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This paper extends a Linear Quadratic Regulator (LQR) based control scheme for

station-keeping on Libration Point Orbits to enable continued tracking in the event

of thruster failure. In the first instance it is shown that by using an extended state

observer the fault (and disturbances) can be measured and compensated for at each

sampling period using continuous thrust. It is proved that this control yields asymp-

totic tracking to a small bounded region around the desired reference orbit in the

presence of these uncertainties. In addition, it is demonstrated that by combining

this method with a sliding mode or an adaptive control, asymptotic tracking can be

achieved. An advantage of this method is that the required gain for asymptotic track-

ing of the sliding mode component is much smaller than traditional methods; the gain

magnitude is required to be larger that the magnitude of the disturbance estimation

error rather than the magnitude of the disturbance. A comparison of the controllers

performance against an LQR control scheme is undertaken in an application to low-

thrust station-keeping on a halo orbit in the Earth-Moon-Spacecraft system in the

presence of disturbances and various thruster faults.

1 MSc, Department of Aerospace Science & Technology, Politecnico di Milano, Milano
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Nomenclature and Symbols

AAUMC = Adaptive active uncertainty measurement control

AUMC = Active uncertainty measurement control

AUSMC = Active uncertainty sliding mode control

CR3BP = Circular restricted three body problem

E-M = Earth Moon system

ER3BP = Elliptical restricted three body problem

L2 = Lagrangian Point L2

LOE = Loss of effectiveness

STM = State transition matrix

OBC = On-board computer

EPS = Electric power sub-system

β = Gain of ESO

A(t) = State transition matrix

ε = Error in error state

η = Parameter of Sliding mode control

f = Disturbance vector (m/s2)

U = control input (m/s2)

uc = commanded control vector (m/s2)

u = linearized control input (mN)

I = Identity matrix

I. Introduction

The existing dogma of reliability driven spacecraft design can lead to inefficiencies in mass and

power budgets as redundancy is built into the hardware. For example, the orbit and attitude con-

trol system would usually include back-up actuators, such as additional thrusters, in case of failure.

Recently there has been an increase in interest of small spacecraft platforms such as CubeSats[1]

which can accept more risk (such as by reducing the number of actuators) in order to significantly
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reduce production cost. CubeSats, in particular, have seen a significant number of mission failures

that have been attributed to the failure of the propulsion system. A recent study by Langer[1],

described the three main subsystem failures that ultimately led to complete mission failures for

CubeSats, namely, the on-board computer (OBC), the electric propulsion system (EPS) and com-

munications. Around 19% of operational missions have resulted in failure[2] among which EPS is

the most susceptible to failure with more than a 35% failure rate. The motivation of this paper is

to reduce the risk of station-keeping failure due to EPS failure, not by building redundancy into the

hardware but through control design.

Spacecraft station-keeping on Libration Point Orbits can be categorized into two types: (i)

impulsive thrust station-keeping (usually chemical) where the controls are discontinuous and (ii)

continuous, low-thrust, station-keeping (such as solar electric propulsion or solar sail spacecraft).

Most of the techniques for orbit maintenance use impulsive maneuvers[3],[4],[5],[6]. For example,

Xin[5] used a sub-optimal control technique (the θ − D technique) to complete the mission of

multiple spacecraft formation flying in deep space about the L2 point. Marchand and Howell[6]

employed feedback linearization for formation flight in the vicinity of Lagrangian points. Bai and

Junkins[4] proposed a modified Chebyshev-Picard integration method for station-keeping of L2 Halo

orbits in the Earth-Moon system. Karimi[7] solved the problem of Halo orbit control using optimal

control theory and the extension of the active disturbance rejection technique to counter the external

disturbances in the unstable orbit near the co-linear points.

In this paper, the focus is placed on the use of continuous thrust technologies such as electric or

solar based propulsion. The computation of fuel efficient thrust for station-keeping on Halo orbits

is demonstrated in [8] using classical LQR where the controls are assumed to act continuously.

In addition LQR has been used for continuous thrust station-keeping using solar sails where the

control inputs are nonlinear functions of the sail angles, for example, in Biggs and McInnes[9],[10].

Field-emission electric propulsion was used for station-keeping by Giorgio[11] for a preliminary

study of early warning missions. However, none of these controls have considered the possibility of

stabilizing the orbits in the presence of partial thruster failure. To this end an extension of LQR

is developed by using an extended state observer to estimate and compensate the disturbances and
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the presence of any fault in the control design at each sampling period. The control is also combined

with a sliding mode and an adaptive control to guarantee asymptotic tracking in the presence of

partial faults. Extended State Observers (ESO) have been used in the past to estimate disturbances

and compensate for these disturbances in the control to improve the tracking error. This has been

demonstrated in an application to attitude tracking in the presence of disturbances and uncertainties

in the principal moments of inertia and reaction wheel friction[12, 13]. A sliding mode controller was

also designed by Goddard[14] for external disturbances and fault-tolerant compensation. Recently,

adaptive control has also been used for compensating disturbances for coordination and control of

a formation of spacecrafts. Wang[15] designed two robust adaptive control schemes for formation

keeping of a pair of satellites for which the disturbance was assumed bounded by a known nonlinear

function scaled by an unknown constant. Lim and Bang[16] used an adaptive back-stepping control

scheme to compensate for magnitude error and misalignment of the thruster for relative position

tracking problem of formation flying. In this paper a simple sliding mode control and adaptive

control are implemented alongside an ESO. This not only guarantees asymptotic tracking in the

presence of partial faults and disturbances, but the associated gain is only required to be greater

than the magnitude of the disturbance estimation error not the magnitude of the disturbance itself.

This means that the sliding mode component of the control, which can lead to chattering, is less

aggressive and that the magnitude of the disturbance does not need to be known apriori.

In this paper we demonstrate the use of this control in numerical simulation applied to spacecraft

station-keeping of a halo orbit in the Earth-Moon-Spacecraft system in the presence of disturbances

and thruster faults. The paper is presented as follows: Section II introduces different types of

faults in the actuators/thrusters for modelling a real scenario of station-keeping. Furthermore, this

section presents the station-keeping control algorithms and undertakes a linear stability analysis

using Lyapunov functions of the error variables. Section III presents the numerical example of

equations of motion and periodic reference orbits about the Earth-Moon L2 libration point in the

ER3BP. The simulation results are presented to validate the effectiveness of the new station-keeping

controls for Halo orbit station-keeping against a conventional continuous linear feedback controller.

Section IV concludes the paper.
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II. Station-keeping Strategies with Thruster Faults

In this section we derive several station-keeping strategies for continuous control inputs in the

presence of faults and external disturbances. The control strategies extend the conventional LQR

approach by using an extended state observer along with either a sliding mode control or singular

adaptive control to guarantee asymptotic tracking.

A. Fault-Modelling in Thrusters

This section will introduce the modelling of different types of control (thruster) faults that can

be encountered in a spacecraft. These include:

1. Loss of Effectiveness (LOE) due to a decrease in the effectiveness of the thruster after a

certain period of time and the input components ui are characterized by an increase in the

gain ui = (1− ki)uci where uci are the components of the commanded thrust with 0 < ki < 1

defining the extent of the loss.

2. Lock In Place (LIP) where all three thrusters are stuck in a particular position for a certain

time period. This type of fault is characterized mathematically by, ui = ūi(tf ) where, ūi gives

the control input at any time instant tf of failure.

3. Power Loss Fault (PLF) is a short-term, complete, failure of all thrusters but which are

switched back on after a short period. This, for example, could be due to power loss during

an eclipse.

From the above classification, the following general fault model is adopted:

u = uc + E(ū− uc) (1)

where E is the failure indicator matrix for the thruster defined as, E =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1 0 0

0 k2 0

0 0 k3

⎤
⎥⎥⎥⎥⎥⎥⎦
, ū repre-

sents uncertain stuck failures for the thruster, uc is the thruster's desired control commanded by

the controller, and u is the control that is realized by the thruster.

Note that this fault model can represent outage, loss of effectiveness and stuck faults by using

the parameters in Table 1.
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Table 1 Parameters for thruster modelling

Fault Mode ūi ki

Normal 0 0

Outage 0 1

LOE 0 0<ki<1

Stuck ūi 1

B. Linear Quadratic Regulator- A Conventional Approach

In order to optimize the use of propellant, an LQR control is developed considering the thruster

model for the actuation of spacecraft as continuous. Typically for station-keeping problems the

dynamics are highly nonlinear such as in the elliptic restricted three body problem. In some cases

the control is also highly nonlinear such as in the case of a solar sail [9], [10] and a traditional

approach is to first linearize the nonlinear system of the form:

Ẍ1 = g(Ẋ1,X1,U) +D (2)

where X1,U ,D ∈ R
3 where X1 is the position vector, U is a continuous control input and D are

the unknown but bounded external disturbances and g(Ẋ1,X1,U) is a known nonlinear function.

Expanding the phase space, Eq. 2 can be written in the general form:

Ẋ(t) = f(X,U ,D) (3)

where, X = [X1,X2] is the state. Linearizing the nonlinear equations by defining:

x = X −X0 (4)

u = U −U0 (5)

where, X0 denotes the reference trajectory and U0 the nominal control, which yields a linear system

of the form:

ẋ(t) = A(t)x+Bu+ d (6)
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where x = [x1, x2]
T is the error state, x1 being the position error state and x2 being the velocity

error state, d = [01×3 D]T and A(t) is of the form:

A(t) =

⎛
⎜⎜⎝ 03×3 I3×3

C(t)

⎞
⎟⎟⎠ (7)

where C(t) is a 3× 6 matrix. Then including the thruster fault model Eq. 1 gives:

ẋ(t) = A(t)x(t) +Buc + f (8)

where, f is defined as:

f = [01×3 D +BE(ū− uc)]
T (9)

In the case f = [01×6]
T the control

u(t) = −R−1BTS(t)x (10)

where S(t) is obtained by solving the following Ricatti equation,

Ṡ + SA+ATS − SBR−1BTS +Q = 0 (11)

is known to minimize the cost function:

J =

tf∫
t0

[x(t)TQx(t) + u(t)TRu(t)]dt. (12)

However, in general f �= [01×6], thus an LQR control of the form Eq. 10 is not optimal in the

presence of faults or disturbances.

C. Active Uncertainty Measurement Control

In this section an ESO is fused with an LQR controller to improve the tracking error when there

are thruster faults or uncertain disturbances. Defining the estimator state as, x̂ = [x̂1, x̂2]
T and

assuming that the trajectory does not deviate far from the reference trajectory, it is possible to use

the linear dynamics to estimate the unknown f using the following extended state observer[17]:

˙̂x1 = x̂2 + β1(x1 − x̂1)

˙̂x2 = x̂3 + β2(x1 − x̂1) + C(t)x+Buc

˙̂x3 = β3(x1 − x̂1)

(13)
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where C(t) is the known 3 × 6 matrix in Eq. 7, βi are the gains of the observer and x̂3 = f̂ is

the estimation of the unknown part of the Eq. 8. A parameterization based tuning method was

employed [18] which makes the controller parameters a function of a single variable, the loop-gain

bandwidth, which greatly simplifies the tuning process. Moreover, the gains are defined in terms of

the controller bandwidth, ωc, and observer bandwidth, ωo and then ωc set to a multiple of ωo which

in this paper is set to ωo = 4ωc and therefore

β1 = 3ωo, β2 = 3ωo
2, β3 = ωo

3. (14)

Then by combining the linearized equations of motion in Eq. 6 with an additional variable ζ defined

by:

ḟ = ζ (15)

and defining the error in estimation as E = x − x̂ and using Eq. 8, 13 and 15, the following

closed-loop estimation error dynamics are obtained:

Ė1 = E2 − 3ω0E1

Ė2 = E3 − 3ω2
0E1 (16)

Ė3 = −3ω0E1 + ζ

Lemma II.1. If ζ is assumed to bounded as |ζ| ≤ Δ, then a scalar δi exist such that as the time

t → ∞, the estimation error converges to a bound ‖ Ei ‖≤ δi, i = 1, 2, 3 where δi = ◦( 1
ωo

n ) with

◦(∗) representing the order of the function.

Proof. See [12, 13] for the proof.

From this Lemma it is possible to state the following control law.

Lemma II.2. The control u = uc −B∗x̂3 where uc = −Kx then x = 0 is asymptotically stable in

Eq. 6 as ωc →∞, with B∗ being the pseudo-inverse of B.

Proof. Defining the Lyapunov function:

V =
1

2
xTx (17)
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V̇ = xT ẋ

= xT (Ax+Buc + f)

= xT (A−BK)x− xT f̂ + xTf)

Defining the error in estimation as e = f − f̂ results in the following Lyapunov derivative,

V̇ = xT (A−BK)x+ xT (−f̂ + f)

≤ xT (A−BK)x+ |x| |e|

where |x| = xT sign(x). Now, if the controller poles tend to ∞ with t→∞, i.e. ωc →∞, the error

in the state estimation tends to 0, i.e. |e| → 0, then, V̇ < 0, except at the desired zero state.

Note that in practise ωc will be constrained, so that asymptotic stability cannot be achieved

in practise. The best one could expect is that the trajectory converges to a small bounded region

of the reference trajectory. However, by combining ESO with a sliding mode or singular adaptive

control it is possible to achieve asymptotic tracking in the presence of disturbances and faults.

D. Active Uncertainty Sliding Mode Control

The controller derived in this section is an extension to the AUMC control, with the addition of

a sliding mode component. The sliding surface is defined as a function of the error in the system's

state. It can be directly related to either just the position error state or both position and velocity

error state. Moreover, the function σ is selected in such a way that it is vanishing as time t→∞.

This will give rise to a stable differential equation and thus the error will also tend to 0. The

following model for sliding surface is adopted:

σ = (
d

dt
+ a)kx (18)

with a defines the unique pole of reduced dynamics of the system when it is in sliding mode. For

this case, k = 0, thus making it dependent only on the position state.

A control action is defined such that it steers the system into the sliding surface manifolds such

that |σ| → 0. The control law for AUSMC is thus developed as,

uAUSMC = −Kx−B∗f̂ − ηsign(σ) (19)
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η is chosen as the upper bound of the disturbance to account for the problem of exceeding the

limited disturbance.

In this section, a stability proof is developed to show that the AUSMC control law given by

Equation 19 guarantees asymptotic stabilization of the reference trajectory.

Theorem II.3. For the Eq. 6 with the control laws in Eq. 19, then the error state, |x| → 0 as

t→∞ with the assumption that η > |e|.

Proof. Consider the following Lyapunov function for the above defined problem,

V =
1

2
xTx = xT ẋ

= xT (Ax+ xTBuc + f)

= xT (A−BK)x− xT f̂ − xT ηsign(σ) + xTf

now if k = 0, σ = x, hence, the Lyapunov function becomes:

V̇ = xT (A−BK)x+ xT (−f̂ + f)− ηxT sign(x) (20)

and with e = f − f̂ gives

V̇ ≤ xT (A−BK)x+ |x| |e| − η |x| (21)

As the estimation error is upper bounded then η can be chosen to be greater than this bound

and it follows from the Barbalat's lemma, the system is asymptotically stable. As K is chosen such

that A−BK is negative definite. Then, the choice of η is such that η > |e|, it will result a negative

value of derivative of Lyapunov function, i.e. V̇ < 0

The sliding mode control formulation derived in this problem has a discontinuous control com-

ponent which may result in high frequency switching (known as chattering) when the system is

operating in a region very close to the sliding mode.

There have been many methods adopted to avoid chattering in sliding mode control, but

Bharat[19] developed a simpler saturation function for the station-keeping problem. It can be used

in place of sign function, to avoid excessive station-keeping cost. Defining the saturation function

as:
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sat
(σi

ε

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
σi

ε

)
,
∣∣σi

ε

∣∣ ≤ 1

sign
(
σi

ε

)
,
∣∣σi

ε

∣∣ > 1

⎫⎪⎪⎬
⎪⎪⎭ (22)

where, σi is again a sliding surface as defined in Eq. 18 and ε is the boundary layer below

which the saturation function varies continuously as per the above definition. The large value of

the bound ε decreases the station-keeping costs but increases the station-keeping error. Therefore,

a trade-off is made while choosing the value of ε. The values for these bounds should be chosen

to keep the station-keeping costs low without sacrificing position accuracy despite the presence of

significant uncertainties.

E. Adaptive Active Uncertainty Measurement Control

Another modified control strategy is proposed that can provide asymptotic tracking of a ref-

erence orbit in the presence of faults(disturbances). The principle behind this controller is to add

an adaptive parameter for the control to provide tracking for the uncertain disturbances and faults.

However, this adaptive parameter is unbounded and possess a singularity as t → ∞. This causes

problems when tracking over large time periods as the gain and corresponding required control input

become too large. It can be managed by implementing a saturation block similarly to the one in

AUSMC.

The adaptive control law is defined as:

uAAUMC =
−Kx

σ
−B∗f̂ (23)

with the scalar σ defined by

σ̇ =
dσ

dt
=

⎧⎪⎪⎨
⎪⎪⎩

−kσxT sign(x)
‖x‖2 , x �= 0

0, x = 0

(24)

where σ(0) > 0 and σ̇(0) < 0. Here, the adaptive feedback controller with ESO can compensate

for the estimation error rather than the entire disturbance and can track a prescribed reference

trajectory such that the closed-loop system is stable. A stability proof shows that the AAUMC

control law given in Eq. 23 guarantees asymptotic stabilization of the system.
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Theorem II.4. For the system given in Eq. 6 with the adaptive control law in Eq. 23 with 0 < σ ≤ 1

defined in Eq. 24 yields |x| → 0 as t→∞.

Proof. Consider the following Lyapunov function for the above defined problem,

V =
σ2

2
xTx (25)

Taking the derivative of the Lyapunov function:

V̇ = σ2xT ẋ+ σσ̇xTx

= σ2xT (Ax+Buc + f) + σσ̇xTx

Here, uc is replaced by uAAUMC as defined in Eq. 23.

V̇ = σ2xT (A−B
K

σ
)x− σ2xT f̂ + σ2xTf + σσ̇xTx

= σxT (Aσ −BK)x− σ2xT f̂ + σ2xTf + σσ̇xTx

= σxT (Aσ −BK)x+ σ2xT (−f̂ + f) + σσ̇xTx

where σ is defined in the Eq. 24. Also, defining the error in estimation as e = f − f̂ results in

the following Lyapunov derivative,

V̇ ≤ σxT (Aσ −BK)x+ σ2|xT | |e|+ σσ̇xTx (26)

As it has been shown in Theorem II.3, that stability exist if the term σ2|xT | |e| is replaced as

σ2ηsign(x), with η > |e|. Therefore, in Eq. 26, the derivative of Lyapunov stability should be less

that 0 with the existence of following conditions:

• k > |e|

• σ̇ = −kσxT sign(x)
xxT

• Also, for (Aσ −BK) is to be negative definite, range of σ is established as 0 < σ ≤ 1

Thus, with these consideration stability of this controller is established, i.e. V̇ < 0
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III. Numerical Example

In this section, the ER3BP equations are formulated to obtain periodic orbits and furthermore

the simulation results of each station-keeping strategy is presented.

A. Elliptical restricted three-body problem

a. Dynamics For a ER3BP, the motion of the motion of Moon around the Earth are con-

sidered eccentric (e = 0.0549) rather than a circular approximation. The infinitesimal mass m3 of

spacecraft compared to the mass m1 of the Earth and the mass m2 of the Moon is also assumed to

be negligible.

With these assumption in mind, a rotating coordinate system (X̂,Ŷ ,Ẑ) is defined with the

origin set at the barycenter of the E-M system as shown in the figure 1. Non-dimensionalization is

Fig. 1 Synodic Rotating Reference Frame

Earth

Moon

COM

L2

Halo 
Orbit

Y

X

X
Y

I,S θ

performed by defining the distance between the Earth and the Moon as the characteristics length,

the time of 1/n as the unit of time TU, and the characteristics mass as the sum of the mass of the

Earth and the Moon. Normalization is obtained by setting μ = m2

m1+m2
, m2 = μ and m1 = 1 − μ.

Also, the normalized location of Earth and Moon is given as (−μ, 0, 0) and (1−μ, 0, 0) respectively.

In the case of the elliptic problem, the non-dimensional angular rate and angular velocity varies
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with time and is written as,

n = θ̇ =
(1 + ecosθ)2

(1− e2)e
3
2

, ṅ = −2e sinθ

(1− e2)
3
2

(27)

Then the ER3BP is described by the equation of motion:

ẍ− 2nẏ − ṅy − n2x = − (1− μ)(x+ μσ)

d3
− μ(x− (1− μ)σ)

r3

ÿ + 2nẋ+ ṅx− n2y = − (1− μ)y

d3
− μy

r3
(28)

z̈ = − (1− μ)z

d3
− μz

r3

where,

d = (x+ μσ)X̂ + yŶ + zẐ,

r = (x− (1 + μ)σ)X̂ + yŶ + zẐ, (29)

σ =
1− e2

1 + ecosθ

b. Periodic Orbits Among all the equilibrium points in the Earth-Moon system, L2 lagrangian

point is taken into consideration to achieve best visibility and communication with the Earth and

the Moon. These periodic solutions are initially presented by Richardson [20] and have been widely

quoted and used.

The choice of orbit was motivated with the coverage of south pole by various L2 orbits. Orbit

with following initial condition is used for this problem as it can provide around 90% coverage in

most location of interest on the moon.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

y0

z0

ẋo

ẏ0

ż0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.13424283994529

0

0.187435048916681

0

−0.223784191244108

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)
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Table 2 Simulation Parameters

Parameters Values

Injection Errors δX=100 Km, δV =1 m/s

LQR Gains Q = diag(1,1,1,100,100,100), R = diag(0.04,0.04,0.04)

AUMC Observer Gains β1=30, β2=300, β3=1000

AUSMC Parameters a=2.599e-05, ε=1e-3, η=diag(0.01,0.01,0.01)

AAUMC Parameters k=0.01

B. Simulation Results

Min Zhu[21] in his work on active disturbance rejection control identified the following important

parameters to study the performance of station-keeping strategies implemented on the satellite. The

velocity increments ΔV (in unit of m/s/T ) , and the mean absolute value of the position errors

ex, ey & ey are defined as followed:

ΔVi =
1

T

∫ T

0

|ui| dt

ΔV =
√
ΔV 2

x +ΔV 2
y +ΔV 2

z (31)

ei = |Δi|mean

Δe =
√
e2x + e2y + e2z

with i = x, y, z

Another parameter that could be effective in defining the performance of control is the conver-

gence time. It is defined as the time taken by position or velocity error to converge to a certain

value from the time they occur.

Since, CubeSat will have a ride-share mission to moon aboard another spacecraft, there is

a possibility to experience high injection errors. For simulation purposes, initial conditions are

perturbed from the nominal values that are used in the reference orbit. For the simulation purpose,

values in table 2 of each of the parameters are used in dimensionless coordinates.
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1. Station-keeping with injection and tracking errors

Figure 2 highlights the results of halo orbits control force encountered due to the presence of

injection error of 100 Km for the AUMC, AUSMC and AAUMC control with respect to the LQR

control. It can be seen from the table 3 that AUMC has a negligible decrease in position errors but

it is faster in convergence as compared to LQR.

Table 3 Performance parameters for Controls with Injection Errors

Control

Strategy

ΔV

(m/s/T)

Δe

(km)

Convergence

time(days)

LQR 5.8432 30.86 27.117

AUMC 5.8238 29.55 17.027

AUSMC 5.7001 26.24 9.365

AAUMC 5.9316 22.46 13.207

It takes around 17.027 days as compared to 27.117 days for LQR which is about of 37.2%

decrease in convergence time while the error is just decreased by 4.2%. In case of AUSMC and

AAUMC position error is reduced by 14.9% and 27.2%, while there is above 50% which is high

improvement in convergence time as compared to LQR. It can be seen that ΔV is almost same

throughout all the three strategy with very little variation in it.

2. Station-keeping with thrusters fault

There are three fault scenarios simulated as discussed in the section IIA such as faults due to

power outage, thruster stuck and loss of effectiveness.

a. Thruster outage: The following values in table 4 were chosen for the parameters ū and

E to simulate this fault. Figure 3 underlines the effects for each of station-keeping strategy for

required control thrust with respect to LQR. As expected AUSMC has the lowest convergence time

of 12.14 as compared to LQR of 20 days staying in almost the same range of ΔV for both. But,

a position error improvement of 9.93%, 16.4% and 13.3% is seen in AUMC, AUSMC and AAUMC

with respect to LQR. Table 5 can be referred for the effect of position error and time of convergence

for the fault.
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Fig. 2 Thrust comparison with injection errors

(a) X-direction-AUMC v/s LQR (b) Y-direction-AUMC v/s LQR (c) Z-direction-AUMC v/s LQR

(d) X-direction-AUSMC v/s LQR (e) Y-direction-AUSMC v/s LQR (f) Z-direction-AUSMC v/s LQR

(g) X-direction-AAUMC v/s LQR (h) Y-direction-AAUMC v/s LQR (i) Z-direction-AAUMC v/s LQR

Table 4 Thruster Outage Parameters

Parameter Value

ū 0

E diag(1,1,1)

Out time 4.32 days

b. Thruster Stuck: In order to simulate this scenario, it is assumed that the thrust is stuck

at 60% capacity of its maximum capability for the duration of around 5 days due to lack of required

power. This time duration is considered as 5 days keeping maximum eclipse time that the spacecraft

will encounter in this orbit. The effects can be seen in table 6.
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Table 5 Thruster Outage Fault of including Injection errors and Thruster Outage faults

Control

Strategy

ΔV

(m/s/T)

Δe

(km)

Fault

Convergence

time(days)

LQR 15.447 59.032 >20

AUMC 15.427 53.360 19.41

AUSMC 14.859 47.516 12.14

AAUMC 14.24 52.201 18.01

Table 6 Thruster stuck fault including Injection errors and Thruster stuck faults

Control

Strategy

ΔV

(m/s/T)

Δe

(km)

Fault

Convergence

time(days)

LQR 7.846 43.18 8.91

AUMC 7.992 40.66 8.596

AUSMC 7.759 37.787 7.666

AAUMC 8.013 32.86 8.469

c. Loss of Effectiveness: The values in table 5 were chosen for the parameters ū and e to

simulate this fault.

Table 7 Thruster LOE Parameters

Parameter Value

ū 0

E diag(0.4,0.3,0.6)

Out time 4 days

This is the important result that shows prominent effect of the controller developed by addition

of sliding surface to an observer. The main effect can be seen in case of AUSMC, the error remains

much bounded to almost ignore the convergence of this control and thus reducing the requirement

of extra control efforts. Table 8 shows the effect for this case. As always the ΔV are in the same

order for all four cases but slight improvement is seen for the position errors. It can be seen that
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Fig. 3 Thrust comparison with injection errors and outage faults

(a) X-direction-AUMC v/s LQR (b) Y-direction-AUMC v/s LQR (c) Z-direction-AUMC v/s LQR

(d) X-direction-AUSMC v/s LQR (e) Y-direction-AUSMC v/s LQR (f) Z-direction-AUSMC v/s LQR

(g) X-direction-AAUMC v/s LQR (h) Y-direction-AAUMC v/s LQR (i) Z-direction-AAUMC v/s LQR

there is just a 12% decrease in fault convergence time for AUSMC as compared to LQR.

Table 8 Thruster LOE fault including Injection errors and thruster LOE faults

Control

Strategy

ΔV

(m/s/T)

Δe

(km)

Fault

Convergence

time(days)

LQR 7.621 33.92 6.14

AUMC 7.440 32.76 5.81

AUSMC 7.396 30.83 1.15

AAUMC 7.652 31.78 5.45

The simulation results show that it is feasible for a 6U CubeSat with, for example, a field
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emission electric propulsion system to stabilize its motion on a halo orbit in the Earth-Moon-

Spacecraft system even with the presence of certain faults, typical environmental disturbances and

injection errors.

IV. Conclusion

Linear Quadratic Regulator (LQR) based controllers have been proposed for fuel-efficient

station-keeping missions about Libration point orbits. These controls are simple to implement and

optimal provided the spacecraft does not drift too far from the reference orbit. In this paper LQR

is extended to include a simple linear extended state observer that is shown to improve the station-

keeping tracking performance in the presence of disturbances and thruster faults. For example, with

orbital injection errors of 100 km in position and 1 m/s in velocity the extended control stabilizes

the satellite's orbit in approximately 17 days whereas using LQR alone takes approximately 27 days

for convergence.

Despite the improvement in the simulation example, the mathematical proof of asymptotic

stability could only be demonstrated under the assumption of perfect estimation of the faults and

disturbances. It was then demonstrated that by coupling this control with a sliding mode component

or a singular adaptive gain that asymptotic tracking can be achieved in the presence of faults and

disturbances. Moreover, the control coupled with the sliding mode component, called the Active

Uncertainty Sliding Mode Control (AUSMC), outperforms the other control algorithms in terms of

convergence time with faults and disturbances. For instance, with a power outage for 4 days, the

AUSMC control scheme takes approximately 12 days to stabilize the satellite's orbit as compared

to approximately 20 days in the case of an LQR control.

The simulation results also show that it is feasible for a 6U CubeSat with continuous low-thrust

electric propulsion (with a maximum thrust of approximately 2.5 mN) to undertake station-keeping

on Libration point orbits in the presence of partial or complete short-term faults and disturbances.

V. Appendix

Figure 4 and 5 represent the results of station-keeping with thruster stuck and LOE faults.
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Fig. 4 Thrust comparison with injection errors and thruster stuck faults

(a) X-direction-AUMC v/s LQR (b) Y-direction-AUMC v/s LQR (c) Z-direction-AUMC v/s LQR

(d) X-direction-AUSMC v/s LQR (e) Y-direction-AUSMC v/s LQR (f) Z-direction-AUSMC v/s LQR

(g) X-direction-AAUMC v/s LQR (h) Y-direction-AAUMC v/s LQR (i) Z-direction-AAUMC v/s LQR
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Fig. 5 Thrust comparison with injection errors and thrusters LOE faults

(a) X-direction-AUMC v/s LQR (b) Y-direction-AUMC v/s LQR (c) Z-direction-AUMC v/s LQR

(d) X-direction-AUSMC v/s LQR (e) Y-direction-AUSMC v/s LQR (f) Z-direction–AUSMC v/s LQR

(g) X-direction-AAUMC v/s LQR (h) Y-direction-AAUMC v/s LQR (i) Z-direction-AAUMC v/s LQR
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