
On the Statistical Model of Source Localization based on Range Difference

Measurements

Marco Compagnonia,∗, Roberto Notaria, Fabio Antonaccib, Augusto Sartib

aDipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
bDipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133,

Milan, Italy

Abstract

In this work we study the statistical model of source localization based on Range Difference measurements,
under the assumption of Gaussian noise on the data. Our analysis is based on a previous work of the same
authors concerning the localization in a noiseless scenario. We investigate the case of planar localization of a
source using a minimal configuration of three non aligned receivers. We have four curved exponential families
corresponding to four different, non disjoint, regions of the feasible set. For each family we solve Maximum
Likelihood Estimation (MLE). This requires to find the projection of a point on a set of segments and arcs
of ellipse. Then, we perform the analytic study of the localization accuracy. In particular, we give formulas
for mean square error and bias of MLE, depending on the displacement vectors. We validate the results
through Montecarlo simulations, in a given setup of the receivers. As the set of feasible measurements is a
semialgebraic variety, this investigation makes use of techniques from Algebraic Statistics and Information
Geometry.

Keywords: Range difference space, Statistical Modeling, Maximum Likelihood Estimation, Information
Geometry, Algebraic Statistics
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1. Introduction

Source localization from the analysis of the signals captured by multiple sensors is a classical research
theme in science and engineering. Among the early studies on this subject (dating back to World War
II) is the analysis of the two-dimensional LOng RAnge Navigation (LORAN) radio positioning system.
LORAN was based on the measurements of time differences of arrival (TDOAs) of synchronized radio signals
originated from three distinct known emitters. The method needed hyperbolic charts for determining the
position of the receiver [1]. Since then, there has been a proliferation of areas of applications where source
localization plays a fundamental role. Among them, we mention radar and sonar technologies; wireless
sensor networks; the Global Positioning System (GPS); and robotics.

An important class of source localization techniques is the one based on Range Differences (RD), or
pseudoranges. RD-based localization is characterized by:

a) a point x, the source, whose location we want to find;

b) a set of points {m0, . . . ,mn}, the sensors, placed at known positions;

c) the RDs of the signals emitted by the source and measured by the receivers as experimental data.
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These techniques are particularly popular in audio signal processing, where pseudoranges are usually com-
puted from the measurements of the TDOAs between calibrated and synchronized microphones [2, 3, 4, 5, 6].
Given a constant wave propagation speed, RDs and TDOAs are simply proportional to each other. There-
fore, throughout this manuscript we will treat RD and TDOA as synonymous. In other contexts, for example
remote sensing, radar and GPS [7, 8], RDs can again be derived from TDOAs [9] or through other approaches
such as energy measurements [10]. This is a convenient choice whenever sensors at different positions are
not guaranteed to be synchronised, thus keeping the technological issues and the cost of the sensor network
at bay.

In the signal processing literature, there are various examples of analysis of localization models based on
numerical simulations. For example, a study of the TDOA–based localization for a minimal configuration
of sensors (three receivers coplanar with the source) can be found in [11, 12]. Therein, the author makes
use of the concept of TDOA space and offers a first description of the feasible set of TDOAs. Given the
importance of the topic, in [13, 14, 15] we offered a systematic and comprehensive analytic investigation
of the mathematical models behind TDOA–based source localization. Using algebraic and geometric tools,
we studied in detail the deterministic model for the minimal TDOA–based localization. In [15], we defined
the TDOA map from the physical plane of source locations to the space of TDOA measurements, which
completely encodes the noiseless localization model. Then, we described the image of this map, that is the
set of feasible noiseless measurements. Finally, we studied the invertibility of the map and, consequently,
the existence and uniqueness of the source for any given set of measurements.

As a confirmation of the importance of these topics for applications, in [16] the authors describe the
use of TDOA measurements set for TDOA estimation. Similar works have been carried out also for other
kinds of measurements. For example, in [17] the authors describe Range–based localization models, while
Directions Of Arrival measurements are considered in [18]. However, in real world scenarios, localization
techniques are sensitive to measurement noise. As an example, in audio signal processing the measurements
are affected by both additive noise and outlier measurements [19, 20]. In order to deal with these problems,
it is necessary to go further in the study of the model, and move from deterministic to statistical modeling.
A first step towards this goal was taken in [21], where a denoising algorithm was proposed.

In this work, we deeply investigate the statistical properties of the localization model. This is the main
novelty of the paper. We will leverage on the results contained in [15] to achieve the following goals:

1. study the statistical model behind TDOA-based localization for the minimal case of three receivers
and one coplanar source. We will give particular care to the problem of ambiguity in localization;

2. provide an effective Maximum Likelihood localization technique that, given the range differences and
the location of the sensors, computes the source location;

3. develop a technique that, given the sensor locations and an estimate of the measurement error magni-
tude, predicts the localization error covariance, as well as its bias.

In order to attain the first goal, we use Information Geometry [22]1. This theoretical framework is
particularly suitable for our geometric approach to the localization problem (see also [23] for its use in the
context of Range–based localization). Information Geometry also allows us to apply the asymptotic theory
of estimation for studying the accuracy of source localization, which is our third goal in the list. We observe
that in [24, 25], an asymptotic estimation of the Mean Square Error (MSE) and the bias have already
been obtained with different tools. However, in this work we push the boundary further: we will focus on
predicting the accuracy of the asymptotic estimation through the analysis of higher order statistics.

As far as the second goal is concerned, it is well known that Maximum Likelihood Estimation (MLE)
is optimal from a statistical point of view, as it attains the Cramer-Rao Lower Bound. In the literature
MLE algorithms are based on the maximization of the likelihood function, which depends on the unknown

1Information Geometry is the discipline where probability theory and statistical inference are studied with the techniques
of differential geometry. Its founding idea is that probability distributions for a statistical model are points of a Riemannian
manifold, whose metric is provided by the Fisher Information metric.
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coordinates of the source. However, the nonlinearity and the non-convexity of the likelihood function make
it quite difficult to formulate an effective solution. This is why other sub-optimal techniques are mostly
used [26, 27, 28, 29, 30, 31, 32, 33]. Our approach to the problem is completely different, as the estimation
is performed in the parameter space of the model. We exploit the knowledge on the geometry of the set
of feasible measurements for obtaining a (quasi) closed-form solution of MLE. In our framework, MLE is
equivalent to finding the solution of the geometric problem of projecting a point onto the set of feasible
measurements, according to a suitable Euclidean structure on the measurements space. As proven in [15],
the set of feasible measurements is a semi-algebraic variety, therefore our analysis naturally falls within the
domain of Algebraic Statistics [34].

Several are the application fields that could benefit from the proposed method. In particular, when
the number of available measurements is an issue, one could be interested in predicting the maximum
error achievable. For example, this is crucial for GPS localization, where the number of available satellites is
bounded and therefore we should resort to minimal information scenarios [35, 36, 37, 38, 39, 40, 41, 42, 43, 31].
However, our contribution can be useful also in other fields, such as in audio signal processing and wireless
sensor networks. Although in these contexts the number of sensors to handle is usually larger than the
minimum, there are applications where it is convenient to focus on smaller subsets of them. A specific
problem in which the use of small subsets of measurements is advantageous is the detection of outliers
[44, 33, 45, 20]. This is an important issue in several contexts. For instance, in audio localization the
outliers could be due to the presence of interferers and of reverberations and they severely impair the
localization accuracy.

The paper is organized as follows. In Section 2, we recount the main results introduced in [15] on the
deterministic model for TDOA–based source localization in a minimal sensing scenario. In Section 3 we
focus on accurately defining the statistical model. This is a rather delicate task, due to the difficulties that
arise from localization ambiguities. In our approach, we choose to consider the model as a composition of
four distinct curved exponential families, one for each region where the restriction of the TDOA map is
a diffeomorphism between the physical and the measurements spaces. In Section 4 we address the MLE
in the measurements space. As mentioned above, this is equivalent to studying the orthogonal projection
of a point onto the set of feasible TDOA measurements. Section 5 is devoted to studying the accuracy of
source localization via MLE. Our analysis is based on asymptotic statistical inference through the approach
of Information Geometry. In particular, we obtain an analytic form for the mean square error and the bias
of the MLE. Moreover, in Section 5.2 we propose a method for evaluating the reliability of the asymptotical
inference, based on higher-order statistics. Section 6 looks at the problem from a practical standpoint. In
Section 6.1 we explicitly describe the MLE algorithm for each one of the four models defined in Section 3.
In Section 6.2 we conduct a simulation campaign, aimed at validating our algorithms and conducting an
asymptotic error analysis. In Section 6.3 we then give indications on the source localization problem in a
real scenario, in which we don’t not know in advance which model to use. In Section 7 we briefly discuss the
potential impact of this work and draw some conclusions. Finally, in Appendix A we include the Singular
code for computing the Cartesian equation of the Mahalanobis degree discriminant of an ellipse, which has
a role in the MLE algorithm.

2. The TDOA space and the deterministic model

The TDOA space and the TDOA maps were introduced in [11, 15] for the analysis of TDOA–based
source localization with a minimal configuration of three receivers in two dimensions. In this section, we
briefly go over the main results of [15, 14], using the same tools and notations. In order to simplify matters,
we only describe the case in which the receivers are not collinear. The interested reader can develop a similar
statistical analysis for the case of aligned sensors starting from [15].

One of the main mathematical tools used in [15] is the exterior algebra formalism over the three dimen-
sional Minkowski vector space R2,1, which roughly corresponds to the product of the Euclidean physical
plane times the real line containing the TDOAs. This instrument is very useful for handling the equations
involved in the localization problem. We refer to Appendix A of [15] for an introduction to the subject.
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However, in this manuscript it is sufficient to use the exterior algebra formalism over the Euclidean vector
space R2. For the convenience of the reader, here we summarize the main facts for this particular case.

Let V be a 2–dimensional Euclidean vector space and let B = {e1, e2} be an orthonormal basis. With a
slight abuse of notation, we identify a vector v = v1e1 + v2e2 with its coordinates (v1, v2)

T . We have three
non trivial vector spaces ∧kV. In more details, we have

k = 0 : ∧0V is the space of scalars, it has dimension 1 and {1} is an orthonormal basis;

k = 1 : ∧1V = V is the space of vectors, it has dimension 2 and B is an orthonormal basis;

k = 2 : ∧2V is the space of the 2–forms, it has dimension 1 and {ω = e1 ∧ e2} is an orthonormal basis.

The three spaces ∧0V,∧1V,∧2V form the exterior algebra ∧V over V. The symbol ∧ stays for the exterior
product, which is skew–commutative and linear with respect to each factor. We can be very explicit if
working in coordinates with respect to the above natural basis. Let v = (v1, v2)

T , w = (w1, w2)
T be

vectors. Then

v ∧w=(v1w2 − v2w1)ω = det

(
v1 w1

v2 w2

)
ω ∈ ∧2V.

The Hodge operator ∗ defines an isomorphism between each pair of vector spaces ∧kV and ∧2−kV, k =
0, 1, 2. Also in this case, we can give an explicit definition of ∗ by describing its action on the natural basis:

∗ 1 = ω, ∗ e1 = e2, ∗ e2 = −e1, ∗ω = 1.

The linearity of ∗ allows us to write ∗v = (−v2, v1)
T , which means that the Hodge operator acting on ∧1V

corresponds to the counterclockwise rotation of π
2 . The rotation is represented by the matrix

H =

(
0 −1
1 0

)

with respect to B, therefore we have ∗v = Hv. Finally, we have

∗(v ∧w) = ∗((v1w2 − v2w1)ω) = det

(
v1 w1

v2 w2

)
.

2.1. The complete TDOA map

Let us fix some ideas and notations that will be useful throughout the manuscript.

a) We identify the physical plane with the Euclidean plane and, after choosing an orthogonal Cartesian
coordinate system, with R2. We use B as the orthonormal basis. Given a vector v, we denote its
Euclidean norm ‖v‖ with v and the corresponding unit vector with ṽ = v

v
.

b) mi = (xi, yi)
T is the location of the i–th sensor. We take the indexes i = 0, 1, 2 and we assume that the

three sensors are in distinct positions. x is the position of the source.

c) dji = mj −mi is the displacement vector from the sensor mi to the sensor mj, for i, j = 0, 1, 2. di(x) =
x −mi is the displacement vector from the sensor mi to the source x, for i = 0, 1, 2. Furthermore, we

name the angles ϕ0 = d̂10d20, ϕ1 = d̂01d21 and ϕ2 = d̂02d12.

d) For notational simplicity, and with no loss of generality, we assume the propagation speed to be equal to
1. Hence, the noiseless TDOAs correspond to the range differences.

In this setting, we define the complete TDOA map as

τ∗

2 : R2 −→ R3

x 7−→ (τ10(x), τ20(x), τ21(x))
T , (1)

where
τji(x) = dj(x)− di(x). (2)
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For every source position x, the function τji(x) gives the value of the noiseless TDOA between the two
selected sensors. The resulting target set R3 of τ∗

2 is referred to as the TDOA space or τ–space. The map
τ∗

2 completely defines the deterministic model behind the TDOA based source localization. In particular,
its image Im(τ∗

2 ) is the set of feasible TDOAs in the τ–space. This means that three noiseless TDOAs
define a point τ∗ = (τ10, τ20, τ21)

T ∈ Im(τ∗

2 ) and, wherever the map τ∗

2 is invertible, the source position is

τ∗

2
−1(τ∗).
In Figure 1 we draw a configuration of source and receivers. We set r0, r1, r2 the lines containing the

sensors, according to the convention that the receiver mi does not lie on ri. Up to relabeling the sensors,
we can assume that ∗(d10 ∧ d20) > 0, i.e. d10,d20 are counterclockwise oriented.

r2

r1r0

ϕ0 ϕ1

ϕ2

m0 m1

m2

x

Figure 1: Receivers m0,m1,m2 and a source x in a generic planar configuration.

2.2. The reduced TDOA map

The three range differences that define function 1 are not independent. In fact, the linear relation
τ21(x) = τ20(x)− τ10(x) holds for each x ∈ R2. This means that three noiseless TDOAs are constrained on
the plane

H = {τ∗ ∈ R
3 | τ10 − τ20 + τ21 = 0}. (3)

Therefore, we are allowed to choose m0 as a reference sensor and, without loss of information, to consider
only the two TDOAs τ10(x), τ20(x). We define the (reduced) TDOA map:

τ2 : R2 −→ R2

x 7−→ (τ10(x), τ20(x))
T . (4)

Let us consider the projection map p3 : R3 → R2 forgetting the third coordinate τ21 of the τ–space.
Then, we have τ2 = p3 ◦ τ∗

2 and p3 is a natural bijection between Im(τ∗

2 ) and Im(τ2). Hence, we can
investigate the properties of the deterministic TDOA model by studying the simpler map τ2. In analogy
with our previous notations, we name τ–plane the target set R2 of τ2. To illustrate our exposition, on the
left of Figure 2 we draw a configuration of three sensors m0 = (0, 0)T , m1 = (2, 0)T , m2 = (2, 2)T and
three sources x = (0.8, 0.8)T , (1.8,−0.4)T and approximately (2.4,−1.25)T . We use this configuration of
the sensors in all figures of the manuscript. On the right of Figure 2, we show the image of τ2 for this choice
of receivers and the images of the sources. In Figure 3 we make explicit the relation between Im(τ2) and
Im(τ∗

2 ).

2.2.1. The image of τ2
Im(τ2) is a subset of the convex polytope P2, which is the hexagon defined by the triangular inequalities:





−d10 ≤ τ10 ≤ d10
−d20 ≤ τ20 ≤ d20
−d21 ≤ τ20 − τ10 ≤ d21

. (5)
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m2

m1m0

Ẽ−

Ẽ

Ũ0
Ũ1

Ũ2

L0

L1

L2

R0

R1

R2

T+
1

T−
1

T+
2

T−
2

T+
0

T−
0

E−

U0

U1

U2

τ10

τ20

Figure 2: On the left, the sensors are the marked points m0,m1,m2, while the crosses denote the sources. The curve Ẽ

separates the light gray region Ẽ− and the medium gray region Ũ0 ∪ Ũ1 ∪ Ũ2. In Ẽ−, the map τ2 is one–to–one and it is
possible to locate the source. In Ũ0 ∪ Ũ1 ∪ Ũ2, the map τ2 is two–to–one and so the localization is not unique. For example,
the two blue sources have the same image. On the dashed lines the localization is possible but very sensitive to measurement
noise. On the right, there is the image of τ2. It is the gray subset of the hexagon P2 with continuous and dashed sides. The
light gray region E− is the image of Ẽ−, while each medium gray region Ui is the image of Ũi. The continuous part of the
boundary of the hexagon and the blue ellipse E, together with the vertices Ri, are in the image, and there τ2 is one–to–one.
The points T

±

i
and the dashed boundaries do not belong to Im(τ2). Finally, the red dotted lines L0, L1, L2 allow us to single

out the medium gray regions U0, U1, U2. The crosses are the images of the sources on the left.

The vertices of P2 contained in Im(τ2) are R0 = (d10, d20)
T , R1 = (−d10, d21 − d10)

T and R2 = (d21 −
d20,−d20)T , respectively images of m0, m1 and m2. The other vertices of P2 are not in the image.

Following the analysis contained in Section 6 of [15], for any τ = (τ10, τ20)
T ∈ R2 we define the vectors

v(τ ) = ∗(τ20d10 − τ10d20) ,

l0(τ ) =
∗((d220 − τ220)d10 − (d210 − τ210)d20)

2 ∗ (d10 ∧ d20)

(6)

and the polynomials
a(τ ) = ‖v(τ )‖2 − ∗(d10 ∧ d20)

2,

b(τ ) = 〈v(τ ), l0(τ )〉,

c(τ ) = ‖l0(τ )‖2.

(7)

The polynomial c(τ ) has degree four. Over the reals, it annihilates only at (±d10,±d20). Instead, b(τ ) is a
degree three polynomial whose zero set is the red curve C in Figure 6. We set C− (respectively C+) the
region of the τ–plane where b(τ ) < 0 (respectively b(τ ) > 0). Finally, a(τ ) is a degree two polynomial and
its zero set is the unique ellipse E that is tangent to each facet of P2. We name E− the interior region of
the ellipse, where a(τ ) < 0, and E+ the exterior region, where a(τ ) > 0. The six points in E ∩ ∂P2 are

T±
i =

(
±〈d10, d̃jk〉,±〈d20, d̃jk〉

)T
,

where 0 ≤ i, j, k ≤ 2, k < j and j, k 6= i.
Let us now consider the lines L0, L1, L2 passing through the couples of points {T+

1 , T
+
2 }, {T+

0 , T
−
2 } and
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Figure 3: The image of τ∗

2
is the green subset of the hexagon P2 ⊂ H, while the image of τ2 is the red subset of P2. There is a

one–to–one correspondence between Im(τ∗

2
) and Im(τ2) via the projection map p3. In the lightly shaded regions, the TDOA

maps are one–to–one, while in the more darkly shaded regions the maps are two–to–one.

{T−
0 , T

−
1 }, respectively (see Figure 2). They are defined by the vanishing of the three linear forms

l0(τ ) = d20τ10 + d10τ20 − d10d20(1 + cosϕ0),
l1(τ ) = −(d10 + d21)τ10 + d10τ20 − d10d21(1 + cosϕ1),
l2(τ ) = d20τ10 − (d20 + d21)τ20 − d20d21(1 + cosϕ2).

(8)

Then, we define the three sets Ui, i = 0, 1, 2, as:

Ui = {τ ∈ P̊2 | a(τ ) > 0, li(τ ) > 0}, (9)

where P̊2 is the interior of P2, that is defined by taking the strict inequalities in (5).
With the above notation, we finally get the image of τ2 :

Im(τ2) = E− ∪ U0 ∪ U1 ∪ U2 \ {T
±
0 , T

±
1 , T

±
2 }, (10)

where U i is the closure of Ui with respect to the Euclidean topology. In particular, we have

|τ2
−1(τ )| =

{
2 if τ ∈ U0 ∪ U1 ∪ U2,

1 if τ ∈ Im(τ2) \ U0 ∪ U1 ∪ U2.
(11)

For any given τ ∈ U0 ∪ U1 ∪ U2, the two preimages x±(τ ) are given by

x±(τ ) = m0 + l0(τ ) + λ±(τ )v(τ ), (12)

where

λ±(τ ) =
−b(τ )±

√
b(τ )2 − a(τ )c(τ )

a(τ )
. (13)

are the solutions of the equation a(τ )λ2 + 2b(τ )λ + c(τ ) = 0. For τ ∈ Im(τ 2) \ U0 ∪ U1 ∪ U2, we have to
take only the x+(τ ) solution.
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2.2.2. The situation in the physical plane

In the x–plane there are two main regions. The first one Ẽ− is the preimage of the interior of the ellipse,
i.e. Ẽ− = τ2

−1(E−). In Ẽ− the TDOA map is one–to–one and the source localization is possible. The
second one is the union of the preimages Ũi = τ2

−1(Ui), for i = 0, 1, 2. There, the map is two–to–one and
there is no way to uniquely locate the source. The transition is on the bifurcation curve Ẽ = τ2

−1(E), that
consists of three disjoint and unbounded arcs, one for each arc of E contained in Im(τ2). As a point τ in
one of the Ui gets close to E, the solution x+(τ ) gets close to a point on Ẽ, while x−(τ ) goes to infinity.
The sets Ẽ−, Ũ0, Ũ1, Ũ2 are open subsets of the x–plane, separated by the three arcs of Ẽ.

Finally, let us define the linear forms

si(x) = (−1)i ∗(dk(x) ∧ dj(x)), (14)

where i, j, k are different from each other and 0 ≤ j < k ≤ 2. The zero set of si(x) is the line ri, i = 0, 1, 2.
The union D of the six dashed half–lines originating from the receivers is called degeneracy locus of τ2, i.e.
the locus where the rank of the Jacobian matrix of τ2 drops. D is the zero set of the function

s(x) = d0(x) s0(x) + d1(x) s1(x) + d2(x) s2(x) (15)

and it is the preimage of the six straight line segments in ∂P2∩ Im(τ2). On D we have x+(τ ) = x−(τ ), thus
the TDOA map is one–to–one. Furthermore, D divides each Ũi into two connected components and τ2 is a
bijection between each of them and the corresponding Ui.

3. The statistical model

In the presence of measurement errors on the data, we must resort to statistical modeling. In this
section, we focus on the definition of the statistical models for TDOA–based localization in the minimal
planar scenario. As we are going to see, we need to define a plurality of models in order to take care of issues
of non-uniqueness in source localization. In particular, we will consider four distinct curved exponential
families, corresponding to the four different regions in the x–plane. In our analysis we follow the notation
of [22]. This will be particularly useful in Section 5, where we study the source estimation accuracy via the
asymptotic analysis techniques given by Information Geometry.

3.1. The complete and the reduced models

In this subsection we adapt the analysis contained in Sections 3 and 4 of [21] to the case of three TDOAs.
For sake of completeness, we include in this Section part of the mathematical derivation in [21]. In this
manuscript we assume the noise to be Gaussian, therefore the TDOAs associated to a source in x are
described by

τ̂∗

2 (x) = τ∗

2 (x) + ǫ, where ǫ ∼ N(0,Σ) (16)

and the covariance matrix Σ is known and non singular. This is the most common choice in application
scenarios [12, 46]. From a mathematical standpoint, this error distribution allows us to use the many
existing tools for the study of statistical exponential families. However, our analysis is helpful also in
situations where errors are no longer Gaussian, for example in the presence of outliers [20]. We define (16)
as the complete statistical model. This means that the probability density function (p.d.f.) for the measured
TDOAs τ̂∗ = (τ̂10, τ̂20, τ̂21)

T is

p(τ̂∗; τ∗

2 (x),Σ) =
1√

(2π)3|Σ|
exp

[
−
1

2
(τ̂∗ − τ∗

2 (x))
T Σ−1(τ̂∗ − τ∗

2 (x))

]
. (17)

From a geometric standpoint, the Fisher matrix Σ−1 defines a Euclidean structure on the τ–space, with
scalar product

〈v1,v2〉Σ = v1
T Σ−1v2, v1,v2 ∈ R

3 . (18)

8



The associated distance is the Mahalanobis distance

‖v‖Σ =
√
〈v,v〉Σ , v ∈ R

3. (19)

We can rewrite the p.d.f. (17) as:

p(τ̂∗; τ∗

2 (x),Σ) =
1√

(2π)3|Σ|
exp

[
−
1

2
‖τ̂∗ − τ∗

2 (x))‖
2
Σ

]
. (20)

Theorem 1. Let PH(τ̂∗;Σ) be the orthogonal projection of τ̂∗ ∈ R3 on the plane H defined by τ10 − τ20 +
τ21 = 0, with respect to 〈 , 〉Σ. Then, τ̂ = p3◦PH (τ̂∗;Σ) is a sufficient statistic for the underlying parameter
x.

Proof. PH(τ̂∗;Σ) is a sufficient statistic for x, see Theorem 1 in [21]. Since p3 is one–to–one between H
and R2, the claim follows.

Theorem 1 states that all the information about the source position is contained in τ̂ ∈ R2. In order to
obtain the p.d.f. for τ̂ , we observe that p3 ◦ PH (τ∗

2 (x);Σ) = τ2(x) and we define Σ2 = PΣPT , where P is
the representative matrix of p3 ◦ PH with respect to the standard basis of R3 and R2 (see [21]). From the
general transformation rule for the multivariate normal distributions under linear mapping, it follows:

p(τ̂∗; τ∗

2 (x),Σ) =
1

2π
√
|Σ2|

exp

[
−
1

2
‖τ̂ − τ2(x))‖

2
Σ2

]
. (21)

where it appears the Mahalanobis distance defined by Σ2
−1 on R2. This means that the analysis of the

complete statistical model (16) is equivalent to the analysis of the reduced (2D) TDOA statistical model:

τ̂2(x) = τ2(x) + ǫ2, where ǫ2 ∼ N(0,Σ2). (22)

For this reason and without loss of generality, in the rest of the paper we focus on the analysis of (22).

3.2. The restricted models are curved exponential families

We now address the problem of ambiguity in source localization, i.e. the fact that the map τ2 is not
globally invertible. The simplest way to solve this issue is to define distinct statistical models for each of the
maximal subsets of the x–plane where τ2 is injective. Throughout the rest of the manuscript we call these
the restricted models. In the following proposition we define and study the properties of the above maximal
subsets of R2.

Proposition 2. In the x–plane, let us consider the subsets

Ω = {x ∈ R
2 | s(x) < 0} and Ωi = {x ∈ R

2 | sj > 0, sk > 0},

where i, j, k are different from each other and 0 ≤ i, j, k ≤ 2. Then:

1. the above subsets are open and disjoint from each other and their union is dense in R2. In particular,
R2 \ (Ω ∪ Ω0 ∪ Ω1 ∪ Ω2) = D, the degeneracy locus of τ2;

2. the restriction of τ2 on each subset is differentiable and injective, with Im(τ2|Ω) = Im(τ2) \ ∂P2 and

Im(τ2|Ωi
) = Ui, i = 0, 1, 2. Furthermore, we have (τ2|Ω)

−1
= x+ and (τ2|Ωi

)
−1

= x−, i = 0, 1, 2.

Proof. In the following, we assume that i, j, k are different each other. By using identity dij = dik −djk, we
have

si(mi) = (−1)i ∗(dk(mi) ∧ dj(mi)) = (−1)i ∗(dik ∧ dij) = − ∗ (d10 ∧ d20) < 0,

for every i = 0, 1, 2. As a consequence, Ωi is the intersection of the two open half–planes bounded by rj , rk
and not containing mj,mk, respectively (see Figure 4). This implies that Ωi ∩ Ωj = ∅ if i 6= j and the
boundary of ∪2

i=0Ωi is D.
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Then, let us consider s(x). From Section 2.2.2, we know that ∂Ω = D. In the interior of the triangle of the
sensors, one has si(x) < 0 for every i = 0, 1, 2 and so also s(x) is negative. By continuity, this implies that
s(x) < 0 for every x in the complement of the closure of ∪2

i=0Ωi. It remains to check that s(x) is positive inside
every Ωi. Since {d10,d20} is a basis of R2, we can write di(x) = d0(x)− di0 = c1(x)d10 + c2(x)d20 − di0

for i = 0, 1, 2. Thus,

s0(x) = ∗((c1(x)d10 + (c2(x)− 1)d20) ∧ ((c1(x)− 1)d10 + c2(x)d20)) = (c1(x) + c2(x) − 1) ∗(d10 ∧ d20),
s1(x) = − ∗ ((c1(x)d10 + (c2(x) − 1)d20) ∧ (c1(x)d10 + c2(x)d20)) = −c1(x) ∗(d10 ∧ d20),
s2(x) = ∗((c1(x)− 1)d10 + c2(x)d20)) ∧ (c1(x)d10 + c2(x)d20)) = −c2(x) ∗(d10 ∧ d20).

By defining s̃(x) = (c1(x)+c2(x)−1) d0(x)−c1(x) d1(x)−c2(x) d2(x), we have s(x) = s̃(x)∗(d10 ∧ d20). For
the sake of simplicity, from now on we focus on Ω0, being the other cases analogous. In order to study the sign
of s(x) in this set, we perform the asymptotic analysis of the restriction of s̃(x) to the half–line outgoing from
m0 with direction w = −d10−d20. In this situation x(t) = m0+ tw and c1(x(t)) = c2(x(t)) = −c d0(x(t)),
where t ∈ [0,+∞) and c = 1

‖d10+d20‖
. In the limit d0(x) → +∞, we have

di(x) = ‖d0(x) − di0‖2 =
√
d0(x)2 − 2〈d0(x),di0〉+ di0

2 =

= d0(x)

√
1 +

1

d0(x)

(
−2 〈d̃0(x),di0〉+

d2i0
d0(x)

)
=

= d0(x)

(
1−

〈d̃0(x),di0〉

d0(x)
+
di0

2 − 〈d̃0(x),di0〉2

2d0(x)2
+ o

(
1

d0(x)2

))
=

= d0(x) − 〈d̃0(x),di0〉+
〈∗d̃0(x),di0〉2

2d0(x)
+ o

(
1

d0(x)

)
=

= d0(x) − 〈d̃0(x),di0〉+
∗(d̃0(x) ∧ di0)

2

2d0(x)
+ o

(
1

d0(x)

)
,

for every i = 1, 2 and x ∈ R2. In the derivation of the formula, we exploited the properties of the Hodge
operator and the fact that {d̃0(x), ∗d̃0(x)} is an orthonormal basis of R2 (see Appendix A of [15]). We use
this equality in s̃(x). Since c1(x) 〈d̃0(x),d10〉+c2(x) 〈d̃0(x),d20〉 = 〈d̃0(x),d0(x)〉 = d0(x), on the half–line
x(t) it results

lim
t→+∞

s̃(x(t)) =
c2

2

(
∗(w ∧ d10)

2 + ∗(w ∧ d20)
2
)
=

(
∗(d10 ∧ d20)

‖d10 + d20‖

)2

> 0.

By continuity, s(x) is positive on every x ∈ Ω0. The remaining claims of the theorem are consequences of
the properties of τ2 summarized in Section 2.

In order to simplify the notations, let us define U = Im(τ 2|Ω). An explicit description of U follows easily by
considering in the τ–plane the cubic curve C defined by equation b(τ ) = 0 and the associated open regions
C+ and C−, defined as b(τ ) > 0 and b(τ ) < 0 respectively (see Figure 6). From the results in Section 6 of
[15], we have:

U = P̊2 ∩ (E− ∪C+) = {τ ∈ P̊2 | a(τ )<0 or b(τ )>0}. (23)

In Figure 4 we draw the sets Ω,Ω0,Ω1,Ω2, while in Figure 5 there are their images U and Ui, i = 0, 1, 2.
At this point, following [22], we recall the definition of curved exponential family.

Definition 3. Let X be a set and Θ ⊆ Rn an open subset. An n–dimensional exponential family on X , with
parameters θ ∈ Θ and random variables y ∈ X , is a set S of probability density functions

p(y; θ) = exp

[
C(y) +

n∑

i=1

θiFi(y)− ψ(θ)

]
,

where {C,F1, . . . , Fn} are n+ 1 real valued functions on X and ψ ∈ C∞(Θ,R).
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Ω

Ω0 Ω1

Ω2

m0 m1

m2

D

Figure 4: Ω,Ω0,Ω1,Ω2 are disjoint open subsets of the x–plane. The closure of their union is R2, while their boundaries give
the discriminacy locus D of τ2. On each subset the map τ2 is injective.

Given an exponential family S, the mapping φ : S → Θ given by φ(p(y; θ)) = θ is a global coordinate
system of S. By composing φ with every C∞ diffeomorphism of Rn, we obtain a C∞ atlas on S. This allows
us to consider S as a C∞ differentiable manifold, a so–called statistical manifold.

The n–dimensional multivariate normal distribution is an important example of exponential family.
Indeed, let y ∼ N(µ,Σ). In this context, the probability density function becomes

p(y;µ,Σ) =
1√

(2π)n|Σ|
exp

[
−
1

2
‖y− µ‖2Σ

]
=

= exp

[
−
1

2
‖y‖2Σ + 〈µ,y〉Σ −

(
1

2
‖µ‖2Σ + log

√
(2π)n|Σ|

)]
.

(24)

If we assume Σ to be known, the only parameters are θ = µ. By defining

C(y) = −
1

2
‖y‖2Σ , Fi(y) = (Σ−1y)i , ψ(θ) =

1

2
‖θ‖2Σ + log

√
(2π)n|Σ| ,

the p.d.f. (24) can be rewritten in the canonical form given in Definition 3, where one can identify X = Θ =
Rn.

Definition 4. An (n,m) curved exponential family on X is a set M of probability density functions which
forms a smooth m–dimensional submanifold within an n–dimensional exponential family S.

Now, we can state the main result of this Section.

Theorem 5. The restriction of the statistical model τ̂2(x) on each subset Ω and Ωi, i = 0, 1, 2, is a (2, 2)
curved exponential family on R2, parameterized by θ(x) = τ2(x).

Proof. Let us take as S the 2–dimensional exponential family on X = Θ = R2 given by

p(τ̂ ; τ2,Σ2) =
1

2π
√
|Σ2|

exp

[
−
1

2
‖τ̂ − τ2‖

2
Σ2

]
, (25)

where the parameter space is the τ–plane and θ = τ2. By Proposition 2, on each subset Ω and Ωi, i =
0, 1, 2, the map τ2(x) is a differentiable bijection and defines a 2–dimensional family M of distributions
p(τ̂ ; τ2(x),Σ2) which is smoothly embedded in S.
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R0

R1

R2

T+
1

T−
1

T+
2

T−
2

T+
0

T−
0

U

τ10

τ20

R0

R1

R2

T+
1

T−
1

T+
2

T−
2

T+
0

T−
0

U0

U1

U2

τ10

τ20

Figure 5: On the left, the medium gray subset is U = Im(τ2|Ω). On the right, the medium gray subset having Ri as vertex
is Ui = Im(τ2|Ωi

), i = 0, 1, 2. The dashes lines subdivide the τ–plane into different regions according to the solution of the
Maximum Likelihood Estimator for each restricted model (see Section 4.1).

From now on, we will refer to the curved exponential family defined by τ̂2|Ω and τ̂2|Ωi
, i = 0, 1, 2, as M

and Mi, respectively, which have the open subsets U and Ui of Θ = R2 as parameter spaces (see Figure 5).
As said at the beginning of the Section, in the rest of the manuscript we will investigate the properties of
the TDOA statistical model through the analysis of the families M,M0,M1,M2.

4. The estimation of the source position in the TDOA space

In this Section we consider the problem of the estimation of the source position in the presence of noisy
TDOA measurements. In the literature, the typical approach is based on the optimization of a cost function
f(x; τ̂ ,Σ) in the x–space. The most popular example is Maximum Likelihood Estimation. For a given
τ̂ ∈ R2, the MLE approach consists in maximizing the likelihood function

l(τ2(x); τ̂ ,Σ2) =
1

2π
√
|Σ2|

exp

[
−
1

2
‖τ̂ − τ2(x))‖

2
Σ2

]
.

The estimated source location is

x̄(τ̂ ;Σ2) = argmax
x∈R2

l(τ2(x); τ̂ ,Σ2) = argmin
x∈R2

‖τ̂ − τ2(x))‖
2
Σ2

. (26)

It is well know that the MLE is an optimal estimator, as its variance asymptotically attains the Cramer–Rao
lower bound. However, finding the solution of the optimization problem (26) is a challenging task. Indeed,
the cost function is nonlinear and so it is impossible to find a closed-form solution. On the other hand, when
using iterative techniques the solution could get easily trapped in a local minimum, as the cost function is
not convex.

Starting from the description of the feasible set of TDOA measurements, we address the source local-
ization problem in a radically different fashion. In the following, we describe step by step how to get a
solution for the MLE optimization problem. In Section 6, we code this steps into four algorithms, one for
each statistical model.

4.1. The Maximum Likelihood Estimation in the TDOA space
For the sake of simplicity, let us consider the model M . Given τ̂ ∈ R2, the Maximum Likelihood

Estimation of the TDOAs is τ̄ (τ̂ ;Σ2) = τ2(x̄(τ̂ ;Σ2)), which satisfies

τ̄ (τ̂ ;Σ2) = argmin
τ∈U

‖τ̂ − τ‖2Σ2
. (27)
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This means that, in the τ–plane, an MLE algorithm searches for the point τ̄ (τ̂ ;Σ2) ∈ U at minimum
Mahalanobis distance from τ̂ . We have two cases. If τ̂ ∈ U , the MLE solution is simply τ̄ (τ̂ ;Σ2) = τ̂ . On
the other hand, if τ̂ /∈ U , we have to find the closest point to τ̂ on the boundary ∂U of U . In Figure 5,
the dashed lines subdivide the τ–plane in several subsets, according to the different types of solution of the
MLE for Σ2 = σ2I. In R2 \ U there are:

a) six regions having the segments of P2 ∩ ∂U as boundaries;

b) three regions having the arcs of E ∩ ∂U as boundaries;

c) three angular regions with vertices Ri, i = 0, 1, 2.

In the first two subcases, the MLE solution τ̄ (τ̂ ;Σ2) is the closest orthogonal projection of τ̂ on the relative
boundary of U. In the latter, the MLE solution is the corresponding vertex Ri.

Similar arguments apply also to the models Mi, i = 0, 1, 2 and for a generic covariance matrix Σ2. In
particular, for every model it is necessary to compute the projections of τ̂ on P2 ∩ Ū and on the ellipse.
The rest of this Section will be focused on the geometric problem of projecting τ̂ on the set of feasible
measurements.

4.2. The orthogonal projections on the line segments in P2 ∩ ∂U

For a generic point τ̂ ∈ R2, there exists a projection P±
i (τ̂ ;Σ2) on each of the lines h±i , i = 0, 1, 2,

supporting the six facets of P2 (see Figure 6).2 Let us define the vectors v0 = (1, 1)T , v1 = (1, 0)T and v2 =

τ1

τ2
C

h−
1

h+
0

h−
0

h−
2

h+
1

h+
2

R0

R1

R2

P2
E

E+
E−

C+

C−

Figure 6: The ellipse E in blue, the cubic C in red and the six lines supporting the facets of P2. Regions E± and C± are
named according to the sign of a(τ ) and b(τ ) respectively. We note that U0, U1, U2 ⊂ C+.

2In order to simplify the exposition, herein we adopt a different notation for the facets of P2, with respect to the one used
in [15]. Indeed, we name h

±

i
the lines supporting two facets containing the vertex Ri, while in [15] we used F

±

i
for the two

parallel facets not containing Ri.
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(0, 1)T , each one parallel to two facets of P2. Hence, the points P±
i (τ̂ ;Σ2), i = 0, 1, 2, are:

P+
0 (τ̂ ;Σ2) = R0 +

〈τ̂ − R0,v1〉Σ2

‖v1‖2Σ2

v1, P−
0 (τ̂ ;Σ2) = R0 +

〈τ̂ −R0,v2〉Σ2

‖v2‖2Σ2

v2,

P+
1 (τ̂ ;Σ2) = R1 +

〈τ̂ − R1,v0〉Σ2

‖v0‖2Σ2

v0, P−
1 (τ̂ ;Σ2) = R1 +

〈τ̂ −R1,v2〉Σ2

‖v2‖2Σ2

v2,

P+
2 (τ̂ ;Σ2) = R2 +

〈τ̂ − R2,v0〉Σ2

‖v0‖2Σ2

v0, P−
2 (τ̂ ;Σ2) = R2 +

〈τ̂ −R2,v1〉Σ2

‖v1‖2Σ2

v1.

(28)

We need to know which of these projections are in ∂U . To this purpose, we first check if P±
i (τ̂ ;Σ2) lies on

P2 by verifying inequalities (5). If so, it holds P±
i (τ̂ ;Σ2) ∈ ∂U if and only if li(P

±
i (τ̂ ;Σ2)) ≥ 0, where li(τ )

are the polynomials (8) defining the lines Li, i = 0, 1, 2.

4.3. The orthogonal projections on the arcs of the ellipse

The projections P i
E(τ̂ ;Σ2), i = 1, . . . , k of the data point τ̂ ∈ R2 on the ellipse E are the stationary

points of the squared Mahalanobis distance ‖τ̂ − τ‖2Σ2
restricted to E. Let ν be a Lagrange multiplier and

consider the Lagrange function

Λ(τ , ν; τ̂ ,Σ2) = ‖τ̂ − τ‖2Σ2
+ ν a(τ ) .

Consequently P i
E(τ̂ ;Σ2), i = 1, . . . , k are the real stationary points of Λ(τ , ν; τ̂ ,Σ2), i.e. the real solutions

of the system {
∇τΛ(τ , ν; τ̂ ,Σ2) = 0
a(τ ) = 0

. (29)

This is a system of polynomial equations that can be solved through symbolic or numerical computation. In
the first case, by using elimination theory (see [47]), we can reduce system (29) to a triangular polynomial
system. In particular, we obtain a degree four equation in one variable, which admits a closed-form solution.
The solutions of the system can then be derived through back–substitution. In doing so, however, we must
be careful about issues of numerical stability of the solutions. From a numerical standpoint, in order to
solve system (29) we can use some software based on homotopy continuation (e.g. PHCpack [48] or Bertini
[49]). In the following paragraph, we propose an alternate approach based on the parametric description of
E via trigonometric functions.

Recalling that ϕ0 = d̂10d20, we can state the following:

Proposition 6. Assume γ ∈ [0, 2π). Then

τ (γ) = (d10 sin γ, d20 sin(γ + ϕ0))

is a one–to–one regular parametrization of E.

Proof. As the Cartesian equation of E is a(τ ) = 0, for any given τ ∈ E the vector u(τ ) = τ20d10 − τ10d20

satisfies
‖u(τ )‖2 = ‖τ20d10 − τ10d20‖

2 = ‖d10 ∧ d20‖
2.

In the x–plane, the vectors ∗d10, ∗d20 are perpendicular to d10,d20, respectively, therefore {d10, ∗d10} and
{d20, ∗d20} are both orthogonal bases of R2. This implies that, for any τ ∈ E, there exists a unique angle
γ ∈ [0, 2π) such that

u(τ ) = − ∗ (d10 ∧ d20) (d̃10 cos γ + ∗d̃10 sin γ) , (30)

where d̃10, ∗d̃10 are unit vectors. From the definition of u(τ ), we have

τ10 = −
〈u(τ ), ∗d10〉

〈d20, ∗d10〉
, τ20 =

〈u(τ ), ∗d20〉

〈d10, ∗d20〉
.
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By substituting eq. (30) in the above formulas, we obtain the following trigonometric parametrization of E:

τ10(γ) = −
∗(d10∧d20)

〈d20, ∗d10〉

(
〈d̃10, ∗d10〉 cos γ + 〈∗d̃10, ∗d10〉 sin γ

)
,

τ20(γ) =
∗(d10∧d20)

〈d10, ∗d20〉

(
〈d̃10, ∗d20〉cos γ + 〈∗d̃10, ∗d20〉 sin γ

)
.

In the Euclidean plane, the identities 〈∗u, ∗v〉 = 〈u,v〉 and 〈u, ∗v〉 = ∗(u ∧ v) hold for any u,v ∈ R2 (see
Appendix A of [15]), therefore

τ10(γ) = d10 sin γ

and

τ20(γ) = ∗(d̃10 ∧ d20) cos γ + 〈d̃10,d20〉 sin γ = d20(sinϕ0 cos γ + cosϕ0 sin γ) = d20 sin(γ + ϕ0) ,

where in the second equality we used the assumption ∗(d10 ∧ d20) > 0.

By substituting the above parametrization of E into ‖τ̂ − τ‖2Σ2
and differentiating with respect to γ, we

obtain the following trigonometric equation in γ ∈ [0, 2π) :

〈τ̂ − τ (γ) , (d10 cos γ, d20 cos(γ + ϕ0))〉Σ2
= 0. (31)

For example, in the simplest case with Σ2 = σ2I, the equation is

d10 cos
(
γ̃ −

ϕ0

2

)(
τ̂10 − d10 sin

(
γ̃ −

ϕ0

2

))
+ d20 cos

(
γ̃ +

ϕ0

2

)(
τ̂20 − d20 sin

(
γ̃ +

ϕ0

2

))
= 0,

where we used the more symmetric variable γ̃ = γ + ϕ0

2 ∈ [0, 2π). For any fixed setting of the sensors and
the matrix Σ2, and for any TDOA measurements τ̂ ∈ R2, solutions γ̄i, i = 1, . . . , k of Equation (31) can be
obtained through standard numerical algorithms (e.g. bisection or Newton–Raphson methods). Then, the
relative orthogonal projections of τ̂ on E are P i

E(τ̂ ;Σ2) = τ (γ̄i), i = 1, . . . , k.
Irrespective of the chosen resolution method, for any projection we have to finally check if P i

E(τ̂ ;Σ2)
lies on the right arcs of ellipse for the given model. In particular, if we are considering model M, then we
require P i

E(τ̂ ;Σ2) ∈ ∂U ∩ E, i = 1, . . . , k. We showed in [15] that

∂(U0 ∪ U1 ∪ U2) ∩ E \ {T±
0 , T

±
1 , T

±
2 } = C+ ∩ E (32)

(see Figure 6). Since the set ∂U ∩ E is the complement in E of eq. (32), we have

∂U ∩ E = (C− ∪C) ∩ E. (33)

By definition, P i
E(τ̂ ;Σ2) ∈ E, i = 1, . . . , k, thus P i

E(τ̂ ;Σ2) ∈ ∂U ∩ E if, and only if, b(P i
E(τ̂ ;Σ2)) ≤ 0.

On the other hand, if we are considering the models Mj, j = 0, 1, 2, then we have to check if P i
E(τ̂ ;Σ2) ∈

∂Uj ∩ E, i = 1, . . . , k. This holds if and only if inequality lj(P i
E(τ̂ ;Σ2)) ≥ 0 is satisfied.

We conclude this subsection by discussing on the number k of solutions of system (29). For the case
Σ2 = σ2I, this problem is known in the algebraic geometry literature (see [34, 50]) as the computation of
the Euclidean distance degree of a variety (the ellipse E in the present case). We remark that the knowledge
of k is crucial for the correct functioning of any numerical algorithm used for solving system (29).

Definition 7. The Mahalanobis distance degree (MDdegree) of the ellipse E is the number of complex
stationary points of the Lagrangian Λ(τ , ν; τ̂ ;Σ2) for a general τ̂ ∈ C2. The real Mahalanobis Degree
(rMD) of E is the integer valued function κΣ2

: R2 → N that for any τ̂ ∈ R2 gives the number of distinct
real stationary points of Λ(τ , ν; τ̂ ;Σ2). Finally, the Mahalanobis degree discriminant (MDdiscriminant) of
E is the locus EΣ2

⊂ C2 of points τ̂ ∈ R2 such that Λ(τ , ν; τ̂ ;Σ2) has at least two coinciding stationary
points.
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E
Eσ2I

E4
σ2I

E2
σ2I

Figure 7: The MDdiscriminant EΣ2
of the ellipse E when Σ2 = σ2

I and the regions E2
Σ2

, E4
Σ2

, for the configuration of the

receiver m0 = (0, 0)T , m1 = (2, 0)T and m2 = (2, 2)T . If τ̂ ∈ E4
Σ2

there are 4 projections on E, if τ̂ ∈ E2
Σ2

there are 2
projections and finally for τ̂ ∈ EΣ2

there are 3 distinct projections.

The interested reader can find in [34, 50] the definition of the distance degree and discriminant for any given
variety and the proofs of the following results. As it is implicit in its definition, MDdegree does not depend
on τ̂ and Σ2 and for every ellipse it is equal to 4. The MDdiscriminant EΣ2

is an astroid, i.e. an algebraic
singular curve of degree six whose real part is of the type drawn in Figure 7.
Although the shape of the astroid depends on the covariance matrix, its topological properties are invariant
and in particular EΣ2

subdivides the τ–plane into two connected and disjoint open regions: the exterior and
the interior of EΣ2

, that we name E2
Σ2

and E4
Σ2
, respectively. The function κΣ2

is constant on each of these
regions and in particular we have:

κΣ2
(τ̂ ) =





2 if, and only if, τ̂ ∈ E2
Σ2

3 if, and only if, τ̂ ∈ EΣ2

4 if, and only if, τ̂ ∈ E4
Σ2

. (34)

Notice that κΣ2
(τ̂ ) is exactly the number k of orthogonal projections P i

E(τ̂ ;Σ2) of the point τ̂ ∈ R2 on the
ellipse E. In Appendix A we include the source code (written in Singular [51]) for computing the Cartesian
equation FΣ2

(τ ) = 0 of EΣ2
, once the sensors positions and the covariance matrix have been set. As an

example, the polynomial defining the curve Eσ2I in Figure 7 is:

Fσ2I(τ ) = τ61 + 6τ51 τ2 + 18τ41 τ
2
2 + 32τ31 τ

3
2 + 36τ21 τ

4
2 + 24τ1τ

5
2 + 8τ62 + 48τ41 − 24τ31 τ2

−588τ21 τ
2
2 − 696τ1τ

3
2 − 132τ42 + 1200τ21 + 2400τ1τ2 + 2400τ22 − 8000.

As 0 = (0, 0)T ∈ E4
Σ2

, a point τ̂ ∈ R2 lies on E4
Σ2

(respectively E2
Σ2

) if, and only if, FΣ2
(τ̂ )FΣ2

(0) > 0
(respectively FΣ2

(τ̂ )FΣ2
(0) < 0).

5. Asymptotic statistical inference

A crucial point in parametric statistics is the evaluation of the accuracy of parameter estimation proce-
dures. The precise description of the parametric models M,M0,M1,M2 given in Section 3 allows us to use
the tools of Information Geometry [22] for analyzing this aspect of TDOA–based localization. In Section 4
we laid down the basis for the solution of MLE, that is the optimal estimation from the statistical point of
view. Now we focus on the analysis of MLE efficiency. In Section 6 we will explicitly implement the MLE
and validate our theoretical analysis.
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Notice that the analysis proposed in this manuscript is inherently local, based on the differential geometry
properties of the restricted models. In particular, this means that here we do not take into account the
ambiguities in the localization, which we described in Section 2. What we do is to study an ideal situation,
where we know the region Ω,Ω1,Ω2,Ω3 where the source lies, and therefore we know which TDOA model
to consider. At the end of Section 6, we will go back to the more realistic scenario in which we have no
a-priori knowledge on the source position.

We finally remark that the analytic evaluation of the accuracy of source localization is not a novel idea
per se. See [24, 25] for other examples that do not rely on Information Geometry. This manuscript, however,
goes further in that investigation as it proposes in Section 5.2 a study on the reliability of the asymptotic
analysis.

5.1. Asymptotic mean square error and bias of MLE

From Theorem 5, we know that each model M,M0,M1,M2 is a (2, 2) curved exponential family. As Σ2

is known, we only have to specify the parameters θ(x) = τ2(x). It is well-known that for any statistical
manifold, there exists a natural Riemannian metric, the so called Fisher metric. If we use Ex[·] to denote
the expectation value with respect to the distribution p(τ̂ ; θ(x)), then at any point θ(x) the metric is given
by the Fisher information matrix

G(x) = Ex[∇xℓ(τ̂ ; θ(x))
T ∇xℓ(τ̂ ; θ(x))] =

∫

R2

∇xℓ(τ̂ ; θ(x))
T ∇xℓ(τ̂ ; θ(x)) p(τ̂ ; θ(x))dτ̂ ,

where ∇xℓ(τ̂ ; θ(x)) = (∂xℓ(τ̂ ; θ(x)), ∂yℓ(τ̂ ; θ(x))). In the integral it appears the function

ℓ(τ̂ ; θ(x)) = ln(p(τ̂ ; θ(x))) = C(τ̂ ) +

n∑

i=1

θi(x)Fi(τ̂ )−ψ(θ(x)),

where

C(τ̂ ) = −
1

2
‖τ̂‖2Σ2

, Fi(τ̂ ) = (Σ2
−1τ̂ )i, ψ(θ(x)) =

1

2
‖θ(x)‖2Σ2

+ log
√
(2π)n|Σ2| .

In order to explicitly obtain the Fisher matrix, we compute the Jacobian matrix of θ(x) :

J(θ(x)) =

(
d̃1(x)− d̃0(x)

d̃2(x)− d̃0(x)

)
.

After some straightforward computations we obtain

G(x) = J(θ(x))TΣ2
−1J(θ(x)).

Furthermore, the Hessian matrices of the components of θ(x) with respect to the parameters x are:

Hs(θi(x)) =




〈d̃i,e2〉
2

di

− 〈d̃i,e1〉〈d̃i,e2〉
di

− 〈d̃i,e1〉〈d̃i,e2〉
di

〈d̃i,e1〉
2

di


−




〈d̃0,e2〉
2

d0

− 〈d̃0,e1〉〈d̃0,e2〉
d0

− 〈d̃0,e1〉〈d̃0,e2〉
d0

〈d̃0,e1〉
2

d0


 ,

for i = 1, 2. Now, we can state the main result of this section. As we saw in Section 4.1, for any set of
measurements τ̂ and for each model we have an MLE estimate τ̄ (τ̂ ;Σ2) and a corresponding source position
x̄(τ̂ ;Σ2) = τ2

−1(τ̄ (τ̂ ;Σ2)).

Proposition 8. Given a source at x, the (local) asymptotic mean square error of x̄(τ̂ ;Σ2) is equal to

Ex[(x̄(τ̂ ;Σ2)− x)T (x̄(τ̂ ;Σ2)− x)] = G(x)−1. (35)

The (local) first order bias of x̄(τ̂ ;Σ2) is

Ex[x̄(τ̂ ;Σ2)− x] = −
1

2
b(x), (36)

where
b(x) =

(
Tr(Hs(θ1(x))G(x)−1),Tr(Hs(θ2(x))G(x)−1)

)
· (J(θ(x))−1)T . (37)
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Proof. The formula for the asymptotic mean square error of a consistent estimator is given in Theorem 4.3 of
[22]. Since MLE is consistent and asymptotically efficient, such formula reduces to Equation (35).3 Moreover,
by considering the higher order asymptotic theory, one can compute the expected value in Equation (36).
It is just a matter of computation to verify that Equation (37) is equivalent to formula 4.42 in [22].

In the case Σ2 = σ2I, Equation (35) reduces to:

G(x)−1 =
σ2

|J(η(x))|2

2∑

i=1

(
gi,22 −gi,12
−gi,12 gi,11

)
,

where gi,jk = 〈d̃i − d̃0, ej〉〈d̃i − d̃0, ek〉, i, j, k = 0, 1, 2.
The a priori knowledge of the bias is very interesting from the point of view of applications, because it

allows us to define the bias-corrected MLE as

x̄bc(τ̂ ;Σ2) = x̄(τ̂ ;Σ2) +
1

2
b(x). (38)

However, an exact compensation of the bias involves the knowledge of the true source location x, which is
obviously unknown in real context. At best, one can compute the bias at the estimated source location, and
so the bias-compensated estimate becomes

x̄bc(τ̂ ;Σ2) = x̄(τ̂ ;Σ2) +
1

2
b(x̄(τ̂ ;Σ2)). (39)

An inexact knowledge of the source location introduces an error in the bias prediction. With some pre-
liminary experiments we tested that Equation (39) improves the estimate of the distance of the source
from the reference sensor, while the variance of the direction of arrival increases. This suggests that an
improved accuracy could be achieved by using the estimation of the distance and of the angle coming from
bias-corrected and non-corrected estimations, respectively. However, we leave a deeper analysis of such a
problem for future developments.

5.2. Assessment of the asymptotic analysis

The asymptotic error analysis described in the previous Section gives a faithful evaluation of the error
relative to the source position only under certain conditions. In general, the asymptotic error analysis works
where the curvature of the statistical manifold is not too high, as explained in Section 4.5 of [22]. In our
case, for each one of the four models M,M0,M1,M2, it works well if we keep away from their boundaries.

In this Section we propose a method for evaluating the reliability of the asymptotic analysis. The starting
observation is that the asymptotic error analysis is essentially based on taking the first non-trivial orders
in the Taylor expansions of the expectation values given in (35) and (36), respectively. A first possible
approach is to consider the rest of such approximations by taking the Lagrange remainders of the respective
Taylor polynomials. However, preliminary tests indicate that, in doing so, we typically overestimate the
errors caused by the low-order approximations.

More realistically, we can estimate the error in the asymptotic approximation by computing the next
order in the series expansions of (35) and (36). The key identity is

Ex[f(τ̂ )] =

∫

R2

f(τ̂ ) p(τ̂ ; θ(x))dτ̂ = exp

[
1

2
∇Σ2∇

T

]
f(τ̂ )

∣∣∣∣
τ̂=θ(x)

where the exponential differential operator corresponds to the power series

exp

[
1

2
∇Σ2∇

T

]
=

∞∑

n=0

1

2nn!




2∑

i,j=1

Σ2ij

∂

∂τ̂i

∂

∂τ̂j




n

.

3Actually, this way we obtain the Cramer–Rao lower bound.
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For the sake of simplicity, here we focus on the analysis of Equation (35) under the assumption Σ2 = σ2I.
We have

f(τ̂ ) =
(
(x̄(τ̂ ;Σ2)− x)T (x̄(τ̂ ;Σ2)− x)

)
ij
, i, j = 1, 2.

If τ̂ lies on the interior of a given model, the MLE is simply the inverse map, i.e. x̄(τ̂ ;Σ2) = τ2
−1(τ̂ ).

Therefore, it is a matter of computation to obtain the first order correction ∆(x) to the expectation value
(35). In order to simplify the explanation, in the formula we use the following multi-index notation:

Dpq
i =

(
∂p+q

∂τ̂p1 ∂τ̂
q
2

τ2
−1(τ̂ )

∣∣∣∣
τ̂=θ(x)

)

i

, i = 1, 2, p, q = 0, 1, 2.

This way, we arrive to

∆(x)ij =
(
Ex[(x̄(τ̂ ;Σ2)− x)T (x̄(τ̂ ;Σ2)− x)]−G(x)−1

)
ij
=

σ4

4

(
3
(
D20

i D
20
j +D02

i D
02
j

)
+D20

i D
02
j +D02

i D
20
j + 4D11

i D
11
j +

+2D10
i

(
D30

j +D12
j

)
+ 2D01

i

(
D03

j +D21
j

)
+ 2D10

j

(
D30

i +D12
i

)
+ 2D10

j

(
D30

i +D21
i

))
+ o(σ5).

In Section 6 we will validate this formula through simulations and we will suggest how it can be used for
the evaluation of the accuracy of the asymptotic error analysis given in Proposition 8.

6. MLE algorithms implementation and validation

This Section implements the MLE localization technique and the asymptotic statistical analysis in Sec-
tions 4 and 5, respectively. In particular, we will validate them through a set of simulations. Finally,
we conclude by offering some comments for the reader who might be interested in adopting the described
algorithm in a real scenario.

6.1. The solutions of the MLE

As discussed in Section 4, we have a different MLE for models M and Mi, i = 1, 2, 3. In all these cases
we are interested in computing the estimate x̄(τ̂ ;Σ2) from the data vector τ̂ . We begin with the model M ,
therefore we assume that x ∈ Ω.

Algorithm 1 MLE algorithm for model M

Input: TDOA measurements τ̂ , covariance matrix Σ2

Output: x̄(τ̂ ;Σ2)
1: Check if τ̂ lies in U by verifying the (strict) inequalities (5) and (23). If so τ̄ (τ̂ ;Σ2) = τ̂ and go to

Line 5.
2: Compute the orthogonal projections P±

i (τ̂ ;Σ2), i = 0, 1, 2, by using formulas (28) and Pj
E(τ̂ ;Σ2), j =

1, . . . , k, by solving system (29).
3: Evaluate which of the projections lie on ∂U. For P±

i (τ̂ ;Σ2), i = 0, 1, 2, one hase to check inequalities

(5) and li(P
±
i (τ̂ ;Σ2)) ≥ 0. For Pj

E(τ̂ ;Σ2), j = 1, . . . , k, one has to verify b(Pj
E(τ̂ ;Σ2)) ≤ 0.

4: For every projection on ∂U and for each vertex Ri, i = 0, 1, 2, compute the Mahalanobis distance from
τ̂ . The MLE solution τ̄ (τ̂ ;Σ2) corresponds to the point where such distance is minimum.

5: The estimated source position is x̄(τ̂ ;Σ2)=x+(τ̄ (τ̂ ;Σ2)).

We must pay attention to the interpretation of the results regarding the source position. Indeed, by
taking the closest point to τ̂ on ∂U, we are actually considering the compactification of the model M. We
have the following cases.

a) If τ̄ (τ̂ ;Σ2) is one of the P±
i (τ̂ ;Σ2), i = 0, 1, 2, then x̄(τ̂ ;Σ2) lies on the degeneracy locus D.
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b) If τ̄ (τ̂ ;Σ2) is one of the Pj
E(τ̂ ;Σ2), j = 1, . . . , k, then we have to take the extension of the inverse

map x+(τ ) with value in the projective plane, because λ+(τ ) is not defined on ∂U ∩ E. It follows that
x̄(τ̂ ;Σ2) is the ideal point with homogeneous coordinates (v(Pj

E(τ̂ ;Σ2)) : 0) ∈ P2
R
. In this case, the

vector v(Pj
E(τ̂ ;Σ2)) should be interpreted as the localization direction of a very far source, in a situation

where even a very small noise on the TDOA measurements hinders to estimate the distance of the source
from the sensors.

c) If τ̄ (τ̂ ;Σ2) = Ri, then x̄(τ̂ ;Σ2) = mi, i = 0, 1, 2.

A similar MLE algorithm can be defined for each model Mi, i = 0, 1, 2. In these cases, we are assuming
that x ∈ Ωi.

Algorithm 2 MLE algorithm for model Mi

Input: TDOA measurements τ̂ , covariance matrix Σ2

Output: x̄i(τ̂ ;Σ2)
1: Check if τ̂ lies on Ui by verifying the (strict) inequalities (5) and (9). If so τ̄ i(τ̂ ;Σ2) = τ̂ and go to

Line 5.
2: Compute the orthogonal projections P±

i (τ̂ ;Σ2) by using formulas (28) and Pj
E(τ̂ ;Σ2), j = 1, . . . , k, by

solving system (29).
3: Evaluate which of the projections lie on ∂Ui. For P±

i (τ̂ ;Σ2) one has to check inequalities (5) and

li(P
±
i (τ̂ ;Σ2)) ≥ 0. For Pj

E(τ̂ ;Σ2), j = 1, . . . , k, one has to verify li(P
j
E(τ̂ ;Σ2)) ≥ 0.

4: For every projection on ∂Ui and for the vertex Ri calculate the Mahalanobis distance from τ̂ . The MLE
solution τ̄i(τ̂ ;Σ2) is the point where such distance is minimum.

5: The estimated source position is x̄i (̂τ ;Σ2)=x−(̄τi (̂τ ;Σ2)).

Similar remarks to those offered for the model M hold true in this case as well.
We recommend to be careful about the numerical stability of the solutions of the quadratic equation

a(τ )λ±(τ )
2 + 2b(τ )λ±(τ ) + c(τ ) = 0 contained in Section 2. This can become an issue especially when

τ is close to the ellipse E and so a(τ ) ≃ 0. In this case the quadratic equation is ill conditioned and so
formula (13) should not be used. See for example [52] as a reference book on this topic. Finally, let us briefly
comment the computational complexity of the algorithms. Every operation involved in both Algorithms 1
and 2 requires a single iteration for each measurement, except for the projection of the measured TDOAs
on the ellipse. As suggested in Section 4, this computation can be implemented using iterative techniques
such as Newton-Raphson method. However, it is important to notice that each step of the iterative solution
requires only 6 multiplications and 7 sums. Furthermore, the number of iterations does not depend on
the search space of the source location. Therefore, we believe that the proposed localization technique is
particularly suitable for applications that require a frequent estimation of the source location at a reduced
computational burden, such as camera steering for video-conferencing and audio-surveillance.

6.2. Simulative results and comparison with asymptotical statistical inference

In this subsection we show the experimental results about source localization based on Algorithms 1
and 2. We evaluate them through asymptotic analysis and Monte Carlo simulations.

6.2.1. Setup

The sensors are deployed as in Figure 4, i.e. m0 = (0, 0)T , m1 = (2, 0)T and m2 = (2, 2)T , and the
reference sensor is m0. The covariance matrix is Σ2 = σ2I, where σ = 0.005 m. Notice that both root mean
square error and bias are proportional to the noise variance, and therefore results do not lose generality
due to the choice of a specific value of σ. Sources are placed on a regular grid centered around the center
of gravity of the sensors. In particular, the x and y coordinates range from −2.67 m to 5.33 m and from
−3.33 m to 5.33 m, respectively, resulting in a total number of 4225 test source locations. For each source
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location x in the lattice, we simulate N = 500 noisy TDOA measurements τ̂j(x) = τ2(x)+ ǫ2,j , 1 ≤ j ≤ N.
Then, we compute the sample estimates of the mean square error matrix and the bias:

M̂(x) =
N∑

j=1

(x̄(τ̂j(x);Σ2)− x) (x̄(τ̂j(x);Σ2)− x)T

N
and B̂(x) =

N∑

j=1

x̄(τ̂j(x);Σ2)− x

N
.

We use Algorithms 1 and 2 according to the position of the true source x. In order to discriminate the

distance and angular error components on the source location, the projections of M̂(x) and B̂(x) on the
eigenvectors of the matrix G−1(x) are computed. Indeed, for sufficiently distant sources, the eigenvector
related to the largest eigenvalue approximately coincides with the direction of the source, as seen from the
array (in the following called radial direction). Due to the dynamic range of the error along the radial
component, we adopt a logarithmic transformation of the component of the covariance matrix (predicted or
estimated) along the radial direction.

6.2.2. Mean Square Error

Figure 8 shows the mean square error on localization predicted by G−1(x) (first row) and the simulated

one M̂(x) (second row), for the component along the radial direction (a) and the orthogonal one (b). It
is important to notice that in the area enclosed by the microphones, both the radial and the angular error
components do not exceed 0.01 m, thus confirming the validity of the MLE solution. If the sources is farther
from the microphones, the error increases, but it is still reasonable at a distance of 2− 3 m. By comparing
prediction and simulation results, we can notice that the asymptotic prediction is quite accurate over the
considered region, except for the areas surrounding the degeneracy locus D, i.e. the half-lines r±i , i = 0, 1, 2
prolongations of the segments joining the sensor locations.
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Figure 8: Projection of G−1(x) (first row) and M̂(x) (second row) along the eigenvectors of G−1(x). Projections along the
eigenvectors related to the maximum (a) and minimum (b) eigenvalue of G−1(x) are shown. Results are expressed on a
logarithmic scale (a) and in meters (b).
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With the aim of assessing the accuracy of the asymptotical estimate, in Figure 9 we compare the re-

mainder ∆(x) computed according to Section 5.2 and the difference ∆̂(x) = M̂ (x) − G−1(x) between

simulated and predicted MSE. The solid lines are level curves of ∆(x), while the colormap represents ∆̂(x).
We can observe a pretty good match between the two. Such comparison suggests that we can use ∆(x) as a
reliability certificate for the asymptotic prediction of MSE given by G−1(x). For example, one could define
the trusted region of G−1(x) as the one where ∆(x) takes value below a suitable threshold.

The availability of a method to predict the MSE is important in applications where different accuracy is
required in different regions. However, a quantitative estimate of ∆(x) − ∆̂(x) in the most general case is
beyond the scope of the manuscript and needs further investigation.
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Figure 9: Superposition of the contour lines of ∆(x) (solid lines), and ∆̂(x) (contour with colormap). We plot their projections
along the eigenvectors related to the maximum (a) and minimum (b) eigenvalue of G−1(x), respectively. Results are expressed
on a logarithmic scale.

6.2.3. Bias

Similarly to MSE, Figure 10 illustrates the bias analysis. The first and second rows show the asymp-
totic prediction − 1

2b(x) and the sample estimate B̂(x), respectively. As usual, we project them along the
maximum (a) and minimum (b) eigenvectors of G−1(x). It is important to notice that Algorithms 1 and 2
yields good localization accuracy in both radial and angular components, except for the regions close to the
degeneracy locus D. By comparing the simulative results with the prediction of the bias, it is possible to
observe a good match, except for the areas where the remainder analysis suggests a relevant error. It is
worth noticing that at the points that are far from these areas the bias exhibits very small magnitude, which
makes it difficult to estimate its value from simulations. For this reason, the contour lines of expected and
simulated values take on different shapes.
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Figure 10: First row: asymptotic prediction − 1

2
b(x) according to Equation (36). Second row: sample estimate B̂(x) of the

bias from simulations. Projections along the eigenvectors related to the maximum (a) and minimum (b) eigenvalue of G−1(x)
are shown. Results are expressed on a logarithmic scale.

6.3. MLE in real scenarios

The analysis we carried out in the previous sections is based on the decomposition of the TDOA–based
localization into four different models. In real world situations, the information about the model to choose is
available only in particular circumstances, such as in indoor localization where the source lies on a bounded
subset of R2. In general, it is impossible to know which model to use and so it is not possible to avoid
the ambiguity of the source localization described in Section 2. This is what we call the blind localization
scenario.

In the presence of noisy data the situation is rather more complicated. For example, it could happen that
data vector τ̂ represents outlier measurements or that τ̂ lies on E− but it comes from a noisy perturbation
of a point in Ui, i = 0, 1, 2. In the literature, there exist different ways to address these problems [53, 54].
In this manuscript, we work in the context of statistical hypothesis tests. Let us consider the model M and
its parameter set U ⊂ R2, being the other cases analogous. Given measurements τ̂ ∈ R2, we want to test
the null hypothesis H0 that τ̂ is not an outlier for M versus the alternative H1 that τ̂ is an outlier. If H0

holds valid, then x+(τ̄ (τ̂ ;Σ2)) should be seen as an admissible source position, otherwise it should not.
Following usual statistical procedures, one has to define a test statistic and compute its p-value ξ(τ̂ ; τ ,Σ2)

under the null hypothesis. ξ(τ̂ ; τ ,Σ2) is the probability the statistic is equal or larger than its observed
value. Then, fixed a confidence level α ∈ [0, 1], one accepts τ̂ if ξ(τ̂ ; τ ,Σ2) ≥ α. A natural choice for the
test statistic is the squared Mahalanobis distance between τ̂ and the feasible set U [20], that obviously
coincides with the distance between τ̂ and τ̄ (τ̂ ;Σ2). Let us name X 2

n the Chi–squared distribution with
n > 0 degrees of freedom, while X 2

0 denotes a Dirac delta on zero. Under H0, the test statistic follows a
mixture of Chi–square distributions:

‖τ̂ − τ̄ (τ̂ ;Σ2)‖
2
Σ2

−1 ∼ β0(τ ,Σ2)X
2
0 + β1(τ ,Σ2)X

2
1 + (1− β0(τ ,Σ2)− β1(τ ,Σ2))X

2
2 .
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The coefficients β0(τ ,Σ2) and β1(τ ,Σ2) depend on the metric Σ2 and the location of the unknown true
parameter τ ∈ U. For a detailled explanation of the problem see [55, 56, 20]. In principle, one could
exactly compute these two functions, although this is a very difficult task. Hence, we investigate alternative
approaches.

Firstly, let us remark that if τ̂ ∈ U, then ‖τ̂ − τ̄ (τ̂ ;Σ2)‖2Σ2
−1 = 0 and ξ(τ̂ ; τ ,Σ2) = 1, therefore H0 is

always accepted. If τ̂ /∈ U, there exist different strategies depending on the application. For example, one
could estimate τ = τ̄ (τ̂ ;Σ2) and then numerically evaluate β0(τ ,Σ2), β1(τ ,Σ2) and ξ(τ̂ ; τ ,Σ2). Otherwise,
a reasonable and computationally cheaper choice is to assume τ ∈ ∂U and take global approximations
β0(τ ,Σ2) = β̄0 and β1(τ ,Σ2) = β̄1, with values that best describe the distribution of the squared distances
in most situations [20]. This way, the p-value of the test is

ξ(τ̂ ; τ ,Σ2) = 1−
(
β̄0 + β̄1 FX 2

1

(
‖τ̂ − τ̄ (τ̂ ;Σ2)‖

2
Σ2

−1

)
+
(
1− β̄0 − β̄1

)
FX 2

2

(
‖τ̂ − τ̄ (τ̂ ;Σ2)‖

2
Σ2

−1

))
,

where FX 2
n
is the Chi-square cumulative distribution function with n degrees of freedom. In our aid for the

choice of β̄0 and β̄1, there are the following useful approximations:

a) if τ is on ∂U but sufficiently far from the vertices R0, R1, R2, then one has β0(τ ,Σ2) ≃ β1(τ ,Σ2) ≃
1
2 ;

b) given τ = Ri, let us name ϑi ∈ (0, π) the Mahalanobis angle between the two segments of ∂U having this
vertex as common endpoint. If the length of such segments are sufficiently large, one has β0(R

i,Σ2) ≃
ϑi

2π
and β1(R

i,Σ2) ≃
1
2 ;

c) finally, if the noise is large with respect to the size of the feasible set, one has β0(τ ,Σ2) ≃ β1(τ ,Σ2) ≃ 0.

Similar reasoning can be followed for the models M0,M1,M2. Once one identifies all the admissibile source
positions, for each of them it is possible to compute the associated error estimation as we explained in
Section 5 and validated in this section.

Geometrically speaking, given a significance level α and two mixing probabilities β̄0 and β̄1, the set of τ̂
for which the null hypothesis is accepted is the offset of the feasible set U at Mahalanobis distance δ such
that

1−
(
β̄0 + β̄1 FX 2

1

(
δ2
)
+
(
1− β̄0 − β̄1

)
FX 2

2

(
δ2
))

= α. (40)

In Figure 11 we draw the four models and their respective regions of acceptance of the data, by setting
Σ2 = (0.1 d10)

2 I, α = 0.05 and β̄0 = β̄1 = 1
2 . By solving Equation (40), in this case we have δ ≃ 1.64.

Finally, we summarize all the above discussion in Algorithm 3.

R0

R1

R2

U

τ10

τ20

ϑ0

ϑ1

ϑ2

R0

R1

R2

U0

U1

U2

τ10

τ20

Figure 11: On the left, the medium gray subset is the feasible set U of the model M . On the right, the medium gray subset
Ui is the feasible set of the model Mi, i = 0, 1, 2. The light gray subsets are the regions of acceptance of the measurements for
the various models.
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Algorithm 3 MLE algorithm for blind localization

Input: TDOA measurements τ̂ , covariance matrix Σ2, significance thresholds δ, δ0, δ1, δ2
Output: Admissible source positions x̄(τ̂ ;Σ2) and x̄i(τ̂ ;Σ2)
1: Compute τ̄ (τ̂ ;Σ2) and τ̄i(τ̂ ;Σ2), i = 0, 1, 2.
2: If ‖τ̂ − τ̄ (τ̂ ;Σ2)‖2Σ2

−1 < δ2 accept the estimation τ̄ (τ̂ ;Σ2), else discard the measurements τ̂ . The same

for τ̄i(τ̂ ;Σ2), i = 0, 1, 2.
3: The admissible source positions are x̄(τ̂ ;Σ2) = x+(τ̄ (τ̂ ;Σ2)) and x̄i(τ̂ ;Σ2) = x−(τ̄i(τ̂ ;Σ2)), i = 0, 1, 2,

among the ones passing the test in Line 2.

7. Conclusions

In this manuscript we studied the statistical model for the Range Difference–based localization, in the
minimal scenario of three sensors and a source lying in the plane of the sensors. This analysis arises from
previous works [14, 15], where the deterministic model for source localization was described in terms of
mapping from the physical space into the measurement space (TDOA space). Our work can be useful in
every context where the number of sensors and/or measurements is limited, such as in GPS localization and
in applications like the identification of TDOA outliers.

In our investigation, we faced the problem of multiple source location by defining four distinct curved
exponential families, one for each region of the physical plane where the TDOA map is injective. On this
basis, we developed a Maximum Likelihood technique for localization, which works in the TDOA space and
is formulated in a closed-form. Then, we obtained the asymptotical inference of the mean square error and
bias on source position, using tools of Information Geometry. We showed via simulation the effectiveness of
the proposed MLE algorithms and the quality and accuracy of the asymptotic error prediction. Moreover,
we investigated higher order statistics in order to evaluate the reliability of the asymptotic analysis. These
instruments are fundamental for treating relevant problems in applications, such as the optimal placements
of sensors. These aspects are currently under further investigation.

We conducted the above analysis under the assumption of knowing in advance the statistical model to
use, which is not always applicable in a real scenario. In Section 6.3 we proposed an algorithm for source
localization that applies to such situations, which is based on the theory of statistical hypothesis tests.

Appendix A. The Mahalanobis degree discriminant

By eliminating ν from system (29) we get the following algebraic equations

{
〈τ̂ − τ ,H∇τa(τ )〉Σ2

= 0
a(τ ) = 0

. (A.1)

By Definition 7, the Mahalanobis degree discriminant EΣ2
is the locus of the points τ̂ of the τ–plane

where (A.1) has at least two coinciding solutions. This condition is equivalent to require that ∇τa(τ ) and
∇τ 〈τ̂ − τ ,H∇τa(τ )〉Σ2

are parallel. A Singular code [51] for computing EΣ2
is:

ring r=0,(t1,t2,u,v),lp;

LIB"linalg.lib";

matrix d10[2][1]=d10x,d10y;

matrix d20[2][1]=d20x,d20y;

matrix S[2][2]=s11,s12,s21,s22;

matrix IS=inverse(S);

matrix H[2][2]=0,-1,1,0;

poly a=(d10[1,1]^2+d10[2,1]^2)*t2^2-

2*(d10[1,1]*d20[1,1]+d10[2,1]*d20[2,1])*t1*t2+

(d20[1,1]^2+d20[2,1]^2)*t1^2-
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(d10[1,1]*d20[2,1]-d20[1,1]*d10[2,1])^2;

matrix G[2][1]=diff(a,t1),diff(a,t2);

matrix N=-H*IS*H*G;

matrix MR[2][2]=u-t1,v-t2,N[1,1],N[2,1];

poly R=det(MR);

matrix MT[2][2]=diff(R,t1),diff(R,t2),G[1,1],G[2,1];

poly t=det(MT);

ideal i=a,R,t;

i=std(i);

print(i[1]);

The Cartesian equation of EΣ2
is the degree-6 polynomial in u,v that is printed thanks to the last line. The

only data to be changed are the numerical values d10x,d10y,d20x,d20y equal to the components of the
displacement vectors and the covariance matrix S.
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