Anisotropic effects and master curves for rubbers with sp² carbon allotropes: towards light weight materials

Maurizio Galimberti¹

Silvia Guerra¹, Giuseppe Infortuna¹, Vincenzina Barbera¹, Andrea Bernardi¹, Giuseppe Mastinu¹, Silvia Agnelli², Stefano Pandini²

¹Politecnico di Milano ²Università di Brescia

International Elastomer Conference 192nd Technical Meeting ACS Rubber Division Cleveland (OH) October 9 - 12, 2017

M. Galimberti et al

M. Galimberti et al

Anisotropic effects and master curves

Objectives of the contribution to the Rubber Division Meeting

- Rationalization of sp² carbon allotropes, nano and nanostructured,
 behaviour
 - in rubber compounds:
 - mechanical and electrical properties.

Common correlations? Prediction of properties and behaviour?

Design of rubber materials

Characterization of sp² carbon allotropes

Carbon black CBN326, N110: from Cabot

CNT

1 - Baytubes C150 P: from Bayer Material Science

2 - NC7000: from Nanocyl

High surface area graphite (HSAG)

Asbury Synthetic Graphite 8427

CNT and CB as the sp² carbon allotropes. How they look like?

. Galimberti et al Anisotropic effects and master curves

International Elastomer Conference

CB

Carbon nanofillers: main features

Carbon filler	Carbon Purity (%) (TGA)	Surface area (m²/g) (BET)	DBP absorption number (ml/100g)	Number of stacked layers (XRD)	Acidic groups (mmol/g) ^a (Boehm titration)	рН
CB N326	98	77	85	5	1.3	5.7 – 9.7
CB N 110	98	137	113	n.d.	n.d.	6.9 – 9.5
CNT - 1	n.d.	200	316	10	n.d.	n.d.
CNT - 2	90	275	n.d.	8	2.0	n.d.
HSAG	99.5	330	162	35	1.1	4.6

^acarboxy, epoxy, hydroxy groups

M. Galimberti, G. Infortuna, S. Guerra, V. Barbera, S. Agnelli, S. Pandini eXPRESS Polymer Letters, 2017, accepted for publication

S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

S. Musto, V. Barbera, V. Cipolletti, A. Citterio, M. Galimberti, eXPRESS Polymer Letters Vol.11, No.6 (2017) 435-448

M. Galimberti et al

Analysis of mechanical reinforcement

Rubber

IR: SKI3, Nizhnekamskneftekhim Export

S-SBR: Nipol NS 522, Zeon Corporation

10

Composites with carbon allotropes, based on IR

Composites with only one filler (phr)

IR = 100

CNT	0	1.25	2.50	5.00	10.00	15.00	30.00
G	0	1.39	2.78	5.56	11.11	16.67	33.30
CB N326	0	1.25	2.50	5.00	10.00	15.00	30.00

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

11

Composites with carbon allotropes, based on IR

Composites with hybrid filler systems (phr)

IR = 100

CNT	0	1.25	2.50	5.00	10.00	15.00	30.00
CNT/CB			1.25/ 1.25	<mark>2.50/</mark> 2.50	<mark>5.00/</mark> 5.00	<mark>7.50/</mark> 7.50	<mark>15.00/</mark> 15.00
G	0	1.39	2.78	5.56	11.11	16.67	33.30
G/CB	0		1.39/ 1.25	2.78/ 2.50	5.55/ 5.00	8.34/ 7.70	16.65/ 15.00
CB N326	0	1.25	2.50	5.00	10.00	15.00	30.00

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Composites with carbon allotropes, based on S-SBR

Composites with hybrid filler systems (phr)

SBR = 100

CNT	0; 1;	2; 3;	4; 5; 6	; 6.5; 7	7.5; 10;	11; 14; ⁻	18; 20
CB N326		0; 10	; 15; 2	0; 22; 3	30; 35; 4	45; 50; 6	0
CB N326	10)		+	CNT: 0	÷ 14	
CB N326	22	2		+	CNT: 0	÷ 14	
CB N326	35	5		+	CNT: 0	÷ 14	

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

IR based compounds. $G'_{\gamma min}$ and $\Delta G'$ vs total filler vol%

Carbon allotropes: CB and CNT

 $\ensuremath{\mathfrak{CNT}}$ leads to higher values of both G'_{ymin} and $\Delta G'$

Data from shear stress tests, 50°C

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

ce Cleveland (OH), October 9-12, 2017 14

SBR based compounds. $G'_{\gamma min}$ and $\Delta G'$ vs total filler vol%

Carbon allotropes: CB and CNT

 $\ensuremath{\mathfrak{CNT}}$ leads to higher values of both G'_{vmin} and Δ G'

Data from shear stress tests, 50°C

M. Galimberti et al

Anisotropic effects and master curves

IR based compounds. G'_{ymin} vs total filler vol%

dry melt blending, internal mixers

Galimberti M., Coombs M., Riccio P., Ricco` T., Passera S., Pandini S., Conzatti L., Ravasio A., Tritto I., Macromol. Mater. Eng., 298 (2012), 241-251 Galimberti M., Coombs M., Cipolletti V., Riccio P., Ricco` T., Pandini S., Conzatti L., Applied Clay Science 65–66 (2012) 57–66. Galimberti M., Coombs M., Cipolletti V., Riccò T., Agnelli S., Pandini S., KGK 7-8 (2013) 31-36 Galimberti M., V. Kumar, M. Coombs, V. Cipolletti, S. Agnelli, S. Pandini, L. Conzatti, RCT 87(2) (2014) 197-218

M. Galimberti et al

Anisotropic effects and master curves

SBR based compounds. $G'_{\gamma min}$ and $\Delta G'$ vs total filler vol%

Carbon allotropes: CB and CNT

Data from shear stress tests, 50°C

M. Galimberti et al

Anisotropic effects and master curves

17

SBR based compounds. $G'_{\gamma min}$ and $\Delta G'$ vs total filler vol%

Carbon allotropes: CB and CNT

 $\overline{\mathbf{S}}$

Data from shear stress tests, 50°C

M. Galimberti et al

Anisotropic effects and master curves

Specific interfacial area

«for composites with the same chemical nature of the fillers, the reinforcement changes with filler-polymer interfacial area, at the same filler volume fraction» Kalfus J., Jancar J., Polymer Composites, 28, (2007) 365-371

A. Galimberti et al International Elastomer Conference Anisotropic effects and master curves

Specific interfacial area = $A \cdot \rho \cdot \Phi$

filler properties

- A = BET surface area
- ρ = density
- Φ = volume fraction

measure unit: m² / m³ Surface / volume in the composite

«for composites with the same chemical nature of the fillers, the reinforcement changes with filler-polymer interfacial area, at the same filler volume fraction» Kalfus J., Jancar J., *Polymer Composites*, 28, (2007) 365-371

M. Galimberti et al Anisotropic effects and master curves Internation

Master curve for the initial modulus of elastomers composites

with sp² carbon allotropes

Rubber: IR, SBR

Data from shear stress tests, 50°C

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 21

Master curve for the initial modulus of elastomers composites

with sp² carbon allotropes

Rubber: IR, SBR

Data from shear stress tests, 50°C

M. Galimberti et al

Anisotropic effects and master curves

Master curve for the initial modulus of elastomers composites

with sp² carbon allotropes

Master curve for the Payne effect of elastomers composites

with sp² carbon allotropes

 $y = e^{0.043}x$

Rubber: IR, SBR

Data from shear stress tests, 50°C

M. Galimberti et al

Anisotropic effects and master curves

IR, SBR as the rubbers Data from shear stress tests, 50°C

M. Galimberti, G. Infortuna, S. Guerra, V. Barbera, S. Agnelli, S. Pandini eXPRESS Polymer Letters, 2017, accepted for publication

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier

S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 25

with sp² carbon allotropes

What about nanosized graphite?

IR, SBR as the rubbers Data from shear stress tests, 50°C

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 27

with sp² carbon allotropes

What about nanosized graphite?

IR, SBR as the rubbers Data from shear stress tests, 50°C

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Anisotropic effects and master curves

with sp² carbon allotropes

With DBP absorption - IR as the rubber

S. Musto, V. Barbera, V. Cipolletti, A. Citterio, M. Galimberti, eXPRESS Polymer Letters Vol.11, No.6 (2017) 435-448

S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Anisotropic effects and master curves

Analysis of mechanical reinforcement

Anisotropic properties

Carbon allotropes lead to anisotropic properties of rubber compounds?

Carbon allotropes lead to anisotropic properties of rubber compounds?

N220 aggregate

"Aggregates generally exhibit anisotropy,

in the form of a reduction of aggregate breadth, or "flatness", in one direction"

...but even perfectly spherical particles can give anisotropy, if not homogeneously dispersed!

Grueber et al., Rubber Chemistry and Technology 67(2):280-287, 1994

NR based composites with carbon nanofillers

Recipes and preparation

Ingredient	Amount [phr (volume fraction)]						
NR	100	100	100	100			
Filler	0	4 (0.02)	15 (0.07)	35 (0.15)			
DCUP	1.4	1.4	1.4	1.4			

Fillers HSAG, CNT, CB: N326

Internal mixer: 50 mLmixing chamber. 50 g NR masticated at 80°C, 1 min, rotors 60 rpm. Filler then added. Mixing performed for further 4 minutes. Peroxide added, composite discharged after 2 minutes.

S. Agnelli, S. Pandini, A. Serafini, S. Musto, M. Galimberti *Macromolecules 2016, 49(22), 8686–8696*

M. Galimberti et al

Anisotropic effects and master curves

Samples preparation

Samples preparation and device for shear stress tests

 Rubber specimen
 Image: Construction of the specimen of the speci

M. Galimberti et al

Anisotropic effects and master curves

Shear stress tests: through thickness and in plane

Stress on faces perpendicular to axis 3

Stress on faces perpendicular to axis 1 or 2

Anisotropic effects and master curves
NR

37

NR + 35 phr CB N326

(slight) anisotropic behaviour

NR + 35 phr CNT

Anisotropic Payne Effect

Peroxide crosslinked

M. Galimberti et al

Through-thickness

Anisotropic effects and master curves

In-plane

Cleveland (OH), October 9-12, 2017 39

NR + 35 phr HSAG

Transmission electron microscopy

NR + 35 phr CNT

Anisotropic effects and master curves

Electron diffraction measurements

by Selected Area Electron Diffraction Patterns

Ultrathin sections (70 – 100 nm) obtained perpendicular to the reference axis 1

42

M. Galimberti et al

Electron diffraction measurements

by Selected Area Electron Diffraction Patterns

NR + 35 phr CNT

(002) Debye-Scherrer ring

Lower intensity sectors

Higher intensity sectors

CNT preferential orientation

NR + 15 phr CNT

M. Galimberti et al

Anisotropic effects and master curves

NR + 15 phr CNT

NR + 15 phr HSAG

M. Galimberti et al

Anisotropic effects and master curves

NR + 4 phr HSAG

NR + 4 phr CNT

Anisotropy index as a function of carbon filler content

Anisotropy index = G'_{IP}/G'_{TT}

S. Agnelli, S. Pandini, F. Torricelli, P. Romele, A. Serafini, V. Barbera, M. Galimberti submitted

S. Agnelli, S. Pandini, A. Serafini, S. Musto, M. Galimberti Macromolecules 2016, 49(22), 8686-8696

M. Galimberti et al

Anisotropic effects and master curves

NR + CB

NR + HSAG

NR + CNT

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 48

Transversal isotropic behaviour ...

NR composites with CNT, nano graphite

Grand Canyon

... for carbon fillers with high aspect ratio

Analysis of mechanical reinforcement

Mastercurve and anisotropy

Mastercurve and anisotropy

M. Galimberti et al

Anisotropic effects and master curves

Mastercurve and anisotropy

Mastercurve and anisotropy

Anisotropic (nano)fillers and composites' modulus

@ Warning

Use of Guth model. It should be used for fillers randomly distributed

Load is parallel to fibers' direction Modulus depends on: volume fraction and surface area

Load is perpendicular to fibers' direction Modulus depends on: volume fraction and surface area and filler aspect ratio

M. Galimberti et al

Anisotropic effects and master curves

Design of materials

Anisotropic electrical properties

Lightweight materials

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 55

Design of materials

Anisotropic electrical properties

Electrical resistivity measurements

Measurement setup Specimens: 3x3x3 mm³. KEITHLEY 2636A System Sourcemeter. Contacts: Copper+silver paste

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 57

Electrical resistivity measurements

 $\rho = R(S/h)$

Measurement setup Specimens: 3x3x3 mm³. KEITHLEY 2636A System Sourcemeter. Contacts: Copper+silver paste

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 58

CNT in NR

A.I. = Anisotropy Index = ρ_{TT} / ρ_{IP}

HSAG, in NR

A.I. = Anisotropy Index = ρ_{TT} / ρ_{IP}

61

HSAG, CB in NR

A.I. = Anisotropy Index = ρ_{TT} / ρ_{IP}

A.I. = Anisotropy Index = ρ_{TT} / ρ_{IP}

Mechanical and electrical anisotropy indexes

CNT based compounds. Mechanical and electrical anisotropy indexes

M. Galimberti et al

Design of materials

Lightweight materials

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference

Cleveland (OH), October 9-12, 2017 66

Lightweight materials from the master curve of mechanical reinforcement

M. Galimberti et al

Anisotropic effects and master curves

Lightweight materials from the master curve of mechanical reinforcement

To solve the equation of the master curve

$$G'_{\gamma \min}/G'_{m} = e^{0.043 \text{ i.a.}}$$

Target density

 $\rho_{\rm C} = \rho_{\rm CB} * \phi_{\rm CB} + \rho_{\rm CNT} * \phi_{\rm CNT} + \rho_{\rm m} * (1 - \phi_{\rm CB} - \phi_{\rm CNT})$

M. Galimberti et al

Anisotropic effects and master curves

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{CNT}/(\phi_{CB}+\phi_{CNT})$

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{CNT}/(\phi_{CB}+\phi_{CNT})$

M. Galimberti et al

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{CNT}/(\phi_{CB}+\phi_{CNT})$

Conclusions

72

Acknowledgments

www.lidup.polimi.it

Fabrizio Torricelli, Paolo Romele University of Brescia

Pirelli Tyre

M. Galimberti et al Anisotropic effects and master curves International Elastomer Conference Clevel

Enhancing science, technology and business across the **evolving elastomeric community**.

M. Galimberti et al

Anisotropic effects and master curves

International Elastomer Conference