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Abstract. An abstract version of the fourth-order equation

∂ttttu+ α∂tttu+ β∂ttu− γ∆∂ttu− δ∆∂tu− ϱ∆u = 0

subject to the homogeneous Dirichlet boundary condition is analyzed. Such a model
encompasses the Moore-Gibson-Thompson equation with memory in presence of an ex-
ponential kernel. The stability properties of the related solution semigroup are inves-
tigated. In particular, a necessary and sufficient condition for exponential stability is
established, in terms of the values of certain stability numbers depending on the strictly
positive parameters α, β, γ, δ, ϱ.

1. Introduction

1.1. Motivations. Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. We
consider for every t > 0 the Moore-Gibson-Thompson (MGT) equation with memory
treated in [3, 7, 8]

(1.1) ∂tttu+ a∂ttu− b∆∂tu− c∆u+

∫ t

0

g(s)∆u(t− s)ds = 0

in the unknown variable u = u(x, t) : Ω × [0,∞) → R subject to the homogeneous
Dirichlet boundary condition

u(x, t)|x∈∂Ω = 0.

Here a, b, c are strictly positive constants complying with the structural constraint

µ := b− c

a
≥ 0,

while the so-called memory kernel g ∈ W 1,1(R+) is a (nonnegative) nonincreasing abso-
lutely continuous convex function on R+ = (0,∞) of total mass

(1.2)

∫ ∞

0

g(s)ds < c,

satisfying for some ℓ > 0 the relation

(1.3) g′(s) + ℓg(s) ≤ 0, ∀s ∈ R+.

The equation is supplemented with the initial conditions assigned at time t = 0

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), ∂ttu(x, 0) = w0(x),
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being u0, v0, w0 : Ω → R prescribed data.

• When g ≡ 0, the model boils down to the MGT equation arising in acoustics

(1.4) ∂tttu+ a∂ttu− b∆∂tu− c∆u = 0,

accounting for the second sound effects and the associated thermal relaxation in viscous
fluids [5, 10, 11, 13, 14]. The asymptotic properties of the solutions to (1.4) have been
studied by several authors (see e.g. [4, 6, 9]). Summarizing the earlier literature, such an
equation generates a semigroup on the natural weak energy space which is exponentially
stable if and only if µ > 0, whereas the energy is conserved when µ = 0. It is worth
mentioning that the semigroup exists also if µ < 0, but in that case the energy blows up
as time goes to infinity.

• When g ̸≡ 0, the memory term introduces further dissipation. Hence, as expected, for
µ > 0, the energy Q(t) associated to (1.1) and defined as

Q(t) = ∥∇u(t)∥2L2(Ω) + ∥∇∂tu(t)∥2L2(Ω) + ∥∂ttu(t)∥2L2(Ω)

−
∫ t

0

g′(s)∥∇(u(t)− u(t− s))∥2L2(Ω)ds

decays exponentially to zero as well (see [7, 8]), that is,

Q(t) ≤ CQ(0)e−ωt,

for some ω > 0 and C ≥ 1. Nevertheless, since the dissipation mechanism of (1.1) is
stronger than the one of (1.4), one might think that exponential stability occurs also in
the case µ = 0. On the contrary, as shown in the recent paper [3], when µ = 0 the memory
contribution is capable to drive the system to zero, i.e. for every fixed initial energy Q(0)
it is always true that

lim
t→∞

Q(t) = 0,

but the decay is not exponential.

1.2. The fourth-order equation. From the physical viewpoint, the most relevant case
in connection with (1.1) is the one of the (negative) exponential kernel

g(s) = de−ℓs,

where the strictly positive constants d, ℓ fulfill the relation

d

ℓ
< c,

in compliance with (1.2)-(1.3). In this situation, equation (1.1) reads

(1.5) ∂tttu+ a∂ttu− b∆∂tu− c∆u+ d

∫ t

0

e−ℓs∆u(t− s)ds = 0.

Then, taking the sum
∂t(1.5) + ℓ(1.5),

we obtain

(1.6) ∂ttttu+ (a+ ℓ)∂tttu+ aℓ∂ttu− b∆∂ttu− (c+ bℓ)∆∂tu− (cℓ− d)∆u = 0.
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Motivated by the discussion above, we consider in more generality the boundary value
problem

(1.7)

{
∂ttttu+ α∂tttu+ β∂ttu− γ∆∂ttu− δ∆∂tu− ϱ∆u = 0,

u|∂Ω = 0,

for some parameters
α, β, γ, δ, ϱ > 0.

As we will see, problem (1.7) is well-posed in the natural weak energy space

H = H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω)× L2(Ω)

for any choice of the (positive) structural parameters. At the same time, the associ-
ated solution semigroup S(t) exhibits an extremely rich dynamics, which turns out to be
dramatically influenced by the two stability numbers

(1.8) κ = γ − δ

α
and ϖ = β − ϱα

δ
,

and by the first eigenvalue λ1 > 0 of the Laplace-Dirichlet operator −∆. In this work, we
are interested in establishing necessary and sufficient conditions on κ and ϖ in order to
ensure stability of the solutions to (1.7). More precisely, we focus on the growth bound
of S(t). We recall the definition.

Definition 1.1. The growth bound of the semigroup S(t) is the number ω∗ ∈ [−∞,∞)
defined as

ω∗ = inf
{
ω ∈ R : ∥S(t)∥ ≤ Ceωt

}
for some C = C(ω) and every t ≥ 0. Here, the norm ∥S(t)∥ is understood in the space of
bounded linear operators on H.

The most interesting case is when ω∗ < 0, yielding exponential stability. In this situa-
tion, there exist ω > 0 and C ≥ 1 such that

∥S(t)∥ ≤ Ce−ωt.

Instead, when ω∗ > 0, there are solutions with energy growing exponentially fast. The
limit case ω∗ = 0 corresponds either to a bounded semigroup, possibly stable but not
exponentially stable, or to a semigroup whose energy blows up at infinity, but slower
than any exponential (e.g. polynomially). The aim of the present paper is to give a
complete characterization of (the sign of) ω∗ in terms of the stability numbers κ and ϖ.
In particular, we will show that S(t) is exponentially stable if and only if

κ > 0 and ϖ > −λ1κ.

1.3. On the comparison between (1.5) and (1.6). Writing κ and ϖ in terms of the
numbers a, b, c, d, ℓ of the “concrete” fourth-order equation (1.6), we find the relations

κ =
aµ

a+ ℓ
and ϖ =

aµℓ2 + d(a+ ℓ)

c+ bℓ
.

Hence, when µ > 0, both κ and ϖ are positive, meaning that (1.6) is exponentially
stable. In this situation, the energy Q(t) associated with the Volterra-type equation (1.5)
decays exponentially as well. On the other hand, when µ = 0, the semigroup S(t) is not
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exponentially stable, nor is Q(t) as shown in [3]. Still, the latter conclusion cannot be
drawn directly from the knowledge that S(t) is not exponentially stable. Indeed, let us
consider the generalization of (1.5) to the case of infinite memory, i.e.

(1.9) ∂tttu+ a∂ttu− b∆∂tu− c∆u+ d

∫ ∞

0

e−ℓs∆u(t− s)ds = 0,

where u(t) is understood to be an assigned datum for t ≤ 0. Within the so-called history
space framework of Dafermos [2], equation (1.9) can be shown to generate a solution
semigroup Σ(t) acting on a suitable Hilbert space V . It is also possible to prove that such
a Σ(t) is exponentially stable on V if and only if the same is true for the semigroup S(t)
on H. On the other hand, since (1.5) is just a particular instance of (1.9) corresponding
to null initial past histories of u, the lack of exponential stability of Σ(t) does not imply
that Q(t) is not exponentially stable (see [1] for an example in this direction).

1.4. Plan of the paper. In the forthcoming Sections 2 and 3 we reformulate the problem
in an abstract setting, and we establish the existence of the solution semigroup S(t). In
Section 4, we provide a detailed description of the spectrum of its infinitesimal generator
and its relation with the growth bound ω∗. The subsequent Sections 5-6 are devoted to
the main results on the asymptotic properties of S(t).

2. The Abstract Formulation

In order to reformulate (1.7) in an abstract framework, let (H, ⟨·, ·⟩, ∥ · ∥) be a separable
real Hilbert space, and let

A : D(A) ⊂ H → H

be a strictly positive unbounded linear operator of domain D(A) densely (but not neces-
sarily compactly) embedded into H. For t > 0, we consider the fourth-order equation in
the unknown variable u = u(t)

(2.1) ∂ttttu+ α∂tttu+ β∂ttu+ γA∂ttu+ δA∂tu+ ϱAu = 0.

It is apparent to see that (1.7) is just a particular realization of (2.1) corresponding to
the choice H = L2(Ω) and

A = −∆ with D(A) = H2(Ω) ∩H1
0 (Ω).

2.1. Functional setting. For r ∈ R, we introduce the hierarchy of nested Hilbert spaces
(the subscript r will be always omitted whenever zero)

Hr = D(A
r
2 ), ⟨u, v⟩r = ⟨A

r
2u,A

r
2v⟩, ∥u∥r = ∥A

r
2u∥.

The symbol ⟨·, ·⟩ will also stand for duality product between Hr and its dual space H−r.
Moreover, we have the Poincaré inequality

(2.2) λ1∥u∥2 ≤ ∥u∥21, ∀u ∈ H1,

where
λ1 = min{λ : λ ∈ σ(A)} > 0,

being σ(A) the spectrum of A. The phase space of our problem is

H = H1 × H1 × H1 × H,
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endowed with the standard Euclidean product norm

∥(u, v, w, z)∥2H = ∥u∥21 + ∥v∥21 + ∥w∥21 + ∥z∥2.

2.2. The operator A. Introducing the state vector

U (t) = (u(t), v(t), w(t), z(t)),

we view (2.1) as the ODE in the space H

(2.3)
d

dt
U(t) = AU (t)

where A is the (closed) linear operator defined as

A


u
v
w
z

 =


v
w
z

−αz − βw − A(γw + δv + ϱu)


with dense domain

D(A) =
{
(u, v, w, z) ∈ H

∣∣∣∣ z ∈ H1

γw + δv + ϱu ∈ H2

}
.

The equation is complemented with the initial condition U (0) = U 0 ∈ H.

3. The Solution Semigroup

The first step is an existence and uniqueness result for (2.1).

Theorem 3.1. The operator A is the infinitesimal generator of a C0-semigroup

S(t) = etA : H → H.

Such a semigroup is ω-contractive with respect to an equivalent norm | · |H, namely, there
exists ω ≥ 0 such that

(3.1) |S(t)U 0|H ≤ eωt|U 0|H
for every U 0 ∈ H and every t ≥ 0.

The proof of Theorem 3.1 can be carried out by exploiting one’s favorite method, e.g.
the Hille-Yosida or the Lumer-Phillips Theorems (see [12]), or via direct energy estimates
within a Galerkin scheme. However, no matter which is the proof one could have in mind,
the natural product norm ∥ · ∥H of H does not seem to be appropriate for the analysis
of (2.1). Reason why we now consider a different, albeit equivalent, norm that is tailored
to the structure of the problem. To this end, we introduce the (nonnegative) number m
as follows: m > −ακ

γ
if κ ≤ 0,

m = 0 if κ > 0,

where κ is the stability number defined in (1.8), together with the strictly positive con-
stants

αm := α +m and κm := γ − δ

αm

.
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For all U = (u, v, w, z) and Ũ = (ũ, ṽ, w̃, z̃) in H, the function

(U , Ũ )H =
δ

αm

⟨w + αmv +
αmϱ

δ
u, w̃ + αmṽ +

αmϱ

δ
ũ⟩1 +

κmαmϱ

δ
⟨v, ṽ⟩1

+ κm⟨w, w̃⟩1 + ⟨z + αmw +
αmϱ

δ
v, z̃ + αmw̃ +

αmϱ

δ
ṽ⟩

is an inner product on H, with induced norm

|U |2H =
δ

αm

∥w + αmv +
αmϱ

δ
u∥21 +

κmαmϱ

δ
∥v∥21

+ κm∥w∥21 + ∥z + αmw +
αmϱ

δ
v∥2.

This is a direct consequence of the next result.

Lemma 3.2. There exists a structural constant c > 0, depending also of the choice of m,
such that

c∥U∥2H ≤ |U |2H ≤ 1

c
∥U∥2H, ∀U ∈ H.

Proof. We limit ourselves to prove the estimate from below (the other one is much simpler
and left to the reader). In what follows, the Poincaré inequality (2.2) will be used several
times without explicit mention. For all 0 < ε < 1, an application of the Young inequality
yields the control

|U |2H ≥ εαmϱ
2

δ
∥u∥21 +

κmαmϱ

δ
∥v∥21 + κm∥w∥21 + ε∥z∥2

− εδ

αm(1− ε)
∥w + αmv∥21 −

εα2
m

λ1(1− ε)
∥w +

ϱ

δ
v∥21

≥ εαmϱ
2

δ
∥u∥21 +

[κmαmϱ

δ
− 2ε

1− ε

(
δαm +

α2
mϱ

2

δ2λ1

)]
∥v∥21

+
[
κm − 2ε

1− ε

( δ

αm

+
α2
m

λ1

)]
∥w∥21 + ε∥z∥2.

Being κm > 0 it is apparent to see that, fixing ε > 0 small enough, there exists c > 0 such
that the right-hand side of the inequality above is greater then or equal to c∥U∥2H. �

Remark 3.3. When κ = 0, we can choose m to be any positive real number. Later on,
we will be interested in taking m suitably small and, at the same time, in knowing the
behavior of the corresponding constant c = c(m) as m → 0. From the proof above one
can see that c(m) goes to zero, but not faster than m. More precisely, choosing ε = ε(m)
in a proper way, the relation

(3.2) lim sup
m→0+

m

c(m)
< ∞

holds. The details are left to the reader.
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General agreement. From now on, if not explicitly stated, the space H is understood
to be endowed with the equivalent inner product (·, ·)H and norm | · |H.

Proof of Theorem 3.1. For a fixed T > 0, we consider a regular solution to (2.1)

U (t) = (u(t), ∂tu(t), ∂ttu(t), ∂tttu(t)) ∈ C([0, T ],H)

on the time interval [0, T ], and we set

E(t) =
1

2
|U(t)|2H

=
1

2

[ δ

αm

∥∂ttu(t) + αm∂tu(t) +
αmϱ

δ
u(t)∥21 +

κmαmϱ

δ
∥∂tu(t)∥21

+ κm∥∂ttu(t)∥21 + ∥∂tttu(t) + αm∂ttu(t) +
αmϱ

δ
∂tu(t)∥2

]
.

Our aim is to provide the basic energy estimate

(3.3) E(t) ≤ E(0)e2ωt

for some ω ≥ 0. Being the problem linear, this suffices for well-posedness (see [4] for
details). In particular, (3.1) holds true. In order to prove (3.3), we take the inner product
in H of (2.3) with U (t). By means of direct calculations, we obtain the energy identity

d

dt
E+ αmκm∥∂ttu∥21 = m⟨∂tttu, ∂tttu+ αm∂ttu+

αmϱ

δ
∂tu⟩(3.4)

+
(mϱ

δ
−ϖ

)
⟨∂ttu, ∂tttu+ αm∂ttu+

αmϱ

δ
∂tu⟩.

Exploiting Lemma 3.2, together with the Young and the Poincaré inequalities, there exists
ω = ω(α, β, γ, δ, ϱ, λ1,m) ≥ 0 such that the right-hand side is less than or equal to 2ωE.
Recalling that κm > 0, we end up with

d

dt
E ≤ 2ωE.

Finally, an application of the Gronwall lemma yields (3.3).

4. The Spectrum of A

Before stating our main results on the asymptotic properties of S(t), we provide a complete
characterization of the spectrum of (the complexification of) the operator A. Such a
description will play a crucial role in the sequel. To this end, for every fixed λ > 0, we
consider the fourth-order polynomial in the variable ζ ∈ C defined as

Pλ(ζ) = ζ4 + αζ3 + (β + γλ)ζ2 + δλζ + ϱλ.

Theorem 4.1. The spectrum of A is given by

σ(A) =
∪

λ∈σ(A)

{
ζ ∈ C : Pλ(ζ) = 0

}
∪
{
ζ1, ζ2

}
,

where ζ1, ζ2 are the two complex solutions of the second-order equation

γζ2 + δζ + ϱ = 0.
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Proof. Let F = (f1, f2, f3, f4) ∈ H be arbitrarily fixed. We look for a unique solution
U = (u, v, w, z) ∈ D(A) to the resolvent equation

ζU − AU = F

which, written componentwise, reads

(4.1)


ζu− v = f1,

ζv − w = f2,

ζw − z = f3,

ζz + αz + βw + A (γw + δv + ϱu) = f4.

From the system above, we infer that

ζ4u+ αζ3u+ βζ2u+ γζ2Au+ δζAu+ ϱAu = Af,

having set

f = A−1
[
(ζ3 + αζ2 + βζ)f1 + (ζ2 + αζ + β)f2 + (ζ + α)f3 + f4

]
+ (γζ + δ)f1 + γf2.

It is apparent to see that f ∈ H1. Moreover, by the functional calculus

u =

∫
σ(A)

λ

Pλ(ζ)
dEA(λ) f,

where EA is the spectral measure of A. Therefore, u ∈ H1 for every given f ∈ H1 if and
only if

sup
λ∈σ(A)

∣∣∣∣ λ

Pλ(ζ)

∣∣∣∣ < ∞.

Being σ(A) ⊂ R a closed set, the latter occurs if and only if

γζ2 + δζ + ϱ ̸= 0 and Pλ(ζ) ̸= 0, ∀λ ∈ σ(A).

In which case, from system (4.1), one concludes that U ∈ D(A) is the unique solution to
the resolvent equation. In turn, ζ belongs to the resolvent set ρ(A). �

Definition 4.2. The spectral bound of A is the number σ∗ defined as

σ∗ = sup{Re ζ : ζ ∈ σ(A)}.

Being A the infinitesimal generator of S(t), it is well known from the general theory of
linear semigroups that σ∗ does not exceed the growth bound ω∗, namely,

(4.2) σ∗ ≤ ω∗.

In particular, if S(t) is exponentially stable it follows that σ∗ < 0.

We conclude with a technical result needed in the course of the investigation of the
decay properties of (2.1). To this end, for every fixed λ ∈ σ(A), we introduce the (real)
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function

Rλ(x) = x4 + αx3 + (β + γλ)x2 + δλx+ ϱλ(4.3)

+
(4x3 + 3αx2 + 2(β + γλ)x+ δλ

α+ 4x

)2

− (4x3 + 3αx2 + 2(β + γλ)x+ δλ)(6x2 + 3αx+ β + γλ)

α + 4x
.

Lemma 4.3. Let λ ∈ σ(A) be fixed. Assume there exist p ̸= −α/4 and q > 0 such that

Rλ(p) = 0 and q2 =
4p3 + 3αp2 + 2(β + γλ)p+ δλ

α + 4p
.

Then the numbers

ζ± = p± iq

belong to σ(A).

Proof. By direct calculations,

Re
[
Pλ(ζ±)

]
= p4 + αp3 + (β + γλ)p2 + δλp+ ϱλ+ q2(q2 − 6p2 − 3αp− (β + γλ))

and

Im
[
Pλ(ζ±)

]
= ±

[
4(p2 − q2)pq + α(3p2 − q2)q + 2(β + γλ)pq + δλq

]
.

Substituting the expression of q2 into the formulae above, we get

Im
[
Pλ(ζ±)

]
= 0 and Re

[
Pλ(ζ±)

]
= Rλ(p) = 0.

The claim follows from Theorem 4.1.

5. Exponential Stability

Our main result provides a necessary and sufficient condition for the exponential stability
of S(t) in terms of the values of the stability numbers κ and ϖ defined in (1.8).

Theorem 5.1. The semigroup S(t) is exponentially stable if and only if

κ > 0 and ϖ > −λ1κ.

The remaining of the section is devoted to the proof of Theorem 5.1.

5.1. Proof of Theorem 5.1 (Sufficiency). As customary, we agree to work with (reg-
ular) solutions

U(t) = (u(t), ∂tu(t), ∂ttu(t), ∂tttu(t)) = S(t)U 0

arising from initial data U 0 belonging to the domain of the infinitesimal generator A.
In what follows, C > 0 will denote a generic positive constant depending only on the
structural quantities of the problem, but independent of U 0. Besides, the Hölder, Young
and Poincaré inequalities will be used several times, often without explicit mention.

Due to the assumption κ > 0, we have

m = 0, αm = α, κm = κ.
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As a consequence, the energy identity (3.4) takes the simpler form

d

dt
E+ ακ∥∂ttu∥21 +ϖ⟨∂ttu, ∂tttu+ α∂ttu+

αϱ

δ
∂tu⟩ = 0,

where now

E(t) =
1

2

[ δ
α
∥∂ttu(t) + α∂tu(t) +

αϱ

δ
u(t)∥21 +

καϱ
δ

∥∂tu(t)∥21

+ κ∥∂ttu(t)∥21 + ∥∂tttu(t) + α∂ttu(t) +
αϱ

δ
∂tu(t)∥2

]
.

In addition, since

ϖ⟨∂ttu, ∂tttu+ α∂ttu+
αϱ

δ
∂tu⟩ =

ϖ

2

d

dt

[
∥∂ttu∥2 +

αϱ

δ
∥∂tu∥2

]
+ αϖ∥∂ttu∥2,

we arrive at the equality

d

dt
F+ ακ∥∂ttu∥21 + αϖ∥∂ttu∥2 = 0

having set

F(t) = E(t) +
ϖ

2

[
∥∂ttu(t)∥2 +

αϱ

δ
∥∂tu(t)∥2

]
.

Being ϖ > −λ1κ, there exists ν > 0 such that

ϖ = ν − λ1κ.

Hence, estimating

κ∥∂ttu∥21 +ϖ∥∂ttu∥2 ≥ θ∥∂ttu∥21
with

θ = min
{
κ,

ν

λ1

}
> 0,

we end up with

(5.1)
d

dt
F+ αθ∥∂ttu∥21 ≤ 0.

By the same token, we achieve the control

F(t) ≥ 1

2

[ δ
α
∥∂ttu(t) + α∂tu(t) +

αϱ

δ
u(t)∥21 +

θαϱ

δ
∥∂tu(t)∥21

+ θ∥∂ttu(t)∥21 + ∥∂tttu(t) + α∂ttu(t) +
αϱ

δ
∂tu(t)∥2

]
.

As a consequence, arguing as in the proof of Lemma 3.2 (with θ in place of κm), we infer
that

(5.2)
1

C
∥U (t)∥2H ≤ F(t) ≤ C∥U (t)∥2H.



11

Our next aim is to reconstruct the term ∥U∥2H on the left-hand side of (5.1). To this end,
we introduce three auxiliary functionals

Φ(t) =
1

2
∥∂tttu(t)∥2 +

γ

2
∥∂ttu(t)∥21 + ⟨δ∂tu(t) + ϱu(t), ∂ttu(t)⟩1,

Ψ(t) = ⟨∂tttu(t) + α∂ttu(t), ∂tu(t)⟩+
ϱ

2
∥u(t)∥21,

Υ(t) = ⟨∂tttu(t), u(t)⟩.

By direct calculations, the functional Φ fulfills the identity

d

dt
Φ + α∥∂tttu∥2 = δ∥∂ttu∥21 − β⟨∂ttu, ∂tttu⟩+ ϱ⟨∂tu, ∂ttu⟩1.

It is also immediate to see that

δ∥∂ttu∥21 − β⟨∂ttu, ∂tttu⟩+ ϱ⟨∂tu, ∂ttu⟩1 ≤
α

2
∥∂tttu∥2 +

δ

4
∥∂tu∥21 + C∥∂ttu∥21.

Thus, we get

(5.3)
d

dt
Φ +

α

2
∥∂tttu∥2 ≤

δ

4
∥∂tu∥21 + C∥∂ttu∥21.

Concerning the functional Ψ, we have

d

dt
Ψ+ δ∥∂tu∥21 = α∥∂ttu∥2 + ⟨∂tttu, ∂ttu⟩ − β⟨∂ttu, ∂tu⟩ − γ⟨∂ttu, ∂tu⟩1

≤ α

4
∥∂tttu∥2 +

δ

2
∥∂tu∥21 + C∥∂ttu∥21.

Hence, we obtain

(5.4)
d

dt
Ψ+

δ

2
∥∂tu∥21 ≤

α

4
∥∂tttu∥2 + C∥∂ttu∥21.

Finally, the functional Υ satisfies the equality

d

dt
Υ+ ϱ∥u∥21 = ⟨∂tttu, ∂tu⟩ − ⟨α∂tttu+ β∂ttu, u⟩ − ⟨γ∂ttu+ δ∂tu, u⟩1.

Estimating the right-hand side as

⟨∂tttu, ∂tu⟩ − ⟨α∂tttu+ β∂ttu, u⟩ − ⟨γ∂ttu+ δ∂tu, u⟩1

≤ ϱ

2
∥u∥21 + C∥∂tttu∥2 + C∥∂ttu∥21 + C∥∂tu∥21,

we conclude that

(5.5)
d

dt
Υ+

ϱ

2
∥u∥21 ≤ C∥∂tttu∥2 + C∥∂ttu∥21 + C∥∂tu∥21.

At this point, for every ε > 0, we set

Λε(t) = F(t) + ε[Φ(t) + Ψ(t)] + ε2Υ(t).
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In the light of (5.1) and (5.3)-(5.5), the functional Λε fulfills

d

dt
Λε + ε

(α
4
− Cε

)
∥∂tttu∥2 + (αθ − Cε− Cε2)∥∂ttu∥21

+ ε
(δ
4
− Cε

)
∥∂tu∥21 +

ε2ϱ

2
∥u∥21 ≤ 0.

Hence, for all ε > 0 sufficiently small, we arrive at

d

dt
Λε + ε3∥U∥2H ≤ 0.

Exploiting now (5.2) it is readily seen that, possibly reducing ε > 0,

(5.6)
1

C
∥U(t)∥2H ≤ Λε(t) ≤ C∥U(t)∥2H.

In conclusion, fixing ε > 0 small enough, from the differential inequality above we learn
that

d

dt
Λε + 2ωΛε ≤ 0

for some ω = ω(ε) > 0. An application of the Gronwall lemma, together with (5.6), yields
the desired exponential decay.

5.2. Proof of Theorem 5.1 (Necessity). Due to (4.2), in order to prove the lack of
exponential stability it is enough showing that σ∗ ≥ 0. We shall treat separately four
cases. In what follows, the function Rλ is given by (4.3).

⋄ Case 1: ϖ < −λ1κ. It is immediate to see that

Rλ1(0) = −δλ1

α
(ϖ + λ1κ) > 0 and lim

x→∞
Rλ1(x) = −∞.

Being Rλ1 continuous on [0,∞), there exists a real root p > 0. In the light of Lemma 4.3,
the complex numbers

ζ± = p± i

√
4p3 + 3αp2 + 2(β + γλ1)p+ δλ1

α+ 4p

belong to σ(A), and thus σ∗ > 0.

⋄ Case 2: ϖ = −λ1κ. We have

Rλ1(0) = 0.

According to Lemma 4.3, the spectrum of A contains the two purely imaginary numbers

ζ± = ±i

√
δλ1

α
,

and therefore σ∗ ≥ 0.

⋄ Case 3: κ < 0. For any given λ ∈ σ(A),

Rλ(0) = −δλ

α
(ϖ + λκ) and lim

x→∞
Rλ(x) = −∞.
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Being A an unbounded operator, λ can be taken arbitrarily large. Since

Rλ(0) ∼ −δλ2κ
α

> 0 as λ → ∞,

the value Rλ(0) eventually becomes positive. Arguing as in Case 1, we conclude that
σ∗ > 0.

⋄ Case 4: κ = 0. It is sufficient to analyze only the situation when ϖ > 0, since the
case ϖ ≤ κ = 0 has been already addressed. Choose λn ∈ σ(A) such that λn → ∞ (this
is possible since A is unbounded). In particular, for any fixed n, we have

Rλn(0) = −δλnϖ

α
< 0.

Moreover, taking

M >
αϖ

2γ
and exploiting the assumption κ = 0, by direct computations we obtain

lim
n→∞

1

λn

Rλn

(
− M

λn

)
=

δ(2γM − αϖ)

α2
> 0.

Therefore, for all n sufficiently large, the equation Rλn(p) = 0 admits a real solution

pn = −Mn

λn

< 0 with 0 < Mn < M.

In particular, pn → 0 as n → ∞. By the same token,

q2n :=
4p3n + 3αp2n + 2(β + γλn)pn + δλn

α+ 4pn
∼ δλn

α
→ ∞.

Hence, for every n large enough, the hypotheses of Lemma 4.3 are satisfied, meaning that

pn ± iqn ∈ σ(A).
Since pn → 0, we conclude that σ∗ ≥ 0. �
Remark 5.2. From the proof of the necessity part of Theorem 5.1 we learn that, if Case 1
or Case 3 hold, the spectral bound σ∗ is strictly positive. Accordingly, the semigroup S(t)
has solutions with energy growing exponentially fast.

6. The Remaining Cases

From the discussion above, ω∗ is greater than or equal to zero if

(i) κ > 0 and ϖ = −λ1κ, or
(ii) κ = 0 and ϖ ≥ 0.

Actually, in these situations, ω∗ turns out to be exactly zero. To see that, for an arbitrarily
fixed ε > 0, we consider the problem

(6.1)
d

dt
U (t) = AU(t)− εU(t).

It is well known that the operator A− εI generates the C0-semigroup

Sε(t) = e−εtS(t)
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on the space H (see e.g. [12]). In particular,

∥Sε(t)∥ = e−εt∥S(t)∥.

Lemma 6.1. Assume that (i) holds. Then, for every fixed ε > 0, the semigroup Sε(t) is
bounded.

Proof. As usual, we work with (regular) solutions to (6.1)

U (t) = (u(t), ∂tu(t), ∂ttu(t), ∂tttu(t)) = Sε(t)U 0

arising from initial dataU 0 belonging to the domain of A. First, we take the inner product
in H of (6.1) with U(t). Recalling that the constant m equals zero, we obtain the identity

1

2

d

dt
|U |2H + ε|U |2H + ακ∥∂ttu∥21 − αλ1κ∥∂ttu∥2 − λ1κ⟨∂ttu, ∂tttu+

αϱ

δ
∂tu⟩ = 0.

Applying the Poincaré inequality (2.2), we infer that

ακ∥∂ttu∥21 − αλ1κ∥∂ttu∥2 ≥ 0.

Thus, writing

− λ1κ⟨∂ttu, ∂tttu+
αϱ

δ
∂tu⟩

=
(ν − λ1κ)

2

d

dt

[
∥∂ttu∥2 +

αϱ

δ
∥∂tu∥2

]
− ν⟨∂ttu, ∂tttu+

αϱ

δ
∂tu⟩

for some 0 < ν < λ1κ to be fixed later, we arrive at

d

dt
G+ ε|U |2H ≤ ν⟨∂ttu, ∂tttu+

αϱ

δ
∂tu⟩,

having set

G(t) =
1

2

[
|U (t)|2H + (ν − λ1κ)∥∂ttu(t)∥2 + (ν − λ1κ)

αϱ

δ
∥∂tu(t)∥2

]
.

Exploiting Lemma 3.2, it is immediate to see that the right-hand side is controlled by

ν⟨∂ttu, ∂tttu+
αϱ

δ
∂tu⟩ ≤ νC|U |2H,

where C > 0 is a structural constant depending on the parameters of the problem but
independent of ν. Accordingly,

d

dt
G+ (ε− νC)|U |2H ≤ 0.

Due to (2.2), the functional G fulfills

G(t) ≥ 1

2

[ δ
α
∥∂ttu(t) + α∂tu(t) +

αϱ

δ
u(t)∥21 +

ναϱ

δλ1

∥∂tu(t)∥21

+
ν

λ1

∥∂ttu(t)∥21 + ∥∂tttu(t) + α∂ttu(t) +
αϱ

δ
∂tu(t)∥2

]
.

Hence, making use of the inequality above and arguing as in the proof of Lemma 3.2 (with
ν/λ1 in place of κm), we find

cν|U (t)|2H ≤ G(t) ≤ 1

2
|U(t)|2H,
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for some cν > 0 depending on ν. At this point, fixing

ν = ν(ε) = min
{ ε

2C
,
λ1κ
2

}
,

we end up with
d

dt
G+ 2ωG ≤ 0,

for some ω = ω(ε) > 0. The Gronwall lemma completes the argument.

Lemma 6.2. Assume that (ii) holds. Then, for every fixed ε > 0, the semigroup Sε(t) is
bounded.

Proof. Let U 0 ∈ D(A) be any (regular) initial datum. Along the proof, Cm > 0 will
denote a generic positive constant depending on m > 0 (besides the other structural
quantities of the problem) but independent of U 0. A multiplication in H of (6.1) with
U(t) leads to the equality

1

2

d

dt
|U |2H + ε|U |2H + αmκm∥∂ttu∥21 + αmϖ∥∂ttu∥2 +ϖ⟨∂ttu, ∂tttu+

αmϱ

δ
∂tu⟩

= m⟨∂tttu+
ϱ

δ
∂ttu, ∂tttu+ αm∂ttu+

αmϱ

δ
∂tu⟩.

Writing

ϖ⟨∂ttu, ∂tttu+
αmϱ

δ
∂tu⟩ =

ϖ

2

d

dt

[
∥∂ttu∥2 +

αmϱ

δ
∥∂tu∥2

]
,

and recalling that ϖ ≥ 0, we obtain

(6.2)
d

dt
L+ ε|U |2H ≤ m⟨∂tttu+

ϱ

δ
∂ttu, ∂tttu+ αm∂ttu+

αmϱ

δ
∂tu⟩,

having set

L(t) =
1

2

[
|U(t)|2H +ϖ∥∂ttu(t)∥2 +

ϖαmϱ

δ
∥∂tu(t)∥2

]
.

The differential inequality (6.2) above holds true for m = 0 as well. In this situation,
since αm = α and κm = κ = 0, it turns into

d

dt

[
E +

ϖ

2
∥∂ttu∥2 +

ϖαϱ

2δ
∥∂tu∥2

]
+ 2εE ≤ 0,

where E(t) denotes the pseudoenergy

E(t) = 1

2

[ δ
α
∥∂ttu(t) + α∂tu(t) +

αϱ

δ
u(t)∥21 + ∥∂tttu(t) + α∂ttu(t) +

αϱ

δ
∂tu(t)∥2

]
.

Being E(t) ≥ 0, an integration over [0, t], together with (2.2) and Lemma 3.2, gives

(6.3) E(t) ≤ E(t) + ϖ

2
∥∂ttu(t)∥2 +

ϖαϱ

2δ
∥∂tu(t)∥2 ≤ Cm|U 0|2H,

where the dependence on m of the constant Cm comes from the inequality of Lemma 3.2.
Coming back to (6.2), the right-hand side is estimated as

m⟨∂tttu+
ϱ

δ
∂ttu, ∂tttu+ αm∂ttu+

αmϱ

δ
∂tu⟩ ≤ c1m

√
E∥U∥H + c1m

2∥U∥2H,



16

where c1 > 0 is a structural constant depending of α, β, γ, δ, ϱ, λ1, but independent of m
and U 0. Invoking (6.3), we get

c1m
√
E∥U∥H + c1m

2∥U∥2H ≤ 2c1m
2∥U∥2H +

c1
4
E ≤ 2c1m

2∥U∥2H + Cm|U 0|2H.

Therefore, inequality (6.2) takes the form

d

dt
L+ ε|U |2H ≤ 2c1m

2∥U∥2H + Cm|U 0|2H.

At this point, we have

2c1m
2∥U∥2H ≤ 2c1m

2

c
|U |2H

where c = c(m) > 0 is the constant of Lemma 3.2. Recalling (3.2), there exists c2 > 0
independent of m and U 0 such that

2c1m
2

c
|U |2H ≤ c2m|U |2H,

provided that m > 0 is sufficiently small. Accordingly,

d

dt
L+ (ε− c2m)|U |2H ≤ Cm|U 0|2H.

Exploiting once more the assumption ϖ ≥ 0, together with Lemma 3.2, we also find the
controls

(6.4)
1

2
|U(t)|2H ≤ L(t) ≤ Cm|U(t)|2H.

In conclusion, fixing m = m(ε) > 0 small enough, there exists ω = ω(ε) > 0 such that

d

dt
L+ 2ωL ≤ Cm|U 0|2H.

Owing to the Gronwall lemma and (6.4), we arrive at

|U (t)|2H ≤ 2L(t) ≤ 2L(0)e−2ωt +
Cm|U 0|2H

ω
≤ Cm|U 0|2H.

By density, the control above holds true for every initial datum U 0 ∈ H as well, yielding
the sought boundedness of Sε(t). �

We are now in a position to show that ω∗ = 0. Being Sε(t) bounded, for all ε > 0 there
exists C = C(ε) > 0 such that

∥S(t)∥ = eεt∥Sε(t)∥ ≤ Ceεt.

Since ε > 0 can be chosen arbitrarily small, the conclusion follows.

We subsume all the results obtained so far in a theorem.

Theorem 6.3. The following hold.

- ω∗ < 0 whenever κ > 0 and ϖ > −λ1κ.
- ω∗ > 0 whenever κ < 0, or whenever ϖ < −λ1κ.
- ω∗ = 0 whenever κ > 0 and ϖ = −λ1κ, or whenever κ = 0 and ϖ ≥ 0.
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We conclude by analyzing in more detail the case ω∗ = 0, namely, the borderline
situation between exponential stability and blow up of solutions. In several equations of
physical interest, in cases of this kind the semigroup is stable, namely, every trajectory
goes to zero. As a byproduct, it turns out to be bounded. Here, we will show that stability
does not occur when both κ and ϖ equal zero. Nonetheless, we cannot exclude that the
semigroup S(t) is bounded.

Theorem 6.4. Assume that κ = ϖ = 0. Then S(t) is not stable, namely, there exists an
initial datum U 0 ∈ H such that

S(t)U 0 ̸→ 0.

In order to prove Theorem 6.4, a preliminary result is needed.

Lemma 6.5. Let κ = ϖ = 0, and let u(t) be the solution to equation (2.1) corresponding
to the initial datum U 0 = (u0, v0, w0, z0) ∈ H. Then, the following mutually disjoint1

situations occur.

• if α2 > 4β, then u(t) solves the Cauchy problem

(6.5)


∂ttu(t) + γAu(t) =

(er1t − er2t)(z0 + γAv0)− (r2e
r1t − r1e

r2t)(w0 + γAu0)

r1 − r2
,

u(0) = u0,

∂tu(0) = v0,

where

r1 =
−α +

√
α2 − 4β

2
< 0 and r2 =

−α−
√
α2 − 4β

2
< 0.

• if α2 = 4β, then u(t) solves the Cauchy problem

(6.6)


∂ttu(t) + γAu(t) = te−

αt
2 (z0 + γAv0) +

e−
αt
2 (2 + αt)(w0 + γAu0)

2
,

u(0) = u0,

∂tu(0) = v0,

• if α2 < 4β, then u(t) solves the Cauchy problem

(6.7)


∂ttu(t) + γAu(t) = e−

αt
2 f(t)(z0 + γAv0) + e−

αt
2 g(t)(w0 + γAu0),

u(0) = u0,

∂tu(0) = v0,

where

f(t) =
2√

4β − α2
sin

(√4β − α2

2
t
)
,

g(t) = cos
(√4β − α2

2
t
)
+

α√
4β − α2

sin
(√4β − α2

2
t
)
.

1It is apparent to see that all the three cases are possible.
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Proof. When κ = ϖ = 0, equation (2.1) can be rewritten in the simpler form

∂ttϕ+ α∂tϕ+ βϕ = 0,

having set

ϕ(t) = ∂ttu(t) + γAu(t).

Solving the differential equation above and imposing the initial conditions we conclude
that, in dependence of the value of the discriminant α2−4β to the associated characteristic
equation, the function ϕ is a solution to (6.5), (6.6) or (6.7).

Proof of Theorem 6.4. Let u0, v0 ∈ H2 be arbitrarily fixed. In the light of Lemma 6.5, the
solution to (2.1) corresponding to initial data of the form

U 0 = (u0, v0,−γAu0,−γAv0) ∈ H

solves the conservative wave equation
∂ttu(t) + γAu(t) = 0,

u(0) = u0,

∂tu(0) = v0.

In particular, for all t ≥ 0, the equality

∥∂tu(t)∥2 + γ∥u(t)∥21 = ∥v0∥2 + γ∥u0∥21
holds. Hence, exploiting Lemma 3.2, we conclude that

|S(t)U 0|2H ≥ cmin{1/γ, λ1}
(
∥∂tu(t)∥2 + γ∥u(t)∥21

)
= cmin{1/γ, λ1}

(
∥v0∥2 + γ∥u0∥21

)
.

The proof is finished.
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