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Abstract

We consider the nonlocal Cahn–Hilliard equation with singular potential and constant
mobility. Well-posedness and regularity of weak solutions are studied. Then we estab-
lish the validity of the strict separation property in dimension two. Further regularity
results as well as the existence of regular finite dimensional attractors and the conver-
gence of a weak solution to a single equilibrium are also provided. Finally, regularity
results and the strict separation property are also proven for the two-dimensional
nonlocal Cahn–Hilliard–Navier–Stokes system with singular potential.

MSC2010: 35B40, 35B41, 35B65, 35Q30, 35Q82, 35R09.

1 Introduction

The Cahn–Hilliard system was proposed in [15] (see also [14]) as a model which provides a
macroscopic description of the formation and evolution of microstructures during the phase
separation in a binary alloys system. Such a phenomenon is characterized by an early stage
where the so-called spatial spinodal decomposition takes place, followed by the coarsening
process. They occur when a homogeneous mixture undergoes a rapid cooling below a
certain critical temperature. As a result, this process leads to the segregation of the system
into spatial subdomains where one of the constituents prevails. Afterwards, the Cahn–
Hilliard equation and its variants has been used to model different phenomena which are
characterized by segregation-like processes (see, for instance, [10, 26, 46, 48, 49, 54, 58, 59]).

The general form of the Cahn–Hilliard system reads as follows{
ϕt = div (m(ϕ)∇µ) ,

µ = −κ∆ϕ+ F ′0(ϕ),
in Ω× (0, T ). (1.1)

Here, Ω is a bounded smooth domain in Rd, d ≤ 3, ϕ represents the relative difference
of the two phases (concentration), m is the concentration dependent mobility, µ is the
chemical potential, κ > 0 is a parameter related to the thickness of the interface and F ′0
is the first derivative of a double well potential F0. The physically relevant example is the
logarithmic potential defined by

F0(s) =
θ

2

[
(1 + s) log(1 + s) + (1− s) log(1− s)

]
− θc

2
s2, (1.2)
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for all s ∈ (−1, 1), with 0 < θ < θc, where θ is the temperature of the system and θc
the critical temperature, both assumed to be constants. Instead, significant examples of
mobility function m are either a positive constant or the so-called degenerate case, namely,
for all s ∈ [−1, 1],

m(s) = M, or m(s) = M(1− s2). (1.3)

System (1.1) is usually endowed with homogeneous Neumann boundary conditions

m(ϕ)∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ), (1.4)

where n ∈ Rd denotes the unit outward normal vector to the boundary ∂Ω. The former
condition means that no mass flux occurs at the boundary while the latter requires the
interface to be orthogonal at the boundary.

The Cahn–Hilliard equation can be formally derived as the conserved dynamics gen-
erated by the variational derivative of the Ginzburg–Landau free energy with respect to ϕ
(see, e.g., [24, 53] and references therein, cf. also [41] for a derivation based on the second
law of thermodynamics). More precisely, (1.1) can be written as

ϕt = div (m(ϕ)∇µ) and µ =
δL
δϕ
,

being the free energy
L(ϕ) = U(ϕ)− θS(ϕ),

where the (bulk) internal energy U is defined as

U(ϕ) =

∫
Ω

(
κ

2
|∇ϕ|2 − θc

2
ϕ2

)
dx

and the total entropy S is given by

S(ϕ) = −
∫

Ω

1

2
[(1 + ϕ) log(1 + ϕ) + (1− ϕ) log(1− ϕ)] dx.

The internal energy U takes into account just short range interactions between particles
and, for this reason, (1.1) is called the local Cahn–Hilliard system. Indeed, the gradient
square term accounts for the fact that the local interaction energy is spatially dependent
and varies across the interfacial surface due to spatial inhomogeneities in the concentration.
However, there is no microscopic derivation of the system (1.1). This issue was observed
by Giacomin and Lebowitz in [36]. There the authors rigorously derived an equation
similar in structure to (1.1), which displays an analogous behavior during the late stage of
the coarsening process. More precisely, starting from a discrete (microscopic) formulation
on a lattice, they deduce through a stochastic argument (i.e., hydrodynamic limit) a
macroscopic nonlocal evolution equation which takes into account long-range repulsive
interactions between different species and short hard collisions between all particles as
well (see [37, 38]).

In this work, we study the aforementioned nonlocal Cahn–Hilliard system proposed by
Giacomin and Lebowitz describing the phase separation in a binary mixture. In order to
emphasize the connection with the local Cahn–Hilliard (1.1)-(1.4), we rewrite the nonlocal
Cahn–Hilliard equation in terms of the relative difference of two phases (cf. [36]). We refer
to the concentrations of the two components as ϕ1 and ϕ2, subject to the natural constraint
ϕ1 + ϕ2 = 1, and we also define their relative difference by setting

ϕ = ϕ1 − ϕ2 = 1− 2ϕ2 = 2ϕ1 − 1.

2



The nonlocal Helmholtz free energy reads as (see, e.g., [8] and references therein)

E(ϕ1, ϕ2) =

∫
Ω
θ
[
ϕ1 log(ϕ1) + ϕ2 log(ϕ2)

]
dx+

∫
Ω

∫
Ω
J(x− y)ϕ1(x)ϕ2(y)dxdy,

where J is the interaction kernel such that J(x) = J(−x). By the definition of ϕ and the
symmetry of J , the energy functional can be rewritten (up to a constant) as

E(ϕ) =

∫
Ω
F (ϕ)dx− 1

2

∫
Ω

∫
Ω
J(x− y)ϕ(x)ϕ(y)dxdy, (1.5)

where

F (s) =
θ

2

[
(1 + s) log(1 + s) + (1− s) log(1− s)

]
. (1.6)

Here, abusing the notation, 1
2J has been renamed as J . Then, the gradient flow associated

to the Helmholtz free energy

ϕt = div (m(ϕ)∇µ) and µ =
δE
δϕ

leads to the nonlocal Cahn–Hilliard system{
ϕt = div(m(ϕ)∇µ),

µ = F ′(ϕ)− J ∗ ϕ,
in Ω× (0, T ), (1.7)

subject to the no mass flux boundary condition and the initial condition

∂nµ = 0, on ∂Ω× (0, T ), ϕ(·, 0) = ϕ0, in Ω. (1.8)

The formulation of the nonlocal system (1.7)-(1.8) is deeply connected with the local
version (1.1)-(1.4). Firstly, as shown in [37], the Cahn–Hilliard system (1.1) can be seen
as an approximation of the nonlocal one (1.7). Indeed, the Helmholtz free energy (1.5) is
equivalent to

E(ϕ) =
1

4

∫
Ω

∫
Ω
J(x− y)

(
ϕ(x)− ϕ(y)

)2
dxdy +

∫
Ω
F̃ (x, ϕ)dx, (1.9)

where

F̃ (x, s) = F (s)− 1

2
(J ∗ 1)(x)s2. (1.10)

Thus, it is easy to realize that (formally) the first approximation of the nonlocal interaction
is k

2 |∇ϕ|
2, for some k > 0, provided that J is sufficiently peaked around 0. In the particular

case Ω = Td (cf. [38]), note that a = J ∗ 1 is a constant, since the Lebesgue measure is
translation invariant, and it is proportional to the critical temperature θc. Therefore, the
form of E(ϕ) appears very similar to that of L(ϕ). On the other hand, a further close
link between the local and the nonlocal models is related to their limit problem. More
precisely, system (1.7) can be written as a second-order nonlocal equation in the unknown
ϕ as

ϕt − div
(
m(ϕ)F ′′(ϕ)∇ϕ−m(ϕ)∇J ∗ ϕ

)
= 0. (1.11)

Here, the second term in (1.11) is a nonlinear diffusion term provided that m(ϕ)F ′′ is
strictly positive on (−1, 1) whereas the spatial convolution with a sufficiently smooth and
fast decaying kernel J (e.g., Newtonian or Bessel potentials) models a nonlocal aggregation.
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Then, it is worth noting that formally taking either κ = 0 in (1.1), or J = θcδ0 in (1.11),
δ0 being the Dirac mass, one deduces the equation

ϕt − div
(
m(ϕ)(F ′′(ϕ)− θc)∇ϕ

)
= 0. (1.12)

This is exactly the diffusion equation which was phenomenologically derived in [24]. How-
ever, under the assumption θ < θc (i.e., when the phase separation takes place), equation
(1.12) is ill posed due to its backward features. Thus, both models (1.1) and (1.11) can
be interpreted as a well-posed approximation of (1.12).

After this overview on the modeling aspects, let us focus on the mathematical results.
In this paper we will consider the case of constant mobilitym(s) = 1 (the case of degenerate
mobility will be treated in the forthcoming contribution [31]) leading to the study of the
following nonlocal Cahn–Hilliard system (cf. (1.7)){

ϕt = ∆µ,

µ = F ′(ϕ)− J ∗ ϕ,
in Ω× (0, T ), (1.13)

subject to the no mass flux boundary condition and the initial condition

∂nµ = 0, on ∂Ω× (0, T ), ϕ(·, 0) = ϕ0, in Ω. (1.14)

Note that, on account of (1.9) and (1.10), system (1.7) is equivalent to{
ϕt = ∆µ,

µ = a(x)ϕ− J ∗ ϕ+ F̃ ′(x, ϕ),
in Ω× (0, T ), (1.15)

where a(x) = (J ∗ 1)(x). This is the form of the nonlocal equation which has been studied
the most in the literature (see, for instance, [2, 6, 14, 19, 35, 39, 40, 45]) and, for binary
fluids, [17, 20, 28, 29, 30, 32, 33, 34]). It is worth pointing out that F̃ has always been
assumed to be independent of x by analogy with (1.2). Nevertheless, all the theoretical
results established in the quoted papers can be straightforwardly rephrased for system
(1.13)-(1.14) under less restrictive assumptions on J and F .

A good deal of references and results concerning the local system (1.1) with constant
mobility can be found in [16]. More precisely, the well-posedness was first proven in
[25] (see also [21, 47]). Then, regularity and global longtime behavior was analyzed in
[21, 25, 51] while the longtime behavior of single solutions was studied in [3]. Regarding
the nonlocal system (1.13), the existence of weak solutions and their uniqueness, and the
existence of the connected global attractor were proven in [28] and [30] (see also [29]).

In this work, we first show a well-posedness result of weak solution by exploiting a
different approximation argument to handle the singular potential (cf. [30]). Next, we
prove our main results, namely, the regularity and the validity of the strict separation
property in dimension two. In other words, we prove that if the initial state is not a pure
phase (i.e. ϕ0 ≡ 1 or ϕ0 ≡ −1), then the corresponding solution stays away from the pure
states in finite time, uniformly with respect to the initial datum. Consequently, we can
improve the regularity properties of the solutions. In turn, this leads to the existence of a
smooth global and exponential attractors, as well as the convergence to a single stationary
state. The strict separation property for (1.1) in two dimensions with constant mobility
was proven in [51]. However, even though in both cases one needs to find a global L∞-
bound of F ′(ϕ), the two techniques rely on different arguments. More precisely, in [51],
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the authors exploit the presence of the Laplace operator in the definition of the chemical
potential. On the contrary, in the nonlocal case, we cannot exploit elliptic type arguments.

In the last part of this work we consider the nonlocal Cahn–Hilliard–Navier–Stokes
system with a logarithmic potential F in dimension two. This is a nonlocal variant of
the well-known model H which has been proposed to describe the evolution of a binary
mixture of two incompressible and immiscible fluids (see [5, 42, 44, 43] and cf. [1, 11, 50]
for theoretical issues). Denoting by u the volume-averaged fluid velocity and assuming, in
addition, that the density and the viscosity are constants and equal to unity, the system
reads as 

ut + (u · ∇)u−∆u +∇p = µ∇ϕ,
div u = 0,

ϕt + u · ∇ϕ = ∆µ,

µ = F ′(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (1.16)

equipped with the boundary and initial conditions

u = ∂nµ = 0, on ∂Ω× (0, T ), u(0, ·) = u0, ϕ(0, ·) = ϕ0, in Ω. (1.17)

This problem can be regarded as an important application of the results and techniques
developed in this paper. Recalling that the existence of weak solutions and the uniqueness
have recently been obtained in [28] and [30], we establish the strict separation property
and we discuss its consequences on the regularity of weak solutions as well as their long-
time behavior. It is worth noting that the validity of the strict separation property for
the corresponding two-dimensional local Cahn–Hilliard–Navier–Stokes is an open issue.
Nonetheless, a weaker version has been proven in [1]. That is, any solution stays eventu-
ally away from the pure states after a certain time depending on the single initial datum.

The paper is organized as follows. In Section 2 we introduce the functional setting and
we recall some useful tools. Section 3 is devoted to the well-posedness of system (1.7) in a
weak setting. Section 4 contains some regularity properties of the weak solution and the
existence of the global attractor. The strict separation property is proven in Section 5.
In the same section some of its consequences are analyzed. The final Section 6 deals with
the nonlocal Cahn–Hilliard–Navier–Stokes system in dimension two.

2 Notation and Functional Spaces

We denote by W `,p(Ω), ` ∈ N, the Sobolev space of functions in Lp(Ω) with distribu-
tional derivative of order less or equal to ` in Lp(Ω) and by ‖ · ‖W `,p(Ω) its norm. For

an arbitrary ` ∈ N, H`(Ω) = W `,2(Ω) is a Hilbert space with respect to the scalar prod-
uct (u, v)` =

∑
|k|≤`

∫
ΩD

ku(x)Dkv(x)dx (k being a multi-index) and the induced norm

‖u‖` =
√

(u, u)`. We let H = L2(Ω) and we denote the inner product as well as the norm
in H by (·, ·) and ‖ · ‖, respectively. We also set V = H1(Ω) equipped with the norm

‖u‖2V = ‖∇u‖2 + ‖u‖2. (2.1)

Denoting the total mass of a function by

u =
1

|Ω|

∫
Ω
u dx,
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we recall the well-known Poincaré–Wirtinger inequality

‖u− u‖ ≤ C‖∇u‖, ∀ u ∈ V. (2.2)

We indicate by V ′ the dual space of V and by ‖ · ‖V ′ its norm. Then we introduce the
spaces

V0 = {v ∈ V : v = 0} , V ′0 =
{
f ∈ V ′ : f = |Ω|−1 〈f, 1〉V ′,V = 0

}
,

and we consider the operator A ∈ L(V, V ′) defined by

〈Au, v〉V ′,V =

∫
Ω
∇u · ∇v dx, ∀ u, v ∈ V.

The restriction of A on V0 is an isomorphism from V0 onto V ′0 and we define the inverse
map N : V ′0 → V0 such that

AN f = f, ∀ f ∈ V ′0 , and NAu = u, ∀ u ∈ V0.

It is well known that for all f ∈ V ′0 , N f is the unique u ∈ V0 such that∫
Ω
∇u · ∇v dx = 〈f, v〉V ′,V , ∀ v ∈ V.

On account of the above definitions, the following properties hold:

〈Au,N f〉V ′,V = 〈f, u〉V ′,V , ∀ u ∈ V, ∀ f ∈ V ′0 , (2.3)

〈f,N g〉V ′,V = 〈g,N f〉V ′,V =

∫
Ω
∇(N f) · ∇(N g) dx, ∀ f, g ∈ V ′0 , (2.4)

Moreover, owing to (2.4), it is straightforward to prove that

‖f‖∗ := ‖∇N f‖H = 〈f,N f〉
1
2
V ′,V (2.5)

is an equivalent norm in V ′0 , and

〈ut (t) ,Nu (t)〉V ′,V =
1

2

d

dt
‖u(t)‖2∗, for a.e. t ∈ (0, T ), ∀ u ∈ H1(0, T ;V ′0) (2.6)

as well as

‖f − f‖2∗ + |f |2 is an equivalent norm in V ′. (2.7)

We also introduce the solenoidal Hilbert spaces

Gdiv =
{

u ∈ L2(Ω;Rd) : div u = 0,u · n |∂Ω= 0
}

and

Vdiv =
{

u ∈ H1(Ω;Rd) : div u = 0,u |∂Ω= 0
}
.

As customary, we denote by (·, ·) and ‖ · ‖ the inner product and norm, respectively, in
Gdiv, while Vdiv is equipped with inner product and induce norm

(u,v)Vdiv = (∇u,∇v), ‖u‖Vdiv = ‖∇u‖.
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We define the trilinear Vdiv-continuous form

b(u,v,w) =

∫
Ω

(u · ∇)v ·w dx, ∀ u,v,w ∈ Vdiv.

It is well-known that the following identity holds

b(u,v,w) = −b(u,w,v), ∀ u,v,w ∈ Vdiv,

as well as the two-dimensional estimate

|b(u,v,w)| ≤ C‖u‖
1
2 ‖∇u‖

1
2 ‖∇v‖‖w‖

1
2 ‖∇w‖

1
2 . (2.8)

We recall some classical Sobolev inequality which will be useful in the sequel (see, for
instance, [12] and [52] and references therein):

- Gagliardo–Nirenberg inequality

‖u‖Lp(Ω) ≤ C‖u‖
2
p ‖u‖

1− 2
p

V , ∀u ∈ V, (2.9)

‖u‖Lp(Ω) ≤ C‖u‖
6−p
2p ‖u‖

3p−6
2p

V , ∀u ∈ V, (2.10)

if p ≥ 2 when d = 2 and 2 ≤ p ≤ 6 when d = 3.

- Trudinger–Moser inequality∫
Ω
e|u| dx ≤ CeC‖u‖2V , ∀ u ∈ V. (2.11)

We conclude the section by reporting an useful application of the Gagliardo–Nirenberg
inequality in dimension two which will be needed in the following sections.

Lemma 2.1. Let Ω be a smooth bounded domain of R2 and u ∈ V . Then, for any ε > 0
and any integer 1 ≤ s <∞, there exists C = C(s) > 0 such that

‖u‖2Ls(Ω) ≤ ε‖∇u‖
2 +

(
ε+

C

εs−1

)
‖u‖2L1(Ω). (2.12)

Proof. We start from the following particular case of Gagliardo–Nirenberg inequality in
dimension two (see [12][Comments on Chapter 9])

‖u‖Ls(Ω) ≤ C‖u‖
1
s

L1(Ω)
‖u‖1−

1
s

V ,

valid for any 1 ≤ s < ∞. Exploiting the Poincaré–Wirtinger inequality, we have, for any
ε > 0,

‖u‖Ls(Ω) ≤ Cε1− 1
s
(
‖∇u‖+ ‖u‖L1(Ω)

)1− 1
s

(
‖u‖

1
s

L1(Ω)
ε

1
s
−1

)
.

Now, applying the Young inequality with exponents (s/(s−1), s) to the previous inequality,
we obtain

‖u‖Ls(Ω) ≤ ε
(
‖∇u‖+ ‖u‖L1(Ω)

)
+

C

εs−1
‖u‖L1(Ω)

= ε‖∇u‖+

(
ε+

C

εs−1

)
‖u‖L1(Ω).

Then, by rescaling ε with
√
ε, we easily infer (2.12).
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Throughout this work, C and K denote positive constants which may be estimated
according to the parameters of the system and whose values may change even within the
same line of a given equation. If necessary, their possible dependence on some quantity
will be indicated explicitly. Moreover, given a metric space X, BH(0, R) denotes the closed
ball of X centered in 0 with radius R.

3 Well-Posedness

The main assumptions on the interaction kernel J and the singular potential F are

(H.1) J ∈W 1,1(Rd) with J(x) = J(−x);

(H.2) F ∈ C([−1, 1]) ∩ C2(−1, 1) such that

lim
s→−1

F ′(s) = −∞, lim
s→1

F ′(s) = +∞, F ′′(s) ≥ α > 0.

We also extend F (s) = +∞ for any s /∈ [−1, 1]. Notice that assumption (H.2) implies
that there exists ξ ∈ (−1, 1) such that F ′(ξ) = 0. There is no loss of generality in assuming
F (ξ) = 0 since the potential is defined up to a constant. This also entails that F (s) ≥ 0
for all s ∈ [−1, 1]. Also, note that no assumption on the sign of J is made.

Remark 3.1. Hypothesis (H.2) is satisfied, in particular, by the logarithmic potential

F (s) =
θ

2

[
(1 + s) log(1 + s) + (1− s) log(1− s)

]
.

We are now ready to give the definition of a weak solution to problem (1.13)-(1.14).

Definition 3.2. Let ϕ0 be a measurable function with F (ϕ0) ∈ L1(Ω) and T > 0 be given.
A function ϕ is a weak solution to (1.13)-(1.14) on [0, T ] corresponding to ϕ0 if

ϕ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

µ = F ′(ϕ)− J ∗ ϕ ∈ L2(0, T ;V ),

and satisfies the identity

〈ϕt, v〉V ′,V + (∇µ,∇v) = 0 ∀ v ∈ V, a.e. t ∈ (0, T ), (3.1)

with ϕ(0, ·) = ϕ0.

Remark 3.3. Let us observe that:

1. From F (ϕ0) ∈ L1(Ω) we deduce that |ϕ0(x)| ≤ 1, for almost any x ∈ Ω.

2. The conservation of mass is a straightforward consequence of (3.1). Indeed, taking
v = 1, we get 〈ϕt, 1〉V ′,V = 0, so ϕ (t) = ϕ0 for all t ≥ 0.

3. Let T > 0 be arbitrary. Note that ϕ ∈ L∞(Ω × (0, T )) with |ϕ(x, t)| < 1 for
almost any (x, t) ∈ Ω × (0, T ) implies ϕ ∈ L∞(0, T ;Lp(Ω)), for all p ≥ 1, and

‖ϕ‖L∞(0,T ;Lp(Ω)) ≤ |Ω|
1
p . Moreover, we observe that the function t 7→ ‖ϕ(t)‖L∞(Ω) is

measurable, essentially bounded and, for all f ∈ L1(0, T ;L1(Ω)), there holds

|(ϕ(t), f(t))| ≤ ‖f(t)‖L1(Ω), a.e. t ∈ (0, T ).

We refer the reader to [27].
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4. As a direct consequence of Definition 3.2, we have ϕ ∈ C([0, T ], H) and F ′(ϕ) ∈
L2(0, T ;V ). The former property entails that the initial condition is well defined.

The well-posedness of system (1.13)-(1.14) is given by (cf. (1.5))

Theorem 3.4. Let ϕ0 be a measurable function with F (ϕ0) ∈ L1(Ω), |ϕ0| < 1 and T > 0
be given. Assume that hypotheses (H.1)− (H.2) are satisfied. Then, there exists a unique
weak solution ϕ to (1.13)-(1.14) which satisfies the dissipative inequality, for all t ≥ 0,

E(ϕ(t)) + ω

∫ t+1

t
‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ E(ϕ0)e−ωt + C(1 + F (ϕ0)), (3.2)

where ω and C are positive constants independent of the initial condition. Moreover, for
every two weak solutions ϕ1 and ϕ2 to (1.13)-(1.14) on [0, T ] with initial data ϕ01 and
ϕ02, respectively, the following continuous dependence estimate holds for all t ∈ [0, T ]

‖ϕ1(t)− ϕ2(t)‖2V ′ ≤ ‖ϕ01 − ϕ02‖2V ′eCT +K|ϕ01 − ϕ02|eCT , (3.3)

where
K = C

(
‖F ′(ϕ1)‖L1(0,T ;L1(Ω)) + ‖F ′(ϕ2)‖L1(0,T ;L1(Ω))

)
.

Remark 3.5. By virtue of the dissipative inequality (3.2) and ϕ ∈ C([0, T ], H), the function
t→

∫
Ω F (ϕ(t)) dx is bounded for all t ≥ 0. This immediately entails that

sup
t≥0
‖ϕ(t)‖L∞(Ω) ≤ 1.

As a consequence, we deduce by interpolation that ϕ ∈ C([0, T ], Lp(Ω)), for any p ≥ 2.

The proof of Theorem 3.4 is based on a general method which consists in several steps.
First, we provide a family of regular function defined on the whole R which approximates
the singular potential. The existence of a weak solution to (1.13)-(1.14) with a regular
potential is established via the Galerkin method (see [17]). Then, we show (uniform)
estimates on the solutions of this approximate problem in order to pass to the limit via
compactness. To the best of our knowledge, Theorem 3.4 ensures the existence and unique-
ness of a weak solution in the most general framework. Indeed, it requires the convexity
of the potential whereas other existence results (cf., for example, [30, Corollary 1]) require
further monotonicity and sign conditions on higher derivatives (i.e. from the second one
up) of F . For related results obtained within a more abstract framework see also [18].

Remark 3.6. We highlight that our analysis relies on the assumption ϕ0 ∈ (−1, 1) (see also,
for instance, [47] for the standard Cahn–Hilliard equation). This is physically reasonable
since ϕ0 = 1 (or ϕ0 = −1) means that the initial condition is a pure phase, so that no
phase separation takes place in Ω.

3.1 Proof of Theorem 3.4

Approximation of F .
Let us consider the singular potential F . According to (H.2), it is immediate to prove that
F is proper, convex and lower semicontinuous with domain D(F ) = [−1, 1]. Appealing
to theory of maximal monotone operators (see, for instance, [7, 13, 56] and references
therein), we define the subgradient of F as

A = ∂F : D(A) ⊂ R→ R.
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For the reader’s convenience, we report here below a result which establishes the action
of the subgradient operator at regularity points (see [7, Chapter 1, Example 3]).

Lemma 3.7. Let ϕ : R → (−∞,+∞] be convex and differentiable at s ∈ R. Then
∂ϕ(s) = ϕ′(s).

Since F is continuously differentiable in (−1, 1), Lemma 3.7 yields

A(s) = F ′(s), ∀ s ∈ (−1, 1), (3.4)

where F ′ stands for the standard derivative of F . Moreover, we also have the following
characterization.

Lemma 3.8. Let the potential F satisfy (H.2). Then D(A) ≡ (−1, 1).

Proof. Observe that A is defined in (−1, 1) by (3.4). Thanks to [56, Corollary 1.4, Chapter
4], we also know that

(−1, 1) ⊂ D(A) ⊂ D(F ) = [−1, 1].

We suppose by contradiction that 1 ∈ D(A) and we consider z ∈ A(1) ⊂ R. It is immediate
to see that 1 + z ∈ 1 + A(1) = (I + A)(1). Besides, the map

g : (−1, 1)→ R, g(s) = (I + A)(s) = s+ F ′(s)

is surjective since it is continuous, lims→1− g(s) = +∞ and lims→−1+ g(s) = −∞. Thus,
there exists s ∈ (−1, 1) such that g(s) = 1 + z. Since A is a maximal monotone operator,
the inclusion 1 + z ∈ (I +A)s has at most one solution, so 1 /∈ D(A). Repeating the same
argument for −1, we conclude that D(A) = (−1, 1).

Thanks to the elementary properties of maximal monotone operators (see for instance [13]
and [56]), we approximate F by means of the sequence of everywhere defined non-negative
functions

Fλ(s) =
λ

2
|Aλs|2 + F (Jλ(s)), s ∈ R, λ > 0, (3.5)

where Jλ = (I + λA)−1 is the resolvent operator and Aλ = 1
λ(I − Jλ) is the Yosida

approximation of A. According to the general theory, the following main properties holds:

(i) Fλ is convex and Fλ(s)↗ F (s), for all s ∈ R, as λ goes to 0;

(ii) F ′λ(s) = Aλ(s) and F ′λ is Lipschitz on R with constant 1
λ ;

(iii) |F ′λ(s)| ↗ |F ′(s)| for all s ∈ (−1, 1) and |F ′λ(s)| ↗ ∞, for all |s| ≥ 1, as λ goes to 0;

(iv) Fλ(ξ) = F ′λ(ξ) = 0, for all λ > 0, where ξ is defined in (H.2).

Remark 3.9. We recall that, due to the convexity of Fλ (see (i)), we have

Fλ(s) ≤ Fλ(w) + (s− w)F ′λ(s), for all s, w ∈ R. (3.6)

Now we formulate and prove some uniform properties of Fλ.

Lemma 3.10. For any λ ∈ (0, 1], F ′′λ (s) exists for all s ∈ R and

F ′′λ (s) ≥ α

1 + α
, ∀ s ∈ R. (3.7)
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Proof. We preliminarily note that Jλ is the inverse function of gλ(s) = (I + λA)(s) :
(−1, 1) → R which is differentiable with g′λ(s) ≥ 1 + λα > 0. This entails that Aλ is
differentiable in R. Then, from the differentiation formula of the inverse function and the
assumption (H.2), we deduce that

F ′′λ (s) =
1

λ

[
1− 1

1 + λF ′′(Jλ(s))

]
≥ α

1 + λα
, (3.8)

and, in particular, we get (3.7).

Lemma 3.11. For any 0 < λ∗ ≤ 1, we have

Fλ(s) ≥ 1

4λ∗
s2 −K, ∀ s ∈ R, ∀ 0 < λ ≤ λ∗, (3.9)

where K depends only on λ∗ but is independent of λ.

Proof. We infer from de L’Hôpital’s rule that

lim
s→±∞

Fλ(s)

s2
= lim

s→±∞

F ′λ(s)

2s
= lim

s→±∞

s− Jλ(s)

2λs
=

1

2λ
− lim
s→±∞

Jλ(s)

2λs
=

1

2λ
,

where we have used that Range(Jλ) = (−1, 1). Setting 0 < λ∗ ≤ 1, the above limit entails
that there exists Mλ∗ such that

Fλ(s) ≥ 1

4λ
s2, ∀ |s| ≥Mλ∗ .

On account of the monotonicity of Fλ with respect to λ, we have

Fλ(s) ≥ 1

4λ∗
s2, ∀ |s| ≥Mλ∗ , ∀ 0 < λ ≤ λ∗.

On the other hand, since Fλ is non-negative, according to the last inequality, we conclude
that

Fλ(s) ≥ 1

4λ∗
s2 −K, ∀ s ∈ R, ∀ 0 < λ ≤ λ∗,

where K = M2
λ∗/(4λ

∗) is independent of λ.

Lastly, we state an immediate result of convergence of Fλ to F .

Lemma 3.12. For any set [a, b] ⊂ (−1, 1), F ′λ converges uniformly to F ′ on [a, b].

The approximating problem and the dissipative inequality.

For any fixed λ > 0, we consider the problem (1.13)-(1.14) replacing F with Fλ. The
corresponding problem reads as follows{

ϕt = ∆µ,

µ = F ′λ(ϕ)− J ∗ ϕ,
in Ω× (0, T ), (3.10)

subject to
∂nµ = 0, on ∂Ω× (0, T ), ϕ(·, 0) = ϕ0, in Ω. (3.11)

Here, we simply use ϕ instead of ϕλ for the sake of simplicity. We denote the energy
functional Eλ : H → R (cf. (1.5)) by

Eλ(v) =

∫
Ω
Fλ(v) dx− 1

2
(J ∗ v, v)

and we show the dissipative nature of the system.
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Lemma 3.13. There exists λ > 0 such that, for any 0 < λ ≤ λ, any solution to (3.10)-
(3.11) satisfies, for all t ≥ 0,

Eλ(ϕ(t)) + ω

∫ t+1

t
‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ Eλ(ϕ0)e−ωt + C(1 + Fλ(ϕ0)). (3.12)

Here, ω and C are positive constant that depend on J and α but are independent of the
initial condition and λ.

We provide below a formal proof of Lemma 3.13. A rigorous argument can be done
by performing the same computations within a Galerkin approximation scheme (see the
proof of Theorem 3.15 reported below).

Proof. Let us consider Eλ. By virtue of Lemma 3.11 and the Young inequality for convo-
lution, for any λ < λ, we obtain

Eλ(v) >
1

4λ
‖v‖2 −K|Ω| − 1

2
‖J ∗ v‖‖v‖

≥
(

1

4λ
−
‖J‖L1(Ω)

2

)
‖v‖2 −K|Ω|.

Therefore, for any γ > 0 there exists K such that

Eλ(v) ≥ γ‖v‖2 −K|Ω| (3.13)

provided that λ is small enough. It is also apparent from (ii), (iv) and (3.6) that

Fλ(s) ≤ (s− ξ)F ′λ(s) ≤ 1

λ
|s− ξ|2.

Thus, we deduce that

Eλ(v) ≤
(

2

λ
+
‖J‖L1(Ω)

2

)
‖v‖2 +

2

λ
|Ω|. (3.14)

Now, testing (3.10)1 and (3.10)2 by µ and ϕt, respectively, and adding the two equations,
we obtain

d

dt
Eλ(ϕ) + ‖∇µ‖2 = 0. (3.15)

In order to reconstruct the energy functional on the left-hand side, we take the gradient
of (3.10)2 and we test by ∇ϕ yielding(

F ′′λ (ϕ)∇ϕ,∇ϕ
)

= (∇µ,∇ϕ) + (∇J ∗ ϕ,∇ϕ).

According to Lemma 3.10 and the Young inequality for convolution, we get

β

2
‖∇ϕ‖2 ≤ 1

2β
‖∇µ‖2 +

1

2β
‖∇J‖2L1(Ω)‖ϕ‖

2, (3.16)

where β = α/(1 + α). On the other hand, testing again (3.10)2 by ϕ − ϕ and using the
Poincaré inequality, we obtain(

F ′λ(ϕ), ϕ− ϕ
)

= (J ∗ ϕ,ϕ− ϕ) + (µ, ϕ− ϕ)

≤ C‖J ∗ ϕ‖‖∇ϕ‖+ C‖∇µ‖‖∇ϕ‖. (3.17)
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Exploiting (3.6) with s = ϕ, w = ϕ, we find

Eλ(ϕ) ≤ Fλ(ϕ)|Ω|+
(
F ′λ(ϕ), ϕ− ϕ

)
− 1

2
(J ∗ ϕ,ϕ) . (3.18)

Combining (3.17) with (3.18), and using the Young inequality, we infer that

Eλ(ϕ) ≤ Fλ(ϕ)|Ω|+ C‖J ∗ ϕ‖‖∇ϕ‖+ C‖∇µ‖‖∇ϕ‖+
1

2
|(J ∗ ϕ,ϕ)|

≤ Fλ(ϕ)|Ω|+ β

4
‖∇ϕ‖2 +

C

2β
‖∇µ‖2 +

( C
2β
‖J‖2L1(Ω) +

1

2
‖J‖L1(Ω)

)
‖ϕ‖2.

Adding (3.16) to the above inequality, we reach

Eλ(ϕ) +
β

4
‖∇ϕ‖2 ≤

(
C + 1

2β

)
‖∇µ‖2 + Fλ(ϕ)|Ω|

+
( 1

2β
‖∇J‖2L1(Ω) +

C

2β
‖J‖2L1(Ω) + ‖J‖L1(Ω)

)
‖ϕ‖2.

In light of the control from below (3.13), there exists λ > 0 such that for any 0 < λ < λ
we have

1

2
Eλ(ϕ) +

β

4
‖∇ϕ‖2 ≤ C + 1

2β
‖∇µ‖2 + Fλ(ϕ)|Ω|+ K

2
|Ω|. (3.19)

Summing up, by (3.15) and (3.19) we find the differential inequality

d

dt
Eλ(ϕ) + ω

(
Eλ(ϕ) + ‖∇ϕ‖2 + ‖∇µ‖2

)
≤ C (1 + Fλ(ϕ)) ,

for some ω > 0 independent of λ. Finally, an application of the Gronwall lemma completes
the argument.

Existence of an approximate solution.

By analogy with Definition 3.2, we recall the definition of weak solution.

Definition 3.14. Let ϕ0 be a measurable function with Fλ(ϕ0) ∈ L1(Ω) and T > 0 be
given. A function ϕ is a weak solution to problem (3.10)-(3.11) on [0, T ] corresponding to
ϕ0 if

ϕ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ),

µ = F ′λ(ϕ)− J ∗ ϕ ∈ L2(0, T ;V ),

and ϕ satisfies the identity

〈ϕt, v〉V ′,V + (∇µ,∇v) = 0 ∀ v ∈ V, a.e. t ∈ (0, T ),

with ϕ(0, ·) = ϕ0.

It is immediate to see that points 2 and 4 of Remark 3.3 are valid in the regular potential
case as well. We can thus prove the existence of a global weak approximating solution.

Theorem 3.15. Let ϕ0 be a measurable function with Fλ(ϕ0) ∈ L1(Ω) and 0 < λ ≤ λ.
Then there exists a weak solution ϕ to problem (3.10)-(3.11) which fulfills the dissipative
inequality (3.12) for all t ≥ 0.
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Proof. The existence of a weak solution is established through a Galerkin scheme. Let us
n ∈ N be fixed. We seek a function

ϕn(t) =
n∑
k=1

ak(t)ψk

which solves for all t ∈ (0, T )

〈ϕn,t, w〉V ′,V + (∇µn,∇w) = 0, ∀ w ∈ Vn, (3.20)

where
µn = Πn

[
F ′λ(ϕn)− J ∗ ϕn

]
.

Here, {ψk}k are the eigenfunctions associated to the operator A, Vn = span {ψ1, ..., ψn},
Πn is the projector operators from V onto Vn and ϕ0n = Πn(ϕ0). We observe that ϕ0 ∈ H
due to Fλ(ϕ0) ∈ L1(Ω). Equation (3.20) is equivalent to a system of ordinary differential
equations ȧn(t) = G(an(t)), where an(t) = [a1(t), ..., an(t)] is the unknown and G is a
locally Lipschitz continuous function of an. Then, the Cauchy–Lipschitz theorem entails
the existence of a unique local solution an ∈ C1([0, T ∗),Rn).
Since w = 1 is the first eigenfunction of A, we note that the conservation of mass holds for
the approximated problem, namely, ϕn(t) = ϕ0n. Thanks to Lemma 3.13, we derive some
uniform estimates in order to guarantee that T ∗ =∞ and recover compactness properties
of the sequence ϕn. Indeed, the Galerkin approximation ϕn fulfills the following inequality
for all t ≥ 0,

Eλ(ϕn(t)) + ω

∫ t+1

t
‖∇ϕn(τ)‖2 + ‖∇µn(τ)‖2 dτ ≤ Eλ(ϕ0n)e−ωt + C(1 + Fλ(ϕ0n)).

By ϕ0n → ϕ0 in H and (3.13) and (3.14), the right-hand side of can be controlled by a
constant independent of n and we deduce that

ϕn is uniformly bounded in L∞(0, T ;H) ∩ L2(0, T ;V ), (3.21)

∇µn is uniformly bounded in L2(0, T ;H). (3.22)

On account of (iii) and the above boundedness properties, we have

|µn| ≤ C
(
1 + ‖ϕn‖L1(Ω)

)
≤ C,

where C is independent by n. In turn, this combined with (2.2) entails that

µn is uniformly bounded in L2(0, T ;V ). (3.23)

By comparison we find

F ′λ(ϕn) is uniformly bounded in L2(Ω× (0, T )), (3.24)

ϕn,t is uniformly bounded in L2(0, T ;V ′). (3.25)

Thanks to (3.21)-(3.25) and standard compactness arguments, we infer that, up to subse-
quences,

ϕn → ϕ weakly in L2(0, T ;V ),
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ϕn → ϕ weakly star in L∞(0, T ;H),

ϕn,t → ϕ weakly in L2(0, T ;V ′),

µn → µ weakly in L2(0, T ;V ),

F ′λ(ϕn)→ F ′λ(ϕ) weakly in L2(Ω× (0, T )).

Hence, we can pass to the limit in the approximation problem achieving the existence of
a weak solution to (3.10)-(3.11) in the sense of Definition 3.14. From ϕ ∈ L2(0, T ;V ) and
ϕt ∈ L2(0, T ;V ′), we also deduce that ϕ ∈ C([0, T ], H). Furthermore, according to the
above convergences properties, and passing to the limit in the dissipative inequality, the
weak solution satisfies, for almost every t ≥ 0,

Eλ(ϕ(t)) + ω

∫ t+1

t
‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ Eλ(ϕ0)e−ωt + C(1 + Fλ(ϕ0)).

In particular, we have used the fact that ϕ0n → ϕ0 in H entails that E(ϕ0n) → E(ϕ0),
which easily follows from

|Fλ(s)− Fλ(w)| ≤ 1

λ
|s− w|max{|s− ξ|, |w − ξ|}, ∀ s, w ∈ R. (3.26)

We conclude by observing that the above dissipation inequality holds for every t ≥ 0 by
virtue of ϕ ∈ C([0, T ], H).

We can now prove Theorem 3.4.

Passage to the limit.

First, we observe that F (ϕ0) ∈ L1(Ω) implies that Fλ(ϕ0) ∈ L1(Ω) for any λ > 0. Then,
as a consequence of Theorem 3.15, for any λ ∈ (0, λ], there exists a weak solution ϕλ to
problem (3.10)-(3.11) which satisfies for all t ≥ 0,

Eλ(ϕλ(t)) + ω

∫ t+1

t
‖∇ϕλ(τ)‖2 + ‖∇µλ(τ)‖2 dτ ≤ E(ϕ0)e−ωt + C(1 + F (ϕ0)).

Here, we have used (i) to control the right-hand side. Hence, in light of (3.13), this entails
that

ϕλ is uniformly bounded w.r.t. λ in L∞(0, T ;H), (3.27)

ϕλ is uniformly bounded w.r.t. λ in L2(0, T ;V ), (3.28)

∇µλ is uniformly bounded w.r.t. λ in L2(0, T ;H). (3.29)

By comparison we also obtain

ϕλ,t is uniformly bounded w.r.t λ in L2(0, T ;V ′). (3.30)

In order to pass to the limit we need to recover a uniform estimate for µλ in V . To
this aim, we first control the L1(Ω)−norm of F ′λ(ϕλ). We apply the argument devised
in [47] (see also [30] for the details). Let us choose m1,m2 ∈ (−1, 1) in such a way that
m1 ≤ ξ ≤ m2 and m1 < ϕ0 < m2. We also set δ := min{ϕ0 − m1,m2 − ϕ0} and
δ1 := max{ϕ0 −m1,m2 − ϕ0}. Then, for almost every t ∈ (0, T ), we consider the sets

Ω0 := {m1 ≤ ϕλ(x, t) ≤ m2}, Ω1 := {ϕλ(x, t) < m1}, Ω2 := {ϕλ(x, t) > m2}.
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Since F ′λ is monotone and F ′λ(ξ) = 0 for any λ, using the assumption ϕ0 ∈ (−1, 1) and
property (iii), we get

δ‖F ′λ(ϕλ)‖L1(Ω) = δ

∫
Ω0

|F ′λ(ϕλ)| dx+ δ

∫
Ω1

|F ′λ(ϕλ)| dx+ δ

∫
Ω2

|F ′λ(ϕλ)| dx

≤ δ
∫

Ω0

|F ′λ(ϕλ)| dx+

∫
Ω1

(ϕ− ϕ0)F ′λ(ϕλ) dx+

∫
Ω2

(ϕ− ϕ0)F ′λ(ϕλ) dx

≤ (δ + δ1)

∫
Ω0

|F ′(ϕλ)| dx+

∫
Ω

(ϕλ − ϕ0)F ′λ(ϕλ) dx

≤ K(ϕ0) +

∫
Ω

(ϕλ − ϕ0)F ′λ(ϕλ) dx

where K(ϕ0) is independent of λ. Now, arguing as in the proof of Lemma (3.13) (cf.
(3.17)), we find ∫

Ω
(ϕλ − ϕ0)F ′λ(ϕλ) dx ≤ C

(
1 + ‖∇µλ‖

)
,

where C is independent of λ. Therefore, combining the above inequalities, we deduce from
(3.30) that ∫ T

0
‖F ′λ(ϕλ)(τ)‖2L1(Ω) dτ ≤ C

(
1 +

∫ T

0
‖∇µλ(τ)‖2 dτ

)
≤ C (3.31)

where C is independent of λ. In turn, by∫
Ω
µλ dx =

∫
Ω
F ′λ(ϕλ) dx+

∫
Ω
J ∗ ϕλ dx,

we get
‖µλ‖L2(0,T ) ≤ C.

Thus, due to the Poincaré–Wirtinger inequality, we arrive at

µλ is uniformly bounded w.r.t. λ in L2(0, T ;V ). (3.32)

Accordingly, up to subsequences, we have the following convergences

ϕλ → ϕ weakly in L2(0, T ;V ), (3.33)

ϕλ → ϕ weakly star in L∞(0, T ;H), (3.34)

ϕλ,t → ϕt weakly in L2(0, T ;V ′), (3.35)

µλ → µ weakly in L2(0, T ;V ). (3.36)

Furthermore, compactness yields

ϕλ → ϕ strongly in L2(0, T ;H). (3.37)

Also, (H.1) and (3.37) imply that

J ∗ ϕλ → J ∗ ϕ strongly in L2(0, T ;V ). (3.38)

Concerning the nonlinear term, we prove that the limit function ϕ fulfils

|ϕ(x, t)| < 1 a.e. (x, t) in Ω× (0, T ).
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Let η be such that ξ ∈ (−1 + η, 1− η). We introduce the sets

Eλη = {(x, t) ∈ Ω× (0, T ) : |ϕλ(x, t)| > 1− η} ,
Eη = {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| > 1− η} .

Since ϕλ → ϕ a.e. (x, t) ∈ Ω× (0, T ), the Fatou Lemma entails

|Eη| ≤ lim inf
λ→0+

|Eλη |.

Recalling that F ′λ(x) ≥ 0 for x ∈ [ξ, 1), F ′λ(x) ≤ 0 for x ∈ (−1, ξ] and F ′λ is monotone, we
deduce

min{F ′(1− η),−F ′(−1 + η)}|Eε%| ≤ ‖F ′λ(ϕλ)‖L1(Ω×(0,T )) ≤ C,

where C does not depends on λ and η. Therefore, we have

|Eη| ≤
C

min{F ′(1− η),−F ′(−1 + η)}
.

Passing to the limit as η → 0+, we deduce that

| {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| ≥ 1} | = 0

which yields the desired conclusion. As a byproduct,

F ′λ(ϕλ)→ F ′(ϕ) a.e. (x, t) ∈ Ω× (0, T ),

where we have used the pointwise convergence of ϕλ and the uniform convergence of F ′λ
to F ′ (see Lemma 3.12). Moreover, by the expression of µλ, we get

F ′λ(ϕλ) is uniformly bounded w.r.t. λ in L2(0, T ;H). (3.39)

A standard argument implies that F ′λ(ϕλ)→ F ′(ϕ) weakly in L2(Ω× (0, T )). On account
of the above convergences, we easily find that

〈ϕt, v〉V ′,V + (∇µ,∇v) = 0 ∀ v ∈ V, a.e. t ∈ (0, T ),

with
µ = F ′(ϕ)− J ∗ ϕ ∈ L2(0, T ;V ).

Now, by virtue of the regularity of ϕ and ϕt, we have ϕ ∈ C([0, T ], H). By the above
convergences, we pass to limit in the above dissipative inequality satisfied by ϕλ and we
learn that, for almost every t ≥ 0,

E(ϕ(t)) + ω

∫ t+1

t
‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ E(ϕ0)e−ωt + C(1 + F (ϕ0)).

On the other hand, the above inequality holds for any t ≥ 0 since ϕ ∈ C([0, T ], H). Indeed,
J ∗ ϕ ∈ C([0, T ], H), the integral terms on the left-hand side are continuous as well as the
right-hand side. Let t > 0, there exists a sequence {tj} which tends to t and for which the
above inequality holds. We show that

lim
tj→t

∫
Ω
F (ϕ(tj)) dx =

∫
Ω
F (ϕ(t)) dx.
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On account of the continuity of ϕ, ϕ(tj)→ ϕ(t) strongly inH, so there exists a subsequence
which converges for almost every x ∈ Ω and the limit necessarily satisfies |ϕ(x, t)| ≤ 1 for
almost every x ∈ Ω. Since F is continuous on the compact set [−1, 1], using the Lebesgue
theorem, we infer that (3.2) holds for all t ≥ 0.

Continuous dependence on the initial data and uniqueness.

Let us consider two weak solutions ϕ1 and ϕ2 related to the initial conditions ϕ01 and ϕ02,
respectively. The function ϕ(t) = ϕ1(t)− ϕ2(t) with ϕ(0) = ϕ01 − ϕ02 solves

〈ϕt, v〉V ′,V + (∇µ,∇v) = 0, ∀ v ∈ V, a.e. t ∈ (0, T ),

where

µ = F ′(ϕ1)− F ′(ϕ2)− J ∗ ϕ.

Taking v = N (ϕ− ϕ) and exploiting (2.3), for almost every t ∈ [0, T ], we get

1

2

d

dt
‖ϕ− ϕ‖2∗ + (µ, ϕ− ϕ) = 0. (3.40)

According to the assumption (H.2) and the definition of the operator N , we deduce that

(µ, ϕ− ϕ) ≥ α‖ϕ‖2 − (F ′(ϕ1)− F ′(ϕ2), ϕ)− (∇J ∗ ϕ,∇N (ϕ− ϕ)).

Moreover, we have

|(∇J ∗ ϕ,∇N (ϕ− ϕ))| ≤ ‖∇J ∗ ϕ‖‖ϕ− ϕ‖∗
≤ ‖∇J‖L1(Ω)‖ϕ‖‖ϕ− ϕ‖∗

≤ α

2
‖ϕ‖2 + C‖ϕ− ϕ‖2∗.

Hence, we find the differential inequality for almost every t ∈ [0, T ],

d

dt
‖ϕ− ϕ‖2∗ + α‖ϕ‖2 ≤ C‖ϕ− ϕ‖2∗ + Λ|ϕ|,

where

Λ = 2‖F ′(ϕ1)‖L1(Ω) + 2‖F ′(ϕ2)‖L1(Ω).

Therefore, an application of the Gronwall Lemma yields, for all t ∈ [0, T ],

‖ϕ(t)− ϕ (t) ‖2∗ ≤ ‖ϕ(0)− ϕ (0) ‖2∗eCt + |ϕ (0) |eCt
∫ t

0
Λ(τ)dτ. (3.41)

Finally, on account of (2.7), (3.3) follows. As a byproduct, we learn the uniqueness of
weak solutions.

4 Regularity and the Global Attractor

In this section we study the regularity properties of the weak solutions which allow us, in
particular, to establish the existence of the (smooth) global attractor for the dissipative
dynamical system associated with (1.13)-(1.14) (cf. [30]).
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We will derive some uniform higher order estimates which will be independent of the
form of the initial datum, but only depend on its total mass and the value of the energy.
Henceforth, the generic constant C may also depend on m ∈ (0, 1) and R such that

−1 +m ≤ ϕ0 ≤ 1−m, and E(ϕ0) ≤ R.

As a consequence of the dissipative inequality (3.2), we have

E(ϕ(t)) +

∫ t+1

t
‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 + ‖ϕt(τ)‖2V ′ dτ ≤ C, ∀ t ≥ 0. (4.1)

Our first regularity result is

Theorem 4.1. For any σ > 0, there exists C = C(σ) > 0 such that

‖ϕt‖L∞(σ,t;V ′) + ‖∇µ‖L∞(σ,t;H) + ‖ϕt‖L2(t,t+1;H) ≤ C, ∀ t ≥ σ, (4.2)

and
sup
t≥σ
‖ϕ(t)‖V ≤ C. (4.3)

Proof. We provide below a formal estimate which can be easily justified by exploiting the
Galerkin approximation scheme (see proof of Theorem 3.4). We differentiate system (1.13)
with respect to time and we obtain

ϕtt = ∆(F ′′(ϕ)ϕt − J ∗ ϕt).

Testing by Nϕt and recalling that ϕt = 0, we have

1

2

d

dt
‖ϕt‖2∗ + (F ′′(ϕ)ϕt, ϕt) = (J ∗ ϕt, ϕt).

By (H.2)
(F ′′(ϕ)ϕt, ϕt) ≥ α‖ϕt‖2.

Reasoning as in the proof of the continuous dependence estimate, the right-hand side is
controlled as follows

(J ∗ ϕt, ϕt) = (∇J ∗ ϕt,∇Nϕt)

≤ α

2
‖ϕt‖2 + C‖ϕt‖2∗.

Here we have used the Young inequality for convolution and (2.5). Summing up, we find
differential inequality

d

dt
‖ϕt‖2∗ + α‖ϕt‖2 ≤ C‖ϕt‖2∗.

Therefore, exploiting (2.7), an application of the uniform Gronwall Lemma gives

‖ϕt(t)‖2∗ +

∫ t+1

t
‖ϕt(τ)‖2 dτ ≤ C, ∀ t ≥ σ. (4.4)

By comparison, we easily deduce that

‖∇µ(t)‖ ≤ C, ∀ t ≥ σ. (4.5)
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Let us recover a uniform estimate of the weak solution in V . Applying the gradient
operator to the chemical potential, and testing by ∇ϕ, we get

(∇µ,∇ϕ) = (F ′′(ϕ)∇ϕ,∇ϕ)− (∇J ∗ ϕ,∇ϕ).

Recalling (H.2) and using Young and Cauchy–Schwarz inequalities, we arrive at

α‖∇ϕ‖2 ≤ ‖∇µ‖‖∇ϕ‖+ ‖∇J‖L1(Ω)‖ϕ‖‖∇ϕ‖.

Then, on account of point 3 in Remark 3.3, the Young inequality gives

‖∇ϕ(t)‖ ≤ C, ∀ t ≥ σ. (4.6)

Since (4.4) and (4.5) hold for the Galerkin aprroximation, from the lower semicontinuity of
the norm we deduce (4.2). Finally, we infer (4.3) from (4.6), the continuity ϕ ∈ C([0, T ], H)
and the mass conservation.

In the following proposition we establish further regularity results and, in particular,
a uniform V -bound of µ. These properties will be helpful in the next section.

Proposition 4.2. For any σ > 0, there exists C = C(σ) > 0 such that

‖F ′(ϕ)‖L∞(σ,t;V ) + ‖µ‖L∞(σ,t;V ) + ‖µ‖L2(t,t+1;H2(Ω)) ≤ C, ∀ t ≥ σ, (4.7)

and

‖∇µ‖Lq(t,t+1;Lp(Ω)) + ‖∇ϕ‖Lq(t,t+1;Lp(Ω)) ≤ C, if
p− 2

p
=

2

q
, d = 2, (4.8)

‖∇µ‖Lq(t,t+1;Lp(Ω)) + ‖∇ϕ‖Lq(t,t+1;Lp(Ω)) ≤ C, if
3p− 6

2p
=

2

q
, d = 3, (4.9)

where 2 ≤ p <∞ if d = 2 and 2 ≤ p ≤ 6 if d = 3.

Proof. Let us consider the identity

µ− µ = −J ∗ ϕ+ J ∗ ϕ+ F ′(ϕ)− F ′(ϕ).

By the Poincaré–Wirtinger inequality, we deduce that

‖F ′(ϕ)− F ′(ϕ)‖V ≤ C‖∇µ‖+ C‖∇J ∗ ϕ‖.

Hence, according to Theorem 4.1, we have

‖F ′(ϕ)− F ′(ϕ)‖L∞(σ,t;V ) ≤ C, ∀ t ≥ σ.

In order to control the missing term F ′(ϕ), arguing as in the proof of Theorem 3.4, we
find

‖F ′(ϕ)‖L1(Ω) ≤ C
∫

Ω
(ϕ− ϕ0)F ′(ϕ) dx+ C.

Then, testing µ by ϕ− ϕ0 and using (2.2) and (4.3), we obtain∫
Ω

(ϕ− ϕ0)F ′(ϕ) dx ≤ C(1 + ‖∇µ‖).
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Therefore, the above inequalities yield

‖F ′(ϕ)‖L∞(σ,t;L1(Ω)) ≤ C, ∀ t ≥ σ,

which, in turn, gives
‖µ‖L∞(σ,t) ≤ C, ∀ t ≥ σ.

Thus, we end up with

‖F ′(ϕ)‖L∞(σ,t;V ) + ‖µ(t)‖L∞(σ,t;V ) ≤ C, ∀ t ≥ σ. (4.10)

Furthermore, notice that the regularity of ϕt in (4.2), (4.10) and classical elliptic regularity
entail that the first equation of problem (1.13) is satisfied for almost every (x, t) ∈ Ω ×
(σ,∞) and

‖µ‖L2(t,t+1;H2(Ω)) ≤ C, ∀ t ≥ σ. (4.11)

Arguing now as in [32], we find a control of ∇ϕ in Lp(Ω) by means of the L2-norm
of ϕt. To this aim, we take the gradient of µ, multiply it by |∇ϕ|p−2∇ϕ and integrate
over Ω. We observe that this estimate cannot be made rigorous within a Galerkin scheme.
Nevertheless, the regularity of the weak solution is enough to compute it. Indeed, on
account of (H.1), (H.2), by (4.11) we deduce that

‖F ′′(ϕ)∇ϕ‖L2(t,t+1;Lp(Ω)) ≤ C, ∀ t ≥ σ, (4.12)

where 2 ≤ p < ∞ if d = 2 and 2 ≤ p < 6 if d = 3. This allows us to multiply by
|∇ϕ|p−2∇ϕ yielding∫

Ω
F ′′(ϕ)|∇ϕ|p dx ≤

∫
Ω
|∇ϕ|p−2∇ϕ · ∇µdx+

∫
Ω
|∇ϕ|p−2∇ϕ · ∇J ∗ ϕdx.

By (H.2) and the Young inequality, we have

α‖∇ϕ‖pLp(Ω) ≤ ‖∇µ‖Lp(Ω)‖∇ϕ‖
p−1
Lp(Ω) + ‖∇J‖L1(Ω)‖ϕ‖Lp(Ω)‖∇ϕ‖

p−1
Lp(Ω).

Then, by (H.1) and (4.3) we get

‖∇ϕ‖Lp(Ω) ≤ C(‖∇µ‖Lp(Ω) + ‖ϕ‖V ). (4.13)

In order to estimate ∇µ in Lp(Ω), the Gagliardo–Nirenberg inequality (2.9), together with
(4.7), entails

‖∇µ‖Lp(Ω) ≤ C‖∇µ‖
2
p ‖∇µ‖

1− 2
p

V

≤ C
(
‖∆µ‖1−

2
p + ‖µ‖1−

2
p

)
≤ C

(
‖ϕt‖1−

2
p + 1

)
.

Hence, setting q such that p−2
p = 2

q , using (4.2) and (4.13), the estimate (4.8) easily follows.
On the other hand, applying the Gagliardo–Nirenberg inequality (2.10) and arguing as
before, we get

‖∇µ‖Lp(Ω) ≤ C‖∇µ‖
6−p
2p ‖∇µ‖

3p−6
2p

V

≤ C‖µ‖
3p−6

2p

H2(Ω)

≤ C
(
‖ϕt‖

3p−6
2p + 1

)
.

Hence, (4.9) is obtained as a byproduct of (4.2) and (4.13). The proof is complete.
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Remark 4.3. We infer from (4.8), (4.9) that ϕ ∈ L∞(σ, t;L∞(Ω)) with ‖ϕ‖L∞(σ,t;L∞(Ω)) ≤ 1
for all t ≥ σ and d = 2, 3. This is an immediate consequence of ϕ ∈ L6(σ, t;W 1,3(Ω)) for

d = 2 and ϕ ∈ L
8
3 (σ, t;W 1,4(Ω)) for d = 3.

Let us now analyze the dynamical system associated with our problem (1.13)-(1.14).
For any given m ∈ (0, 1), we introduce the phase space

Hm =
{
ϕ ∈ L∞(Ω) : ‖ϕ(x)‖L∞(Ω) ≤ 1 and − 1 +m ≤ ϕ ≤ 1−m

}
, (4.14)

endowed with the metric
d(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖. (4.15)

It is easily seen that Hκ is a complete metric space. Thanks to Theorem 3.4, we can set

S(t) : Hκ → Hκ, S(t)ϕ0 = ϕ(t), ∀ t ≥ 0,

where ϕ is the weak solution in the sense of Definition 3.2 corresponding to the initial
condition ϕ0. The dynamical system (Hκ, S(t)) is dissipative owing to (3.2). Moreover,
{S(t)} is a closed semigroup on the phase space Hκ because of (3.3) (see [55]).

The final result of this section is the existence of the global attractor. This is given by

Theorem 4.4. The dynamical system (Hm, S(t)) has a connected global attractor Am
which is bounded in Hm ∩ V .

Proof. Let us set
B = BV (0, R) ∩Hκ,

where R > 0 sufficiently large. We infer from Theorem 4.1 that B is a connected compact
absorbing set for the dynamical system (Hm, S(t)). Hence, the existence of the global
attractor is an immediate consequence of [55, Corollary 6].

Remark 4.5. In the next section we will deduce more information on the asymptotic
behavior of the weak solutions in dimension two. On the contrary, providing further results
in the three dimensional case seems to be a difficult task. The global-in-time higher-order
estimate in V established here is not enough to apply a compactness argument as in [3]
to recover the result about the convergence to a single stationary state. Moreover, the
finite-dimensionality of the global attractor is an open issue as well. In particular, we
are not able to argue as in [51] whose technique is based on a comparison principle for
parabolic equations (see, e.g., [51, Corollary 3.1]).

5 The Strict Separation Property and its Consequences

Hereafter we restrict our analysis to the two dimensional case, d = 2, and we prove
the main result of this paper, namely the validity of the strict separation property for a
class of singular potentials which includes the physically relevant logarithmic one. Some
consequences of this property will also be analyzed.

In the sequel, the generic constant C is allowed to depend on m and R as in the
previous section. Moreover, we will assume the following additional hypotheses on F :

(H.3) F ∈ C3(−1, 1) satisfies

F ′′(s) ≤ eC|F ′(s)|+C , F ′(s)F ′′′(s) ≥ 0, |F ′′′(s)| ≤ C|F ′′(s)|2, ∀ s ∈ (−1, 1).
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Remark 5.1. It is easily seen that the logarithmic potential (1.6) fulfils (H.3).

Theorem 5.2. Assume d = 2 and the singular potential F fulfills (H.2) and (H.3). Then,
for any σ > 0, there exists δ = δ(m,R, σ) > 0 such that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ 2σ. (5.1)

Proof. We begin by proving some integrability properties of F ′′(ϕ) and F ′′′(ϕ). Let p ≥ 1
be given. Thanks to the first assumption of (H.3), we have∫

Ω
F ′′(ϕ)p dx ≤

∫
Ω
ep[C|F

′(ϕ)|+C] dx = eCp
∫

Ω
eCp|F

′(ϕ)| dx.

Recalling that F ′(ϕ) ∈ V for almost every t ∈ [σ,∞), an application of the Trudinger–
Moser inequality (2.11) to CpF ′(ϕ) gives

‖F ′′(ϕ)‖pLp(Ω) ≤ e
CpeCp

2‖F ′(ϕ)‖2V .

Then, on account of (4.7), we infer

‖F ′′(ϕ)‖L∞(σ,t;Lp(Ω)) ≤ CeCp, ∀ t ≥ σ. (5.2)

In turn, by (4.2), (4.7) and (5.2), we get

(F ′(ϕ))t = F ′′(ϕ)ϕt ∈ L2(t, t+ 1;V ′), ∀ t ≥ σ.

Thus, we find F ′(ϕ) ∈ C([σ, t], H) for all t ≥ σ and

‖F ′(ϕ(t))‖V ≤ C, ‖F ′′(ϕ(t))‖Lp(Ω) ≤ C, ∀ t ≥ σ. (5.3)

Consequently, according to (H.3) and (5.3), we easily deduce that

‖F ′′′(ϕ(t))‖Lp(Ω) ≤ CeCp, ∀ t ≥ σ. (5.4)

Now, our aim is to show a uniform-in-time control of the L∞-norm of F ′(ϕ). To this end,
we perform a Alikakos–Moser iteration argument. Taking v = |F ′(ϕ)|p−1F ′(ϕ)F ′′(ϕ) in
(3.1), we have for almost every t ≥ σ

1

p+ 1

d

dt

∫
Ω
|F ′(ϕ)|p+1 dx+

∫
Ω
F ′′(ϕ)∇ϕ · ∇(|F ′(ϕ)|p−1F ′(ϕ)F ′′(ϕ)) dx

=

∫
Ω

(∇J ∗ ϕ) · ∇(|F ′(ϕ)|p−1F ′(ϕ)F ′′(ϕ)) dx. (5.5)

Observe that

∇(|F ′(ϕ)|p−1F ′(ϕ)F ′′(ϕ)) = p|F ′(ϕ)|p−1F ′′(ϕ)2∇ϕ+ |F ′(ϕ)|p−1F ′(ϕ)F ′′′(ϕ)∇ϕ.

Then, we can write

1

p+ 1

d

dt

∫
Ω
|F ′(ϕ)|p+1 dx+ I1 + I2 = I3 + I4, (5.6)

where

I1 := p

∫
Ω
F ′′(ϕ)∇ϕ · |F ′(ϕ)|p−1F ′′(ϕ)2∇ϕdx,
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I2 :=

∫
Ω
F ′′(ϕ)∇ϕ · |F ′(ϕ)|p−1F ′(ϕ)F ′′′(ϕ)∇ϕdx,

I3 := p

∫
Ω

(∇J ∗ ϕ) · |F ′(ϕ)|p−1F ′′(ϕ)2∇ϕdx,

I4 :=

∫
Ω

(∇J ∗ ϕ) · |F ′(ϕ)|p−1F ′(ϕ)F ′′′(ϕ)∇ϕdx.

We point out that taking v in (3.1) is not formal. Indeed, it is easy to check that the
regularities property ∇ϕ ∈ L6(t, t+ 1;L3(Ω)) in (4.8) and the uniform bounds (4.7), (5.2)
and (5.4) entail v ∈ L2(t, t+ 1;V ), for all t ≥ σ. Then, since ϕt belong to L2(t, t+ 1;H),
for any t ≥ σ, and s 7→ |F ′(s)|p+1 is convex, an application of [56, Chap.IV, Lemma 4.3]
gives, for almost every t ≥ σ,

1

p+ 1

d

dt

∫
Ω
|F ′(ϕ)|p+1 dx =

∫
Ω
|F ′(ϕ)|p−1F ′(ϕ)F ′′(ϕ)ϕt dx.

We now have to estimate all the terms Ii, i = 1, 2, 3, 4. By the identity

|F ′(ϕ)|p−1F ′′(ϕ)2|∇ϕ|2 =
4

(p+ 1)2
|∇|F ′(ϕ)|

p+1
2 |2, (5.7)

and recalling (H.2), we have

I1 ≥ αp
∫

Ω
|F ′(ϕ)|p−1F ′′(ϕ)2|∇ϕ|2 dx ≥ 4αp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx. (5.8)

On the other hand, from (H.2) and (H.3), we obtain

I2(t) =

∫
Ω
|F ′(ϕ)|p−1F ′(ϕ)F ′′′(ϕ)F ′′(ϕ)|∇ϕ|2 dx ≥ 0.

Hypotheses (H.1), (H.2) and (H.3) together with Young’s inequality, Remark 3.5 and (5.7)
allow us to control I3 and I4 as follows

I3 ≤ p
∫

Ω

(
|F ′(ϕ)|

p−1
2 F ′′(ϕ)|∇ϕ|

)(
|F ′(ϕ)|

p−1
2 F ′′(ϕ)|∇J ∗ ϕ|

)
dx

≤ εp
∫

Ω
|F ′(ϕ)|p−1F ′′(ϕ)2|∇ϕ|2dx+

p

4ε

∫
Ω
|F ′(ϕ)|p−1F ′′(ϕ)2|∇J ∗ ϕ|2 dx

≤ 4εp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2dx+

p

4ε
‖∇J ∗ ϕ‖2L∞(Ω)

∫
Ω
|F ′(ϕ)|p−1F ′′(ϕ)2 dx

≤ 4εp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2dx+

Cp

4ε

∫
Ω
|F ′(ϕ)|p−1F ′′(ϕ)2 dx

≤ 4εp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2dx+

Cp

4ε
‖F ′′(ϕ)‖2 +

Cp

4ε

∫
Ω
|F ′(ϕ)|p+1F ′′(ϕ)2 dx,

and

|I4| ≤
∫

Ω

(
|F ′(ϕ)|

p−1
2 F ′′(ϕ)|∇ϕ|

)(
|F ′(ϕ)|

p+1
2
|F ′′′(ϕ)|
F ′′(ϕ)

|∇J ∗ ϕ|
)
dx

≤ εp
∫

Ω
|F ′(ϕ)|p−1F ′′(ϕ)2|∇ϕ|2dx+

1

4εp

∫
Ω
|F ′(ϕ)|p+1 |F ′′′(ϕ)|2

F ′′(ϕ)2
|∇J ∗ ϕ|2 dx
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≤ 4εp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2dx+

C

4εp
‖∇J ∗ ϕ‖2L∞(Ω)

∫
Ω
|F ′(ϕ)|p+1F ′′(ϕ)2 dx

≤ 4εp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2dx+

C

4εp

∫
Ω
|F ′(ϕ)|p+1F ′′(ϕ)2 dx,

where ε > 0 is some arbitrary parameter. Choosing ε = α
4 in the above estimates, from

(5.3) and (5.6) we get, for almost every t ≥ σ,

1

p+ 1

d

dt

∫
Ω
|F ′(ϕ)|p+1 dx+

2αp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx (5.9)

≤ Cp+ Cp

∫
Ω
|F ′(ϕ)|p+1F ′′(ϕ)2 dx.

Taking now

J =

∫
Ω
|F ′(ϕ)|p+1|F ′′(ϕ)|2 dx

and applying the Hölder inequality, we find

J ≤ ‖F ′′(ϕ)‖2L4(Ω)‖F
′(ϕ)‖p+1

L2(p+1)(Ω)
≤ C‖F ′(ϕ)‖p+1

L2(p+1)(Ω)
,

where we have used (5.3) to control F ′′(ϕ). Hence, (5.9) turns into

1

p+ 1

d

dt

∫
Ω
|F ′(ϕ)|p+1 dx+

2αp

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx ≤ Cp

(
1 + ‖F ′(ϕ)‖p+1

L2(p+1)(Ω)

)
.

Setting w(t) = |F ′(ϕ(t))|
p+1

2 , we rewrite the above differential inequality in terms of w as
follows

d

dt
‖w‖2 +

2αp

p+ 1
‖∇w‖2 ≤ Cp(p+ 1)

(
1 + ‖w‖2L4(Ω)

)
. (5.10)

Exploiting Lemma 2.1 with ε = α
C(p+1)2

Cp(p+ 1)‖w‖2L4(Ω) ≤
αp

p+ 1
‖∇w‖2 + C

(
1 + (p+ 1)6

)
‖w‖2L1(Ω)

and inserting the above estimate into (5.10), we obtain

d

dt
‖w‖2 +

αp

p+ 1
‖∇w‖2 ≤ Cp6

(
1 + ‖w‖2L1(Ω)

)
.

Then, noting that p
p+1 ≥

1
2 , and using again Lemma 2.1 with s = 2 and ε = α

2 , we reach

d

dt
‖w‖2 + ‖w‖2 ≤ Cp6

(
1 + ‖w‖2L1(Ω)

)
. (5.11)

for almost every t ≥ σ and any p ≥ 1. We are now in a position to carry out an iterative
argument (see [35] and references therein). To this aim, we preliminarily observe that
F ′(ϕ) ∈ L1(σ, 2σ;W 1,3(Ω)) (see, for instance, (4.12) and (4.10)) with

‖F ′(ϕ)‖L1(σ,2σ;W 1,3(Ω)) ≤ C,

where C only depends on σ. By the Sobolev embedding W 1,3(Ω) ↪→ L∞(Ω), we infer that
there exists ξ ∈ (σ, 2σ) such that

‖F ′(ϕ(ξ))‖L∞(Ω) ≤ C.
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Hence, denoting

η = max
{
‖F ′(ϕ(ξ))‖L∞(Ω),max

t≥ξ

∫
Ω
|F ′(ϕ)| dx

}
,

and according to (4.7), we find the estimate

1 ≤ η ≤ C. (5.12)

Next, recalling the very definition of w, an application of the Gronwall Lemma to (5.11)
gives

max
t≥ξ

∫
Ω
|F ′(ϕ(t))|p+1 dx ≤ max

{
ηp+1, Cp6 max

t≥ξ

(
1 +

∫
Ω
|F ′(ϕ(t))|

p+1
2 dx

)2}
for all t ≥ ξ and p ≥ 1. As customary, taking p + 1 = 2k, k ∈ N, we rewrite the above
inequality as

max
t≥ξ

∫
Ω
|F ′(ϕ(t))|2k dx ≤ max

{
η2k , C26k max

t≥ξ

(
1 +

∫
Ω
|F ′(ϕ(t))|2k−1

dx
)2}

≤ max
{
η2k , C26k+2 max

t≥ξ

(∫
Ω
|F ′(ϕ(t))|2k−1

dx
)2}

.

Here, we have used the lower bound of η in (5.12). Setting Ak = C26k+2 and arguing by
iteration, we arrive at

max
t≥ξ

∫
Ω
|F ′(ϕ(t))|2kdx ≤ η2kAk A

2
k−1 A
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k−2 ... A
2k−1

k−(k−1) (5.13)

≤ η2kCA2k2B2k ,

where

A =
∞∑
i=1

1

2i
<∞, B =

∞∑
i=1

6i+ 2

2i
<∞.

Finally, taking the 2−k-power on both sides of (5.13), passing to the limit as k → +∞,
and using (5.12), we end up with

max
t≥ξ
‖F ′(ϕ(t))‖L∞ ≤ C.

Therefore, (5.1) immediately follows from the above estimate. The proof is complete.

Remark 5.3. Suppose the third condition in (H.3) is replaced by the more general one

|F ′′′(s)| ≤ CF ′′(s)q, ∀ s ∈ (−1, 1), (5.14)

for some q ≥ 1.Then, following line by line the above proof, and setting now

J =

∫
Ω
|F ′(ϕ)|p+1F ′′(ϕ)2(q−1) dx,

we just need to control J in a slightly different way. Indeed, applying the Hölder inequality,
we get

|J | ≤ ‖F ′(ϕ)‖p+1

L2(p+1)(Ω)
‖F ′′(ϕ)‖2(q−1)

L4(q−1)(Ω)
≤ C‖F ′(ϕ)‖p+1

L2(p+1)(Ω)
.

Thus the conclusion still follows arguing as above.
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Remark 5.4. The validity of the strict separation property in dimension three was proven
in [51] provided that F is algebraically unbounded at the endpoints. However, by using
our technique, it is not clear how to extend this result to the nonlocal equation.

A first immediate consequence of Theorem 5.2 is

Corollary 5.5. For any σ > 0, there exists C = C(σ) > 0 such that

‖µ(t)‖L∞(Ω) ≤ C, ∀ t ≥ 2σ.

Moreover, as a byproduct, we can also obtain the Hölder regularity of the weak solutions
by means of [22, Corollary 4.2] (see also [35]). Indeed we have

Corollary 5.6. For any σ > 0, there exists C = C(σ) > 0 and α = α(σ, δ) ∈ (0, 1) such
that

|ϕ(x1, t1)− ϕ(x2, t2)| ≤ C
(
|x1 − x2|α + |t1 − t2|

α
2

)
|µ(x1, t1)− µ(x2, t2)| ≤ C

(
|x1 − x2|α + |t1 − t2|

α
2

)
,

for all (x1, t1), (x2, t2) ∈ Ωt, where Ωt = [t, t+ 1]× Ω and t ≥ 3σ.

Leaning on the strict separation property (5.1), we are able to interpret the weak
solutions to problem (1.13)-(1.14) as the weak solutions to a similar problem where F is
replaced by a suitable regular potential. More precisely, we define the regular potential
F ∈ C3(R), which extends F outside of [−1 + δ, 1− δ], as follows

F (s) =
∑3

k=0
F (k)(1−δ)

k! (s− 1 + δ)k, ∀ s ≥ 1− δ,
F (s) = F (s), ∀ s ∈ (−1 + δ, 1− δ)
F (s) =

∑3
k=0

F (k)(−1+δ)
k! (s+ 1− δ)k, ∀ s ≤ −1 + δ.

(5.15)

According to the assumptions (H.2) and (H.3) and taking into account the sign of F and
its derivatives at s = 1− δ and s = −1 + δ, we deduce the following properties:

(A.1) for any Λ > 0, there exists K > 0 such that

F (s) ≥ Λs2 −K, ∀ s ∈ R;

(A.2) there exists N > 0 such that

|F ′(s)| ≤ N(1 + s2), ∀ s ∈ R;

(A.3) there exists N > 0 such that

α ≤ F ′′(s) ≤ N(1 + |s|), |F ′′′(s)| ≤ N, ∀ s ∈ R.

Here, α is the same value defined in assumption (H.2). Instead, K and N can be easily
estimated in terms of δ.

Let us now set ϕ1 = ϕ(3σ), which is a function in V such that ‖ϕ1‖L∞(Ω) ≤ 1 − δ,
ϕ1 ∈ [−1 +m, 1−m]. We consider the problem{

ϕ̃t = ∆µ̃,

µ̃ = F
′
(ϕ̃)− J ∗ ϕ̃,

in Ω× (0, T ), (5.16)
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subject to the boundary and initial conditions

∂nµ̃ = 0, on ∂Ω× (0, T ), ϕ̃(0, ·) = ϕ1, in Ω. (5.17)

Combining Lemma 3.13 and Theorem 3.15, it follows immediately that problem (5.16)-
(5.17) has a unique weak solution in the sense of Definition (3.14) obtained as a limit of
a Galerkin sequence. On the other hand, from the separation property, the definition of
F and the uniqueness of (5.16)-(5.17), we easily infer that ϕ is also a weak solution to
(5.16) so ϕ̃(t) ≡ ϕ(t + 3σ) for all t ≥ 0. According to this equivalence, the idea is to
compute some higher-order estimates on the Galerkin sequence due to its regularity. Note
that the Galerkin sequence does not satisfy the separation property. Nevertheless, we can
take advantage of the specific form of F .

Lemma 5.7. For any σ > 0, there exists C = C(σ) > 0 such that

‖ϕt‖L∞(5σ,t;H) + ‖ϕt‖L2(t,t+1;V ) + ‖∇µt‖L2(t,t+1;H) ≤ C, ∀ t ≥ 5σ. (5.18)

Proof. Let us consider the Galerkin sequence ϕ̃n which converges to ϕ̃. Due to the regu-
larity of ϕ̃n and the properties of F , we can repeat line by line the proof of Theorem 4.1.
In particular, we have

‖ϕ̃n(t)‖2V + ‖ϕ̃n,t(t)‖2V ′ +
∫ t+1

t
‖ϕ̃n,t(τ)‖2 dτ ≤ C, ∀ t ≥ σ, (5.19)

where C is independent of n. Now, arguing as in [32], we differentiate the system with
respect to time and we test by µ̃n,t getting

(ϕ̃n,tt, µ̃n,t) + ‖∇µ̃n,t‖2 = 0.

Hence, exploiting the form of µ̃n, we obtain

(ϕ̃n,tt, F
′′
(ϕ̃n)ϕ̃n,t)− (ϕ̃n,tt, J ∗ ϕ̃n,t) + ‖∇µ̃n,t‖2 = 0.

Using the fist equation of (5.16), we can rewrite the above equality as

1

2

d

dt

∫
Ω

F
′′
(ϕ̃n)|ϕ̃n,t|2 dx+ ‖∇µ̃n,t‖2 = (∆µ̃n,t, J ∗ ϕ̃n,t) +

1

2

∫
Ω
F
′′′

(ϕ̃n)ϕ̃3
n,t dx.

After an integration by parts in the right-hand side, we get

d

dt

∫
Ω

F
′′
(ϕ̃n)|ϕ̃n,t|2 dx+ ‖∇µ̃n,t‖2 = −(∇µ̃n,t,∇J ∗ ϕ̃n,t) +

1

2

∫
Ω
F
′′′

(ϕ̃n)ϕ̃3
n,t dx.

By the Young inequality, assumption (H.1) and the properties of F , we deduce

d

dt

∫
Ω

F
′′
(ϕ̃n)|ϕ̃n,t|2dx+

1

2
‖∇µ̃n,t‖2 ≤ C‖ϕ̃n,t‖2 + C

∫
Ω
|ϕ̃n,t|3dx. (5.20)

On account of the Gagliardo–Nirenberg inequality (2.9), we control the last term on the
right-hand side as

‖ϕ̃n,t‖3L3(Ω) ≤ γ‖∇ϕ̃n,t‖
2 + C‖ϕ̃n,t‖4,
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for any γ > 0 and C > 0 depending on γ but independent of n. In order to reconstruct
the L2-norm of the gradient of ϕ̃n,t on the left-hand side, we multiply the gradient of µ̃n,t
by ∇ϕ̃n,t∫

Ω
∇µ̃n,t · ∇ϕ̃n,t dx =

∫
Ω
F
′′
(ϕ̃n)|∇ϕ̃n,t|2 dx+

∫
Ω
F
′′′

(ϕ̃n)∇ϕ̃n · ∇ϕ̃n,t dx

−
∫

Ω
∇J ∗ ϕ̃n,t · ∇ϕ̃n,t dx.

Using again the Young inequality, assumption (H.1) and the properties of F , we obtain∫
Ω
F
′′
(ϕ̃n)|∇ϕ̃n,t|2 dx ≤

α

2
‖∇ϕ̃n,t‖2 + C‖∇µ̃n,t‖2 + C‖∇ϕ̃n‖2 + C‖ϕ̃n,t‖2.

According to the bound from below of F
′′
, the above inequality yields

1

2

∫
Ω
F
′′
(ϕ̃n)|∇ϕ̃n,t|2 dx ≤ C‖∇µ̃n,t‖2 + C‖∇ϕ̃n‖2 + C‖ϕ̃n,t‖2. (5.21)

Gathering together (5.20) and (5.21), there exists ω > 0 such that

d

dt

∫
Ω

F
′′
(ϕ̃n)|ϕ̃n,t|2 dx+ ω

∫
Ω

F
′′
(ϕ̃n)|∇ϕ̃n,t|2 dx+

1

4
‖∇µ̃n,t‖2

≤ γ‖∇ϕ̃n,t‖2 + C‖ϕ̃n,t‖4 + C‖∇ϕ̃n‖2 + C‖ϕ̃n,t‖2.

Setting γ = ωα
2 , we have

d

dt

∫
Ω

F
′′
(ϕ̃n)|ϕ̃n,t|2 dx+γ

∫
Ω

|∇ϕ̃n,t|2 dx+
1

4
‖∇µ̃n,t‖2

≤ C‖ϕ̃n,t‖4 + C‖∇ϕ̃n‖2 + C‖ϕ̃n,t‖2.

Noting that the first term on the right-hand side can be controlled as follows

‖ϕ̃n,t‖4 ≤ C‖ϕ̃n,t‖2
∫

Ω
F
′′
(ϕ̃n)|ϕ̃n,t|2 dx,

we get

d

dt

∫
Ω

F
′′
(ϕ̃n)|ϕ̃n,t|2 dx+ γ

∫
Ω

|∇ϕ̃n,t|2dx+
1

4
‖∇µ̃n,t‖2

≤ C‖ϕ̃n,t‖2
∫

Ω
F
′′
(ϕ̃n)|ϕ̃n,t|2 dx+ C‖∇ϕ̃n‖2 + C‖ϕ̃n,t‖2. (5.22)

In order to apply the uniform Gronwall lemma, we need to find a bound of∫ t+1

t

∫
Ω
F
′′
(ϕ̃n(τ))|ϕ̃n,t(τ)|2 dxdτ, ∀ t ≥ σ.

To this aim, we observe that∫
Ω
F
′′
(ϕ̃n)|ϕ̃n,t|2 dx = (J ∗ ϕ̃n,t, ϕ̃n,t) + (µ̃n,t, ϕ̃n,t) = (J ∗ ϕ̃n,t, ϕ̃n,t)−

1

2

d

dt
‖ϕ̃n,t‖2∗.
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Integrating in time from t to t+ 1 and exploiting (5.19), we get∫ t+1

t

∫
Ω
F
′′
(ϕ̃n(τ))|ϕ̃n,t(τ)|2 dxdτ ≤ C

∫ t+1

t
‖ϕ̃n,t(τ)‖2 dτ +

1

2
‖ϕ̃n,t(t)‖2∗ ≤ C.

Therefore, due to the above estimate and (5.19), we apply the uniform Gronwall lemma
to (5.22) deducing

‖ϕ̃n,t(t)‖2 +

∫ t+1

t
‖ϕ̃n,t(τ)‖2V + ‖∇µ̃n,t(τ)‖2 dτ ≤ C, ∀ t ≥ 2σ.

Passing to the limit as n goes to ∞, using the lower-semicontinuity of the norm and the
equivalence between ϕ̃ and ϕ, we obtain (5.18).

Remark 5.8. Notice that by comparison, we also infer that for all t ≥ 5σ,

‖∇µ‖L∞(5σ,t;Lp(Ω)) + ‖µ‖L∞(t,t+1;H2(Ω)) + ‖∇ϕ‖L∞(5σ,t;Lp(Ω)) + ‖ϕtt‖L2(t,t+1;V ′) ≤ C.

If we strengthen a bit the assumptions on the interaction kernel J , we can say more
about the regularity of the solution. More precisely, let us introduce the following assump-
tion.

(H.J) Either J ∈ W 2,1(Bρ), where Bρ = {x ∈ Rd : |x| < ρ} with ρ ∼ diam(Ω) such that
Ω ⊂ Bρ, or J is admissible in the sense of [9, Definition 1].

Remark 5.9. We recall that Newtonian and Bessel potentials satisfy assumption (H.J).

Then we can prove the following (see [28, Theorem 5] and [34, Lemma 3.6]).

Lemma 5.10. Assume that J satisfies (H.J). For any σ > 0, there exists C = C(σ, ρ) > 0
such that

sup
t≥5σ
‖ϕ(t)‖H2(Ω) ≤ C.

Finally, we also have

Lemma 5.11. Assume J satisfies (H.J). For any σ > 0, there exists C = C(σ, p) > 0
such that

‖ϕt(t)‖Lp(Ω) + ‖µ(t)‖W 2,p(Ω) + ‖ϕ(t)‖W 2,p(Ω) ≤ C, ∀ t ≥ 6σ, (5.23)

for any p ∈ [2,∞).

The foregoing estimate is deduced by making use of the maximal regularity of the
Neumann Laplacian (see [34] for further details). The regularity properties implied by
the strict separation property can be exploited in the analysis of the longtime behavior of
solutions. Indeed, we have

Theorem 5.12. Let the assumptions of Theorem 5.2 hold. Then, for every m > 0,
there exists an exponential attractor Mm bounded in V ∩ Cα(Ω) for the dynamical system
(Hm, S(t)) defined in Section 4, namely,

(i) S(t)Mm ⊂Mm, ∀ t ≥ 0;
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(ii) Mm exponentially attracts the bounded subset of Hm, i.e. there exist C and ω such
that for every B bounded set of Hm

distCα(Ω)∩H1−ν(Ω)(S(t)B,Mm) ≤ Ce−ωt, ∀ t ≥ 0,

for any ν ∈ (0, 1) and some α ∈ (0, 1);

(iii) the fractal dimension of Mm is finite, that is,

dimF (Mm, Cα(Ω)) ≤ C,

where C depends on α and m.

As consequences of Theorem 5.12 we have

Corollary 5.13. Let the assumptions of Theorem 5.2 hold, then the global attractor is a
bounded subset of V ∩ Cα(Ω) and has finite fractal dimension, that is,

dimF (Am, Cα(Ω)) ≤ C.

Corollary 5.14. Let the assumptions of Theorem 5.2 hold. If J satisfies (H.J) then, the
global attractor Am and the exponential attractor Mm are bounded in Hm ∩W 2,p(Ω), for
any p ∈ [2,∞).

Theorem 5.12 and Corollary 5.13 and 5.14 are byproducts of the separation property.
Indeed, we recall that the weak solutions to (1.13)-(1.14) coincide in finite time with the
weak solutions to (1.13)-(1.14) with a smooth F (see above). Hence we can use [35,
Theorem 2.8] to guarantee the existence of an exponential attractor and its consequences.

We conclude this section by stating a result on the convergence of single trajectories.
More precisely, we have that any weak solution does converge to a single stationary state.
This result also follows from the argument mentioned above which is based on the strict
separation property. More precisely, it can be proven arguing as in [35, Theorem 2.21]
where the regular potential case is considered. Thus, we also have

Corollary 5.15. Let the assumptions of Theorem 5.2 hold. If F is real analytic on
[−1 + δ(m), 1− δ(m)]. Then any weak solution ϕ to problem (1.13)-(1.14) is such that

lim
t→∞
‖ϕ (t)− ϕ∗‖L∞(Ω) = 0, (5.24)

where ϕ∗ ∈ V ∩ Cα(Ω) solves −J ∗ ϕ∗ + F ′ (ϕ∗) = C∗ for some C∗ > 0, and ϕ0 = ϕ∗.

Remark 5.16. Our proof of the strict separation property can be adapted to other related
models characterized by a logarithmic potential. For instance, the nonlocal version of the
so-called Cahn–Hilliard–Oono equation (see [19] and references therein, cf. also [50]) with
conservation of total mass, namely, the system{

ϕt + ε(ϕ− ϕ0) = ∆µ,

µ = F ′(ϕ)− J ∗ ϕ,
in Ω× (0, T ), (5.25)

subject to (1.14), where ε > 0. Indeed, observe that there exists a unique v which solves
−∆v = ε(ϕ − ϕ0) with homogenous Neumann boundary condition. This v has the form
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G∗ε(ϕ−ϕ0) where G is the Green function associated with the problem. Therefore system
(5.25) can be rewritten as follows{

ϕt = ∆µε,

µε = F ′(ϕ)− J ∗ ϕ−G ∗ ε(ϕ− ϕ0),
in Ω× (0, T ),

subject to
∂nµε = 0, on ∂Ω× (0, T ), ϕ(·, 0) = ϕ0, in Ω.

Thus the original problem can be rewritten in a form which is quite similar to the one we
have analyzed.

6 The Nonlocal Cahn-Hilliard-Navier-Stokes System

This section is devoted to extend the regularity results and the validity of the strict
separation property to problem (1.16)-(1.17) in dimension two. Let us introduce first the
definition of weak solution (see [30]).

Definition 6.1. Let u0 ∈ Gdiv, ϕ0 be a measurable function with F (ϕ0) ∈ L1(Ω) and
T > 0 be given. A couple [u, ϕ] is a weak solution to problem (1.16)-(1.17) on [0, T ]
corresponding to [u0, ϕ0] if

u ∈ H1(0, T ;V ′div) ∩ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv),

ϕ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

µ = F ′(ϕ)− J ∗ ϕ ∈ L2(0, T ;V )

such that

〈ut,v〉V ′div ,Vdiv + b(u,u,v) + (∇u,∇v) = (µ∇ϕ,v) ∀ v ∈ Vdiv, a.e. t ∈ (0, T ),

〈ϕt, v〉V ′,V + (u · ∇ϕ, v) + (∇µ,∇v) = 0 ∀ v ∈ V, a.e. t ∈ (0, T ),

and satisfies the initial conditions

u(0, ·) = u0, ϕ(0, ·) = ϕ0 in Ω.

Recalling the energy associated to system (1.16)

E(u, ϕ) =
1

2
‖u‖2 +

∫
Ω
F (ϕ)dx− 1

2
(J ∗ ϕ,ϕ),

we state the well-posedness result related to problem (1.16)-(1.17).

Theorem 6.2. Let u0 ∈ Gdiv, ϕ0 be a measurable function with F (ϕ0) ∈ L1(Ω) and
ϕ0 ∈ (−1, 1) and T > 0 be given. Assume that (H.1)−(H.2) hold. Then, there exists a
unique weak solution [u, ϕ] in the sense of Definition 6.1 which satisfies the dissipative
estimate for all t ≥ 0

E(u(t), ϕ(t)) + ω

∫ t+1

t
‖∇u(τ)‖2 + ‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ E(u0, ϕ0)e−ωt + C,

where ω and C are positive constants independent of the initial condition.
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The proof of existence is based on the approximation technique established in the
proof of Theorem 3.4 and the standard Galerkin scheme for the Navier–Stokes system (see
[57]). We also refer to [30, Section 2, Theorem 1] for a different approximation technique.
Instead, uniqueness has been proven arguing as in [28, 3.1].
Let us fix m ∈ (0, 1) and R ≥ 0. We consider trajectories such that

−1 +m ≤ ϕ0 ≤ 1−m and E(u0, ϕ0) ≤ R.

Accordingly, the generic constant C may depend on R and m but is independent of the
specific form of the initial datum. Moreover, thanks to the above result, we have that any
weak solution fulfills for all t ≥ 0

E(u(t), ϕ(t)) +

∫ t+1

t
‖∇u(τ)‖2 + ‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 + ‖ϕt(τ)‖2V ′ dτ ≤ C. (6.1)

We begin to report a regularity result for the Navier–Stokes system in dimension two.

Lemma 6.3. For any σ > 0, there exists C = C(σ) such that

‖u(t)‖L∞(σ,t;Vdiv) + ‖u‖L2(t,t+1;H2(Ω)) + ‖ut‖L2(t,t+1;L2(Ω)) ≤ C, ∀ t ≥ σ. (6.2)

Proof. We observe that the Korteweg force can be rewritten as

µ∇ϕ = ∇p∗ − (J ∗ ϕ)∇ϕ.

On the other hand, we have for all t ≥ 0∫ t+1

t
‖(J ∗ ϕ(τ))∇ϕ(τ)‖2 dτ ≤ C.

Thus (6.2) follows from [57, Theorem 3.10].

Thanks to Lemma 6.3, we can prove the following lemma.

Lemma 6.4. For any σ > 0, there exists C = C(σ) > 0 such that

‖ϕt‖L∞(2σ,t;V ′) + ‖ϕt‖L2(t,t+1;H) ≤ C, ∀ t ≥ 2σ. (6.3)

Proof. We provide below a formal computation. Nonetheless, a rigorous proof can be done
by arguing as in Lemma 6.8 .We differentiate the nonlocal Cahn–Hilliard equation with
respect to time and we test the equation by Nϕt. Then, arguing as in the proof of Lemma
4.1, we obtain

d

dt
‖ϕt‖2∗ + α‖ϕt‖2 ≤ C‖ϕt‖2∗ + 2|(utϕ,∇Nϕt)|+ 2|(uϕt,∇Nϕt)|.

By the Hölder inequality and the properties of N , we deduce that

|(utϕ,∇Nϕt)| ≤ ‖ut‖‖ϕt‖∗

and
|(uϕt,∇Nϕt)| ≤ ‖u‖L∞(Ω)‖ϕt‖‖ϕt‖∗.

Collecting together the above estimates and using the Young inequality, we get

d

dt
‖ϕt‖2∗ +

α

2
‖ϕt‖2 ≤ C

(
1 + ‖u‖2L∞(Ω)

)
‖ϕt‖2∗ + ‖ut‖2.

Now, exploiting the Gronwall Lemma together with (6.1) and (6.2), we easily infer (6.3).
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As an immediate consequence, we deduce two additional regularity results whose proofs
can be performed following line by line the proofs of their previous counterparts (namely,
Theorem 4.1 and Proposition 4.2).

Lemma 6.5. For any σ > 0, there exists C = C(σ) > 0 such that

‖∇µ‖L∞(σ,t;H) ≤ C, ∀ t ≥ 2σ, (6.4)

and
sup
t≥2σ
‖ϕ(t)‖V ≤ C. (6.5)

Lemma 6.6. For any σ > 0, there exists C = C(σ) > 0 such that for all t ≥ 2σ

‖F ′(ϕ)‖L∞(2σ,t;V ) + ‖µ(t)‖L∞(2σ,t;V ) + ‖µ‖L2(t,t+1;H2(Ω)) ≤ C, (6.6)

‖∇µ‖Lq(t,t+1;Lp(Ω)) + ‖∇ϕ‖Lq(t,t+1;Lp(Ω)) ≤ C, if
p− 2

p
=

2

q
and d = 2. (6.7)

We now have all the ingredients to establish the strict separation property.

Theorem 6.7. Given σ > 0. Suppose that F also fulfills (H.3). Then, there exists
δ = δ(R,m, σ) > 0 such that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ 3σ. (6.8)

Proof. We apply the same argument of Theorem 5.1. We need to handle the following
term

Z =

∫
Ω

uϕ∇
(
|F ′(ϕ)|p−1F ′(ϕ)F ′′(ϕ)

)
dx.

Using the boundedness of ϕ, we have

|Z| ≤
∫

Ω
|u||F ′(ϕ)p−1F ′(ϕ)F ′′′(ϕ)∇ϕ| dx+ p

∫
Ω
|u|F ′′(ϕ)2|F ′(ϕ)|p−1|∇ϕ| dx

≤ Z1 + Z2.

Furthermore, we have

Z1 ≤
4p

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx+

1

4Cp

∫
Ω
|F ′(ϕ)|p+1|F ′′′(ϕ)|2u2 dx

≤ 4p

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx+ ‖F ′′′(ϕ)2u2‖L2(Ω)‖F ′(ϕ)‖p+1

L2(p+1)(Ω)

≤ 4p

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx+ ‖F ′′′(ϕ)‖2L8(Ω)‖u‖

2
L8(Ω)‖F

′(ϕ)‖p+1

L2(p+1)(Ω)

≤ 4p

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx+ C‖F ′(ϕ)‖p+1

L2(p+1)(Ω)

and

Z2 ≤
4p

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx+

1

4C
‖u2F ′′(ϕ)2‖L2(Ω)‖F ′(ϕ)‖p−1

L2(p+1)(Ω)

≤ 4p

(p+ 1)2

∫
Ω
|∇|F ′(ϕ)|

p+1
2 |2 dx+ C‖F ′(ϕ)‖p−1

L2(p−1)(Ω)
.

Arguing as in Theorem 5.2 and using a Moser type iteration procedure, we obtain (6.8).
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Thanks to the strict separation property we can also prove some Hölder continuity.
Indeed we have

Lemma 6.8. For any σ > 0, there exists C = C(σ) > 0 and α ∈ (0, 1), depending on δ
such that

sup
t∈[4σ,∞)

‖u(t)‖
C

1
2 (Ω)
≤ C (6.9)

and
|ϕ(x1, t1)− ϕ(x2, t2)| ≤ C

(
|x1 − x2|α + |t1 − t2|

α
2

)
, (6.10)

for all (x1, t1), (x2, t2) ∈ [t, t+ 1]× Ω and any t > 4σ.

Proof. We observe that the Korteweg force can be also rewritten in the following form

µ∇ϕ = ∇p̃− (∇J ∗ ϕ)ϕ.

Thanks to Lemma 6.4 and the boundedness of ϕ, we deduce that

‖∂t((∇J ∗ ϕ)ϕ)‖L2(t,t+1;H)

≤ ‖(∇J ∗ ϕt)ϕ‖L2(t,t+1;H) + ‖(∇J ∗ ϕ)ϕt‖L2(t,t+1;H) ≤ C, ∀ t ≥ 3σ.

Therefore, we can consider the Navier–Stokes equation

〈ut,v〉V ′div ,Vdiv + b(u,u,v) + (∇u,∇v) = (f,v) ∀ v ∈ Vdiv, a.e. t ∈ (0, T ),

where f is a vector-field bounded in L2(t, t + 1;H) with ft bounded in L2(t, t + 1;H).
Setting ∂ht u = 1

h(u(t + h) − u(t)), we take the difference of the above equation for t + h
and t and we test by ∂ht u. This gives

1

2

d

dt
‖∂ht u‖2 + ‖∇∂ht u‖2 + b(∂ht u,u(t+ h), ∂ht u) + b(u(t), ∂ht u, ∂ht u) = (∂ht f, ∂

h
t u).

Notice that the last term on the left-hand side is equal to zero. We exploit the standard
estimate for the trilinear term (2.8) and the Young inequality. Thus we obtain

1

2

d

dt
‖∂ht u‖2 + ‖∇∂ht u‖2 ≤ ‖u(t+ h)‖Vdiv‖∂

h
t u‖‖∂ht u‖Vdiv + ‖∂ht f‖‖∂ht u‖.

Due to the Poincaré inequality, we deduce

d

dt
‖∂ht u‖2 + ‖∇∂ht u‖2 ≤ C‖u(t+ h)‖2Vdiv‖∂

h
t u‖2 + C‖∂ht f‖2

≤ C‖∂ht u‖2 + C‖∂ht f‖2,

where we have used Lemma 6.3. On account of the inequality

‖∂ht v‖L2(t,t+1;H) ≤ ‖vt‖L2(t,t+1;H),

applying the uniform Gronwall lemma, we infer that

‖∂ht u‖L∞(4σ,t;L2(Ω)) + ‖∇∂ht u‖L2(t,t+1;H) ≤ C, ∀ t ≥ 4σ.

Hence, we conclude that

‖ut‖L∞(4σ,t,L2(Ω)) + ‖∇ut‖L2(t,t+1;H) ≤ C, ∀ t ≥ 4σ. (6.11)
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Let us now prove that u is eventually bounded. To this end, according to (6.3) and (6.11),
an application of [4, Theorem 1.1] yields

‖u(t)‖W 1,4(Ω) ≤ C, ∀ t ≥ 4σ,

and we conclude that (6.9) holds. Thus we can apply [22, Corollary 4.2] to the nonlocal
Cahn–Hilliard equation with convective term and infer (6.10).

Remark 6.9. We recall that Remark 5.3 holds. Moreover, as we observed in Section 5 we
can still identify the weak solutions to problem (1.16)-(1.17) with the weak solutions to
a similar problem with a regular potential. Then, we can generalize the results on the
longtime behavior contained in Section 5. More precisely, we know from [28] that (1.16)-
(1.17) generates a dissipative dynamical systems which possesses a global attractor. Then
the regularity of the global attractor as well as the convergence of any weak solution to
a single equilibrium proved in [32] for a regular potential can be extended to the present
case. The same can be told for results on the existence of an exponential attractor proven
in [28, Section 5]. The details are left to the interested reader to check and extend to that
situation.
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