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In this paper, we start the study of stochastic processes over the skew field of
quaternions. We discuss the relation between positive definite functions and the
covariance of centered Gaussian processes and the construction of stochastic pro-
cesses and their derivatives. The use of perfect spaces and strong algebras and the
notion of Fock space are crucial in this framework. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4977082]

I. INTRODUCTION

In the present work, we present some constructions pertaining to stochastic processes in the
quaternionic setting. We begin with a brief overview in the real and complex cases. Let K(t, s)
be a complex valued continuous function positive definite on R × R. It is well known (see, for
instance, Refs. 34 and 37, pp. 38-39) that K is the covariance function of a Gaussian process (Xt)t∈R
defined in a probability space, say (Ω,B, P). The assumed continuity insures that the associated
reproducing kernel Hilbert space is made of continuous functions (this follows easily from the Cauchy-
Schwarz inequality) and is separable (see Ref. 23, Lemma 4.10, p. 347 for the latter). There are a
number of ways to construct the probability space (Ω,B, P), and some connections between the
various approaches have been studied in Ref. 9. A first approach, see Refs. 37 (pp. 38-39), 29 and
Section II, is to consider the space ×j∈JR, where J is an index set with the same power as the
power of the reproducing kernel Hilbert space H(K) associated with K, with the sigma-algebra
generated by cylinders and as measure the corresponding product of N(0,1) laws. Another way is
to take for Ω the space of continuous functions on the real line. Another convenient way to build
the process is to take Ω to be the space of real tempered distributions and use Hida’s white noise
space; see Refs. 22, 24, and 33 for the latter. Viewing Hida’s white noise space as the center of a
Gelfand triple is the approach allowed in Refs. 3 and 4 to define the derivative of X t in a space of
stochastic distributions introduced by Yuri Kondratiev space for positive definite functions of the
form

r(t) + r(s) − r(t − s). (1.1)

Such functions, and the associated Gaussian stochastic processes, play an important role in various
fields of mathematics. The case r(t) = |t|2H with H ∈ (0, 1) corresponds to the fractional Brownian
motion and, in particular, to the Brownian motion for H = 1/2. Covariance functions of the form (1.1)
were studied by Schoenberg, von Neumann, and Krein, see Refs. 32 and 36, and are exactly functions
of the form ∫

R

eiut − 1
u

e−ius − 1
u

dσ(u),
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where σ is a positive Borel measure on the real line subject to the condition∫
R

dσ(u)

u2 + 1
<∞.

The measure σ and the function r are related by

r(t)=−
∫
R

{
eitu − 1 −

itu

u2 + 1

}
dσ(u)

u2
,

which reduces to

r(t)= 2
∫ ∞

0

1 − cos ut

u2
dσ(u)

for even σ.
When going to the non commutative version of the previous analysis and to the case of the

case of free processes, one replaces the white noise space by the full Fock space associated with
L2(R, dx). Now the values of the free stochastic processes are continuous operators in the free
white noise space. In particular, the non commutative version of the Brownian motion can be con-
structed, see Refs. 40 and 42. In this paper, we consider another non commutative setting, namely,
the quaternions. In Refs. 10 and 13, free processes with covariance function (1.1) and their deriva-
tives were constructed. To construct the derivatives, one associates with the free white noise space
a Gelfand triple, and the derivatives are continuous operators from a space of non commutative
test functions to a space of non commutative distributions; the latter is an example of algebras
of a special form, introduced and called in Refs. 10 and 13–15 strong algebras. In the present
paper, we develop the quaternionic version of this analysis to define quaternionic processes with
covariance functions (1.1) and, under appropriate hypothesis on the function r(t), their deriva-
tive. We build in particular the fractional Brownian motion in this setting. The fact that we are
in the quaternionic setting would allow, in principle, to consider positive definite functions of the
form ∫

S

dµ(i)
(∫
R

eiut − 1
u

e−ius − 1
u

dσ(u)

)
, (1.2)

where dµ is a positive measure on the sphere S of quaternionic square roots of unity (see Ref. 6 for
a similar phenomenon).

To the best of our knowledge, this paper and Ref. 6 are among the first to consider infi-
nite dimensional analysis in the quaternionic setting. Among related papers, though more related
to mathematical physics aspects, we mention Refs. 30 and 35. Quaternions are important in
physics, for example, in classical mechanics, see Ref. 21 (where also more general hypercom-
plex algebras are treated), but also in quantum mechanics, see Refs. 2, 16, and 5 for a recent
development.

This paper is not merely a generalization of the analogous results in the complex setting: the
quaternionic framework requires different tools and methods. For example, one needs a different
notion of spectrum (the so-called S-spectrum, see Ref. 18), one has to define a suitable way for
a product to obtain the counterpart of the tensor product and even the notion of algebra, being
constructed on the skew field of quaternions differs from the classical one. Thus it is interesting that
we could generalize some results, despite these crucial differences.

The paper consists of six sections besides the present Introduction, and its outline is as follows: In
Section II we extend to the quaternionic case the well known one-to-one relationship between positive
definite functions and covariances of centered Gaussian processes. The main features of a perfect
topological vector in the quaternionic setting (in which being compact is equivalent to being bounded
and closed) are studied in Section III. In Section IV we consider quaternionic Fock spaces. Strong
algebras are considered in Section V, while Secs. VI and VII consider constructions of stochastic
processes and their derivatives.



033501-3 Alpay, Colombo, and Sabadini J. Math. Phys. 58, 033501 (2017)

II. POSITIVE DEFINITE FUNCTIONS AND GAUSSIAN PROCESSES

Let J be an arbitrary set of indices (note that the set J need not be countable), and consider
the space Ω=×JR endowed with the cylinder algebra C, and with the product measure P=×Jγ1,
where

dγ1(x)=
1
√

2π
e−

x2
2 , x ∈R.

The coordinate system of the probability space (Ω, C, P) defines a family (xj)j∈J of independent N(0,1)
real-valued random variables indexed by J, see, e.g., Ref. 37, pp. 38-39 and also Ref. 9, Definition 3.29
for a related discussion. The real Gaussian Hilbert space associated with the random process (xj)j∈J
is the closed linear span of these variables in L2(Ω, C, P) (see Ref. 37, p. 39, Ref. 28, Example 1.9,
p. 6), and by definition of C the symmetric Fock space associated with H is L2(Ω, C, P); see Ref. 28,
Chapter 2.

Definition 2.1. A quaternionic random variable X is a measurable map from (Ω, C, P) into H
(equivalently the four real components of X are measurable). We denote by L2(Ω, C, P)⊗H the space
of quaternionic random variables such that |X | ∈L2(Ω, C, P).

We now define a quaternionic Gaussian process on (Ω, C, P) (the definition will be the same for
any other probability space).

Definition 2.2. The H-valued stochastic process on (Ω, C, P) is called Gaussian if the closed
linear space of its real components is a real Gaussian subspace of L2(Ω, C, P).

Theorem 2.3. Let T be a set, and let K(t, s), t, s ∈ T, be a H-valued positive definite function.
Then there exists a quaternionic Gaussian process (Xt)t∈T such that

E(XtXs)=K(t, s), (2.1)

where E denotes the expectation.

Proof. LetH(K) be the reproducing kernel Hilbert space associated with K ofH-valued functions
defined on T. Let (ej)j∈J be an orthonormal basis of H(K).

For every t, s ∈ T , we have

K(t, s)=
∑
j∈J

ej(t)ej(s), t, s ∈ T , (2.2)

and in particular (ej(t))j∈J ∈ `2(J ,H). It follows that the series

Xt(ω)=
∑
j∈J

ej(t)xj(ω) (2.3)

converges in L2(Ω, C, P), where (Ω, C, P) is as in the introduction to this section, and that (2.1)
holds. �

Remark 2.4. Under appropriate hypothesis we will embed L2(Ω,A, P) into a strong algebra (see
Section V for the definition) in which both the formal derivative

X ′t (ω)=
∑
j∈j

d
dt

ej(t)xj(ω) (2.4)

and the integral ∫ b

a
f (t)X ′t (ω)dt (2.5)

make sense.

Definition 2.5. The function F(t)= (ej(t))j∈J ∈ `2(J ,H) is called a representer of K.
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Remark 2.6. We have

K(t, s)= 〈F(s), F(t)〉`2(J ,H), t, s ∈ T , (2.6)

and the representer is unique up to multiplication by a unitary operator on the right.
To give the next definition, we need some more notations. We begin with a given function

F ∈ `2(J ,H). Then, we set iteratively F1(t1) = F(t1) and

Fn(t1, . . . , tn)=F(tn) ⊗ Fn−1(t1, . . . , tn−1), n= 2, 3, . . .

and

Kn(t1, . . . , tn, s1, . . . , sn)= 〈Fn(s1, . . . , sn), Fn(t1, . . . , tn)〉`2(J ,H), n= 1, 2, . . . .

Definition 2.7. The space

H ⊕ ⊕∞n=1H(Kn),

where H(Kn) is the reproducing kernel Hilbert space associated with Kn, is the Fock space associated
with F.

As is well known, the product of two complex-valued positive definite functions is still positive
definite. In the case of matrix-valued (or operator-valued) functions, the pointwise product has to be
replaced by the tensor product. This result does not hold in the quaternionic case. The product of
two H-valued positive definite functions need not be Hermitian, let alone positive definite. We here
propose the following definition for such a product.

Proposition 2.8. Let K1 and K2 be two positive definite functions on the sets E1 and E2 and let
F1 = (ej)j∈J be a representer of K1. The function∑

j∈J

ej(t1)K2(t2, s2)ej(s1) (2.7)

is positive definite in E1 × E2.

Proof. It suffices to remark that (2.7) is a sum of positive definite kernels. �

Remark 2.9.

(a) Definition (2.7) depends on the choice of F1, as is illustrated by the example

K1(t2, s2)≡ 1 and F1(t)= c, c ∈H such that |c| = 1.

Then (2.7) becomes cK2(t2, s2)c,K2(t2, s2) in general.

(b) If F2 is a representer of K2, then F1 ⊗ F2 is a representer of (2.7).
(c) If K1 = K2 and E1 = E2, (2.7) becomes∑

j∈J

∑
j∈J

ej(t1)K1(t2, s2)ej(s1)

and in particular is positive definite on E1 × E1.

III. PERFECT SPACES

The arguments in the paper make use, in the quaternionic setting, of a number of facts from the
theory of topological vector spaces and in particular of the notion of perfect spaces, nuclear spaces,
and Gelfand triple. We consider these notions in the present section in the quaternionic setting and use
as sources (which are set for complex and real vector spaces) the books.19,20,25 Most of the arguments
can be naturally adapted, and then we do not provide proofs. Two important differences should be
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pointed out: First the dual of a left (right) quaternionic vector space is a right (left) quaternionic
vector space. Next, the notion of the spectrum of a linear operator was only recently defined in 2007;
see Refs. 7 and 18 and the references therein. This notion is needed to adapt arguments where the
spectrum intervenes.

In the quaternionic version of the approach of Gelfand and Shilov, the starting point is a right
linear space, say V, endowed with a countable family of increasing norms, say ‖ · ‖1 ≤ ‖ · ‖2 ≤ · · · ,
which are pairwise compatible. This means that if one is given a sequence of elements of V which is
a Cauchy sequence with respect to two of these norms and if it converges to 0 with respect to one of
the norms, it also converges to 0 in the second norm.

Definition 3.1. We denote by Vp the completion of V with respect to ‖ · ‖p.

The fact that the norms are compatible insures that the natural map from Vq into Vp when q ≥ p
is one-to-one.

We endow the intersection∩∞p=0Vp with the smallest topology with respect to which all the norms
‖ ·‖p are continuous.

Proposition 3.2. (see Ref. 20, Theorem p. 17 for the complex setting case) With V and Vp as
above, then V is complete if and only if V=∩∞p=0Vp is a Fréchet space, and its topology can be defined
by the metric

d(u, v)=
∞∑

p=0

1
2p

‖ u − v ‖p
1+ ‖ u − v ‖p

.

Definition 3.3. (see Ref. 20, p. 53 for the complex setting case) The space V as above is called
perfect if it is complete and if a set is compact if and only if it is closed and bounded in V.

For the following result in the complex case, see Ref. 20, Theorem p. 55.

Proposition 3.4. If there is a sequence p1 < p2 < · · · such that the inclusions Vpj+1→Vpj are
compact, the space is perfect.

The dual of a countably normed space is characterized as follows (see [20, p. 34]).

Proposition 3.5. An element ϕ belongs to V ′ if and only if there exists a p ∈N and C > 0 such
that

|ϕ(v)| ≤C ‖ v ‖p, v ∈ V. (3.1)

Dual of perfect spaces have specific properties (see Ref. 20, Section 6.4), and we mention in particular:

Proposition 3.6. (see Ref. 20, p. 45). A set is bounded in V ′ if and only if it is bounded in one of
the V ′p in the corresponding norm.

Theorem 3.7. Let V be perfect. Then weak and strong convergences of sequences are equivalent
in the dual.

Theorem 3.8. In the dual V ′ of a perfect spaceV, a sequence converges if and only if it converges
in one of the spaces V ′p in the corresponding norm.

IV. TENSOR PRODUCTS, THE FOCK SPACE, AND SECOND QUANTIZATION

We refer to Ref. 27 for information on tensor products of modules. Tensor products of quaternionic
spaces have been studied in a number of places; see, for instance, Refs. 11, 26, and 38. Here we use
a concrete construction of tensor products of quaternionic spaces of sequences. Specifically, we
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let

`2(N,H)=



(a1, a2, . . .)∈HN :
∞∑

n=1

|an |
2 <∞




,

and for a, b ∈ `2(N,H) we define a ⊗ b ∈ (`2(N,H))N by

a ⊗ b= (a1b, a2b, . . .)

= (a1b1, a1b2, . . . , a2b1, a2b2, . . . , a3b1, . . .). (4.1)

Remark 4.1. The space (`2(N,H))N is canonically identified with `2(N,H), and we define the
inner product and norm accordingly. In particular, for a, b, c, d ∈ `2(N,H), we have

〈a ⊗ b, c ⊗ d〉(`2(N,H))N = 〈(a1b, a2b, . . .) , (c1d, c2d, . . .)〉(`2(N,H))N =

∞∑
u=1

〈aub, cud〉`2(N,H). (4.2)

Proposition 4.2. One has the inner product formula

〈a ⊗ b, c ⊗ d〉(`2(N,H))N = 〈〈a, c〉b, d〉,

where the brackets 〈·, ·〉 denote the inner product in `2(N,H), and in particular we have

‖ a ⊗ b‖(`2(N,H))N = ‖ a‖`2(N,H)· ‖ b‖`2(N,H). (4.3)

Proof. By (4.2) we have

〈a ⊗ b, c ⊗ d〉(`2(N,H))N = 〈(a1b, a2b, . . .) , (c1d, c2d, . . .)〉(`2(N,H))N

=

∞∑
u=1

〈aub, cud〉`2(N,H)

=

∞∑
u=1

〈cuaub, d〉`2(N,H)

=

〈
*
,

∞∑
u=1

cuau
+
-

b, d

〉
`2(N,H)

=
〈(
〈a, c〉`2(N,H)

)
b, d

〉
`2(N,H)

.

Formula (4.3) follows directly. �

Definition 4.3. We denote by `2(N,H) ⊗ `2(N,H) the right Hilbert space generated by the span
of elements of the form (4.1) in (`2(N,H))N. We define iteratively

`2(N,H)⊗n = `2(N,H) ⊗ `2(N,H)⊗n−1

and

Γ(`2(N,H))=H ⊕
(
⊕∞n=1`2(N,H)⊗n

)
.

Each of the spaces `2(N,H)⊗n is a right quaternionic Hilbert space, and Γ(`2(N,H)) is their Hilbert
space direct sum.

Definition 4.4. We call Γ(`2(N,H)) the full Fock space associated with `2(N,H). It will also be
denoted by F.

The space F was introduced and studied in the quaternionic setting in Ref. 8.
We denote by ˜̀the free non commutative monoid generated byN (see Ref. 1 for the quaternionic

case). We write an element of ˜̀as a finite sequence of pairs

α = (i1, n1), (i2, n2), . . . , (iN , nN ),

where i1, . . . , iN are integers such that ij , ij+1, j = 1, . . . , N − 1, and n1, . . . , nN ∈N. We set
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|α | =

N∑
j=1

nj. (4.4)

We will also use the notation
z̃ α = zn1

i1
· · · znN

iN
, (4.5)

where zi1 , . . . , ziN are non commuting variables.

Proposition 4.5. The space `2(N,H)⊗n can be seen as the right linear span of elements of the
form z̃ α with |α | = n.

The space F consists of the functions of the form

f = f0 +
∑
α∈˜̀

z̃ αfα, (4.6)

where the coefficients belong to H and are such that

|f0 |
2 +

∑
α∈˜̀
|fα |

2 <∞.

Proof. Let a(1), a(2), . . . , a(n) ∈ `2(N,H). The elementary tensor a(1) ⊗ (a(2) ⊗ (· · · )) of `2(N,H)⊗n

is a sequence of quaternions of the form

a(1)
m1

a(2)
m2
· · · a(n)

mn
.

We associate in a unique way the sequence (m1, . . . , mn) with an element in the monoid ˜̀as
follows: if m1 = · · ·=mn1 and mn1 is different from the following index, the first component in the
associated monoid element is (i1,n1), with m1 = i1 and n1 = n. We then reiterate with the index
following mn1. �

Definition 4.6. Let h ∈ `2(N,H). The creation operator is defined by

`h( f )= h ⊗ f , f ∈F.

Proposition 4.7. It holds that

`∗k`h = 〈h, k〉I , f , g ∈F, (4.7)

and in particular
〈`∗k`hf , g〉F = 〈〈h, k〉f , g〉`2(N,H). (4.8)

Proof. The map `k sends `2(N,H)⊗n into `2(N,H)⊗(n+1). Thus for m, n, f ∈ `2(N,H)⊗n, and
g ∈ `2(N,H)⊗m, we have

〈`hf , `kg〉F = 0.

Now, for f , g ∈ `2(N,H)⊗n we have

〈`∗k`hf , g〉
`2(N,H)⊗n = 〈`hf , `kg〉F

= 〈`hf , `kg〉`2(N,H)⊗(n+1) = 〈(h1f , h2f , . . .) (k1g, k2g, . . .)〉`2(N,H)⊗(n+1)

=

∞∑
u=1

〈huf, kug〉`2(N,H)⊗(n+1)

=

∞∑
u=1

〈kuhuf, g〉`2(N,H)⊗(n+1)

=

〈
*
,

∞∑
u=1

kuhu
+
-

f, g

〉
`2(N,H)⊗n

= 〈〈h, k〉f, g〉`2(N,H)⊗n ,

and hence the result. �
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It follows from formula (4.7) that

〈`h1, `k1〉F = 〈h, k〉, h, k ∈F. (4.9)

Definition 4.8. The linear span of the operators `h endowed with the inner product (4.9) is a
pre-Hilbert space. We will denote by L2 the associated Hilbert space.

More generally, for a sequence m= (mn)n∈N of strictly positive numbers (a weight function), we
define `2(N,H, m) to be the Hilbert space of sequences (fn)n∈N of quaternions such that

∞∑
n=1

mn |fn |
2 <∞

and define for α = ((i1, α1), (i2, α2), . . .) ∈ ˜̀,

mα =
∏

mαk
ik
=

∏
m

∑
k ; ik=j αk

j .

This construction leads to a full Fock space Γ(`2(N,H, m)), which we will also denote by F(m).

Proposition 4.9. The quaternionic right vector space F(m) consists of the series of the form (4.6)
such that

|f0 |
2 +

∑
α∈˜̀

mα |fα |
2 <∞.

Notation 4.10. For p ∈ Z we denote by mp the sequence (mp
n) and by F(mp) the corresponding

Fock space.
The proofs of the following two results follow the complex case and will be omitted.

Theorem 4.11. Let T be a bounded linear operator from `2(N,H, m) into itself. Then T ⊗n :
(`2(N,H, m))⊗n→ (`2(N,H, m))⊗n is defined iteratively by

T ⊗n(u1 ⊗ · · · ⊗ un)=Tu1 ⊗ (Tu2 · · · ⊗ Tun) .

The operator T ⊗n is bounded. When T is a contraction, it induces a bounded linear operator
Γ(`2(N,H))→ Γ(`2(N,H)), denoted by Γ(T ) and called the second quantization of T.

Definition 4.12. Let T be a bounded linear operator from `2(N,H, m) into itself which is a
contraction. The bounded linear operator

Γ(T ) : Γ(`2(N,H))→ Γ(`2(N,H))

is called the second quantization of T.

Let (λn) be a sequence of non-negative numbers. For α = zα1
i1

zα2
i2
· · · zαn

in
∈ ˜̀(where i1 , i2 , · · ·

, in), we denote

λαN =

n∏
k=1

λαk
ik
=

∏
j∈{i1,...,in }

λ

(∑
k:ik=j αk

)
j .

We recall that if T :H1→H2 is a compact operator between two separable right quaternionic Hilbert
spaces, then

Tf =
∞∑

n=1

λn〈f , en〉hn,
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where (en)n∈N and (hn)n∈N are orthonormal bases of H1 and H2, respectively, and where (λn) is a
non-negative sequence converging to zero. Conversely, any such decomposition defines a compact
operator H1→H2 (see, for instance, Ref. 39).

Theorem 4.13. Let T :H1→H2 be a compact contraction operator between two separable
quaternionic right Hilbert spaces with

Tf =
∞∑

n=1

λn〈f , en〉hn,

where (en)n∈N and (hn)n∈N are orthonormal bases of H1 and H2, respectively, and where (λn) is a
non-negative sequence converging to zero. Let Γ(T ) be its second quantization as in Definition 4.12.
Then,

(a) it holds that

Γ(T )f =
∑
α∈˜̀

λαN〈f , eα〉hα,

where (eα)α∈˜̀ and (hα)α∈˜̀ are orthonormal bases of Γ(H1) and Γ(H2), respectively.

(b) if furthermore T is an Hilbert-Schmidt operator, i.e., (λn) ∈ `2(N), then

‖Γ(T )‖2HS =

∞∑
n=0

‖T ‖2n
HS .

In particular, Γ(T ) is a Hilbert-Schmidt operator if and only if T is a Hilbert-Schmidt operator
with ‖T ‖HS < 1 and in this case we obtain

‖Γ(T )‖HS =
1√

1 − ‖T ‖2HS

.

V. STRONG ALGEBRAS

Motivated by an algebra of stochastic distributions defined in Ref. 31, but see also Ref. 24, p. 81,
strong algebras were introduced and studied in the series of papers.10,12–15 We here follow the special
case14 and not the most general setting described in Ref. 15. The notion of algebra can be defined in
the quaternionic setting, but it differs from the classical one.

Definition 5.1. Let V be a quaternionic right vector space endowed with a product · : V ×V→V
such that (v1, v2) 7→ v1 · v2 and satisfying the following:

(1) associative property: (v1 · v2) · v3 = v1 · (v2 · v3) for all v1, v2, v3 ∈ V;
(2) distributive properties: u · (v1 + v2)= u · v1 + u · v2 and (v1 + v2) · u= v1 · u + v2 · u, for all

u, v1, v2 ∈ V;
(3) right linearity in the second factor: (v1 · v2)q= v1 · (v2q), for all v1, v2 ∈ V and q ∈H.

Then V is said to be a quaternionic right associative algebra. The algebra is said to be unital or
with unity if there exists an element 1 ∈ V such that v · 1= 1 · v = v for all v ∈ V.

Remark 5.2. If V is a quaternionic left vector space, property (3) has to be substituted with the left
linearity in the first factor, i.e., q(v1 · v2)= (qv1) · v2 for all v1, v2 ∈ V and q ∈H. If V is a quaternionic
two-sided vector space, property (3) becomes the left linearity in the first factor and the right linearity
in the second factor, i.e., q(v1 · v2)= (qv1) · v2 and (v1 · v2)q= v1 · (v2q), for all v1, v2 ∈ V and q ∈H. It
should be noted that the standard definition of associative algebra is given for vector spaces over a
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field or, more in general, over a commutative division ring and property (3) expresses the bilinearity
of the product in both the factors. Since H is a skew field, the standard definition cannot be applied
and the bilinearity is meant as the linearity on the left in the first factor and/or the linearity on the
right in the second factor according to the fact that V is a left or right or two-sided vector space
over H.

Definition 5.3. Let (Hp, ‖ · ‖p)
p∈N0

be an increasing sequence of quaternionic right Hilbert spaces
with decreasing norms, and assume that the unionV=∪p∈N0Hn is the dual of a nuclear Fréchet space.
Then V is called a strong algebra if it is endowed with a product, which makes it into an algebra with
the following property: there is an integer d∈N0 such that for all p, q∈N0 such that q ≥ p + d and
all f ∈Hp and g∈Hq, both fg and gf belong to Hq and

‖ fg‖q ≤ A(p, q) ‖ f ‖p‖g‖q, (5.1)

‖gf ‖q ≤ B(p, q) ‖ f ‖p‖g‖q, (5.2)

where A(p,q) and B(p,q) depend only on p and q.

Example 5.4. Let Gp = `2(N, (2−np)n∈N,H) and let G=∪p∈NGp. Then G endowed with the
convolution of sequences is a strong algebra.

Strong algebras can be built using Fock spaces. For p ∈ Z and for a given weight function
m= (mn)n∈N, recall that

`2(N,H, mp)=



(fn)∈HN :
∞∑

n=1

|fn |
2mp

n <∞



, p ∈ Z

and

V=∩p∈N0`2(N,H, mp) and V′ =∪p∈N0

(
`2(N,H, mp)

) ′
Proposition 5.5. (

`2(N,H, mp)
) ′
= `2(N,H, m−p),

and in particular

V ′ =∪p∈N0`2(N,H, m−p).

Proof. Let ϕ∈ V′. By definition of the topology of V there exists p ∈N such that

|ϕ(f )| ≤K ‖ f ‖p,

see Ref. 20, Section 4.3 for the complex case; the proof in the quaternionic case is the same.
By Riesz representation theorem (which still holds for quaternionic Hilbert spaces, see Ref. 17),

there is h(p) ∈ `2(N,H, mp) such that

ϕ(f )= 〈f , h(p)〉`2(N,H,mp).

Let

g(p)
n = h(p)

n mp
n.

Then g(p)∈ G−p since

∞∑
n=1

|h(p)
n mp

n |
2

mp
n
=

∞∑
n=1

|h(p)
n |

2mp
n

and

ϕ( f )= 〈 f , g(p)〉`2(N,H,m−p).

�
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Proposition 5.6. The quaternionic right vector space V=∩`2(N,H, mp) is a Fréchet space. It is
nuclear if and only if there exists d ∈N such that

∞∑
n=1

m−d
n <∞.

Proof. Let p, q ∈ Z be such that q ≥ p, and consider the embedding Iq,p:Vq↪→Vp. We have

‖Iq,pm−q/2
n en‖p =m−(q−p)/2

n ‖m−p/2
n en‖q,

and hence

‖Iq,p‖HS =

√∑
n∈N

m−(q−p)
n .

�

Remark 5.7. The dual of a Fréchet space is nuclear if and only if the initial space is nuclear.
Thus,

⋃
p∈N`2(N,H, m−p) is nuclear if and only if

⋂
p∈N`2(N,H, mp) is nuclear. This in turn will hold

if and only if for any p there is some q > p such that ‖Tq,p‖HS <∞, where Tp,q denotes the injection
from `2(N,H, mq) into `2(N,H, mp), that is, if and only if there exists some d > 0 such that

∑
n∈N m−d

n
converges. We note that in this case, d can be chosen so that∑

n∈N

m−d
n < 1. (5.3)

Definition 5.8. We call the smallest integer d which satisfies the inequality (5.3) the index of⋃
p∈N`2(N,H, m−p).

The following theorem appears in Ref. 13. We repeat the proof for completeness; the argument
(in the commutative case) can be found in Ref. 24, p. 129 and is first referred to in Ref. 41.

Theorem 5.9. Assume (5.3) in force. Then
⋃

p∈NΓ(`2(N,H, m−p)) is a strong algebra: it
holds

‖ f ⊗ g‖q ≤ cp−q ‖ f ‖p‖g‖q and ‖g ⊗ f ‖q ≤ cp−q‖f ‖p‖g‖q

for all q ≥ p + d, where ‖ · ‖p is the norm associated with Γ(`2(N,H, m−p)) and where

cp−q =
∑
α∈˜̀

m−α(q−p)
N =

1

1 −
∑

n∈N a−(q−p)
m

<∞.

Proof. Denoting bα = aαN, we have that

Γ(`2(N,H, m−p))=



(fα)α∈˜̀:
∑
α∈˜̀
| fα |

2b−p
α <∞




.

Since for any α = zα1
i1

zα2
i2
· · · zαn

in
∈ ˜̀and β = zβ1

j1
zβ2

j2
· · · zβm

im
∈ ˜̀it holds that

bαbβ = aαNaβN =
n∏

k=1

aαk
ik
·

m∏
l=1

aβl
il
= aαβN = bαβ ,
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for any f ∈ Γ(`2(N,H, m−p)) and g ∈ Γ(`2(N,H, m−q)) we obtain

‖ f ⊗ g‖2q =
∑
γ∈˜̀

�������

∑
α≤γ

fαgα−1γb−q/2
γ

�������

2

≤
∑
γ∈˜̀

*.
,

∑
α≤γ

|fα |b
−q/2
α |gα−1γ |b

−q/2
α−1γ

+/
-

2

=
∑
γ∈˜̀

*.
,

∑
α,α′≤γ

|fα |b
−q/2
α |fα′ |b

−q/2
α′ |gα−1γ |b

−q/2
α−1γ
|g(α′)−1γ |b

−q/2

(α′)−1γ

+/
-

≤
∑
α,α′∈˜̀

*.
,
|fα |b

−q/2
α |fα′ |b

−q/2
α′

∑
γ≥α,α′

|gα−1γ |b
−q/2
α−1γ
|g(α′)−1γ |b

−q/2

(α′)−1γ

+/
-

≤
*..
,

∑
β∈˜̀
|fβ |b

−p/2
β

+//
-

2

*..
,

∑
β∈˜̀
|gβ |

2b−q
β

+//
-

1
2

*..
,

∑
β∈˜̀
|gβ |

2b−q
β

+//
-

1
2

≤
*..
,

∑
β∈˜̀

b−(q−p)
β

+//
-

*..
,

∑
β∈˜̀
|fβ |

2b−p
β

+//
-

*..
,

∑
β∈˜̀
|gβ |

2b−q
β

+//
-

= ‖Γ(Tq,p)‖2HS ‖ f ‖2p‖g‖
2
q.

The second inequality is obtained in the same manner. �

The definition of a topological algebra requires only separate continuity of the product. In a
strong algebra, the product is in fact jointly continuous, see Ref. 15; the proof stays the same in the
quaternionic setting. This allows to simplify somewhat some of the arguments of Ref. 4 in the proof
of the following result.

Theorem 5.10. Let V=∪p∈N0Hp be a strong algebra. Let f and g be two continuous functions

from [0,1] into V. Then the integral ∫
1

0 f (t)g(t)dt exists as a Riemann integral in the strong topology
of V.

Proof. The product in a strong algebra is jointly continuous, see Ref. 15, Theorem 3.3, p. 215,
and so the map t 7→ f (t)g(t) is continuous on the compact set [0,1]; its range is thus a compact subset
of V and hence included in one of the spaces Hp, and f is uniformly continuous from [0,1] into Hp

(see Ref. 4, Theorem 3.1, p. 405). �

VI. GENERALIZED STOCHASTIC PROCESSES

Let K(t,s) be a quaternionic-valued positive definite function onR, and letH(K) be the associated
reproducing kernel right quaternionic Hilbert space with reproducing kernel K(t,s). We assume that
K is continuous, and so H(K) is separable. Let (en)n∈N be an orthonormal basis of H(K). We have

K(t, s)=
∞∑

n=1

en(t)en(s). (6.1)

For every t ∈R the sequence ht = (en(t))n∈N belongs to `2(N,H).
To state the next result, we recall that the strong algebra G has been defined in Example 5.4.

Proposition 6.1. Let (ej(t))j∈N be an orthonormal basis of H(K), assume that ej(t) are
continuously differentiable on [0,1] and that for t ∈ [0, 1]

|e′j (t)| ≤KjM ,
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for some K > 0 and M ∈N. Then the function t 7→ (ej(t)) is differentiable in G with derivative equal
to (e′j (t)).

Proof. Let t0 ∈ (0, 1) (if t0 = 0 or t0 = 1 the arguments are readily adapted). We have

ej(t) − ej(t0)

t − t0
− e′j (t0)=

∫ t

t0

(e′j (u) − e′j (t0))du

t − t0
= e′j (ξ) − e′j (t0),

where ξ ∈ [t0, t]. Hence,

��
ej(t) − ej(t0)

t − t0
− e′j (t0)��2 ≤ 2K2j2M ,

and so the limit

lim
t→t0

(ej(t))j∈N0
− (ej(t0))j∈N0

t − t0
= (e′j (t0))

j∈N0

holds in G1. This means that it holds in G as is seen by using Theorem 3.8. �

Theorem 5.10 allows to define stochastic integrals of the type (2.5).

VII. CONSTRUCTION OF PROCESSES USING FOCK SPACES

Fock spaces are relevant for the construction of strong algebras but not only. In this section,
we show how to construct stochastic processes using Fock spaces. Next result generalizes to the
quaternionic setting Theorem 7.4 in Ref. 10. For the notation in use, we refer the reader to Section
IV and

F[m]=∪p∈NF(mp), F̃[m]=∩p∈NF(m−p).

Theorem 7.1. Consider a sequence of differentiable functions on [0,1] such that a(t)
= (an(t))n∈N0

∈ `2(N,H) and such that

|an(t) − an(s)| ≤ |t − s| · ϕ(n), t, s ∈ [0, 1], (7.1)

where

ϕ(n)=



C · (n + 1)M (case1),

C ·Mn (case 2),
(7.2)

C and M being strictly positive constants. Let (Xa)(t)= 2Re `a(t). Then there exists a L(F[m], F̃[m])-
valued function Wa such that

d
dt

Xa(t)f =Wa(t)f , f ∈F[m] (7.3)

in the topology of F̃[m].

Proof. We divide the proof into steps.

STEP 1: There exists a weight function such that (an(t))n∈N0
∈ `2(N0,H, m−p) for some p ∈N.

In case 1, take mn = (n + 1). Then p> 2M + 2 will do. In case 2, take mn = 2n. Then we need to
chose p such that M2 < 2p.

STEP 2: There exists a weight function such that (a′n(t))n∈N0
∈ `2(N0,H, m−p) for some p ∈N.

This follows from step 1, since |a′n(t)| ≤ ϕ(n) in view of (7.1).

STEP 3: Let f ∈ `2(N0,H, m−p) for some p ∈N. Then the associated creation operator `f is bounded
from F(m−p) into itself.
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Indeed, let u= (uα)α∈˜̀∈F(m−p). Then, `f u= (fnuα)n∈N0

α∈˜̀
and

‖`f u‖2F(mp)
=

∑
n,α

|fn |
2 |uα |

2m2
nm2

α = ‖ f ‖`2(N,H,m−p)· ‖ u‖2F(m−p)
.

It follows from the previous step that

STEP 4: Xf = `f +`
∗
f is bounded from F(mp) into F(m−p), with norm less or equal to 2 ‖ f ‖`2(N,H,m−p).

The remainder of the proof consists of applying the first steps to f = a(t) and is as in
Ref. 10. �

The two cases considered in the previous theorem are just sample cases; depending on the growth
condition of the functions a′n(t), other strong algebras can be considered.

As in Sec. VI, Theorem 7.1 allows to define stochastic integrals of the type (2.5).
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