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Abstract. Big Data is an emerging area and concerns managing datasets whose 
size is beyond the ability of commonly used software tools to capture, process, 
and perform analyses in a timely way. The Big Data software market is growing 
at 32% CAR, almost four times more than the whole ICT market, and the quan-
tity of data to be analyzed is expected to double every two years. 

Security and privacy are becoming very urgent Big Data aspects that need to 
be tackled. Indeed, users share more and more personal data and user generated 
content through their mobile devices and computers to social networks and 
cloud services, losing data and content control with a serious impact on their 
own privacy. Privacy is one area that had a serious debate recently, and many 
governments require to data providers and companies to protect the users’ sen-
sitive data. To mitigate these problems, many solutions have been developed to 
provide data privacy, which, however, introduce some computational overhead 
when data is processed.  

The goal of this paper is to quantitatively evaluate the performance and cost 
impact of multiple privacy protection mechanisms. A real industry case study 
concerning tax fraud detection has been considered.  Many experiments have 
been performed to analyze the performance degradation and additional cost (re-
quired to provide a given service level) for running applications in a cloud sys-
tem. 
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1 Introduction 

Today, data is accumulating at tremendous rates by click streams from web visitors, 
supermarket transactions, sensor readings, video camera footage, GPS trails. It is 
really becoming a challenge to store and process it all in a meaningful way. Every 
day, 2.5 quintillion bytes of data are created. This is so much that the 90% of the data 
in the world today were produced within the past two years [1]. That is why the em-
bracement of Big Data is steadily increasing, it has moved from experimental projects 
to mission-critical, enterprise-wide deployments providing new insights, competitive 
advantage, and business innovation.  
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In addition, security and privacy are becoming very urgent Big Data aspects that 
need to be tackled [14]. Users share more and more personal data and user generated 
content through their mobile devices and computers to social networks and cloud 
services, losing data and content control with a serious impact on their own privacy, 
then Big Data technology should provide solid solutions to support users’ privacy 
[15].  

Big Data not only increases the scale of the challenges related to privacy and secu-
rity as they are addressed in traditional security management, but also create new ones 
that need to be approached in a new way [2]. As more data is stored and analyzed by 
organizations or governments, more regulations are needed to address these concerns. 
Achieving security in Big Data has, therefore, become one of the most important bar-
riers that could slow down the spread of technology; without adequate security guar-
antees, Big Data will not achieve the required level of trust. According to authors in 
[3], “Big Data brings big responsibility.” 

The goal of this paper is to quantitatively evaluate the performance and cost im-
pact of multiple privacy protection mechanisms. In particular, masking and encryp-
tion techniques are applied to a real industry case study in the tax fraud detection 
application domain and an extensive experimental campaign has been performed to 
analyze the efficiency of a Spark cloud based clusters against these techniques.  
Moreover, relying on our D-SPACE4Cloud tool [4] (which supports the capacity 
planning of Spark cloud clusters providing deadlines guarantees) also the cost impact 
of the privacy preserving mechanisms is evaluated. 

The structure of the paper is as follows. Section 2 describes the privacy protection 
mechanisms considered in our work. Section 3 describes the industry case study in-
troducing the logical database model being used throughout for experimental purpose. 
This section also presents the queries designed for performance degradation and cost 
impact analyses. Section 4 illustrates D-SPACE4Cloud, the tool employed for Big 
Data clusters capacity planning. Section 5 presents the comparative analyses for the 
privacy techniques while Section 6 concludes the paper.   

2 Data Privacy Solutions 

This section reviews the anonymization techniques that we have considered in our 
performance benchmarking and cost impact analyses. Data anonymization, also 
known as de-identification, consists of techniques that can be applied to prohibit the  
recovery of individual information. Information systems usually store user data in 
records and each record includes a number of attributes, which can be classified into 
three categories [23]: 

• Key attributes: attributes that uniquely identifies individuals (e.g., ID, name, social 
security number); 

• Quasi-identifiers: attributes that can be combined with external information to 
expose some individuals, or to reduce uncertainty about their identities (e.g., birth 
date, ZIP code, position, job, blood type); 
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• Sensitive attributes: attributes that contain sensitive information about individuals 
(e.g., salary, medical examinations, credit card releases). 

 
There are several anonymization techniques that can be applied on data before or 

along the process of mining, in order to protect the privacy of individual. Some of 
these existing and most used techniques are generalization, suppression, encryption 
and perturbation/masking [6]. In particular, in our work we considered perturba-
tion/masking and encryption.    

Perturbation/Masking consists of the replacement of the actual data values for 
dummy data, usually for masking databases testing or training. The general idea is to 
randomly change the data to mask sensitive information while preserving the critical 
data for data modelling. Some of the masking techniques are: 
• Replacement: random replacement for similar content, but with no relation to the 

real data. 
• Shuffling: random replacement similar to the previous technique, with the differ-

ence that the data itself is derived from the table columns. 
• Blurring: this technique is applied to numerical data and dates. The technique 

changes the values of the data for some percentage of their random real value; 
• Redaction/Nulling: this technique replaces sensitive data for null values. 

 
The masking data is used to provide information that seem real but do not reveal 

information about anyone. This technique protects the privacy of the personal data in 
the information system as well as other sensitive information that cannot be disclosed.  

On the other end, encryption uses cryptographic schemes based on public key or 
symmetric key to replace sensitive data (key_attributes, quasi-identifiers and sensitive 
attributes) for encrypted data. It transforms data to make it unreadable to those who 
do not have the authorization. 

In the remainder of the paper we will evaluate the performance degradation and 
cost impact of masking where IDs are randomly replaced and encryption with AES at 
128 and 256 bit.   

3 Netfective Technology Case Study 

Privacy preservation impact analyses have been performed on a real industry case 
study coping with fraud detection developed by Netfective Technology (NETF) with-
in the frame of the DICE H2020 European project. Big Data technologies have al-
ready proven how much they are valuable to industries. Many businesses that have 
taken advantage of Big Data management and processing systems have increased 
their effectiveness and efficiency; whether it be for healthcare, advertising, or retail. 
Fraud recognition requires a holistic approach, and a combined use of tactical or stra-
tegic methods and state-of-the-art Big Data solutions. Traditional fraud detection 
practices have not been particularly successful largely because they come into play 
after the fact. Big Data intelligence software can perceive the deviant behavior at real  
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Fig. 1. NETF’s Big Blu Architecture 

 
time, thereby enabling fiscal agencies to get better outcomes. Big Blu, the minimal 
viable product (MVP) developed by NETF sends an alert whenever a suspicious tax 
declaration enters the information system. 

Big Blu has been implemented by relying on open source state-of-the-art Big Data 
frameworks such as Kafka—to manage high rate flows of events—, Cassandra—to 
store and query massive amount of data—, and Spark—to process huge volumes of 
data. It is made of three main parts (Figure 1): 

• A graphical user interface, which is a Web application developed in HTML, 
CSS, and JavaScript. It lets fiscal agents interact with Big Blu. Via this inter-
face, they can simulate the entry of tax returns into the system, and launch 
fraud indicators to detect potentially fraudulent declarations. 

• A RESTful Web service, which makes use of the Big Data frameworks to 
implement the data analysis. It sends back its results to the user interface for 
visualization. 

• Cassandra databases are filled with taxpayers’ details, historical tax declara-
tions, tax payments, and so on.  

The application will be performing computation on all data including new generat-
ed inputs. These data have to be processed using fraud indicators, which are a set of 
rules described by a domain expert. In the case of a new fraud indicator, the software 
has to proceed to a new batch processing phase on all data. It must also to be able to 
answer any query using a merge between old batch results and new real-time compu-
tations. The user will be notified on the graphical user interface with the taxpayers 
who may be fraudulent.  In order to avoid any privacy and/or confidentiality issue, 
this paper reports results on a synthetic but realistic data set. NETF integrated to the 
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RESTful Web service a piece of software, the Taxpayers Random Generator Module 
(TRGM), able to generate, according to its needs, information describing millions of 
taxpayers. The TRGM produces realistic data using three main inputs: 

• Various kinds of configuration parameters, such as the number of taxpayers, the 
percentage of single or married taxpayers, data encodings, data structures, database 
locations, and so forth. 

• A model of tax declarations (Figure 2). 
• A model of fraud indicators, which is actually a list of known fraudulent behaviors. 

(For example: a huge change in incomes compared to last years.) This model shall 
be extensible with any new identified fraud patterns. 

Based on these three inputs, the TRGM generates millions of data to fill the Cassan-
dra cluster. These generated data are the “raw material” for the whole application. 
They are based on a dedicated relational model of tax declarations (Figure 2) con-
ceived specifically to be realistic (features could apply to a real system), generic (fea-
tures and data models could apply to multiple government agencies), and neutral (data 
are generated in order to protect the privacy of citizens and businesses).  
In the following, we consider three reference queries (see Figure 3), which will be the 
baseline for evaluating the performance and cost overhead introduced by the proposed 
privacy techniques. Query 1 accesses two tables to perform its analysis: Declare and 
TaxPayer.  

Fig. 2. Relational model of tax declarations with primary keys (underlined) and foreign keys 
(arrows) 
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It intends to measure the difference between incomes earned by a taxpayer during two 
successive years. 
This is carried out to detect fraudsters by comparing the two incomes according to 
some criteria. For instance, if the income received a certain year is less than 20% (this 
percentage can be set as a parameter) than the one received the previous year, then the 
taxpayer is suspect. Since incomes are stored in the table Declare, Query 1 executes 
two joins: the first to make sure that the two tax declarations relate to the same tax-
payer; and the second to obtain the full set of information about her/him. The result of 
this query is saved and used by other queries by passing the expected arguments, such 
as the percentage of income decrease, and the number of years to be taken under con-
sideration. Query 5 involves only the table Declare. This table contains all the infor-
mation needed to know every individual income and other credentials helpful to justi-
fy the amount of tax to be payed. Query 7 involves three tables: TaxPayer, TaxDecla-
ration, and Signatory. Each tax return must be signed by the taxpayers before they 
submit it to the fiscal agency. 
 

Query 1: 
SELECT  tp.id, , tp.gender, tp.birthdate, 
tp.birthdepartment, tp.birthcommune, d1.taxdeclaration, 
d1.declarationdate, d1.income, 
d2.taxdeclaration AS D2TAXDECLARATION,  
d2.declarationdate AS D2DECLARATIONDATE, d2.income AS D2INCOME 
FROM Declare d1 
INNER JOIN Declare d2 ON d1.taxpayer = d2.taxpayer 
INNER JOIN taxpayer tp ON d1.taxpayer = tp.id 
 

Query 5: 

SELECT  * 
FROM Declare d1 
 

Query 7: 

SELECT  tp.id,s.location, td.roomcount 
FROM taxdeclaration td, signatory s, taxpayer tp 
WHERE s.taxpayer = tp.id AND s.taxdeclaration = td.id 
 

Query 3: 

SELECT  dic.und_id, , tp.gender, tp.birthdate, 
tp.birthdepartment, tp.birthcommune, d1.taxdeclaration, 
d1.declarationdate, d1.income, 
d2.taxdeclaration AS D2TAXDECLARATION,  
d2.declarationdate AS D2DECLARATIONDATE, d2.income AS D2INCOME 
FROM Declare d1 
INNER JOIN Declare d2 ON d1.taxpayer = d2.taxpayer 
INNER JOIN taxpayer tp ON d1.taxpayer = tp.id  
INNER JOIN dictionary dic ON dic.id=tp.id 

Fig. 3. NETF case study reference queries 
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This query retrieves, among other things, the place of signature. According to mask-
ing, we introduced a dictionary table that mplements a one-to-one mapping between a 
clear ID and a masked ID. In other words, the tables in Figure 2 store masked IDs for 
the taxpayers, while the clear ID is available only in the dictionary table which has a 
restricted access. Query 3 is derived from Query 1 and adds a join to read the clear 
IDs. Similarly, Query 6 and Query 8 are derived from Query 5 and Query 7 respec-
tively (but are omitted for space limitation).  From a performance evaluation perspec-
tive, these additional joins introduce a system overhead, which might lead to a per-
formance degradation or to an additional cost if the queries needs to be run within an 
a-priori fixed deadline.  As discussed previously the second privacy mechanisms con-
sidered is encryption with AES at 128 and 256 bit.  In this case, the IDs and sensitive 
data stored in the Cassandra tables are encrypted and decryption is performed contex-
tually while running Query 1, 5 and 7. Our goals is to evaluate the encryption over-
head and its corresponding cost impact, if any, in the cluster capacity planning.  

4 D-SPACE4Cloud     

D-SPACE4Cloud [4] is the tool we used to evaluate the cost impact of privacy 
mechanisms implementation.  D-SPACE4Cloud supports the capacity planning pro-
cess of shared Hadoop Cloud clusters for MapReduce or Spark applications with 
deadline guarantees. In a nutshell, the tool implements a search space exploration able 
to determine the optimal virtual machine (VM) type, possibly from different provid-
ers, and the optimal number of instance replicas.      

The underlying optimization problem is demonstrated to be NP-hard and it is 
solved heuristically, whereas job execution times are estimated via queueing network 
(QN) or Stochastic Well Formed Net (SWN) models. 

The tool implements an optimization mechanism that efficiently explores the space 
of possible configurations, henceforth referred to as solution space. An initial solution 
is identified by relying on the solution of a Mixed Integer Non-linear Programming 
(MINLP) problem where the job duration is expressed by a machine learning model, 
which predicts application execution times given the total number of available cores 
(see [7] for further details). The fast MINLP model is exploited to determine the most 
cost effective VM type. Yet the quality of the returned solution can still be improved, 
since the MINLP problem is just an approximate model. For this reason, a more pre-
cise QN or SWN model is adopted to get a more accurate execution time assessment: 
the increased accuracy leaves room for further cost reduction. However, since QN or 
SWN simulations are time-consuming, the space of possible cluster configurations 
has to be explored in the most efficient way, avoiding evaluating unpromising config-
urations. In the light of such considerations, a heuristic approach has been adopted. A 
parallel Hill Climbing (HC) technique has been implemented to optimize the number 
of replicas of the assigned resource for each application; the goal is to find the mini-
mum number of resources to fulfill the deadline requirements. 

In particular, HC is a local-search-based procedure that operates on the current so-
lution performing a change (more often referred to as move) in the structure of the 
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solution in such a way that the newly generated solution could possibly show an im-
proved objective value. If the move is successful it is applied again on the new solu-
tion and the process is repeated until no further improvement is possible.  

The HC move consists in increasing/decreasing and changing the VM type for each 
big data application. This task is executed in parallel where possible. Parallelism is 
particularly important as each solution spawned during the optimization is evaluated 
via simulation and this is a time-consuming task. Therefore, in order to make the D-
SPACE4Cloud usable, we focused on increasing the level of parallelism as much as 
possible. In [4] we have shown that, in the worst case, the relative error between per-
formance prediction models and real applications execution can reach up to 32.97%, 
which is perfectly in line with the expected accuracy in the performance prediction 
field [8] while the average relative error is 14.13% overall. 

5 Experimental Analysis 

To evaluate the performance of the NETF application against different privacy pre-
serving mechanisms the queries reported in Figure 3 are implemented in Spark 2.0 
and run on Microsoft Azure HDInsight. We ran multiple experiments considering two 
different virtual machine types, i.e., D12v2 with 8 cores and 28GB of memory and 
D4v2 with 4 cores and 28GB. The number of executors per VM were either two or 
four. We set the maximum executor memory 8 GB as for the driver memory while 
executors were assigned two or four cores.  The number of VMs varied between 3 and 
13.  Overall, we ran experiments using up to 52 cores.  Runs were performed consid-
ering the default HDInsight configuration. In the following, baseline queries and 
anonymized queries will be compared considering the same configuration. Each query 
for each configuration was run 10 times to evaluate the average execution time. In the 
following we use the number of records in the TaxDeclaration table to express the 
dataset size. Experiments were performed in the range between 1 and 30 millions 
records. We first evaluate the performance degradation, if any, of the privacy mecha-
nisms.  In case of performance degradation, then we evaluate the cost impact through 
the D-SPACE4Cloud tool. Section 5.1 describes the experimental settings and the 
performance degradation analysis.  Section 5.2 reports cost impact evaluation. Many 
experiments have been performed but for space limitation here we listed the most 
representative ones. 

5.1 Performance Degradation Analysis 

To analyze the performance of each query running on a different dataset, multiple 
configurations were considered by varying the number of Spark worker nodes and 
executors. For 1 million dataset three and four VMs were considered with two execu-
tors each. For datasets from 5 up to 30 millions, we used 5, 6, 10, and 12 VMs. Some 
runs took hours and some were running for very long time and finally failed for stage 
timeout. The most problematic query was Query 3, introducing an additional join with  
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Fig. 4.  Performance degradation analysis of Query 5,6 for 1.5 million entries data set 

 
 
 
 
 
 
Fig. 5. Performance degradation analysis of Query 5-128 bit encrypted for 13 million entries 
data set 
 

 

Fig. 6. Performance degradation analysis of Query 5 for 30 million entries data set 

 

Fig. 7. Performance degradation analysis of Query 7 and 8 for 10 million dataset 
 

Fig. 8. Performance degradation analysis of Query 1 and 3 for 10 million dataset.  
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the dictionary table, which led to a huge traffic due to shuffle operation among stages 
and caused I/O and network saturation. 

After analyzing the above fact, we decided to increase the number of nodes for 
larger datasets (which allowed to reduce at least node I/O pressure). 13 VMs were 
considered for recurring failing configurations. Unfortunately, we did not obtain any 
results for masking with dataset size greater than 13 millions. 

Figure 4 summarizes the results we obtained for 1.5 millions of taxpayers, more 
realistic in a real context for analyses at least at a regional or local level. This type of 
analyses can be useful especially in order to get details about taxpayers in a specific 
geographic area. We can also perform analyses on a limited number of taxpayers 
regarding their age combined to their location. For instance, many cities in Europe are 
known to be very attractive for retired persons, thus they can be targeted by tax agents 
investigation. Additionally, it is common in Big Data to focus on a subset of the data 
to be processed in order to build and set-up the models/architectures to be applied in 
the future to a larger number of taxpayers.  

Figure 6 compares the different privacy mechanisms for Query 5 on 1.5 millions 
data set (recall that Query 6 introduces an additional join on Query 5 when masking is 
applied). Unfortunately, Query 6 was always failing when more than 6 nodes were 
used.  D12v2 were used in the runs and the number of cores varied between 12 and 
48. From Figure 6 it is evident that masking/join has the maximum effect on the per-
formance than other privacy techniques, while encryption has negligible performance 
effects.  Masking introduces around 28% performance degradation while the lines 
characterizing encryption overlap the plain Query 5 execution time.  Encryption has 
only 3% overhead at maximum. Query 5 behavior is also independent on the data set 
size considered.  

Figures 8 and 9 report results for 13 and 30 millions data sets ran on D12v2. At 13 
millions, experiments show that masking causes around 50% performance degrada-
tion while encryption has only 4% impact on performance. The plot in Figure 9 com-
pares unencrypted and encrypted version of Query 5 on 30 millions data set. All three 
lines in plot closely overlaps one another, which depicts there is no significant over-
head due to encryption on system performance. In some situations, encryption result-
ed even in a performance improvement, as reported in Figure 9 for Query 7 ran on 
D12v2.  This was due to the fact that encrypted data resulted in lower shuffle time. 

For Query 7, there is no significant overhead due to masking and encryption alt-
hough we could see in plot at nodes 10 Query 7 (plain) is taking maximum time. The 
cause behind this is shuffling of additional executors, which causes delay than the 
actual time taken by the plain query.  
Figure 10 reports the results for Query 1 and Query 3 at 10 million data set.  As the 
plot shows, results are very noisy.  Query 1 is very complex and takes significantly 
larger time compared to other queries.  For these reasons, performance results are 
more affected by resource contention, which characterizes cloud environments.  In 
such scenario Query 1 was always failing for all datasets with size more than 10 mil-
lion. Query 3 was more time consuming so runs were taken against two different con-
figurations that is 10 and 12 executors. The above analysis (see Figure 10) shows that 
overhead on performance due to masking is around 12%. The green line shows time 
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for 128 bit encryption, initially it is taking more time than 256 bit encryption, but then 
they both closely overlaps. We guess that this anomalous behavior was due to cloud 
resource contention and, given also the limited impact, the data we measured was 
affected by noise. This experiment shows the overall impact due to encryption on 
system performance is only 2%.   

5.2 Cost impact analysis 

In case of performance degradation, we used D-SPACE4Cloud to evaluate the cost 
impact of the implementation of privacy mechanisms when the two versions of the 
same query (i.e., plain and anonymized) need to be executed within the same dead-
line. The initial deadline was set according the time measured on the real system with 
the smallest configuration. The deadline is decreased iteratively with a step whose 
range is [5, 500] seconds.  The difference was not fixed and varied according to the 
data size and privacy technique being considered. This way, multiple optimization 
instances are considered for each experiment.   

Initially we considered Query 5 and 6 at 1.5 millions dataset with 85s initial dead-
line. Then, the deadline was iteratively decreased by 20s in order to consider 10 opti-
mization instances. The results are reported in Figure 12. From the experimental re-
sults, one can see that above 45s and for 20s no extra costs are incurred while for 25 
and 15s deadline the cost overhead due to the masking technique is in between 50 and 
66%. Deadlines lower than 15s resulted to be too strict and D-SPACE4Cloud did not 
find any feasible solution.  

Figure 13 reports the results of for Query 1 and 3, when 10 millions entries data set 
is considered for performance profiling. The initial deadline is set to 3,500s that is 
maximum of the execution time of both queries registered on the real cluster and 
which is iteratively reduced by 500s. The results show that cost overhead due to 
masking technique is between 33 and 40%, and no extra costs are incurred for dead-
lines larger than 2500s. Deadlines lower than 1500s were too strict and no feasible 
solutions were found.  

Further experiments were targeted for encryption. We selected data set 10 million 
and we evaluated Query 7, AES 256 bit encrypted and unencrypted for which we 
registered the largest performance degradation that is 5%.  In this way, the results we 
achieve will be conservative. 80s was set as initial deadline, which was then iterative-
ly reduced by 5s. The results are reported in Figure 12 which shows that 50% cost 
overhead is achieved at 40s, which is also the minimum deadline that can be support-
ed by the system (otherwise no feasible solution can be found). 

Finally, we report the results we achieved by considering the largest data set, i.e., 
30 million, for Query 5. 80s was set as initial deadline, which then was iteratively 
reduced by 20s. Figure 12 reports the cost for AES 256 bit encryption. The experi-
ment shows that cost ratio due to encryption is only 13% at maximum. While below 
40 seconds D-SPACE4Cloud could not find any feasible solution.  

From the results we achieved we can conclude that masking causes more overhead 
than encryption while there is no significant difference between 128 and 256 bit en-
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cryption. The cost overhead due to masking in the worst case was around 66%, while 
for encryption was 50%.  
 
 
 

 

 
 

 
 

Fig. 9. Cost evaluation of Query 5 to 6 by varying deadlines for 1.5 million data set 
 
 

Fig. 10. Cost ratio evaluation of Query 1 to 3 by varying deadlines for 10 million dataset 
 

 

 

 

 

Fig. 11. Cost evaluation of Query 7, 256 bit encrypted to unencrypted by varying deadlines for 
10 million dataset 

 

Fig.12. Cost ratio evaluation of Query 5, 256 bit encrypted to unencrypted by varying deadlines 
for data 30 million 
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6       Related work 
In Big Data systems, security and privacy issues are magnified by velocity, volume 

and variety. Therefore, traditional security mechanisms, which are tailored to securing 
small-scale security and privacy challenges, are inadequate.  Authors in [5] overviews 
the most relevant security threats for Big Data infrastructures while the work in [10] 
provides an analysis of Big Data privacy models. Privacy issues and current techno-
logical solutions are surveyed in [9]. To the best of our knowledge, this paper is one 
of the first attempt to quantitatively evaluate the performance overhead of privacy 
implementation and its impact on cloud operational costs.   

From the side of the capacity planning literature, architecture design space explora-
tion is an important topic [11,12]. High level models and tools to support software 
architects (see, e.g., Palladio Component Model and PerOptirex design environment 
[16,17], or stochastic process algebra [18] and the PEPA Eclipse plugin [20]) have 
been proposed for identifying the best configuration given a set of quality of service 
requirements. Unfortunately, such works neither support Cloud-specific abstractions 
nor consider Big Data applications. On the other side, capacity management and clus-
ter sizing for Big Data applications has received also a widespread interest by both 
academia and industry. The starting point is the consideration that Hadoop often re-
quires an intense tuning phase in order to exhibit its full potential. Starfish, a self-
tuning system for analytics on Hadoop, has been proposed [19]. The resource provi-
sioning problem, instead, has been faced in [21]. The goal is the minimization of the 
execution cost for a single application. Authors present a cost model that depends on 
the dataset size and on some characteristics of the considered application. In [22], the 
ARIA framework is presented. This work is the closest to D-SAPCE4Cloud and fo-
cuses on Map Reduce clusters dedicated to single user classes aiming at avoiding as 
much as possible over-provisioning costs. All the above-mentioned works are based 
on Hadoop 1.0, where CPU slots are statically allocated to Map and Reduce tasks and 
the basic FIFO scheduler is considered. To the best of our knowledge, D-
SPACE4Cloud is one of the first tool coping with Hadoop 2.x and Spark applications.  
 
7      Conclusions  
We presented an extended experimental campaign aimed at evaluating the perfor-
mance degradation and cost impact of masking and encryption privacy mechanisms in 
a real industry case study. Our results have shown that encryption has a minor impact 
on performance and costs whilst performance degradation does not always result in 
additional costs. Future work will integrate the D-SPACE4Cloud tool within a 
framework that automatically modifies queries and the underlying data representation 
to obtain informed decisions on privacy impact in a pre-production environment. 
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