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I. INTRODUCTION AND MOTIVATIONS

UTOMATIC Weather Stations (AWSs) are employed for
meteorological sensing in extreme environments, such as
desert, Antarctica [1] and glaciers [2]. An AWS is typically
composed of a processing unit (CPU, volatile and non-volatile
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memory) connected to a number of meteorological sensors,
e.g., humidity, wind speed, solar radiation, snow height. Wire-
less communication can be provided through WiFi links, radio
bridge, GSM, or satellite links [3]. Since AWSs are usually far
from mains power sources, such systems are battery-powered
and rely on energy harvesting, typically from solar radiation or
wind power [4]. AWS deployments are generally long-term, in
the order of years and, meaningfully, after-deployment visits
to these installations are generally difficult, expensive, and
sometimes even impossible.

For the reasons above, the design of an AWS is a challeng-
ing task where guaranteeing long-term and continuous opera-
tion in any working condition is of paramount importance [5].
To fulfil this requirement, designers use to over-provision the
power supply subsystems, thus increasing the cost and size of
the AWS. In addition, sensing and communication frequencies
are preferably set to lower values in order to reduce the
energy consumption for collecting and communicating data.
Unfortunately, such a conservative approach prevents the AWS
from taking advantage of energy harvesting surpluses, when
available, to offer adaptive sensing and communication.

To allow practitioners to properly configure an AWS, it is
necessary to provide them with tools for assessing the impact
of hardware choices (e.g., battery and solar panel size) and
software parameters (e.g., sensing and communication duty
cycles) on the energy behaviour of the system, as early as
possible during the design process [6]. Moreover, enabling the
AWS to adapt its behaviour based on context information is a
desirable solution to maximize the exploitation of the available
energy, and thus the amount of sampled and transmitted data,
while guaranteeing the survival of the system [7].

A number of techniques and tools for the energy analysis
of wireless systems have been proposed in the literature.
Nevertheless, although wireless sensor networks (WSN) and
AWSs have many common features, we believe that the two
technologies are subtly but deeply different, not only in size
(AWSs are generally bigger than WSN nodes), but also for
the following reasons:

o The ratio between energy stored in the battery and
energy spent during operation (acquisition, storage and
communication) between WSN nodes and AWSs can be
very different (up to two orders of magnitude). Indeed, the
maximum energy for a typical WSN node battery, AAA
1.5V type, is about 5.4 kJ, while for an AWS battery,
24Ah-12V type, it is 1036 kJ, thus the battery ratio is
about 2 orders of magnitude. The transmission energy



cost for a typical WSN transceiver, IEEE 802.15.4 radio,
is about 200 nJ/bit, while for a typical AWS transceiver,
Low-Earth-Orbit satellite modem, it is 1 mJ/bit, thus the
transmission energy ratio is about 4 orders of magnitude.

« WSN nodes are typically equipped with a reduced num-
ber of sensors, while a single AWS is typically equipped
with a high number of sensors.

o Concerning WSNs, in the last 10-15 years there have
been a broad number of proposed research platforms, but
only few HW (telos, mica) and few SW (TinyOS, Contiki)
platforms became used in research, while their industrial
adoption was even less, probably for the lack of standards.
On the other hand, the world of AWSs is characterized
by an heterogeneous platform panorama [3], motivated
by a broader range of different manufacturers, each one
with it’s own legacy hardware and software stack.

Given these points we argue that approaches focused on WSNs
hardly apply to AWSs, and thus, that new tools specifically
aimed at the analysis of AWSs are needed to successfully
design and install such systems.

Analytical models of the energy balance of energy pro-
duction plants based on solar cells and wind turbines are
widely used [8]. Nevertheless, available analytical approaches
focus only on single aspects of the system (e.g., assessing
the charge of the battery or estimating the amount of energy
produced by a solar panel) but fail in providing a holistic
analysis of the AWS as a whole complex programmable
system. Following a different approach, testbed-based power
profiling techniques and software-based power measurement
tools can be found in the literature [9], [10], as well as some
simulation approaches for the analysis of the energy behaviour
of AWSs [11]. They successfully analyse the energy behaviour
at the level of hardware configuration or they accurately assess
the energy efficiency of communication protocols and schedul-
ing algorithms. However, they miss to consider the high-
level software behaviour and its interaction with the complete
system.

This paper presents AENEAS, an energy-aware AWS sim-
ulator that allows designers to perform evaluation of the
energy feasibility of system parameters early in the devel-
opment process. In particular, both the hardware components
(batteries, wind turbines, solar panels, maximum power point
trackers, sensors, receivers, transmitters, embedded computers,
memories) and applications running on the AWS (data acqui-
sition, storage and communication) are modelled following the
modeling paradigm first proposed in [12]. Thanks to AENEAS
designers can easily study the energy behaviour of the system
in order to figure out the best trade-off between cost/size
and data (produced and transmitted), while guaranteeing the
survival of the system. In order to allow the analysis of
adaptive sensing and communication behaviours, AENEAS
implements a configurable model of applications running on
the considered AWS. AENEAS is not meant to assess only
the energy efficiency of communication protocols or schedul-
ing algorithms, tasks for which accurate simulators already
exist. The goal of AENEAS is allowing an early evalua-
tion of the energy feasibility of an AWS installation taking
into account configurable hardware models and a high-level

implementation-independent model of the applications run by
the system.

With respect to the state of the art AENEAS represents the
first holistic approach to the analysis and simulation of the
energy aspects of AWS systems. Indeed, AENEAS is the only
simulator that enables designers to analyse the energy impact
of both a large number of hardware components and of the
application run by the AWS. A preliminary version of the
simulator has been presented in [13].

The remainder of this paper is organized as follows:
Section II discusses the related works; Section III presents
the general structure of an AWS; Section IV shows the
overall architecture of the proposed AENEAS tool, and the
implemented energy models; Section V discusses how adap-
tive sensing and communication policies can be modelled;
Section VI reports the results of a set of validation experi-
ments; Section VII shows some possible usage of AENEAS
on a case study AWS; Section VIII concludes the paper.

II. RELATED WORK

Energy analysis of AWSs and sensor networks can be made
by means of analytical approaches, testbeds and simulators.

Analytical approaches are generally used to estimate the
amount of energy produced by the energy sources (e.g., solar
panels [14]-[16] or wind turbines [17], [18]) and accumulated
into batteries [19], [20] based on statistical weather models.
Analytical approaches are very effective in characterizing the
behaviour of a particular component of the system, while
modelling the whole system can become a very difficult task.
Moreover, as discussed in [12], analytical approaches generally
model the load in a simplistic way and very hardly achieve
a model detailing the behaviour caused by changes of data
acquisition frequencies and transmission times, that deeply
affect the energy demand of the system. We have found only
one work presenting an analytical model of a complete energy
harvesting system [21] but it targets wireless sensor networks
and thus, for the reasons previously presented, it could not be
effectively applied to AWSs.

Testbeds are very realistic since they assess the behaviour
of the system under design exposing a prototype of it to
particular conditions. Testbeds can be expensive and hard to
set up, as they use the same (or similar) components and
drive the system with the same (or similar) application as
the final implementation. In particular we classify testbeds as
outdoor-uncontrolled [22], [23], and indoor-controlled [24].
Outdoor-uncontrolled testbeds are exposed to outdoor weather
conditions, similar to those in which the system will operate
after deployment. As it has been discussed in [12], experiments
on outdoor-uncontrolled testbed can be very long, e.g., if
the designer wants to study the behaviour of the system in
a given outdoor location for a period of three months, the
experiment has to last for three months. On the other hand,
indoor-controlled testbeds allow evaluating different setups,
having full control over the environment (e.g., using climate-
chambers or controllable light or wind sources). Moreover,
both types of testbed-based approaches may require long time
and high cost to be set up.
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Fig. 1.

Simulators enable to study the behaviour of the system
early in the design process, thus allowing to assess design
issues, such as solar panel or battery size, before getting
to the prototype phase. As discussed in [12] most available
simulators focus much more on modelling the wireless channel
than on energy-related aspects. Few effort has indeed been
paid in modelling energy harvesting and even less in analysing
energy awareness. Moreover, previously given considerations
about the differences between WSNs and AWSs imply that
simulators for WSNs cannot be effectively applied for the
energy analysis of AWSs. To the best of our knowledge, the
only work addressing simulation-based energy analysis that
could be applied to AWSs are [11], [25]-[27]. All simulators
described in the literature address the problem of a proper
estimation of harvested and stored energy. In particular, C.
Viehweger et al. in [25] presented a simulation-based method
focused on the estimation of the energy production level, while
F. Cabrera et al. in [26] focused on the energy storage capa-
bilities of the system. The two simulators presented in [11],
[27] take into account also the loads, but in a simplified way,
since they model the loads as an hourly energy consumption
value.

III. GENERAL STRUCTURE OF AN AWS

The AWS shown in Figure 1(a) is composed of a Process-
ing Unit, several Sensors, and a Battery. Communication
Module(s) enables radio telemetry and Energy Harvesting
Unit(s) enables perpetual work. Figure 1(b) depicts the general
architecture of an AWS. In the remainder of this section we
introduce the basic concepts of AWSs, while for a compre-
hensive discussion of such systems we refer to [1], [28].

The Processing units (General Purpose Processors, FPGAs,
ASICs) coordinates the functions of the AWS. It generally
uses a persistent memory to store data. A number of analogue
and digital Input/Output ports are used to connect sensors and
transducers. The processing unit executes tasks, that determine
the sampling frequency of sensors and the processing of sam-
pled data. If telemetry is used, tasks also determine the starting
time and duration of transmissions. The energy consumption of
the processing unit is characterised by different working states,
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Picture and structure of an AWS. (a) AWS Drawing - Copyright: Vaisala Inc. Used with permission. (b) General architecture of an AWS.

e.g., idle, sampling, transmitting. The energy consumption of
both the processing unit and the persistent storage depends on
the technology.

Sensors are under the control of the processing unit to
sample environmental variables and return electric signals.
Typical sensors for AWSs are thermo-hygrometers, thermis-
tors, albedometers, anemometers and snow gauges. Sensors are
energy consumers. When inactive, their energy consumption is
zero or very low, depending on technology. While sampling,
they usually consume a higher energy. Some sensors, such
as photo sensors, depending on the conditioning circuitry,
can consume a negligible amount of power. Apart from the
energy consumed during sampling, some sensors may con-
sume energy also during an activation period, the settling-time.

Batteries provide the necessary energy to the AWS. If har-
vesting is available, the battery has to be rechargeable, in order
to store energy surplus. Rechargeable battery technologies
are Lead Acid, Nickel-Metal Hydride (NiMH), Lithium-ion
(Li-ion), etc. Rechargeable batteries generally need additional
management circuitry in order to regulate charge cycles to
maximize available energy and battery lifetime. For low power
systems that do not use energy harvesting, batteries can be
non-rechargeable, reducing costs and control circuitry.

Transceivers enable the AWS to send the sampled data.
This is particularly useful, in some case necessary, for remote
installations. Wireless communication can be implemented
using WiFi, radio bridge, GSM/GPRS (it is a GSM modem
with GPRS data communication) or satelite modems. AWSs
usually employ long-range communication, e.g., satellite/GSM
links. Such transceivers are eager energy consumers: when idle
their consumption is very low; when active their consumption
depends on the activity, e.g. receiving, connecting, transmit-
ting. Depending on the technology, the energy consumption
of transceivers may significantly vary, e.g. a WiFi transceiver
consumes 0.1 — 0.5W while a satellite modem consumes
5 — 15W. They could represent one of the main energy
consumers in AWSs.

On most existing AWSs the Energy Harvesting is usually
implemented by a photovoltaic panel and/or a wind turbine.
Photovoltaic Panels (PV), also referred to as solar panels,



transform solar radiation energy into electric energy. Panels
are composed of PV cells. The output power of a PV cell is
inversely proportional to the temperature and directly propor-
tional to the solar radiation and the cell area. Wind Turbines
transform the kinetic energy of wind into electric energy. The
output power of a wind turbine is directly proportional to the
area swept by the turbine rotor, air density, and the wind speed.
PV panels and wind turbines power is strongly dependant
upon the working conditions. Maximum Power Point Tracking
(MPPT) is usually installed to optimize their operation.

IV. AENEAS TooL

AENEAS is a discrete-time-driven simulator for AWSs,
where the energy consumptions of both the hardware com-
ponents and the applicative tasks run by the station are taken
into consideration. In this section we introduce the problem of
designing AWSs, how AENEAS addresses it, the structure of
AENEAS from a functional point of view, the general energy
model and the component models implemented in AENEAS.

We do not strive to substitute analytic models of the various
components of an AWS: indeed, in order to incrementally
increase the overall accuracy of the proposed simulator, we
wish to integrate accurate models into the system as soon
as they become available and interested researchers provide
evidence for their models.

A. Problem Statement

The goal of AENEAS is supporting AWS designers in
assessing the energy feasibility of the overall HW/SW sys-
tem configuration. As we discussed in the Introduction,
AWS designers generally adopt an over-provisioning approach,
based on a static analysis: batteries and harvesters are over-
sized with respect to the actual energy needs of sensing
and communication activities. Moreover, both sampling and
transmission frequencies are kept constant and set as low
as possible in order to minimize the energy needs of the
system.

AENEAS performs a dynamic analysis aimed at providing
designers a deep insight into the energy flows among the com-
ponents of the AWS, as determined by application software.
In this way, designers can understand the effects on the energy
balance of the system due to the characteristics of different
hardware components and of application-related features.

AENEAS empowers designers in tailoring both hardware
configuration and application features to the needs of the
tasks, while guaranteeing the energy survival of the system.
The tool computes the energy state of the AWS based on
a conservative estimation approach (CEA). Following this
approach, the energy consumptions of components is over-
estimated, the harvested energy and the battery capacity are
underestimated, while the power requirements of applications
are accurately modelled. As a consequence of the CEA, if
AENEAS simulates a positive outcome, i.e., the system can
survive, the corresponding real system will very likely survive
under the same working conditions. On the other hand, a
negative outcome from AENEAS, i.e., the system can not
survive, is not indicative of an energy outage of the real system
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High-level representation of AENEAS.

Time; irradiance; temperature; windspeed
2012/08/01-14:00:00; 125.20; 13.49; 3.4
2012/08/01-15:00:00; 70.77; 13.61; 2.5

2012/08/01-16:00:00; 231.20; 14.15; 4.5

Listing 1. An excerpt of an example environment file.

in the same conditions. In other words, AENEAS provides a
sufficient but not a necessary condition to the energy feasibility
of an AWS’s configuration.

Although the difference in the final effect could appear
minimal, our over- and under-estimations of consumptions and
productions of energy is deeply conceptually and practically
different from over-provisioning the AWS. Indeed, in the latter
case the designer provides the system with batteries, solar
panels etc. larger than what is actually needed because he
is not able to (or he cannot) precisely determine the right
dimensions. In the former case we followed CEA conform
choices every time we had to introduce (inevitable) inaccura-
cies/approximations for the energy models of the components
of the AWS. CEA allowed us on the one hand to claim with
a high probability that if the simulations give positive results
then the system will actually survive in its final installation
and on the other hand to tailor the over-provisioning of the
system which is actually inevitable when models have inaccu-
racies/uncertainties. Moreover, the CEA approach guarantees
that the more accurate the energy models of the components,
the more accurate the analysis performed by AENEAS, and
thus, the more restrained the over-provisioning effect caused
by the design.

B. General Structure of AENEAS

A high level representation of AENEAS is depicted in
Figure 2. The inputs of the tool are environment, configuration
and policies, the output is energy balance.

Environment contains a description of the environmental
conditions under which the system to be studied will work.
More in detail, for each simulation time interval, the file
contains the values of the variables having impact on the
energy state of the system, e.g., irradiance and temperature for
the solar panel, wind speed for the wind turbine. An excerpt
of an example environment file is shown in Listing 1.

Policy contains information related to the application run-
ning on the processing unit of the AWS. In particular, the
policy file specifies how the processing unit manages sensors
and transceivers. A more detailed discussion of policies is
given in the following of this section.
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ThermhygrHMP45C;
NivometerSR50A;

10;
60;

Listing 2. Example of sensors policies.

Modem MiChroSat2403; 360;

Listing 3. Example of transceiver policy.

Configuration contains information related to the hardware
configuration of the AWS. The file describes the number and
type of sensors and transceivers, and the type of battery,
including component-specific details such as the settling times
and the energy a sensor consumes for sampling, the energy a
transceiver consumes for transmitting/receiving, the capacity
of the battery. More details on the content of the configuration
file will be discussed in the next subsection.

The output of AENEAS is the energy balance file, contain-
ing a detailed report of: the consumed energy, i.e., the energy
consumed by sensors, transceivers and by the processing unit,
the wasted energy, i.e., the amount of energy that could have
been harvested from the environment but that could not be
gathered and stored because the battery was full, and the stored
energy, i.e., the amount of energy stored in the battery.

The internal structure of AENEAS, depicted in Figure 3,
reflects the typical structure of an AWS discussed in the
previous section. The AWS is modelled as of a processing
unit, a number of sensors, transceivers and energy harvesters,
and a battery.

The model of the processing unit is meant to execute a
number of policies. Let a policy be the set of rules specifying
how the processing unit uses a sensor or a transceiver. The
application run by the AWS can be viewed as a collection
of policies, one for each sensor and transceiver the AWS is
composed by. Such application describes the overall behaviour
of the system at a high level of abstraction, independently
from the actual HW/SW implementation. A application can be
easily implemented by, for example, automatically translating
the policies into a software program (if the processing unit

is a microcontroller) or into a hardware description language
specification (if the processing unit is an ASIC or FPGA).

Policies consider only those aspects/parameters that impact
on the energy balance of the system. For example, a sensor
policy specifies the sampling frequency, a transceiver policy
specifies the transmission frequency. Listing 2 gives two
example policies for the thermo-hygrometer (sampled once
every ten minutes) and for the nivometer (sampled once every
sixty minutes). Listing 3 gives an example policy specifying
that a transmission must be performed once every six hours.

For each time slot, the execution flow of the simulator is
the following:

1) read the input environmental data;

2) based on the given policies, compute the energy con-
sumption of sensors and transceivers;

3) compute the energy consumption of the processing unit;

4) compute the energy produced by the energy harvesters;

5) compute the energy balance.

C. Energy Models

Although real electric and electronic devices have a non-
linear characterisation, the level of abstraction and accu-
racy expected from the simulator, in consequence of the
requirements discussed Section IV-A, allowed us to use linear
models for the energy behaviour of devices [10]. Sensors,
transducers, processing unit, batteries and harvesting units
are approximated by linearisation and look-up table based
models, and the overall energy model of the AWS is simulated
as a composition of these approximations. Such a simplified
approach considerably reduced the computational complexity
of the simulator.

1) General Model: Let Eyy, Enar, and Ecops be:

o Epy, the energy stored in the battery, calculated as:
Epat = Q xV (1

where Q is the charge capacity and V is the voltage.
o Epay;, the energy produced by harvester i, calculated as:

Ehar,- =1 x Vi x At = P; x At 2)

where [; the produced current, V; the operation voltage,
and At; the time interval. Total power P; depends upon
the particular harvester technology.

o Econs;, the energy consumption of load j, calculated as:

EconstIjXVjXAZ‘ZPjXAZ‘ (3)

where [; the consumed current, V; the operation voltage,
and At the time interval. Total power P; depends upon
the particular load (transducer, sensor, or processing unit).

For every time interval At¢, the available energy balance E
can be calculated by equation (4):
i=Np Jj=Nc
E = Epa + z Ehaxi - z EconSj (4)
i=1 =1

with Ny, harvesters and N. consumers (loads).



Name; Idle; ActivationTime

CR1000; 0.5;

Active;
10; 5

Name;Rest;Idle; Tx;Rate[bps]; TxOverhead[s]
ModemMiChroSat2403;15;150;4500;2400;20

Listing 4. Example of processing unit configuration.

Name; Idle; Active;
ThermhygrHMP45C; 2;
NivometerSR50A; 1;

SensingTime[s];
40; 0.15; 32
2500; 1.00; 12

Bytes

Listing 5. Example of sensor configurations.

Name;
Vaisala;

MaxEnergy
500000

Listing 6. Example of battery configuration.

2) Component Models: All energy consumers have been
modelled as finite state machines (FSM), with states char-
acterized by a given energy consumption. When transition
times between states exhibit a relevant energy impact, also
transition times are considered in the model. Consumptions
in every state and relevant transition times can be configured
through configuration files. The battery is modelled as an
energy bucket, characterized by a configurable finite energy
capacity. Energy harvesters are modelled as transfer functions,
characterized by either analytic functions or look-up-tables
filled with producer data-sheet values.

The Processing Unit model has two states Idle and Active.
It is Active when the system performs a sensing or com-
munication activity, Idle otherwise. We also considered an
Activation-Time, needed by the unit to pass from Idle to
Active. We gather power (P; in (3)) and Activation-Time para-
meters from data-sheets of the processing unit, and provide
these values through the corresponding configuration file, as
shown in Listing 4.

Sensor models have two states: Idle and Active. The FSM
associated with a sensor is active when the simulated sensor
is sampling, Idle otherwise. The time spent by the FSM
associated with each sensor in the active state encompasses the
total time needed to take a sample (settling time and sampling
time). Note that, the activation of a sensor causes not only an
energy consumption but also data generation. Generated data
is stored and, in case of telemetry, it is then sent. Through the
configuration file we can configure which sensors are available
to the AWS, and the characteristics of each sensor (information
about sensors can be found in data-sheets). Listing 5 shows
an example of sensor configuration file: Name is the identifier
of the sensor; Idle and Active are respectively the power need
when Idle and when Active; SensingTime is the total time
needed to take a sample; Byfes is the number of bytes stored
for each sampling.

The Battery model is characterized by an operation Voltage
and a maximal charge capacity. According to (1), the battery is
modelled as an energy accumulator, characterized by a finite
capacity. Exceeding energy is lost, and its value written in

Listing 7. Example of configuration for the transceiver.

Model;
SP20;

Beta
=73

Isc;
1270;

Voc;
20.8;

Alpha;
1,28

Vmpp;
17.1;

Impp;
1170;

Listing 8. Example of configuration for the solar panel.

output to wasted energy, in order to enable search for optimal
design. The implemented battery model does not consider
charge efficiency, temperature dependence, and battery ageing.
These phenomena can however easily be incorporated in future
into the simulator, considering them as additional charac-
teristics of the battery model. Listing 6 shows an example
configuration of the battery, where Name is the identifier, while
MaxEnergy represents the maximum energy, Joule [J], that the
battery can store, before it stops accepting new charge.

The Transceiver model has three states: Rest, Idle and
Transmission. The FSM associated with the transceiver is
in the transmission state when the simulated transceiver is
sending/receiving data; it is in idle state when it is active but
not sending/receiving; it is in rest state when it is deactivated
by the simulated system. The time the FSM remains in the
transmission state is determined by the amount of data sampled
by the sensors, the transmission rate, and the transmission
protocol. We configure which transceivers are available to
the AWS, and the characteristics of each transceiver through
the configuration file (Listing (7)): Name is the identifier;
Rest, Idle, Tx are respectively the energy consumption when
inactive, idle, and in transmission states; Rate is expressed in
bits per second; and TxOverhead represents the technology
dependant time-overhead for each transmission (expressed in
seconds). The transmission protocol is defined in another
configuration file containing the packet structure, through
which the actual number of bits that have to be sent can be
calculated (considering overhead and packet fragmentation).

The Energy Harvesting model receives environmental data
and calculates the energy production for every simulation
interval. To model harvesters we followed two different
approaches, analytic and look-up-table based: analytic models
are based on harvester’s equivalent circuits; look-up-table
based models use tables as a discrete approximation of the
transfer function of the harvester, and are generally simpler to
implement and to execute.

The Photovoltaic (PV) panel model: analytic approaches
typically model a single cell and then replicate the model as
many times as needed to obtain the panel. The higher the solar
radiation is, the higher will the current/voltage characteristic
be. A descending temperature rises the open circuit voltage
(Vo) and power of the panel. In particular, we model PV cells
using a simplified equivalent circuit with Ohmic resistance
losses [29], when no active Maximum Power Point Tracker
(MPPT) devices are used on the AWS. The model can be
characterized by the current at maximum power point (/pp),



Model; RatedSpeed; CutOffSpeed; Power;Volt
Rutland504; 9.77; 25; 12

Listing 9. Example of configuration for the wind turbine.

the voltage at maximum power point (V,,pp), the short circuit
current (Is.), the current temperature coefficient, and the
voltage temperature coefficient. Configuration for the solar
panel is provided as in Listing 8, where the parameters, that
can be found in data-sheets are: Model the identifier; Iy
computed in Standard Test Conditions (STC); Vi, computed
in STC; I computed in STC; V,. computed in STC; Alpha
the current temperature coefficient; Beta the voltage temper-
ature coefficient. On the other hand, for systems using active
MPPT devices we use a look-up-table based model, containing
<irradiance/temperature, output power> value set, because
analytic models are typically not provided by vendors.

For the wind turbine model we used two differ-
ent approaches, parametric and look-up-table based. Both
approaches are used to approximate the analytic ideal model
Piurbine = %Apv3Cp, characterized by the area swept by
the turbine rotor (A), the density of air (p), the wind speed
(v) and the aerodynamic efficiency of the rotor, called power
coefficient (Cp). This analytic model is not used because it
does not take into account technology dependant parameters
of the wind turbine. The parametric model uses 4 parameters:
rated speed, i.e., the minimum speed at which the turbine
starts to produce its nominal power, cut-off speed, i.e., the
speed at which the turbine stops to prevent mechanical failures,
the constant output power of the turbine when the wind
speed is between the rated speed and the cut-off-speed, and
the operating voltage of the wind turbine. Parameters are
provided in the configuration file (Listing 9). On the other
hand, the look-up-table based model on the other hand is
configured providing <wind-speed, output-power> value set,
for the range of possible wind speeds.

V. MODELLING ADAPTIVE SENSING AND
COMMUNICATION POLICIES

Energy-aware self adaptation of an AWS system is the
ability of the system to adapt its working parameters to
the environmental conditions [30]. An adaptive AWS sys-
tem should be able to maximize the usage of the available
energy in order to guarantee, on the one hand, its energy
survival and, on the other hand, an amount of sampled
and transmitted data satisfactory from the data users point
of view. Accommodation of sampling rates and transmis-
sion frequencies to changing environmental conditions can
be carried out using Adaptive Duty Cycling [31], or using
Energy-aware Lazy Scheduling Algorithms [32]. While these
works are focused on the analysis of the systems from a
hardware point of view, the impact on the energy balance of
the software running on the processing unit has not yet been
extensively studied. Indeed, we believe that the problem should
be faced with a comprehensive approach taking into account
hardware, software and interactions between them and the
environment.

Name; BMin; ThHarMin; ThHarMax; Fmin; Fmax; Var
ThermoCS215;400000;280;1080;10;1;Bat
NivometerSR50A;400000;280;1080;30;5;Bat

Listing 10. Example of adaptive sensing policy.

With respect to sensing, we define adaptability as the ability
to modify the sampling frequency to the environmental con-
ditions. We linearly reduce (increase) the sampling frequency
(F;) of a given sensor i when the amount of energy that can
be harvested from the environment (E}) decreases (increases).
Nevertheless, this mechanism is disabled, and the sampling
frequency is fixed at a minimum value (Fjip;), when the
battery level is lower than a given threshold (Ej). In this
way, during sunny and windy days the AWS will collect a
large amount of data, while during cloudy days or during
the night the AWS will save energy. The minimum value of
sampling frequency (F;,,,) is defined in order to guarantee the
minimum amount of sampled data required by the final users
(this sampling frequency is used when Ej, is lower than a given
threshold Eflnin[). Similarly, a maximum value of sampling
frequency (Fyax,;) is defined in order to avoid oversampling
and wasting energy (this sampling frequency is used when Ej,
is higher than a given threshold E ,}{,1 ax;)- In this way we force
the AWS to exploit all the available energy while guaranteeing
the survival of the system when the battery level is high and
to recharge the battery while warranting the minimum amount
of sampled data when the battery level is low.

With respect to communication, we define adaptability as
the ability to dynamically decide whether to start or not a
transmission. In particular, the processing unit will try to
start a transmission every T;,, (the minimum time between
two consecutive transmissions). The transmission will start
only if a minimum level of energy is stored in the battery
(Ef;ini) and a minimum amount of energy could be harvested
from the environment according to the values read from
the environmental sensors (Eflnin[). In this way, we start a
transmission only when its energy impact will affect less the
energy survival of the system. Further details on modelling of
energy-aware adaptive policies are in [33] and [34]. Listing 10
shows an example of adaptive policy.

The policies modelled above are just an example of how
a designer could easily simulate his own scenario-dependent
policies by means of the very easy-to-define policy configura-
tion file of the simulator.

VI. VALIDATION OF AENEAS

Two sets of experiments on two real-world AWSs have been
carried out in order to validate the proposed simulator. The first
set of experiments, which allowed us to perform a qualitative
validation, considered an AWS installed on the La Mare
Alpine glacier in Italy, used for environmental monitoring.
The second set of experiments, which allowed us to perform
a quantitative validation, considered an urban AWS placed at
the University of Zagreb, used primarily as a testbench.

According to the previously discussed CEA paradigm we
define as correct the cases in which the simulator underes-



TABLE I
VALIDATION EXPERIMENT CRITERIA

AQsim  AVyeqr  Type of result Meaning
+ + True Positive (TP) Correct
- - True Negative (TN) Correct
+ - False Positive (FP) Critical Fail
- + False Negative (FN)  Conservative Fail

timates the system lifetime. Moreover, the second validation
experiment allowed us to analyse the accuracy of the proposed
tool under a quantitative point of view, so we have also
measured the error between the real and simulated system
lifetimes.

A. The AWS on the La Mare Glacier

The validation experiment described in this section uses the
same methodology and set of data of an analogous experiment
we carried out on a preliminary version of the simulator. For
the paper to be self-contained, we report here the description
of the experiment already described in [13].

The AWS is operating since 2007 at 3000 m on La Mare
Glacier, Ortles-Cevedale group in the Italian Alps [2]. The
station was installed in the framework of a research project
concerning the climate change effects on the hydrology and
cryosphere of high-altitude catchments [35]. The processing
subsystem is a Campbell Scientific CR1000 programmable
datalogger based on a Renesas H8S 2322 16-bit CPU, run-
ning at 7.3 MHz. The station is powered by a rechargeable
12 V/24 Ah battery. A solar panel with a 20 W power peak
output is connected to the battery through a charge regulator.
The station samples the snow height sensor once per hour, all
the other sensors every 15 min. Collected data are transmitted
every three days, at 11.30 a.m.

Environmental data considered for validation purposes were
samples of solar radiation and temperature, as they directly
affect the efficiency of the solar panel. The available data
regarding the energy status of the AWS was the hour-by-hour
minimum voltage of the battery.

As the AWS is not supplied with an ammeter, we could not
measure current drains, thus no information about the actual
charge balance of the power supply was available. However,
since batteries have a monotonic voltage/charge characteristic,
we could assume that when the voltage of the battery increases
the charge balance is positive, and vice-versa. Under this
assumption, it is possible to define the validation criteria by
comparing the sign of the voltage differential measured in
the real system (AV,.,;), with the sign of the charge balance
estimated by the simulator (A Qgin). Table I summarizes the
validation criteria used to rank the simulation results.

Considering that the proposed simulator is aimed at sup-
porting designers in the evaluation of the energy impact of
AWS’s policies, we gave different meanings to the two failing
responses of the simulator. In the case of false positive (FP),
the simulator estimates an increasing charge while the actual
battery voltage is decreasing: we define FP a critical fail
because it could lead designers to adopt energy unsustainable
hardware configurations or policies. In the case of a false

TABLE 11
VALIDATION EXPERIMENTS ON THE LA MARE GLACIER AWS

Type of result Number  Percentage
True Positive (TP) 611 17.4%
True Negative (TN) 2514 71.8%
False Positive (FP) 88 2.5%
False Negative (FN) 289 8.3%

negative (FN), the simulator estimates a decreasing charge
while the actual battery voltage is increasing: we define FN a
conservative fail because it could only lead designers to adopt
sub-optimal yet energy sustainable hardware configurations
and policies.

We carried out the validation experiment by configuring
the simulator to reproduce the La Mare glacier AWS and
feeding it with data collected by the AWS over a period of
3500 hours, from August to December 2012. The results of
the validation, ranked with the criteria discussed above, are
reported in Table II. The per-hour comparison between the
actual voltage differential and the estimated charge balance
has shown that the response of the simulator is correct for the
89.2%, a conservative fail for the 8.25% and a critical fail for
only the 2.51% of the observed time period.

These validation experiments have shown that the simulator
has a critically wrong behaviour within only 2.51% of the
considered time, while in the remaining 97.49% the simulator
either correctly estimates the charge balance of the system
or underestimates it, thus not affecting the energy feasibility
of a given policy. This experiment was used to compare the
real battery voltage with the simulated battery energy level.
However it was not aimed at estimating the error produced
by the simulator, but rather at assessing whether the simulator
was able to analyse or not the energy trends in the system.

B. The AWS at the University of Zagreb

The “UniZG AWS” is based on the configurable Libelium
Waspmote sensing-node, supplied by a PV energy harvester
designed at ZESOI! as a successor of the one used in [36].
It acquires environmental data and working parameters of its
own power supply. The harvester consists of a solar panel,
a MPPT, implemented according to the method presented
in [37], a direct power supply, a Li-ion battery pack, a charger,
a thermoregulated-heater, used in low battery temperature
conditions in which Li-ion battery charging is not allowed,
a balance controller and a power path controller. The energy
from the output of the MPPT is managed by the balance con-
troller that distributes it between the direct power supply and
the charger or the thermoregulated-heater which use energy
surpluses. Power path controller switches the load between the
direct power supply and the battery. Irradiance, temperatures
(panel and system), voltages (panel and battery), current con-
sumption and statuses (charger, transmitter, thermoregulated-
heater) are measured, stored and sent to a server using an Xbee
868 RF module. In particular the AWS acquires 100 Bytes of
data every 10 seconds, and sends it in blocks every 30 minutes.

lDept‘ of Electronic Systems and Information Processing, FER-UniZG.



TABLE III
EXPERIMENTS ON THE UNIZG AWS (2013). COMPARISON OF
REAL/SIMULATED START/END TIMES. ¢ IS SIMULATION ERROR

Activated Discharged Time active [s]
Real 08:27:40, 15/03  05:18:40, 16/03 75064
Simulated  08:27:40, 15/03  05:09:32, 16/03 74512
es = 0.24%
Real 08:32:07, 16/03  04:43:40, 17/03 72693
Simulated  08:32:07, 16/03  01:48:39, 17/03 62192
es = 14.45%
Real 08:24:47, 17/03  13:49:08, 18/03 105861
Simulated  08:24:47, 17/03  09:06:35, 18/03 88908
es = 16.02%
Real 07:45:20, 19/03  01:08:01, 21/03 148961
Simulated  07:45:20, 19/03  18:54:48, 20/03 128568
es =13.7%
Average es =11.1%

The availability of the values of femperature and irradiance,
charging current and battery voltage, allowed us to perform a
quantitative validation of the proposed simulator. In particular,
the environmental and electric data used for the validation
were generated in four high-consumption experiments that ran
on the AWS during March 2013. In each of these experiments
the following conditions were verified:

« At the beginning of the experiment the battery of the
AWS was completely discharged.

« As soon as the solar panel started to produce energy the
AWS automatically turned on and started to collect data.
The time at which this event happened represented the
starting time of the real experiment ().

« When the battery level reached zero, the AWS turned
off. The time at which this event happened represented
the ending time of the real experiment (t,¢).

Moreover, in order to require high currents from the battery
and stress the system, two high consumption resistances
(1.5 W) are turned on for an hour twice a day. This very
high-consumption resistance was added to the system in order
to emulate the presence of a high-consumption device, e.g., a
modem, which was not available on the system at the moment
of the experiments.

We configured AENEAS in order to simulate the AWS in
Zagreb in each of the previously described real experiments
and we fed it with the data collected by the radiation sensor
of the AWS during these experiments. For each simulated
experiment we calculated the starting time of the simulated
experiment (tss) and the ending time of the real experiment
(tse). We defined the error of the simulation e; = 1 — t”

Table III summarizes the results from the real and the
simulated experiments. First, it can be noticed that, under
a quantitative point of view, the proposed simulator quite
correctly predicts the energy behaviour of the AWS under
analysis. The average error is 11.1%, with an error never
exceeding 17%. Moreover, under a qualitative point of view,
the simulations show that AENEAS always under-estimates
the AWS lifetime. Thus, again, the simulator can be consid-
ered effective in aiding the designer in analysing the energy
feasibility of a given hardware and software configuration.

Real AWS

————— Simulated AWS

Battery charge [%]

11989 23893 35796 47700 59603 71491
Time [s]

83393 95298

Fig. 4. Comparison between the charge balance of the simulated and the
real AWS at the University of Zagreb for the worst of the considered days
under the estimated lifetime point of view.
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Fig. 5. Comparison between the energy harvested by the solar panel and a

wind turbine on the La Mare glacier AWS.

Figure 4 shows the comparison between the energy balances
of the simulated and the real AWSs: for the sake of space we
only show this comparison for day March, 17. Although the
chosen day is the worst one in terms of error in the lifetime
estimation, the trend of the energy balance of the real AWS
is quite accurately reproduced by the simulator.

VII. EXAMPLE OF USAGE OF THE SIMULATOR

After validating the simulator we ran a set of studies in order
to show some example of usage. All these experiments were
ran reproducing the previously described AWS on the La Mare
glacier and feeding AENEAS with the historical irradiance,
temperature and wind speed data collected by the AWS in the
period Augl, 2012 — Apr5,2013.

A. Analysis of the Hardware Configuration

A first set of studies was ran in order to show how
the simulator could be used to determine the best hardware
configuration for the AWS under design. Thus, a set of simple
static sensing and communication policies have been defined:
Sensing policy: 1 sample/10 min, Communication policy:
1 transmission /360 min.

The first study was aimed at determining whether the
installation of a wind turbine on the La Mare glacier AWS
would have been beneficial or not (note that the real AWS has
an anemometer but not a wind turbine). We first simulated
the AWS in the considered period of time with its actual
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hardware configuration and then adding the configuration of
a Rutland 504 micro wind turbine that produces 25 W when
the wind speed reaches the rated speed. The results, in terms
of energy harvested from the external environment, are shown
in Figure 5. It clearly appears that when the amount of energy
harvested by the solar panel is low, a large amount of energy
could be harvested by the wind turbine, if available. Thus,
such a simulation study suggests the designer that, according
to historical data, the AWS could benefit from the installation
of a wind turbine if additional budget was available.

The second study was aimed at determining the best hard-
ware configuration in terms of type and size of the wind
turbine. We considered two different wind turbines: (i) The
Marlec Rutland 504, $287 cost, 3.5 kg, 550 mm in diameter
and 60 W as max output power; and (ii) the Ampair 100, $771,
12.5 kg, 928 mm in diameter and 110 W as max output power.
We simulated the two configurations for the previously men-
tioned period of time. As shown by the battery levels curves
reported in Figure 6, in both configurations the battery never
discharges completely; indeed, both turbines are able to guar-
antee the energy survival of the AWS. Thus, the choice
between the two hardware configurations should be based on
other parameters, such as the cost of the components and on
the installation difficulties, e.g., turbine weight and size.

The third study, similar to the second one, was aimed
at determining the best choice in terms of battery size.
We considered two 12 V lead acid batteries: (i) the Power-
Sonic PSH-1255, 6 Ah; and (ii) the Yuasa NP12-12, 12 Ah.
Again, we simulated the two configurations for the previously

TABLE IV
COMMUNICATION AND SENSING POLICIES USED IN THE ADAPTIVE
POLICIES STUDY ON THE LA MARE AW S

Static Adaptive
Sensing  Communicat.  Sensing ~ Communicat.
Fpnin [min—1] 115 - 115 -
Fryrax [min™1) - - 12.5 -
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Fig. 8. Comparison of adaptive/static policies. Minimum battery levels.

mentioned period of time. Figure 7 shows the battery levels
for the two hardware configurations. It can be noticed that
using the Power-Sonic PSH-1255 the battery level sometimes
reaches zero during the winter months. Thus, in order to
guarantee the energy survival of the AWS, the designer should
choose the larger (and most expensive) Yuasa NP12-12 battery.

B. Analysis of the Software Policies

As we previously stated, the proposed simulator is aimed
at allowing designers to assess the impact of both hardware-
and software-related choices on the energy behaviour of the
AWS. In order to show how AENEAS could help designers
in analysing the energy impact of software policies we ran a
study in which we first simulated the La Mare glacier AWS
with a static policy, and then with an adaptive one. The two
considered policies are summarized in Table IV.

Figure 8 reports the day-by-day minimum charge levels
of the battery, determined by the static and the adaptive
policies. It can be observed that in 4 days (from Dec 31
to Jan 3), the static policy leads the AWS to the switch-off,
while the adaptive policy achieves the goal of guaranteeing
the energy survival of the system. In particular, the benefit is
due to the adaptive communication policy that, by postponing
transmissions as long as the battery energy level is low, avoids
complete discharging the battery.

The simulation also reveals that, in the static case, the AWS
is able to collect and transmit up to 2 MBytes data, while in
the adaptive case the amount of sampled and transmitted data
is 4.2 MBytes. This result shows that the adaptive policies
achieve the goal of maximising the amount of data that the
AWS is able to collect and transmit.



C. Performance Evaluation of AENEAS

From the computational point of view, we can argue that our
simulator is very efficient: we simulated 3500 hours (almost
five months) on a computer equipped with an Intel 15-2500k
(quad core) CPU working at 3.3 GHz, with 320 KBytes L1
Cache, 1 MByte L2 Cache, 6 MBytes L3 Cache and 8 GBytes
RAM, in about 20 seconds.

VIII. CONCLUSION AND FUTURE WORK

Automatic weather stations are sensor systems working
under harsh conditions. Whilst the traditional mission of AWSs
is just collecting and storing data for off-line analysis, it
is becoming increasingly desirable to have these systems
delivering real-time data via wireless technologies. Wireless
communication requirements together with the lack of tools
providing an energy analysis of the AWS as a complex pro-
grammable system, make even more challenging to design an
energy sustainable system. We tried to contribute in bridging
this gap by developing AENEAS, a configurable, energy-
aware simulator aimed at supporting designers in assessing
the energy feasibility of a complex AWS system configuration.
Furthermore, we have proposed an approach to describe and
test adaptive sensing and communication policies, with the
aim to optimise the amount of collected and transmitted data
by the AWS. In fact, AENEAS enables simulations during
the whole design process, from the hardware configuration
phase to the software development phase. In this sense, the
tool provides a co-design environment, useful to tailor the
hardware components and their usage to satisfy the application
requirements, while guaranteeing the energy survival of the
system. obtaining an accuracy of about 90%. To validate the
simulator, we compared the results of AENEAS simulations
with the behaviour of two real AWSs. The first validation
experiment allowed us a qualitative validation that has shown
that in more than the 95% of the cases the simulator either
correctly estimates the charge balance of the system or under-
estimates it, thus fulfilling Conservative Estimation Approach.
The second validation experiment allowed us a quantitative
validation that has shown that the average error is 11.1%, with
a maximum error of 17%. Moreover, this experiment showed
that AENEAS always under-estimates the AWS lifetime, thus
again fulfilling Conservative Estimation Approach we defined.

We plan to extend the definitions of sensing and commu-
nication policies to model more complex behaviours. Further-
more, we intend to implement an automatic translator from
policies models to hardware description and programming
languages, to provide a skeleton of the final application based
on its model. Moreover, we want to introduce other evalua-
tion metrics for policies, as monetary communication costs.
Furthermore, we want to build statistical sound environment
models, in order to provide more extensive tests for AWS
designs, under different simulated environmental conditions.
Finally, we plan to integrate a meteorological and environ-
mental statistically model in the simulator.
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