have
the following theorem.

Theorem 3. Let d = 2, 3 and c0 ∈ H1(Ω), with 0 ⩽ c0 < 1 almost everywhere in Ω. Then there exists a subsequence
of (c𝛿,𝜖, J𝛿,𝜖), with J𝛿,𝜖 ∶= b𝛿,𝜖(c𝛿,𝜖)∇w𝛿,𝜖 , and functions c ∈ L∞(0,T;H1(Ω)) ∩ H1(0,T; (H1(Ω))′) ∩ L2(0,T;H2(Ω)) and
J ∈ L2(ΩT;Rn), such that, for 𝛿, 𝜖 → 0,

c𝛿,𝜖 → c strongly in L2(0,T;H1(Ω)), (63)

𝜕tc𝛿,𝜖 ⇀ 𝜕tc weakly in L2(0,T; (H1(Ω))′), (64)

Δc𝛿,𝜖 ⇀ Δc weakly in L2(ΩT), (65)

J𝛿,𝜖 ⇀ J weakly in L2(ΩT). (66)

Moreover, we have
0 ⩽ c < 1 a.e. in ΩT . (67)



The limit point (c, J) satisfies the weak formulation{ ∫ T
0 ⟨ 𝜕c

𝜕t
, 𝜉⟩dt = ∫ΩT

J · ∇𝜉, ∀𝜉 ∈ L2(0,T;H1(Ω)),
∫ΩT

J · 𝜂 = −∫ΩT
[𝛾Δc∇ · (b(c)𝜂) + b𝜓 ′′(c)∇c · 𝜂] ∀𝜂 ∈ L2(0,T;H1(Ω;Rn)), (68)

with 𝜂 · 𝜈 = 0 on 𝜕Ω × (0,T), c(·, 0) = c0(·), and with ∇c · 𝜈 = 0 on 𝜕Ω.

Proof. The proof is an adaptation of the proof of Theorem 1 in Elliott and Garcke.7 From (49) and from elliptic reg-
ularity, we have (65) and the fact that c𝛿,𝜖 ∈ L2(0,T;H2(Ω)). From (43), we get (66), which also implies (64) from
(41). Moreover, recalling compactness results, we have that L∞(0,T;H1(Ω)) ∩ H1(0,T; (H1(Ω))′) ∩ L2(0,T;H2(Ω)) is
compactly embedded in C0(0,T;L6(Ω)∩L2(0,T;H1(Ω)) (for d = 3; see, eg, Adams37), we obtain (63) and c(·, 0) = c0(·).

To prove that c ⩾ 0 almost everywhere in ΩT, let us suppose that there exists a set S ⊂ ΩT with positive measure
such that c < 0 on S. Note that, since c ∈ C0([0,T];L1(Ω)), this hypothesis can be formally obtained starting from a
set E with positive measure for which -∫E cdx < 0 and using the Lebesgue Theorem (see Theorem 1.2 in Grün22 for
details). On the other hand, from (63), we have that c𝛿,𝜖 converges strongly to c in L2(ΩT), we can apply the Egorov
Theorem and obtain that, for each 𝛾 > 0, there exists a subset S′, with |S∖S′| < 𝛾 , on which (a subsequence of) c𝛿,𝜖
converges uniformly to c. Hence, we get that there exist 𝛾1 and (𝛿0, 𝜖0) such that

c𝛿,𝜖(x, t) < −𝛾1 on S′, 𝛿 ⩽ 𝛿0, 𝜖 ⩽ 𝜖0.

Therefore, using the fact that 𝛷𝛿,𝜖(r) ⩾ 0 for r ⩽ A, we get that

∫ΩT

Φ𝛿,𝜖(c𝛿,𝜖(x, t))dtdx ⩾ ∫S′ ∫
c𝛿,𝜖 (x,t)

A
Ψ𝛿,𝜖(s)ds ⩾ −|S′|∫ 0

−𝛾1

Ψ𝛿,𝜖(s)ds.

Applying the Beppo Levi Theorem and due to the presence of the term log(r) in (47), we get that

lim
𝛿→0,𝜖→0 ∫ΩT

Φ𝛿,𝜖(c𝛿,𝜖(x, t))dx = ∞,

which contradicts (49). Hence, c ⩾ 0 almost everywhere in ΩT. Using a similar argument and exploiting the presence
of the term log(1 − r) in (47), we can show that c ⩽ 1 almost everywhere in ΩT. Suppose now that there exists a set
V ⊂ ΩT , with positive measure, on which c(x, t) = 1. Applying the Egorov theorem, we obtain that, for each 𝛾 > 0,
there exists a subset V ′, with |V∖V ′| < 𝛾 , on which (a subsequence of) c𝛿,𝜖 converges uniformly to c. Hence, we get
that there exists a modulus of continuity 𝛾1(𝜖), with 𝛾1(0) = 0, and (𝛿0, 𝜖0) such that

c𝛿,𝜖 ⩾ 1 − 𝛾1(𝜖) on V ′, 𝛿 ⩽ 𝛿0, 𝜖 ⩽ 𝜖0.

From (28), we have that

𝜓1,𝜖(c𝛿,𝜖(x, t)) ⩾ −(1 − c∗) log𝛾1(𝜖) −
2

𝛾1(𝜖)
(1 − c∗), ∀(x, t) ∈ V ′.

Using again the Beppo Levi theorem and the fact that 𝜓1,𝜖(r) ⩾ 0 for r ⩾ 0 if 𝜖 is sufficiently small, we get that

lim sup
𝛿→0,𝜖→0 ∫Ω

𝜓1,𝜖(c𝛿,𝜖(x, t̄))dx ⩾ lim sup
𝜖→0

(
− (1 − c∗) log𝛾1(𝜖) −

2
𝛾1(𝜖)

(1 − c∗)
)|V ′| → ∞,

which contradicts (43). Hence, 0 ⩽ c < 1 almost everywhere in ΩT.
We now prove that the limit point satisfies the weak formulation (68). Starting from (41) and using (64) and (66), we

identify in the limit the first equation in (68). Since, from Lemma 2, we have that c𝛿,𝜖 ∈ L2(0,T;H3(Ω)), we can write

∫ΩT

J𝛿,𝜖 · 𝜂 = ∫ΩT

b𝛿,𝜖(c𝛿,𝜖)∇(−𝛾Δc𝛿,𝜖 + 𝜓 ′
𝜖(c𝛿,𝜖))𝜂, (69)

with 𝜂 ∈ L2(0,T;H1(Ω,Rn)) ∩ L∞(ΩT ,R
n)), and 𝜂 · 𝜈 = 0 on 𝜕Ω × (0,T). We can then integrate by parts the first term

on the right-hand side, obtaining



∫ΩT

J𝛿,𝜖 · 𝜂 = ∫ΩT

[𝛾Δc𝛿,𝜖∇ · (b𝛿,𝜖(c𝛿,𝜖)𝜂) + b𝛿,𝜖(c𝛿,𝜖)𝜓 ′′
𝜖 (c𝛿,𝜖)∇c𝛿,𝜖 · 𝜂]. (70)

From (66), we have that the first term in (70) converges to the first term in the second equation in (68). From (63)
and (65), the facts that b𝛿,𝜖(·) → b(·) uniformly and that b′

𝛿,𝜖
(·) is bounded, and from the Lebesgue theorem, we have

that the second term in (70) converges to the second term in the second equation in (68). (We do not report the details
of calculation here, which are the same as those in Elliott and Garcke,7 proof of Theorem 1). Concerning the last term
in (70), we write

b𝛿,𝜖(c𝛿,𝜖)𝜓 ′′
𝜖 (c𝛿,𝜖) = b𝛿,𝜖(c𝛿,𝜖)𝜓 ′′

1,𝜖(c𝛿,𝜖) + b𝛿,𝜖(c𝛿,𝜖)�̄� ′′
2 (c𝛿,𝜖). (71)

Consider the second term on the right-hand side of (71). Recalling that b𝛿,𝜖(·) → b(·) uniformly and, from compact-
ness results, c𝛿,𝜖 → c strongly in C0(0,T;L6(Ω)) (for d = 3), from (31) and the fact that c < 1 almost everywhere in ΩT,
we have that

b𝛿,𝜖(c𝛿,𝜖)�̄� ′′
2 (c𝛿,𝜖) → b(c)𝜓 ′′

2 (c) a.e. in ΩT . (72)

Since 0 ⩽ c < 1 almost everywhere in ΩT, we can pass to the limit in the corresponding term in the second term on
the right-hand side of (70), using (63), (72), and the Vitali convergence theorem. For the first term on the right-hand
side of (71), we note that b𝛿,𝜖(c𝛿,𝜖)𝜓 ′′

1,𝜖(c𝛿,𝜖) is uniformly bounded and that

b𝛿,𝜖(c𝛿,𝜖)𝜓 ′′
1,𝜖(c𝛿,𝜖) → b(c)𝜓 ′′

1 (c) a.e. in ΩT . (73)

Hence, we can pass to the limit in the corresponding term in the second term on the right-hand side of (70), using
(63) and the Lebesgue theorem. We finally obtain that the last term in (70) converges to the last term in the second
equation in (68).

3 CONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION
SCHEME

In this section, we introduce the finite element and time discretization of (4) to (6). The entropy estimate (49), which
guarantees the positivity of the solution, is not straightforwardly available at the discrete level. Indeed, given 𝜒 ∈ Sh, we
have that ∇(Ph[Ψ(𝜒)]) ≠ 1

b(𝜒)
∇𝜒 , where 𝛹 has been defined in (47). In Grün,24 a suitable approximation of the mobility b̄

has been introduced such that
b̄(𝜒)∇(Ph[Ψ(𝜒)]) = ∇𝜒,

which consists of an harmonic average of the mobility on a structured mesh.
Following Barrett et al,23 we impose this property as a constraint through a variational inequality. In the sequel, we will

show that the solution of our discrete formulation, for the discretization parameters tending to zero, satisfies the mixed
weak formulation (54) and is thus consistent.

We set Δt = T∕N for a N ∈ N and tn = nΔt,n =, … ,N. For d = 1, 2, 3, starting from a datum c0 ∈ H1(Ω) and c0
h = 𝜋hc0

(if d = 1) or c0
h = P̂hc0 (if d = 2, 3), with 0 ⩽ c0

h < 1, we consider the following fully discretized problem:

Problem Ph. For n = 1, … ,N, given cn−1
h ∈ Kh, find (cn

h,wn
h) ∈ Kh × Sh such that for all (𝜒, 𝜙) ∈ Sh × Kh,

⎧⎪⎨⎪⎩
(

cn
h−cn−1

h
Δt

, 𝜒

)h

+ (b
(

cn−1
h

)
∇wn

h,∇𝜒) = 0,

𝛾
(
∇cn

h,∇
(
𝜙 − cn

h

))
+
(
𝜓 ′

1
(

cn
h

)
, 𝜙 − cn

h

)h ⩾
(

wn
h − 𝜓 ′

2
(

cn−1
h

)
, 𝜙 − cn

h

)h
.

(74)

Remark 1. Choosing 𝜙 ≡ 0 and 𝜙 ≡ 2cn
h in (74) yields, for all j ∈ J, that either |cn

h(xj)| = 0 or |cn
h(xj)| > 0 and

𝛾(∇cn
h,∇𝜒j) + (𝜓 ′

1(c
n
h) + 𝜓 ′

2
(

cn−1
h

)
− wn

h, 𝜒j)h = 0.



Defining the discrete energy functional F1 ∶ Sh → R+ as

F1[cn
h] = ∫Ω

{𝛾
2
|∇cn

h|2 + 𝜓1(cn
h) + 𝜒R+(cn

h)}dx, (75)

where 𝜒R+(·) is the indicator function of the closed and convex set R+, and endowing the space Sh with the lumped scalar
product (14), we can rewrite the second equation of System 74 as(

wn
h − 𝜓 ′

2
(

cn−1
h

)
, 𝜙 − cn

h

)h + F1
[
cn

h

]
⩽ F1[𝜙], ∀𝜙 ∈ Sh, (76)

which is equivalent to
wn

h − 𝜓 ′
2
(

cn−1
h

)
∈ 𝜕F1

[
cn

h

]
, (77)

where 𝜕 is the subdifferential of the convex and lower semicontinuous function F1. We note that the formulation (77)
represents the generalized discrete analogous of the subdifferential approach to the standard CH equation with constraints
introduced in Kenmochi et al.39 Here, that approach is generalized to our case. Inequality 76 will be used in (100) and
(110) to study the convergence of a suitable regularized problem to the original one. In particular, using the properties
of convex and lower semicontinuous functions and of subdifferential calculus, we avoid the necessity to bound the first
derivative of the potential 𝜓1(·), like in Barrett et al,23 where it requires to introduce the hypothesis of acuteness of the
partition of the domain.

Remark 2. Given the assumption 0 ⩽ c0
h < 1, the term

(
𝜓 ′

1
(

cn
h

)
, 𝜒 − cn

h

)h in the second equation of (74) is well defined,
since we will show that |c0

h|0,∞ < 1 implies that |cn
h|0,∞ < 1 for all n ⩾ 1 (see Lemma 7). From now on, we assume that

0 ⩽ c0
h < 1. Notice that this is a physically consistent assumption, since subregions in the domains where the cellular

phase concentrates against infinite cell-cell repulsion are unphysical.

We now introduce the discrete Green operator of the first degenerate elliptic equation in (74), which will be used to
express the chemical potential wn

h in terms of cn
h−cn−1

h
Δt

and to show the well posedness of Problem Ph. We follow the approach
in Barrett et al23 to invert the degenerate elliptic form on a proper closed and convex subset of Sh.

To introduce the subset of Sh on which we can invert the degenerate elliptic form
(

b
(

cn−1
h

)
∇wn

h,∇𝜒
)
, we must subdivide

the partition  h of Ω into elements on which cn−1
h ≡ 0 and elements on which cn−1

h ≠ 0. Given qh ∈ Kh with -∫ qh ∈ (0, 1),
where –∫ qh = 1|Ω| (qh, 1), we define the set of passive nodes J0(qh) ⊂ J by

j ∈ J0(qh) ⇐⇒ P̂hqh(xj) = 0 ⇐⇒ (qh, 𝜒j) = 0. (78)

The nodes in the set J+(qh) = J∖J0(qh) are called active nodes; these nodes can be partitioned into mutually disjoint
and maximally connected subsets Im(qh) such that J+(qh) ≡ ∪M

m=1Im(qh). In Figure 2, we show a possible partition of the
domain in regions where qh ≡ 0 (the colored region) and qh ≠ 0. We note that the node j ∈ J0(qh), and all other nodes are
in J+(qh).

FIGURE 2 A partition of the domain Ω into regions where qh ≡ 0 (the colored region) and qh ≠ 0 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


Defining
Σm(qh) =

∑
j∈Im(qh)

𝜒j,

we note that
Σm(qh) ≡ 1 on each element on which qh ≠ 0, (79)

since all the vertices of this elements belong to Im(qh). Note that there are also elements on which qh ≡ 0 and 𝛴m(qh) ≡ 1,
like the element T in Figure 2. The presence of these elements complicate the treatment of the problem and seems to
be neglected in the proofs in Barrett et al,23 whereas, here, they will be considered in the calculations of the following
estimates. Hence, on each element K ∈  h, we have that qh ≡ 0 or 𝛴m(qh) ≡ 1 for some m, except for those elements on
which both qh ≡ 0 and 𝛴m(qh) ≡ 1. Let us define the following sets:

Ωm(qh) = {
⋃

K∈ h

K̄ ∶ Σm(qh)(x) = 1 ∀x ∈ K},

ie, the union of the maximally connected elements on which qh ≠ 0, or qh ≡ 0 and the indexes of the vertices of the
elements belong to Im(qh) for a given m. We also set

Γm(qh) = supp{Σm(qh)}∖Ωm(qh).

Finally, we introduce the space

V h(qh) = {vh ∈ Sh ∶ vh(xj) = 0 ∀j ∈ J0(qh) and (vh,Σm(qh))h = 0, m = 1, … ,M}, (80)

that consists of all vh ∈ Sh, which are orthogonal (with respect to the lumped discrete scalar product (14)) to 𝜒 j, for
j ∈ J0(qh), (see (78)), and that have zero average (again with respect to the scalar product (14)) on each element, which
does not contain any passive node.

We recall from Barrett et al23 that any vh ∈ Sh can be written as

vh ≡ v̄h +
∑

j∈J0(qh)

vh(xj)𝜒j +
M∑

m=1

[
fΩm(qh)vh

]
Σm(qh), (81)

where v̄h is the P̂h projection of vh onto Vh(qh), and

fΩm(qh)vh ∶=
(vh,Σm(qh))h

(1,Σm(qh))
. (82)

We can now define, for all qh ∈ Kh with qh < 1, the discrete anisotropic Green's operator Ĝh
qh ∶ V h(qh) → V h(qh) as

(b(qh)∇Ĝh
qh vh,∇𝜒) = (vh, 𝜒)h ∀𝜒 ∈ Sh. (83)

The well posedness of Ĝh
qh can be shown as in Barrett et al23 (see in particular formulas 2.23 and 2.24 in Barrett et al23),

choosing 𝜒 = 𝜒 j for j ∈ J0(qh) and 𝜒 = 𝛴m(qh), for m = 1, … ,M, and using the fact that ||b(qh)||0,∞ ⩽ C for all qh ∈ Sh.
We now study a regularized version of Problem 74, to deal with the singularity in the cellular potential and to show the

well posedness of Problem 74 when the regularization parameter tends to zero.

3.1 Regularized problem
To show the well posedness of Problem Ph, we introduce the following regularized version of (74):

Problem Ph
𝜀. For n = 1, … ,N, given cn−1

h ∈ Kh, with cn−1
h < 1 and |cn−1

h |1 ⩽ C, find (cn
h,𝜖 ,wn

h,𝜖) ∈ Kh × Sh such that
for all (𝜒, 𝜙) ∈ Sh × Kh,⎧⎪⎨⎪⎩

(
cn

h,𝜖−cn−1
h

Δt
, 𝜒

)h

+ (b
(

cn−1
h

)
∇wn

h,𝜖 ,∇𝜒) = 0,

𝛾(∇cn
h,𝜖 ,∇(𝜙 − cn

h,𝜖)) + (𝜓 ′
1,𝜖(c

n
h,𝜖), 𝜙 − cn

h,𝜖)
h ⩾ (wn

h,𝜖 − �̄� ′
2
(

cn−1
h

)
, 𝜙 − cn

h,𝜖)
h.

(84)



The following result shows that Problem Ph
𝜀 is well posed.

Lemma 5. There exists a solution (cn
h,𝜖 ,wn

h,𝜖) to Problem Ph
𝜀. Moreover, the solution {cn

h,𝜖}
N
n=1 is unique, and wn

h,𝜖 is unique
on Ωm

(
cn−1

h

)
, for m = 1, … ,M and n = 1, … ,N.

Proof. From the first equation in (84) and from (83), it follows that, given cn−1
h ∈ Kh, cn−1

h < 1, we search for cn
h,𝜖 ∈

Kh (cn−1
h

)
, where

Kh (cn−1
h

)
= {𝜒 ∈ Kh ∶ 𝜒 − cn−1

h ∈ V h (cn−1
h

)
}. (85)

Moreover, a solution wn
h,𝜖 ∈ Sh can be expressed in terms of cn

h,𝜖 − cn−1
h through the discrete anisotropic Green

operator (83), recalling (81), as

wn
h,𝜖 = −̂h

cn−1
h

[cn
h,𝜖 − cn−1

h

Δt

]
+

∑
j∈J0(cn−1

h )
𝜇n

j,𝜖𝜒j +
M∑

m=1
𝜆n

m,𝜖Σm
(

cn−1
h

)
, (86)

where {𝜇n
j,𝜖}j∈J0(cn−1

h ) and {𝜆n
m,𝜖}M

m=1 are constants which express the values of wn
h,𝜖 on the passive nodes and its average

value on Ωm
(

cn−1
h

)
, respectively. Hence, Problem Ph

𝜀 can be restated as follows: given cn−1
h ∈ Kh, with cn−1

h < 1, find
cn

h,𝜖 ∈ Kh (cn−1
h

)
and constant Lagrange multipliers {𝜇n

j,𝜖}j∈J0(cn−1
h ) and {𝜆n

m,𝜖}M
m=1 such that, for all 𝜒 ∈ Kh,

𝛾

(
∇cn

h,𝜖 ,∇
(
𝜒 − cn

h,𝜖

))
+
(
̂h

cn−1
h

[cn
h,𝜖 − cn−1

h

Δt

]
+ 𝜓 ′

1,𝜖

(
cn

h,𝜖

)
, 𝜒 − cn

h,𝜖

)h

⩾
( ∑

j∈J0(cn−1
h )

𝜇n
j,𝜖𝜒j +

M∑
m=1

𝜆n
m,𝜖Σm

(
cn−1

h

)
− �̄� ′

2
(

cn−1
h

)
, 𝜒 − cn

h,𝜖

)h

.

(87)

We note that (87) represents, together with cn
h,𝜖 ∈ Kh (cn−1

h

)
, the Karush-Kuhn-Tucker optimality conditions (see,

eg, chapter 5 in Ekeland and Temam40) of the minimization problem

inf
vh,𝜖∈Sh

sup
𝜇j,𝜖 ,𝜆m,𝜖 ,𝜈𝜖⩾0

{
𝛾|vh,𝜖|21 + 1

Δt
||[b (cn−1

h

)
]1∕2∇̂h

cn−1
h

(
vh,𝜖 − cn−1

h

) ||20
+ 2(𝜓1,𝜖(vh,𝜖) + �̄� ′

2
(

cn−1
h

)
vh,𝜖 , 1)h −

∑
j∈J0(cn−1

h )
𝜇j,𝜖
(
𝜒j, vh,𝜖

)h −
M∑

m=1
𝜆m,𝜖

(
Σm
(

cn−1
h

)
, vh,𝜖

)h

− (𝜈𝜖, vh,𝜖)h
}
,

(88)

being 𝜈𝜖 ∈ Kh the Lagrange multiplier of the inequality constraint. Noting the convexity of 𝜓1,𝜖(·) and the fact that
cn−1

h ∈ Kh, the primal form associated to the Lagrangian (88) is a convex, proper, lower semicontinuous, and coercive
function from the closed and convex set Kh (cn−1

h

)
toR, and the primal problem is stable. Hence, from the Kuhn-Tucker

Theorem (see, eg, theorem 5.1 in Ekeland and Temam40), we infer the existence of cn
h,𝜖 ∈ Kh (cn−1

h

)
, solution to the

primal problem, and Lagrange multipliers {𝜇n
j,𝜖}j∈J0(cn−1

h ), {𝜆
n
m,𝜖}M

m=1 and 𝜈𝜖(xi) ∈ −𝜕𝜒R+

(
cn

h,𝜖(xi)
)

, for each i ∈ J and

each n. Therefore, from (86) we have the existence of a solution
(

cn
h,𝜖 ,wn

h,𝜖

)N

n=1
to Problem Ph

𝜀.
Let us now prove uniqueness. If, for fixed n ⩾ 1, (87) has 2 solutions
(cn,i

h,𝜖 , {𝜇
n,i
j,𝜖 }j∈J0(cn−1

h ), {𝜆
n,i
m,𝜖}M

m=1), i = 1, 2, by choosing 𝜒 = cn,2
h,𝜖 in the inequality for cn,1

h,𝜖 and 𝜒 = cn,1
h,𝜖 in the inequality

for cn,2
h,𝜖 , taking the difference between the 2 inequalities, setting cn,1

h,𝜖 − cn,2
h,𝜖 = dn

h,𝜖 ∈ V h (cn−1
h

)
and recalling (80), we

have

𝛾|dn
h,𝜖|21 + 1

Δt
||[b (cn−1

h

)]1∕2∇̂h
cn−1

h
dn

h,𝜖||20 + (𝜓 ′
1,𝜖

(
cn,1

h,𝜖

)
− 𝜓 ′

1,𝜖

(
cn,2

h,𝜖

)
, dn

h,𝜖

)h
⩽ 0,

so that
𝛾|dn

h,𝜖|21 + 1
Δt
||[b (cn−1

h

)]1∕2∇̂h
cn−1

h
dn

h,𝜖||20 ⩽ 0,



where we have used the monotonicity of 𝜓 ′
1,𝜖 (·) in the second step. Therefore, the uniqueness of cn

h,𝜖 follows from the

Poincaré's inequality and the fact that –∫ cn
h,𝜖 = –∫ c0

h,𝜖 . Choosing 𝜒 = cn
h,𝜖
±𝛿𝜋h

[
cn

h,𝜖Σm
(

cn−1
h

)]
in (87), for any 𝛿 ∈ (0, 1)

and m = 1, … ,M, yields uniqueness of the Lagrange multiplier 𝜆n
m,𝜖 . Hence, the uniqueness of wn

h,𝜖 follows from
(86). The proof is complete.

To pass to the limit as 𝜖 → 0 in system (84), we need to deduce suitable 𝜖−independent bounds for the solution(
cn

h,𝜖 ,wn
h,𝜖

)
. The following result holds.

Lemma 6. For every sequence 𝜖 → 0, there exist a subsequence 𝜖′ → 0 and a cn
h ∈ Kh such that

cn
h,𝜖′ → cn

h and ∇cn
h,𝜖′ → ∇cn

h for 𝜖′ → 0. (89)

For every sequence 𝜖 → 0, there exist a subsequence 𝜖′ → 0 and a wn
h ∈ Sh such that

wn
h,𝜖′ → wn

h on Ωm,∗
(

cn−1
h

)
and ∇wn

h,𝜖′ → ∇wn
h on Ωm,∗

(
cn−1

h

)
for 𝜖′ → 0, (90)

where Ωm,∗
(

cn−1
h

)
is the set of those elements of Ωm

(
cn−1

h

)
on which cn−1

h ≢ 0.

Proof. We start by proving stability bounds for the regularized problem (84). Choosing 𝜒 = wn
h,𝜖 in the first equation

of (84) and 𝜙 = cn−1
h in the second equation of (84), we get

𝛾

(
∇cn

h,𝜖 ,∇
(

cn
h,𝜖 − cn−1

h

))
+
(
𝜓 ′

1,𝜖

(
cn

h,𝜖

)
+ �̄� ′

2
(

cn−1
h

)
, cn

h,𝜖 − cn−1
h

)h
+ Δt||[b (cn−1

h

)
]1∕2∇wn

h,𝜖||20 ⩽ 0.

Using now the identity 2s(s − r) = s2 − r2 + (s − r)2,∀r, s ∈ R, and the convexity and the concavity properties of
𝜓1,𝜖(·) and �̄�2(·), it follows that

𝛾

2
|cn

h,𝜖|21 + 𝛾

2
|cn

h,𝜖 − cn−1
h |21 + (𝜓𝜖

(
cn

h,𝜖

)
, 1
)h

+ Δt||[b (cn−1
h

)
]1∕2∇wn

h,𝜖||20 ⩽
(
𝜓𝜖

(
cn−1

h

)
, 1
)h + 𝛾

2
|cn−1

h |21 ⩽ C. (91)

From (91) and (33), we deduce that ([
cn

h,𝜖 − 1
]2

+
, 1
)h

⩽ C𝜖2. (92)

Hence, from (92), (16), and (20), it follows that||||||||[cn
h,𝜖 − 1

]
+

||||||||0,∞ ⩽ Ch−d∕2𝜖. (93)

Let us suppose that there exist nodes xj, j ∈ J, such that cn
h,𝜖(xj) ⩾ 1 − 𝜖. From (28), (91), and (92), we have that(

[−(1 − c∗) log 𝜖]
∑
j∈J

𝜒j, 1

)
+
(
𝜓1

(
cn

h,𝜖

)
, 1
)h||||cn

h,𝜖<1−𝜖
⩽ C.

Calling Ω𝜖 the support of the base functions corresponding to nodes on which cn
h,𝜖 ⩾ 1− 𝜖, using (16) and the fact that

𝜓1

(
cn

h,𝜖

)
⩾ 0 for all cn

h,𝜖 ⩾ 0, we have that

|| − (1 − c∗) log 𝜖||0,∞,Ω𝜖
⩽ C h−3d∕2, (94)

where the bound is independent on 𝜖, which is absurd. Therefore, we deduce that there exists a value 𝜖0 sufficiently
small such that, for each 𝜖 ⩽ 𝜖0,

cn
h,𝜖 < 1. (95)



From (91), the fact that
(

cn
h,𝜖 , 1

)h
=
(

cn−1
h , 1

)h and (21), from the Poincaré's inequality and the Bolzano-Weierstrass
theorem, it follows that there exists a subsequence {cn

h,𝜖′ } and a cn
h ∈ Kh such that (89) holds.

We next show (90). Using the Poincaré's inequality on Ωm,∗
(

cn−1
h

)
, (20) and (91) leads to(([(

I − fΩm,∗(cn−1
h )
)

wn
h,𝜖

]
Σ∗

m
(
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h

))2
, 1
)h

⩽ C∫Ωm,∗(cn−1
h )

∇|wn
h,𝜖|2dx ⩽ C

[
bmin

(
cn−1

h

)]−1

∫Ωm,∗(cn−1
h )

b
(

cn−1
h

)
∇|wn

h,𝜖|2dx

⩽ C((Δt)−1)[bmin
(

cn−1
h

)
]−1,

(96)
where Σ∗

m
(

cn−1
h

)
∶=

∑
j∈I∗m(cn−1

h )𝜒j, with I∗m
(

cn−1
h

)
the subset of nodes of Im

(
cn−1

h

)
which are in Ωm,∗

(
cn−1

h

)
, and

bmin
(

cn−1
h

)
∶= min

K⊂Ωm,∗(cn−1
h )

1|K|∫K
b
(

cn−1
h

)
dx.

We now bound –∫Ωm,∗(cn−1
h )w

n
h,𝜖 . Let us take

Kh ∋ 𝜙 = cn
h,𝜖 + Σ∗

m
(

cn−1
h

)
in the second equation of system (84). We get
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h,𝜖 ,Σ

∗
m
(
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h

)
)h ⩽ 𝛾(∇cn

h,𝜖 ,∇Σ
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(
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)
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2
(

cn−1
h

)
,Σ∗

m
(
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)
)h.

Observing that Σ∗
m
(

cn−1
h

) ≡ 1 on Ωm,∗
(

cn−1
h

)
and that �̄� ′

2
(

cn−1
h

)
is bounded, using moreover (91) and (95), we obtain

|(wn
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)
)h| ⩽ 𝛾

|||||∫Γ∗
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)
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) ||0,∞
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) |1∕2||∇Σ∗
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(
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) ||0,∞|cn
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1,𝜖(c
n
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∗
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) ||0,∞
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1,𝜖(c
n
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(97)

where Γ∗
m
(

cn−1
h

)
∶= supp{Σ∗

m
(

cn−1
h

)
}∖Ωm,∗

(
cn−1

h

)
.

Now, combining (96) with (97), recalling the definition (82) and using the Poincaré's inequality, we obtain(
wn

h,𝜖Σ
∗
m
(

cn−1
h

)
,wn

h,𝜖Σ
∗
m
(

cn−1
h

))h
⩽ C + Ch−1 + C((Δt)−1)

[
bmin

(
cn−1

h

)]−1
. (98)

Finally, from (98), (91), (21), and the Bolzano-Weierstrass theorem, it follows that there exists a subsequence {wn
h,𝜖′ }

and a wn
h ∈ Sh such that (90) holds. The proof is complete.

Lemma 7. The limit point cn
h of Lemma 6 satisfies the property 0 ⩽ cn

h < 1.

Proof. Passing to the limit for 𝜖′ → 0 in (91), using the convergence property (89) and (95) and considering the
logarithmic term in 𝜓1(·), we obtain that 0 ⩽ cn

h < 1.

3.2 Well posedness of Problem Ph

We now have all the ingredients to show the well posedness of Problem Ph.

Theorem 4. Let Ω ⊂ Rd, d = 1, 2, 3, and let c0
h ∈ Kh with c0

h < 1 and |c0
h|1 ⩽ C. Then there exists a solution (cn

h,wn
h) to

Problem (74) for any n = 1, … ,N. Moreover, the solution {cn
h}

N
n=1 is unique, while the solution wn

h is unique onΩm
(

cn−1
h

)
,

for m = 1, … ,M and n = 1, … ,N.



Proof. Recalling the definition (75) and noting the convexity of 𝜓1,𝜖(·), we can introduce a regularized lower
semicontinuous convex energy functional defined as

F1,𝜖

[
cn

h,𝜖

]
= ∫Ω

{
𝛾

2
|∇cn

h,𝜖|2 + 𝜓1,𝜖

(
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h,𝜖

)
+ 𝜒R+

(
cn

h,𝜖

)}
dx, (99)

and rewrite system (84), analogously to (76), as

⎧⎪⎨⎪⎩
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)
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h,𝜖)
h + F1,𝜖[cn

h,𝜖] ⩽ F1,𝜖[𝜙],
(100)

for all 𝜒, 𝜙 ∈ Sh. We can now pass to the limit in (100), considering the convergence properties (89) and (90) of Lemma
6. For any (𝜒, 𝜙) ∈ Sh × Sh, we have

lim
𝜖→0

(cn
h,𝜖 − cn−1

h

Δt
, 𝜒

)h

=
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h
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2
(

cn−1
h

)
, 𝜙 − cn

h)
h, (103)

To derive the last limit (103), we use the convergence properties (89) and (90) of Lemma 6, the relation (77) written
for the regularized discrete solutions, and the monotonicity of the operators in 𝜕F1,𝜖(·). At first, we take 𝜙 = 2cn

h,𝜖 − cn
h

in the second equation of (100). Hence, we obtain(
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]
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[
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]
.

Considering the convergence property (89) and taking the limit for 𝜖 → 0 in the previous inequality, we get

lim sup
𝜖→0

(
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h,𝜖 , cn
h,𝜖 − cn

h

)h
⩽ 0. (104)

From (86) and the convergence properties (89) and (90) of Lemma 6, we note that we can rewrite wn
h,𝜖 as

wn
h,𝜖 ≡ −̂h

cn−1
h

[cn
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and the limit point wn
h as
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Analogously to (77), we can write

wn
h,𝜖 − 𝜓 ′

2
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h

)
∈ 𝜕F1,𝜖

[
cn

h,𝜖

]
, (107)

which define a monotone map cn
h,𝜖 → wn

h,𝜖 −𝜓 ′
2
(

cn−1
h

)
from Sh to Sh. Let us introduce the quantity f𝜆 = (1+ 𝜆)cn

h − 𝜆𝜙,
with 𝜆 ∈ R, 0 < 𝜆 < 1 and 𝜙 ∈ Sh with 𝜙(xj) = 0 if cn

h(xj) = 0. It is clear that there exists a �̄� < 1 such that, for all
𝜆 ⩽ �̄�, f𝜆 ⩾ 0. We moreover introduce the quantity
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h,𝜆 ≡ −̂h
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h

[ f𝜆 − cn−1
h

Δt

]
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From the monotonicity property of the map cn
h,𝜖 → wn

h,𝜖 − 𝜓 ′
2
(
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h

)
and from the facts that 𝜙(xj) = 0 and cn

h(xj) = 0
for j ∈ J0
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, it follows (
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))h
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On the other hand, from (108), it follows
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Taking now the limit for 𝜖 → 0 in (109), using (104), dividing by 𝜆 and taking the limit for 𝜆 → 0, we obtain
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which is (103) for all 𝜙 ∈ Sh with 𝜙(xj) = 0 if cn
h(xj) = 0.

Since 𝜓1,𝜖

(
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h,𝜖

)
⩾ 0 and since, due to the convergence property (89),

lim inf
𝜖→0
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(
cn

h,𝜖

)
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)
if cn

h < 1, from the Fatou's lemma and the semicontinuity property of the indicator function 𝜒R+(·), we deduce that
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F1,𝜖[𝜙] = F1[𝜙].

Hence, the limit point
(
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h

)
satisfies, for each (𝜒, 𝜙) ∈ Sh × Sh, with 𝜙(xj) = 0 if cn

h(xj) = 0,

⎧⎪⎨⎪⎩
(

cn
h−cn−1

h
Δt

, 𝜒

)h

+ (b
(

cn−1
h

)
∇wn
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)h + F1
[
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⩽ F1[𝜙].

(110)

Finally, since cn
h < 1 (see Lemma 7) and 𝜓1

(
cn

h

)
is convex and Lipschitz continuous for cn

h < 1, system (110) is
equivalent to system (74) (see (76)), hence, the limit point

(
cn

h,wn
h

)
is the unique solution of Problem Ph. Recalling

Remark 1, note that, if (74) is valid for each (𝜒, 𝜙) ∈ Sh × Kh, with 𝜙(xj) = 0 if cn
h(xj) = 0, it is also valid for each

(𝜒, 𝜙) ∈ Sh × Kh.

4 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis for the discrete scheme (74) in the case d = 1 (see Remark 3).
We associate to the sequence of discrete solutions cn

h to Problem Ph the following continuous in time approximation:

Ch(t) ∶=
t − tn−1

Δt
cn

h + tn − t
Δt

cn−1
h , (111)

for t ∈ [tn−1, tn],n = 1, … ,N, which is a family of linear time interpolants that depend on the parameters h and Δt. We
also define the piecewise constant-in-time functions

C+
h (t) ∶= cn

h, C−
h (t) ∶= cn−1

h ,

W+
h (t) ∶= wn

h, W−
h (t) ∶= wn−1

h ,
(112)

for t ∈ (tn−1, tn],n = 1, … ,N.



By multiplying System 74 by a C∞
0 ([0,T]) function and integrating in time from 0 to T, we obtain that (Ch,Wh) satisfies

the following weak formulation:
Find (Ch,Wh) ∈ L2(0,T;Kh) × L2(0,T; Sh) such that, for all (𝜒, 𝜙) ∈ L2(0,T; Sh) × L2(0,T;Kh)

⎧⎪⎨⎪⎩
∫ T

0
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𝜕Ch
𝜕t
, 𝜒

)h

+
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]

dt = 0,
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h
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+
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)
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)h
]

dt ⩾ ∫ T
0
(
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h − 𝜓 ′

2
(

C−
h

)
, 𝜙 − C+

h

)h
,

(113)

with Ch(0) = c0
h.

To pass to the limit in (113) as (h,Δt) → (0, 0) and identify the system satisfied by the limit points, we need the following
result, whose proof is similar to those presented in Barrett et al23 (with the only complication that we have to use Lemma 7)
and therefore is not being reported here.

Lemma 8. Let d = 1 and c0
h = 𝜋h(c0), with 0 ⩽ c0 < 1 and |c0|1 ⩽ C. There exist a subsequence of continuous and

piecewise constant in time interpolants (111) and (112), and functions c ∈ L∞(0,T;H1(Ω))∩H1(0,T; (H1(Ω))′)∩C
1
2
,

1
8

x,t (Ω̄T)
and w ∈ L2

loc(0 < c < 1) with 𝜕w
𝜕x

∈ L2
loc(0 < c < 1), such that, for (h,Δt) → (0, 0),

Ch,C±h ⇀ c weakly in L2(0,T;H1(Ω)), (114)

Ch,C±h → c uniformly on Ω̄T , (115)

W+
h ⇀ w,

𝜕W+
h

𝜕x
⇀

𝜕w
𝜕x

weakly in L2
loc(0 < c < 1), (116)

where {0 < q < 1} ∶= {(x, t) ∈ ΩT ∶ 0 < q(x, t) < 1}.

Remark 3. In the case d = 1, the uniform convergence (115), together with the convergence result (116), allows to take
the limit as (h,Δt) → (0, 0) of the degenerate elliptic term in the first equation of system (113) on the set {0 < c < 1}.
To the best of our knowledge, in the case d > 1, it does not exist in the literature a convergence result, which shows
the convergence of the discrete solution of (113) to the solution of a weak formulation of the continuum problem.

We can now obtain the limit equations of system (113) as (h,Δt) → (0, 0). Indeed, setting ∫0<c<1( , )dt ∶= ∫ T
0 ( , )D+

0 (t)dt,
we have the following convergence result, whose proof, being similar to that introduced in Barrett et al23 (with the only
complication that we have to use Lemma 7) is not reported here.

Theorem 5. The limit point (c,w) of Lemma 8 satisfies the weak formulation

⎧⎪⎪⎨⎪⎪⎩
∫ T

0 ⟨ 𝜕c
𝜕t
, 𝜂⟩dt + ∫0<c<1

(
b(c) 𝜕w

𝜕x
,
𝜕𝜂

𝜕x

)
dt = 0, ∀𝜂 ∈ L2(0,T;H1(Ω)),

∫0<c<1𝛾

(
𝜕c
𝜕x
,
𝜕𝜃

𝜕x

)
dt + ∫0<c<1(𝜓

′(c), 𝜃)dt − ∫0<c<1(w, 𝜃)dt = 0,

∀𝜃 ∈ L2(0,T;H1(Ω)),

(117)

with c(·, 0) = c0(·), and with supp(𝜃) ⊂ {0 < c < 1}.

5 NUMERICAL RESULTS

After proving the existence and uniqueness and the convergence of the discrete solution, we have implemented the numer-
ical algorithm for solving the variational inequality at each time step in Problem Ph. Following the splitting procedure
proposed in Barrett et al,23 we used the following iterative scheme:



The scalar inequality in (118) is solved using a projected gradient method, introducing an approximative analogue of
the set J+

(
cn−1

h

)
where cn−1

h > 10−6 is meant for cn−1
h > 0. We remark that this approximation introduces a small error

in the mass conservation of the algorithm. We note that, by solving the discrete problem (74) without introducing the
positivity constraint and without recurring to the previous algorithm, but regularizing the degeneracy of the mobility in
cn−1

h = 0, we could obtain negative values of cn
h, which would make the discrete problem unstable. In this case, filtering

out negative values of cn
h could introduce considerable errors in the mass conservation, unless we would consider very

fine meshes.
To test the accuracy of the proposed numerical procedure, let us now consider the evolution of a system characterized

by an initial concentration with a small uncorrelated white noise over a constant value c0. Since we set c0 < c̄, the system
undergoes a spinodal decomposition and evolves, after a transitory regime, towards an equilibrium state consisting of
regions, which are rich (c ∼ c*) or empty (c = 0) of cells. The main features of the phase order dynamics are predicted
by the classical theory of coarsening in systems with a locally conserved order parameter, described, eg, in Bray41 and
Chatelain et al.36

In the following subsections, we will investigate the spinodal decomposition dynamics described by the solution of
Problem Ph for different average values of initial concentration and homogeneous Neumann boundary conditions both
for the d = 1 and d = 2 cases. For the latter case, we will also study the coarsening dynamics for long time scale solutions
with the same set of average values of initial concentration as that introduced in the study of the spinodal decomposition
dynamics and with periodic boundary conditions.

5.1 Test cases in one space dimension
Let us first analyze the system evolution in the one-dimensional case. We consider 3 test cases in which the initial value
c0 is chosen to be a small uniformly distributed random perturbation around the values c0 = 0.05, c0 = c*∕2 = 0.3,
and c0 = 0.36. We consider homogeneous Neumann boundary conditions as in (6). We set 𝛾 = 0.000196, c* = 0.6, and
Δt = 10𝛾 . The relaxation parameter is chosen to be 𝜇 = 1∕64. The domain is Ω = (0, 1), and a uniform partition with
mesh points xj = (j − 1)h, j = 1, … , 65, with h = 1∕64, is introduced. The results are collected in Figure 3, showing
that the system exhibits 2 kinds of subregions after a transitory regime, one empty in cells, ie, c = 0, and the other



FIGURE 3 Values of c(x) plotted against x for c0 = 0.05, 0.3, 0.36 at different instants of time. The values of mass and energy are reported.
The values of the parameters are 𝛾 = 0.000196, c* = 0.6, and Δt = 10𝛾 [Colour figure can be viewed at wileyonlinelibrary.com]

rich in cells, with c ∼ c*. The initial separation of the 2 phases is fast compared to the overall growth timescale of the
segregated pattern.

If c0 < c*∕2 (resp. c > c*∕2), then the segregated solution is made of isolated clusters of cells (resp. voids), while if
c0 = c*∕2 the domain is equally spaced in subregions rich in each phase. We also check that the mass, ie, the value of
(cn

h, 1)
h, is conserved up to a small error and that the value of the energy F (see Equation (2)) decreases.

5.2 Test cases in 2 space dimensions
Let us now study the evolution of the system in 2 space dimensions. The set of initial and boundary values and needed
parameters is the same of the 1D case (except for 𝜇 = 3∕128 here). The domain is Ω = (−3, 3) × (−3, 3), and a uniform
partition of 128-by-128 triangular elements is introduced.

The results are reported in Figure 4, showing the phase separation dynamics for the case c0 = 0.05. As expected, after
a transitory regime, the system evolves towards the formation of circular clusters of cells. The initial transitory regime is
characterized by the appearance of maze-like patterns. We also check that the mass, ie, the value of (cn

h, 1)
h, is conserved

up to a small error and that the value of the energy F (see Equation 2) decreases.
In Figure 5, we compare the simulation results of the degenerate case versus the ones obtained with constant mobility

obtained using a c0 = 0.05, c0 = 0.3, and c0 = 0.36. We can observe that in the degenerate case there is little evolution
of neighboring maze-like domains, whereas in the constant mobility case such structures grow over time. Moreover, the
separation of the 2 components happens at a faster timescale for the constant mobility case.

From Figure 5, we can observe that, in the case c0 = 0.05, the system tends to create isolated clusters of cells, whereas
the system forms maze-like patterns and cell subdomains tend to occupy half the space in the case c0 = c*∕2. Finally, the
system tends to form isolated circular domains empty of cells in the case c0 = 0.36.
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FIGURE 4 Values of c(x, y) for t = 0 s, t = 0.392 s, and t = 9.80196 s. The values of mass and energy are reported. The values of the
parameters are 𝛾 = 0.000196, c* = 0.6, and Δt = 10𝛾 [Colour figure can be viewed at wileyonlinelibrary.com]

5.3 Phase-ordering dynamics in 2 space dimensions
The coarsening domains in CH-type models are characterized by a unique time-dependent length scale L(t). For systems
with a conserved order parameter and constant mobility (like the classical CH equation), the characteristic domain size
obeys the Lifshitz-Slyozow (LS) growth law L(t) ∼ t1/3, (see, eg, Bray41 and Puri et al42). The evolution of a single phase
subdomain with typical length scale Li at time t ⩾ 0 can follow 2 possible paths, as described, eg, in Bray41: either they can
shrink by diffusion if Li < L(t) or grow by absorbing material from the other phase if Li > L(t). In the standard CH equation
with degenerate mobility, 2 limiting behaviors are typically encountered. If the degeneration set, consisting of pure phases,
coincides with the set of stable equilibrium points of the double-well potential, then Mazenko's technique predicts a
growth law L(t) ∼ t1/4, since the surface diffusion mechanism dominates, as described in Puri et al.42 Upper bounds on
coarsening rates, obtained by interpolation inequalities and energy estimates, which enforce the 1∕3 and 1∕4 growth laws
for the constant and the degenerate mobility cases respectively are obtained in Kohn and Otto43 and Novick-Cohen and
Shishkov.44 Conversely, if the degeneration occurs for the unstable equilibrium point c = 0, then the LS growth law is
recovered, and bulk diffusion dominates, as obtained in Chatelain et al.36 For what concerns the case of the degenerate
CH equation with a single-well potential (9), a growth law L(t) ∼ t0.37 is obtained in Chatelain et al,36 which is similar
to the LS growth law associated to the standard CH equation with constant mobility. This might be associated to the
fact that the stable equilibrium point c = c* of (9) is not a pure phase on which the mobility (10) vanishes, and the
pure phase c = 0 on which the mobility degenerate is an unstable equilibrium point of (9): The growth driven by bulk
diffusion competes with the surface diffusion mechanism. Following Bray,41 it is found that the structure factor exhibits a
dynamical scaling,
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FIGURE 5 Values of c(x, y) for c0 = 0.05, c0 = 0.3, and c0 = 0.36 for different instant of times during spinodal decomposition, for the
degenerate (left panels) and constant mobility (right panels) cases. The values of the parameters are 𝛾 = 0.000196, c* = 0.6, and Δt = 10𝛾
[Colour figure can be viewed at wileyonlinelibrary.com]

S(k, t) = L(t)d (kL(t)), (119)

where S(k, t) is the spherically averaged time-dependent structure factor, ie, the average on the angles of the wave vector
of the Fourier transform of the equal time correlation function of the solution, d is the space dimension and  (·) is a
time-independent master function. A definition of the typical length scale of the system at time t is given by the inverse
of the first moment of the spherically averaged structure factor, L(t) =< k >−1, with
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FIGURE 6 Left panels: L(t) in function of t superposed to a power growth law t𝛼 for the late stages of time evolution, where the exponent 𝛼
is obtained by a linear regression analysis, with 𝛼 = 0.3 in the case c0 = 0.05, and 𝛼 = 0.32 in the cases c0 = 0.3 and c0 = 0.36. Right panels:
spherically averaged scaled structured function S(k, t) < k >2 in function of kL(t) for the late time solutions of the systems evolved from the
initial conditions c0 = 0.05, c0 = 0.3, and c0 = 0.36. [Colour figure can be viewed at wileyonlinelibrary.com]

< k >=
∫ dk kS(k, t)
∫ dk S(k, t)

.

We study 3 test cases with the same initial data c0 as in the previous test cases and with periodic boundary conditions. In
Figure 6, setting d = 2 in (119), we plot the length scale L(t) ∶=< k >−1 in function of time and the spherically averaged
scaled structured function S(k, t) < k >2 in function of kL(t) for the late time solutions of the systems evolved from the
initial conditions c0 = 0.05, c0 = 0.3, and c0 = 0.36.

The spherically averaged not normalized time-dependent structure factor s(k, t) is calculated, following Mata et al,45 as
the average over all wavevectors of magnitude (k − Δk) and (k + Δk) of the structure factor S(k, t), ie,

s(k, t) =
∑

k−Δk<|k|⩽k−ΔkS(k, t)∑
k−Δk<|k|⩽k−Δk1

, (120)

which

S(k, t) = ⟨ 1
N
||||∑r

e−ik·r[c(r, t)− < c >]
||||2⟩, (121)

where, in (121), the sum runs over the lattice points positions, N = L2 is the total number of points in the lattice, L is the
linear size of the lattice, < c > is the spatial average of c over the lattice and the outer braces < · > stand for ensemble
averaging. The summation in r in Equation 121 is calculated as a Fourier discrete transform, with k = 2𝜋n∕L, where the
vector n = (n1,n2),n1,n2 = 0, … ,

√
N − 1, indicates the positions in the dual lattice. We set Δk = (2𝜋∕L)l, with l a real

value near one for which the plot of the structure function is smooth. For n1,n2 > L∕2, we reassign n1 = (L−n1 −1),n2 =
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(L − n2 − 1). The normalized spherically averaged time-dependent structure factor S(k, t) in (119) is then

S(k, t) = s(k, t)
< c2 > − < c>2 .

The length scale L(t) is calculated as L(t) = 1∕k1(t), where

k1(t) =
∑

kks(k, t)∑
ks(k, t)

is the first moment of s(k, t).
We observe that the length scale of the systems exhibits a power law evolution L(t) ∼ t𝛼 at the late stages of evolution

with 𝛼 = 0.30 for c0 = 0.05 and 𝛼 = 0.32 for c0 = 0.3 and c0 = 0.36, close to the LS law. We note that the best coefficient 𝛼
is calculated using the ordinary least squares method in a linear regression analysis of the set of data { log(t), log(L(t))},
starting from a value of the parameter t from which L(t) starts to show a power growth law after an initial plateau. More-
over, we recover the classical result that the structure factors collapse on a time-independent master function, showing
the self-similar scaling behavior (119) for standard phase-ordering dynamics.

6 CONCLUSIONS

In this work, we have considered a CH-type equation with degenerate mobility and single-well potential. In contrast to the
model studied in the literature, where the degeneracy and the singularity sets coincide, here, we deal with a degeneracy
{c = 0, c = 1} and a singularity {c = 1}. This constitutive choice introduces further complications, since {c = 0} is an
unstable equilibrium point, and the singularity in c = 1 does not guarantee that c ⩾ 0.

In Section 2, we have studied the existence of different classes of weak solutions of the problem and their positivity
properties for the cases of spatial dimension d = 1 and d = 2, 3 separately.

In Section 3, we have formulated an FEM approximation with continuous finite elements where we have enforced the
positivity of the solution by means of a discrete variational inequality. We have proved the existence and uniqueness of
the discrete solution, using a regularization approach. Moreover, we have generalized the earlier results of Barrett et al23

using some properties of subdifferential calculus for avoiding the introduction of an acute partitioning of the domain.
In Section 4, we have established the convergence in one space dimension.
In Section 5, we have presented the numerical algorithm used for solving the discrete variational inequality and we

have performed simulations both in 1 and 2 space dimensions. We find that the dynamics of the spinodal decomposition
for the solution of Problem Ph is, to a certain extent, analogous to the one obtained in standard phase-ordering dynamics.
In fact, the geometry of the segregated domains is driven by the initial value of the concentration, with the appearance of
isolated clusters of cells for c0 < c*∕2 (see Figure 4) and a maze-like pattern for c0 = c*∕2, see Figure 5. A different feature
of this model concerns the growth and scaling laws of phase ordering. While the degenerate CH equation with double-well
potential is dominated by a surface diffusion mechanism at long timescales, our model follows a Lifshitz-Slyozow growth
law for the characteristic length scale of the emerging patterns. Similar to the classical CH with constant mobility, this
asymptotic behavior highlights the dominance of growth by bulk diffusion. These results on the phase-ordering dynamics
are finally collected in Figure 6, also showing the existence of a master curve for the structure function.

A further development of this work will concern the error analysis of the discrete solution, which will be presented in
a forthcoming paper.

Future work will be focused on the analysis of this model using a finite element approximations with discontinuous
elements.
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