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Abstract Equations governing flow and transport in randomly heterogeneous porous media are sto-
chastic and scale dependent. In the moment equation (ME) method, exact deterministic equations for
the leading moments of state variables are obtained at the same support scale as the governing equa-
tions. Computable approximations of the MEs can be derived via perturbation expansion in orders of
the standard deviation of the random model parameters. As such, their convergence is guaranteed
only for standard deviation smaller than one. Here, we consider steady-state saturated flow in a
porous medium with random second-order stationary conductivity field. We show it is possible to
identify a support scale g� , where the typically employed approximate formulations of MEs yield accu-
rate (statistical) moments of a target state variable. Therefore, at support scale g� and larger, MEs pre-
sent an attractive alternative to slowly convergent Monte Carlo (MC) methods whenever lead-order
statistical moments of a target state variable are needed. We also demonstrate that a surrogate model
for statistical moments can be constructed from MC simulations at larger support scales and be used
to accurately estimate moments at smaller scales, where MC simulations are expensive and the ME
method is not applicable.

Plain Language Summary Equations governing flow and transport in randomly heterogeneous
porous media are stochastic and scale dependent. In the moment equation method, exact deterministic
equations for the leading moments of state variables are obtained at the same support scale as the govern-
ing equations. Computable approximations of these equations can be derived via perturbation expansion
in orders of the standard deviation of the random model parameters. As such, their convergence is guaran-
teed only for standard deviation smaller than one. Here, we consider steady-state saturated flow in a porous
medium with random second-order stationary conductivity field. We show it is possible to identify a support
scale, where the typically employed approximate formulations of moment equations yield accurate
moments of a target state variable.

1. Introduction

Because of the complexity and inherent uncertainty of natural systems, uncertainty quantification (UQ) has
become an essential part of predictive modeling. Mathematical models (usually in the form of partial differ-
ential equations [PDEs]) of natural systems are defined on a certain support scale. For example, the Darcy
equation, which provides a continuum description of flow in porous media, can be obtained by integrating
the Navier-Stokes equations, describing flow on the pore scale, over a volume of size g, the support scale of
the Darcy equation.

Unknown parameter distributions (space-dependent coefficients in the governing equations) are a common
cause of uncertainty in numerical models. Parameter values can be obtained from experiments conducted
at different (measurement) scales gm, depending on the type and resolution of an experiment. Uncertain
parameters are typically modeled as random functions of space, rendering governing equations stochastic.
The parameter statistics may depend on the measurement scale. For example, the variance of hydraulic
conductivity tends to decrease, while its correlation length increases with increasing measurement scale
(Attinger, 2003; Neuman & Di Federico, 2003; Tartakovsky et al., 2004).
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It is well understood that governing equations and data should be defined on the same support scale.
Neuman and Orr (1993) state that this support scale should be equal to the measurement scale (i.e.,
g � gm) to be able to constrain a model on data. We argue that the support scale of a model does not
necessarily need to coincide with the measurement scale. In practice, it is common to deal with a range
of measurement scales for different parameters, even for the same parameter (e.g., Li et al., 2009; Van-
marcke, 2010).

In this work, we study the stochastic PDEs solution dependence on g. The support g defines the model
resolution and depends on (should be much smaller than) the domain size and/or the smallest modeled
feature. The support scale should not be confused with the (numerical) resolution (e.g., grid size) of a
numerical solution of governing equations, which is determined by the desired numerical accuracy. We
mostly focus on problems where parameters are described as second-order stationary fields and discuss
how data measurements (at scale gm) can be used to constrain the model at the scale g. The proposed
treatment of random properties of porous media differs from the multiscale approach of Neuman and Di
Federico (2003) that treats statistical properties of data as a function of the observation scale (e.g., domain
size).

Over the past three to four decades, many UQ methods have been proposed, including methods to com-
pute the probability density function (PDF) (Tartakovsky & Broyda, 2011; Wang et al., 2013, 2015) or leading
statistical moments of the state variables. For subsurface flow problems, the methods most commonly
employed for UQ can be ascribed to three main categories: Monte Carlo (MC), polynomial chaos (PC), and
moment equation (ME) methods.

The MC and PC methods are based on the approximation of random input parameters with a finite num-
ber N of random variables (e.g., by means of the Karhunen-Lo�eve [KL] expansion) (Lin & Tartakovsky,
2009, 2010; Lin et al., 2010). For a given approximation error, N increases with the decreasing correlation
length (relative to the domain size) of random system/model parameters. A significant disadvantage of
the PC method, often called ‘‘the curse of dimensionality,’’ is that its operation count grows exponentially
with N (Xiu, 2009). On the other hand, the MC method’s operation count is much less sensitive to N. A key
limitation of the MC method resides in its low convergence rate, which requires a large number of realiza-
tions to compute accurate statistics of the state variables (Ballio & Guadagnini, 2004). As such, while the
MC method is conceptually simple and relatively straightforward to implement, its effectiveness can be
severely limited for large-scale problems requiring high model resolution.

The key idea underlying ME methods is to derive a set of PDEs that are directly satisfied by the leading (sta-
tistical) moments of the quantities of interest (QoIs) (Neuman & Orr, 1993; Tartakovsky & Neuman, 1998). As
such, MEs are defined on the same support scale as the governing stochastic PDEs (Tartakovsky et al., 2004).
Computable approximations of otherwise exact MEs can be obtained via perturbation expansion of
moments of the state variables in orders of the standard deviation of the random inputs (Morales-Casique
et al., 2006; Neuman & Orr, 1993; Tartakovsky & Neuman, 1998; Tartakovsky et al., 2002, 2003; Ye et al.,
2004).

Several studies have demonstrated that for some special cases, the ME method can be accurate for the
standard deviation of the input parameters as large as 2.0–4.0 (Guadagnini & Neuman, 1999b; Guadagnini
et al., 2003; Riva et al., 2001), even though the guaranteed convergence of the ME methods requires the
standard deviation be smaller than one. We should also note that moment solutions of stochastic
advection-diffusion equations with random advection velocity become unphysical (e.g., negative mean con-
centration develops) with time even for standard deviation of velocity smaller than one (Jarman & Tartakov-
sky, 2008, 2011, 2013; Morales-Casique et al., 2006).

When applicable, the ME method has shown to be computationally more efficient for computing the lead-
ing moments of the random state variables than the traditional MC method (Ye et al., 2004). Recently, MEs
have been used for including geostatistical inverse modeling and field data assimilation of groundwater
flow (Hernandez et al., 2003, 2006; Panzeri et al., 2013, 2014, 2015).

In many environmental applications, including flow and transport settings in the subsurface, the standard
deviation of the model parameters can be significantly larger than one, and the correlation length can be
much smaller than the domain size. Therefore, the ME and PC methods cannot be readily applied. A
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commonly encountered scenario also involves the need to condition model predictions on measurements
associated with scales much smaller than the domain size. For example, in subsurface reservoir flow prob-
lems, the hydraulic conductivity is estimated from laboratory experiments on scales ranging from 0.01 to
0.1 m, while the typical size of a reservoir for environmental and/or industrial applications may range from
104 to 106 m. In such systems, it may not be necessary for the support scale of the governing equations to
be as small as the measurement scale of the parameters.

In this work, we focus on the ME method’s application to problems with highly heterogeneous parameters,
i.e., parameters with standard deviation much larger than one and spatial correlation scale much smaller
than a characteristic domain length. Specifically, we consider groundwater flow in highly heterogeneous
porous media, described by the combination of the continuity equation and Darcy’s law with a random, cor-
related-in-space conductivity field. We demonstrate that it is possible to determine the support scale of the
Darcy equation g�, where the standard deviation of the (natural) logarithm of conductivity is equal to one,
and the ME method provides an accurate solution for the leading-order statistical moments of hydraulic
head. If g� is much smaller than the domain size, the proposed approach provides sufficiently resolved
moment solutions, and it can be used as a computationally efficient alternative to the MC method for the
characterization of key statistical moments of the state variables of interest.

For problems where a solution is needed at a scale significantly smaller than g�, we propose a surrogate
model approach. We demonstrate that a surrogate model for leading statistical moments can be con-
structed from MC simulations at larger support scales and used to accurately estimate moments at smaller
scales, where MC simulations are expensive and the ME applicability is not guaranteed due to the large
parameter variance at these scales.

2. Flow Equations

The description of flow in porous media depends on the domain size and desired model resolution. At the
pore scale, incompressible isothermal low Reynolds number fluid flow in a porous medium occupying vol-
ume X is described by the continuity equation

@q
@t

52r � qvðxÞ½ � x 2 Xp (1)

and the Stokes equation

2rP1lr2v1qg50 x 2 Xp (2)

subject to the no-flow boundary condition at the boundary @Xp of the domain Xp occupied by pores,
Xp � X (Bear, 2013). Here, q, P, and v are the fluid (pore-scale) density, pressure, and velocity, all
defined on Xp. The continuum description of the flow in porous media is obtained by first defining the
effective density qg , pressure Pg, and velocity vg (Bear, 2013):

qgðxÞ5
1

hgjjXgjj

ð
Xg

qðyÞdy (3)

PgðxÞ5
1

hgjjXgjj

ð
Xg

PðyÞdy (4)

vgðxÞ5
1

hgjjXgjj

ð
Xg

vðyÞdy (5)

where the averaging volume XgðxÞ is a volume with the characteristic size g (e.g., a sphere with the radius g)
centered at x; q, P, and v are assumed to be equal to zero within the solid phase; jjXgjj is the volume of Xg;
and hg is the porosity defined as the ratio of the pore volume, within Xg, to jjXgjj. Next, equations for the
effective variables can be obtained by averaging the pore-scale Stokes and continuity equations over Xg

(using, for example, the method of volume averaging (Bear, 2013)) in the form of the (effective) continuity
equation
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@qg

@t
52r � qgqgðxÞ

� �
(6)

and the Darcy equation

qgðxÞ52
kgðxÞqgg

l
rhgðxÞ hgðxÞ5

PgðxÞ
qg

1z (7)

where hg is the hydraulic head, qg5hgvg is the Darcy flux, and the permeability kgðxÞ is a property of
the porous medium at the scale g. Therefore, we refer to g as the support of the governing equations
(6) and (7) and all effective variables in these equations. It is important to note that all variables and
parameters in equations (6) and (7) must have the same support g. This means the parameters mea-
sured on the scale gm that differ from g must be upscaled (or downscaled) to the scale g, or g should
be set equal to gm. In homogeneous porous media, kg is independent of g (and x) for g larger than
the size of the so-called ‘‘representative elementary volume’’ (REV). In heterogeneous porous media,
the REV concept is ambiguous. A REV can be difficult or impossible to define because in the heteroge-
neous porous media, kgðxÞ and the state variables in equations (6) and (7) may strongly depend on g
or gm (De Marsily, 1986; Neuman, 2014). For example, Neuman (1994) and Clauser (1992) demonstrate
that permeability values may vary by more than 10 orders of magnitude as gm changes from centi-
meters to kilometers.

We are interested in groundwater flow in randomly heterogeneous porous media with known ensemble
permeability statistics but deterministically unknown spatial permeability distribution. Key permeability sta-
tistics can be obtained from available permeability measurements collected on the scale gm. We start by set-
ting the support scale of the model equal to the measurement scale, g05gm, and, following a common
practice in hydrology, assume that kg0

has a lognormal distribution, i.e., kg0
5exp ðYg0

Þ, and Yg0
is a normally

distributed random function of space. We also assume that Yg0
has variance r2

Yg0
, and the covariance

function

CYg0
ðx; yÞ5Y 0g0

ðxÞY 0g0
ðyÞ5r2

Yg0
exp 2

jx2yj
lg0

� �
(8)

where the overbar indicates expectation (ensemble average), x and y are two locations in the domain, lg0
is

the correlation length, and primed quantities indicate random fluctuations around the expected (or mean)
value. We consider porous media with large variance and small correlation length, i.e., r2

Yg0
� 1 and lg0

	 L
(L being domain size). We exemplify our findings by considering a two-dimensional system, where the per-
meability field is characterized by r2

Yg0
55 and lg0

=L55=268 
 0:02. One realization of this field, obtained
with a Sequential Gaussian Simulation based on SGSIM (Deutsch & Journel, 1998), is depicted in Figure 1a.
For porous media with such statistics of kg0

, the ME method fails to provide the accurate solution of equa-
tions (6) and (7), which is demonstrated in section 4, where we show that the ME method produces 
 20%
error in the hydraulic head variance estimate. Therefore, the only readily available method in this case is the
MC method. In the following, we propose an alternative to MC and demonstrate that we can define the sup-
port scale g� > g0, on which an accurate moment solution of equations (6) and (7) for the variance of h can
be obtained.

3. Scale-Dependent Statistics of Log-Permeability Field

It has been empirically shown (Tartakovsky et al., 2004) that the exponential covariance function of Yg at
any support g can be approximated as

CYgðjx2yjÞ5r2
Yg

exp 2
jx2yj

lg

� �
(9)

where r2
Yg

and lg are the (scale-dependent) variance and correlation length of Yg.

To empirically determine the scaling relationships r2
Yg
ðg; g0;r

2
Yg0
Þ and lgðg; g0; lg0

Þ, we generate realiza-
tions of Yg for different g. We first simulate 10,000 unconditional realizations of the log-permeability
field, Yg0

, in the 268 3 268 computational domain with the unit grid size (g051) using the SGSIM soft-
ware (as in Figure 1a). Then, we obtain Yg (g52; 4; 8; 16, and 32) by sequentially coarsening Yg0

using
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a moving averaging window approach with the window size g. Based on Attinger (2003), we assume
Yg to be the arithmetic mean of Yg0

(i.e., kg is the geometric mean of kg0
) within the window of size g

and compute it as

ðYgÞij5
1
g2

Xi1g=2

l5i2g=211

Xj1g=2

m5j2g=211

ðYg0
Þlm i; j51; 2; . . . ; 268 (10)

In this work, we do not change the numerical resolution with increasing support of Y, i.e., Yg (g � 2) is
defined on the domain 268 3 268 with the unit grid size.

Figure 1 depicts one realization of kg for g51; 2; 4; 8; 16, and 32. Figure 2 shows the variogram, cYg
ðzÞ, of Yg

for g51; 2; 4; 8; 16, and 32, numerically computed from the realizations of Yg , and equation (9) as cYg
ðzÞ5

r2
Yg

2CYgðzÞ (z is the separation distance). In equation (9), r2
Yg

and lg are found from fitting the variogram
computed from the realizations of Yg . Figure 3 shows r2

Yg
and lg as functions of g=g0. We propose the follow-

ing relationship for r2
Yg

as a function of g:

Figure 1. Sample realization of the random log-permeability field Yg5ln Kg as a function of g: (a) g 5 1; (b) g 5 2; (c) g 5 4; (d) g 5 8; (e) g 5 16; and (f) g 5 32.
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r2
Yg

5r2
Yg0

1

11 g
g0

21
h ib1

1
b2

0
B@

1
CA

b3

(11)

where b151; b2510, and b351:56 are found from the best fit to the
numerical results. A similar expression was derived in Attinger (2003)
for the Gaussian covariance function with b152; b254, and b352.

A relationship for lYg as a function of g is proposed in the form:

lg5c

�
g
g0

21

�
1lg0

(12)

where c 5 0.5. Figure 3 shows that the correlation length of Y
increases, and variance decreases with increasing g.

The covariance ~C Ygðjx2yjÞ can be obtained by first taking a contin-
uum limit of equation (10)

~Y 0gðxÞ5
1
g2

ð
XgðxÞ

Y 0g0
ðx0Þdx0 (13)

multiplying the left-hand side of (13) with ~Y 0gðyÞ and the right-hand
side with 1

g2

Ð
XgðyÞY

0
g0
ðy0Þdy0 and taking the average:

~C Yg ðjx2yjÞ5 1
g4

ð
XgðxÞ

ð
XgðyÞ

CYg0
ðjx02y0jÞdx0dy0 (14)

Here,~denotes variables and functions obtained by taking a continuum limit of the corresponding quan-
tity. For ‘‘separable’’ exponential, Gaussian, and spherical correlation functions CYg0

ðjx02y0jÞ; ~C Ygðjx2yjÞ
can be obtained in a closed form (Journel & Huijbregts, 1978; Neuman & Depner, 1988; Vanmarcke,
2010; Li et al., 2009). It follows from equation (14) that CYg0

ðjx2yjÞ5 lim g!0
~C Ygðjx2yjÞ, meaning ~C Ygðjx

2yjÞ implicitly assumes that the support of Yg0
is zero, i.e., g050. Therefore, ~C Ygðjx2yjÞ is expected to

be an accurate model for g� g0. On the other hand, the proposed covariance function CYgðjx2yjÞ
reduces to CYg0

ðjx2yjÞ as g! g0 for any nonzero g0. Finally, we note that the coarsening log-
conductivity (or permeability) model (10) and its continuum form (13) have been shown to be accurate
for saturated flow problems (e.g., Attinger, 2003; Neuman & Depner, 1988). Extending the proposed
framework to unsaturated and multiphase flow problems may require other models for upscaling log-
permeability (Das & Hassanizadeh, 2005).

Figure 2. Variogram of Yg as a function of g, computed numerically (dashed
lines) from the realizations of Yg and fitting equation (9) (solid lines).

Figure 3. Open circles denote (a) variance and (b) correlation length of Yg versus g=g0, found from fitting equation (9) to the variograms computed from realiza-
tions of Yg . The solid line denotes variance and correlation length found from equations (11) and (12).
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4. Moment Equations

Exact nonlocal (integro-differential) MEs for the mean and covariance of h, satisfying the steady-state form
of equations (6) and (7) subject to appropriate boundary conditions, are derived in Neuman and Orr (1993).
Closed-form formulations and finite elements discretization of these steady-state MEs are given in Guadag-
nini and Neuman (1999a). The closed-form equations approximate the moments of the flow equations (6)
and (7) based on a perturbation method, where all state variables and random parameters are expressed as
series expansions in powers of rYg . The computable form of the MEs is obtained by collecting the terms of
the same order and averaging the resulting equations in the probability space.

Here, we focus on analyzing the zero- and second-order approximations of the unconditional steady-state
solution of equations (6) and (7) for (ensemble) mean and variance-covariance of h. We solve these equa-
tions on a rectangular domain ½0; 268�3½0; 268� subject to the boundary conditions:

hðx50; yÞ5H; hðx5268; yÞ50 y 2 ð0; 268Þ (15)

@h
@y

����
y50

5
@h
@y

����
y5268

50 x 2 ð0; 268Þ (16)

The zero- and second-order approximations of the mean head, h xð Þð0Þ and h xð Þð2Þ, respectively, satisfy (Gua-
dagnini & Neuman, 1999a):

r � KGg xð Þrh xð Þð0Þ
h i

50 (17)

r � KGg xð Þ rh xð Þð2Þ1
r2

Yg
ðxÞ

2
rh xð Þð0Þ

" #
1rð2ÞðxÞ

( )
50 (18)

rð2ÞðxÞ5
ð

KGg xð ÞKGg xð ÞCYgðx; yÞrxrT
y G y; xð Þð0Þdy (19)

All quantities are defined on the support g, KGg is the geometric mean of the conductivity field, and
G y; xð Þð0Þ is the zero-order approximation of the (ensemble) mean Green’s function of the problem
adjoint to equations (6) and (7) subject to the homogeneous version of the boundary conditions
(15) and (16) (for details, refer to Guadagnini and Neuman (1999a)).

The equation satisfied by the second-order approximation of the head covariance Cð2Þh ðy; xÞ is

ry � KGg yð ÞCð2Þh ðy; xÞ
h i

52ry � uð2Þðy; xÞry h xð Þð0Þ
h i

(20)

where

uð2Þðx; yÞ52KGg xð Þ
ð
rT

z h zð Þð0Þrz G z; yð Þð0ÞKGg zð ÞCYgðz; xÞdz (21)

We illustrate our results by considering the spatial distribution of head variance, which is critical in the con-
text of environmental UQ. For a given support scale g, the numerical solution of the MEs is performed by
employing the algorithms and codes presented by Guadagnini and Neuman (1999a) and following the
same approach as Guadagnini and Neuman (1999b). The ME’s solution is then compared against r2

hg

obtained from the MC method. In the MC method, we generate 10,000 realizations of kg5exp ðYgÞ for g51;
2; 4; 8; 16; and 32 (section 3 describes how realizations of Yg are generated) and numerically solve equations
(6) and (7) for each realization of kg. Moments of hg are then calculated from the sample of available realiza-
tions. MC does not require any particular assumptions, and, in the following, we consider r2

hg
obtained from

MC as reference values against which the ME solutions are compared for all analyzed values of g.

Figure 4 depicts the spatial distribution of normalized head variance r2
hg

obtained from the ME and
MC methods. Interpretation of these results should be performed in conjunction with the analysis of Fig-
ure 2, where it shows that r2

Yg
> 1 for g < 32 and r2

Yg
50:5 for g 5 32. As expected, values of r2

hg
obtained

from the two methods are in agreement for r2
Yg
< 1, which is consistent with the ME method’s accuracy for

small variances of Y. For r2
Yg
> 1, the ME method tends to underestimate r2

hg
, by as much as 20% for r2

Yg
55

and g 5 1.
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Our results confirm that the ME method does not yield an accurate
prediction of r2

hg
for small values of g. The main conclusion of this

study is that it is possible to define g� so an accurate solution for the
variance of hg� can be obtained through the ME method. The limit-
ing condition for g� is that r2

Yg�
51, which coincides with the neces-

sary condition for convergence of the series expansion upon which
workable approximations of MEs are built. An estimate of g� can be
obtained through equation (11) as

g�5g0 b2 r2
Yg0

� �1=b3

2b2

� �1=b1

1g0 (22)

An important question remains regarding how to condition the esti-
mate of g� on data collected at the scale g0. While we are not
addressing this question directly in the present study, we hypothe-
size that the conditioning could be done via the conditioned covari-
ance function (Li et al., 2009):

Cc
Yg
ðx; yÞ5CYgðx; yÞ2

XN

i51

aiðxÞCYg;Yg0
ðy; xiÞ (23)

where the coefficients aiðxÞ are found from the so-called ‘‘kriging
equations:’’

XN

i51

aiðxÞCYgðxi; xjÞ5CYg ;Yg0
ðx; xjÞ; j51;N (24)

where xj ðj51;NÞ are data locations. The unconditional cross-
covariance function between YgðxÞ and Yg0

ðyÞ can be found (in two-
dimensions) as

CYg;Yg0
ðjx2yjÞ5 1

g4

ð
XgðxÞ

ð
Xg0 ðyÞ

CYg0
ðjx02y0jÞdx0dy0 (25)

Then, the ‘‘conditional’’ g� can be found as the solution of the
equation:

max
x

Cc
Yg�
ðx; x; g�Þ51 (26)

5. Surrogate Model

In some problems, it may be required to estimate the solution (statistical moments) at the scale g that
is much smaller than g� . As mentioned, the ME method could result in large errors at such small scales.
On the other hand, MC might be prohibitively expensive for small g. This is because the grid size in MC
simulations should be 
 g=5, and the cost of each realization of MC scales as ðL=gÞxd , where L is the
domain size, d is the number of dimensions, and x > 1 is a solver-dependent constant. Furthermore,
the MC convergence rate for the nth moment is proportional to r2n

Yg
N20:5

MC . Therefore, achieving a given
accuracy for smaller g (and larger standard deviation rYg ) requires computing a significantly larger num-
ber of realizations NMC. A detailed analysis of the MC computational cost can be found in Leube et al.
(2013).

We propose to use a surrogate model for r2
hg

as a function of g to predict head variance for small values of
g. The idea here is to construct a surrogate model using MC simulations for larger support scales than ones
where we need to estimate moments.

Figure 5 shows the normalized head variance in the domain center r2
hg
=r2

Yg
, obtained from the MC simula-

tions, as a function of g. Figure 5 also shows the surrogate model of r2
hg

,

Figure 4. Variance of hydraulic head r2
hg
ðx; yÞ as a function of g and space,

computed from the MC and ME methods: (a) r2
hg
ðx; y5128Þ and (b)

r2
hg
ðx5128; yÞ.
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r2
hg
ðgÞ

r2
Yg

50:0002g210:01g10:089 (27)

found by fitting a second-degree polynomial to r2
hg

computed from
MC simulations with the three largest values of g (g58; 16, and 32).
In general, surrogate models are less accurate for extrapolation
than interpolation of results. However, because the dependence of
r2

hg
on g is monotonic, the surrogate model can accurately predict

r2
hg

for the smallest support scales (g51; 2, and 4) with an error
smaller than 0.4%. Here, the specific form of a surrogate model will
depend on the governing equations and QoIs. Also, there are a
number of advanced methods to construct (accurate) high-order
surrogate models with a relatively small number of sampling points
(Qian et al., 2006). In this study, we show that a simple, second-
order polynomial function found by least squares fitting produces

an accurate surrogate model, but, in general, the choice of the method to construct a surrogate model
depends on the smoothness of the QoI in the space of g.

6. Conclusions

We have analyzed the scale dependence of the solutions of stochastic equations describing two-
dimensional steady-state flow in randomly heterogeneous porous media with random second-order statio-
nery hydraulic conductivity. Our work leads to the following conclusions:

1. It is possible to identify a suitable support scale g�, where r2
Yg�
� 1. Therefore, the perturbative solution

of MEs is expected to be accurate. We demonstrate this concept by comparing the second-order ME
solution of the head variance with the head variance obtained from the MC simulations.

2. The value of g� can be found from equations (11) and (22).
3. It is possible to estimate the value of statistical moments at small g using a surrogate model constructed

from MC with larger g. Because the computational cost of MC increases with decreasing g, the surrogate
model can lead to significant computational savings.

4. While our study focuses on the ME approach, it is also useful to note that the PC method also may bene-
fit from the proposed approach as its computational cost decreases with increasing support (and increas-
ing correlation length) of random parameters, i.e., it is possible to determine the support g� at which the
correlation length is large enough (relative to the domain size) for the PC method to be computationally
attractive. A detailed study of the computational cost dependence of PC methods on the support of ran-
dom parameters is a subject for future research.
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