Mixed time-criticality process interferences
characterization on a multicore Linux system

Federico Reghenzani*, Giuseppe Massari*, William Fornaciari*
Dipartimento di Elettronica, Informazione e Bioingegneria - Politecnico di Milano
Via Ponzio 34/5, Milano, 20133, Italy
*name.surname @polimi.it

Abstract—The increasing interest in the integration of Mixed-
Criticality Systems (MCS) in Commercial-Off-The-Shelf (COTS)
platforms leads to an increasing number of challenges. The
possibility of sharing computing resources among applications
with different time criticalities is a key goal for COTS systems,
but still hard to achieve. Classical approaches in real-time
systems are not feasible when platform and operating system
may introduce unpredictability in the task execution. Moreover,
if the system must also meet non-functional requirements (e.g.,
thermal and power management), dynamic approaches of com-
puting resources allocation are more effective than static ones.
Unfortunately, this contributes to increasing the complexity of
the scenario. In MCS, the overheads and the unpredictability
caused by sharing resources like cache memories have been
well studied. However, in some cases we could also consider the
operating system itself as a potential source of unexpected and
unpredictable latencies, if several running tasks perform system
calls. This work aims at proposing a model for the intra-core
and inter-core interferences and the analysis of the OS-induced
latencies in a Linux real-time system, both essential for the
creation of smart and effective run-time resource management
policies.

I. INTRODUCTION

In the last years, the end of Dennard’s scaling [1] and
the increasing strictness in non-functional requirements —
such as power, energy, space, weight, cost and dependability
constraints — induced a new trend in the embedded systems
design, i.e. the integration of applications with different levels
of criticality in the same system, possibly multi-cores [2]. Fur-
thermore, the choice of Commercial-Off-The-Shelf (COTS)
hardware is very attractive in order to reduce the design
costs. In particular, we can observe this trend in avionics and
automotive use-cases [3].

A Mixed Criticality System (MCS) is typically an embed-
ded system, characterized by a workload including tasks with
different criticality levels, that run — possibly interacting — on
the same computational platform. Research on MCS includes
several aspects of computer science and engineering. This
paper focuses on so-called Mixed Time-Criticality Systems,
ignoring other aspects, such as dependability. In this regard
we may distinguish among the following criticality levels:
hard, firm, soft real-time, and best-effort. The criticality level
identification strictly depends on the type of actions performed
and the context in which the given application runs. For this
reason, in this paper we distinguish only between real-time

(RT) and best effort (BE) tasks, without considering further
real-time classes.

The most important requirement of a Mixed Time-Criticality
System is to provide predictable and deterministic behaviours,
in order to properly schedule real-time tasks. However, if the
MCS relies on a multi-core COTS processor, this becomes a
very challenging activity, along with the computation of the
Worst-Case Execution Time (WCET) [4].

A. Man-in-the-middle: the Run-time Resource Manager

In 2016, the Linux Foundation started a project to advance
the real-time Linux in order to provide a kernel able to com-
pete with state of the art real-time operating systems (RTOSs).
The use of Linux considerably simplifies the development
process, in particular thanks to the reduced effort in the im-
plementation of device drivers and the availability of libraries.
However, Linux is extremely more complex than classical
RTOS (free or commercial). Accordingly, it is practically
impossible to use standard timing analyses, such as control-
flow or path analysis.

Unfortunately, the increasing necessity of dealing with
thermal, power and energy constraints — especially when time-
varying — is an important challenge that cannot be effectively
addressed by a RTOS. In this regard, an increasing trend is
to use more complex operating systems and a large number
of integrated applications, that require different solutions from
formal methods and static analyses, which become infeasible
in many use cases.

This scenario leads us to evaluate the necessity of integrat-
ing a run-time resource manager on top of the real-time Linux
in order to mitigate the sources of unpredictability. The re-
source manager would be in charge of properly partitioning the
computing resources of the platform, thus isolating tasks, by
considering the criticality level, the performance requirements
and the aforementioned non-functional constraints.

B. Real-time and Linux

Since 2000s, several real-time Linux systems based on
a co-kernel schema have been developed and studied, e.g.
RTAI [5] and Xenomai [6]. The co-kernel approaches usually
consist of an additional real-time kernel in charge of handling
the interrupts and deciding whether to run a real-time task
or the Linux kernel, without the need of modifying the
kernel to introduce real-time capabilities. However, co-kernel
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approaches tend to demand a high development effort, since
they often require the reimplementation of device drivers and
libraries, in most cases, already available in Linux. Moreover,
the mutual influences between the RT and the Linux kernel
must be carefully evaluated, in order to avoid unexpected
events and behaviours.

In this work we consider the PREEMPT_RT patch of
the Linux kernel that is not currently merged in the main
branch. Recently, PREEMPT_RT has gained interest in both
industrial and scientific community. In 2016, Gosewehr et al.
[7] evaluated the possibility to switch from RTAI to pure Linux
with PREEMPT_RT for a network application, discovering
that Linux is however a good candidate for distributed real-
time systems, even if it does not guarantee the same level of
determinism and latencies of RTAI

Two articles in 2013 [8] [9] estimated the performance gap
(always in terms of latencies and determinism) between Linux
RT and co-kernel approaches. The outcome was that even if
PREEMPT_RT substantially improved the real-time capability
of Linux, it is not ready for hard real-time applications.
However both works and the Kazan et al. study [10] shown a
trend of improvements in the releases. Nevertheless, the real-
time capabilities of recent versions of Linux kernel are not
systematically studied yet. This kind of activity may lead to
further improvements. Consequently, the state of the art in
Linux PREEMPT_RT provides a scenario in which Linux —
without a co-kernel approach — can be effectively used for soft
real-time applications.

C. Paper goals and structure

In order to develop a resource manager for mixed criticality
systems, by exploiting a Linux operating system with the
PREEMPT_RT patch applied, we need to carry out a pre-
liminary work on (1) modelling temporal partitioning of the
tasks and (2) a quantitative assessment of latencies induced by
the operating system during the execution of non-critical (non
real-time) tasks. Therefore the goal of this study is two-fold:

e to provide a temporal-partition model for a run-time
resource manager that considers non-deterministic be-
haviour of COTS platforms and the OS-induced inter-
ferences;

e to characterize the OS-induced latencies of a real-time
Linux system under stress conditions in a mixed time-
criticality environment.

Section II presents the state of the art in the analysis of
multi-core effects on WCET and in real-time resource man-
agement approaches. Subsequently, the Section III describes
the notations used in next Section IV to propose a model for
the run-time resource management. Section V presents the
experimental results, in particular the OS-induced latencies
analysis. Finally, future works and conclusion are described
in Section VI.

II. STATE OF THE ART

Excluding sporadic works in 80s, first articles about mixed
criticality systems appeared in literature starting from 2007

and they were reviewed in 2013 by Burns et al. [2]. This
well-received article is kept updated every year and it covers
several aspects of MCS, including the resource sharing effects
in multiprocessor environments. As highlighted by the review,
inter-core and intra-core interferences are largely discussed
and analyzed in literature. Since the hardware of embedded
systems — in particular real-time systems — is traditionally
designed for its specific purpose, literature proposes solutions
that require the use of Special Purpose Processors. In general,
they are very difficult to implement in COTS hardware and
their analysis is outside the scope of this paper.

Any modern COTS multi-core processor is designed to be a
general-purpose processor (GPP), with performance in mind.
This means that guaranteeing temporal determinism is not a
design objective. Kotaba et al. [11] categorized the latencies
in GPPs caused by resource sharing in six classes: system
bus sharing, memory delays, cache effects, CPU internals
(e.g. multi-threading and pipelines), addressable devices, and
other effects (e.g. BIOS routines and microcode). They also
proposed resource limitation as a solution to restrict the side
effects of non real-time tasks, that was used in other works,
like the temporal isolation proposed by Nowotsch et al. [12].
In this article, they used a run-time resource limitation based
on a static analysis of the tasks, in order to run them concur-
rently in a multi-core based system, enforcing the calculated
WCET by using temporal isolation.

A. Real-time and Resource Management

Several MCS scheduling strategies voluntarily ignore the
effects of resource sharing. Giannopoulou et al. [13] proposed
a design-time strategy to improve scheduling decisions, about
task-core mapping. This approach reduces the shared memory
interferences. However, as previously highlighted, in COTS
systems and using complex operating systems, WCET cannot
be deterministically calculated. Consequently, it becomes es-
sential to have a run-time resource manager that, according to
functional and non-functional constraints, provides a correct
resource partitioning. A resource manager does not replace
the scheduler, but it complements it, by taking coarse-grained
decisions (usually on long periods). The scheduler instead
provides the usual scheduling duties under the constraints set
by the resource manager.

Kritikakou et al. [14] presented a hybrid design-time and
run-time control for MCS. A WCET analysis is applied at
run-time in order to check if a real-time task is able to meet
the deadline, while other processes are concurrently running in
the system. If the deadline cannot be met, the system switches
to an isolation scenario in which only the real-time task is
allowed to run.

Huber et al. [15] proposed a resource manager for MCS
based on Network-on-Chip (NoC), in charge of properly
allocate the interconnect bandwidth. The resource manager
switches between different application configurations based on
the system status, in order to maintain the required Quality-
of-Service.



To the best of our knowledge, the resource management of
MCS and COTS systems with complex OS — like Linux —
has not been thoroughly studied. In this article we propose
a model for the characterization of inter-core interferences
affecting real-time tasks running in a MCS system.

B. Latency characterization

In 2002, Abeni et al. [16] analyzed the timer resolution of an
x86 platform and the latencies of the non-preemptible sections
of the operating system. Even if outdated, this is a good
starting point to evaluate the WCET of real-time application
running in isolation.

We are not aware of any previous work measuring the OS-
induced latencies caused by non-critical tasks over real-time
tasks in COTS platforms. The experimental evaluation (Section
V) provides an estimation of the latencies occurring during the
execution of system calls in user-space processes.

III. RESOURCE MANAGEMENT MODEL

In literature, different models are used to describe resources
and workload of a real-time system. Since a uniform model
among scientific publications does not exist, this section
describes the task and system model used in the subsequent
sections.

A. Task model

Each task 7; has a level of criticality decided at design
time. In order to simplify the formal analysis we consider only
two levels of criticality: RT real-time tasks and BE the best
effort ones. Each task 7; € RT can be described by the tuple
(A;, D;, W;) where A; represents the inter-arrival period, D;
the relative deadline and W; the WCET required to finish the
task. W, is measured in ideal conditions, i.e. when the task
executes in an isolated CPU without any interference due to
resource contention.

The model of BE tasks is considered arbitrary in this work.

B. System model

Let C = {e1,ca, ..., ¢ } be the set of n homogeneous CPU
cores available in the system.

We assume that the task scheduling policy is periodically
invoked. Generally, a task may require multiple periods to
complete, as explained later in Section IV-B. The periods are
identified by an index z € N. Moreover, the length of the
period can be variable P(z), but for the sake of simplicity we
consider it constant in this paper (P(z) = P).

Using the notation of the model proposed by Mok et al. [17],
a resource partition 11(z) is a tuple (I, P) where I" is an or-
dered set of N time pairs {(B1, E1), (Bs, E2), ..., (By, EN)}
that represents the sub-intervals starting at time B; and ending
at time F; in which the contiguous time interval of period z
with a maximum length equal to the period time P is divided.

We introduce then the Supply Function S(t,z) defined as
the function returning the amount of CPU time allocated by
the scheduling policy in a range of time [0;¢] from a period
z. To simplify the notation, let S(z) = S(P,z) the amount

of time assigned from the whole period. Accordingly, we can
analytically express it as follows:

S(z) =S(P,z) =

>

V(B;i,E;)€l(z)

(E; — By)

In order to deal with the allocation of CPU time in multi-
processor systems, let’s extend the used notation defining I1(2)
as an array of resource partition, one for each processing unit
¢ € C:

1I(2) = {Tl(2)e;, I1(2)cy s - 11(2)c, }

The output of the resource manager for each time period z
is a partition I1(z) for each task 7;. Usually, it selects the tuple
(S(z), P)7: instead (I'(2), P)7i, leaving to the scheduler the
decision authority on how to split the enforcing period.

A correct partitioning requires that the total time in the
period corresponds to the sum of time assigned to all partitions
to each CPU in addition to the idle time. Thus, if the enforcing

period is equal for all tasks, we can write:

2.

vr;e{RTUBE}

Si(z) + SCI], (2) =P Vz,c;eC (1)

where Sfj (z) is the idle time in which the CPU c¢; is not
allocated to any task. Additionally, consider the notation of
total amount of time assigned to each criticality level:

SRT § ST’
V1, €RT

SBE § STL
V1, EBE

that allows us to rewrite the Equation 1 as:

S(Z‘T(z) + SEE(Z) + ng (z)=P Vz,c; € C (2)

To summarize, the resource manager would be in charge of:

1) tuning the enforcing period length P;
2) selecting the CPU time allocated to each task for each
core S;7;

3) implicitly selecting the enforced idle time Sg

These parameters could be tuned at each enforcing period.
However, in a real scenario changing the time allocation
introduces a non-negligible overhead, that should be carefully
evaluated, and usually leads to a limitation of the rate of
possible partition changes.

The assignment of CPU time to the RT tasks cannot be
blindly performed with respect to other BE tasks. As described
in the next section, the interferences on RT tasks caused by BE
tasks depend on SBE and may consequently require to adjust
also SRT The resource manager must have a smart policy
that, balancmg the time assigned to the three partitions, could
guarantee RT constraints and non-functional requirements,
keeping the highest possible QoS for BE tasks.



Using this resource assignment model, it is possible to
neglect the scheduling policy of the underlying operating
system scheduler in first approximation. The RT tasks may
have any scheduling policy (e.g. priority-based or deadline-
based) independently from the resource management control.
The scheduler is then free to decide the schedule in the
boundaries of the resource partitions defined by the resource
manager.

IV. INTERFERENCES ASSESSMENT

In this section we propose a model for the intra-core
and inter-core interferences to be used in high-level resource
allocation policies.

In the next experimental section we will try to validate the
model for the inter-core interferences.

A. Taxonomy

Following the classification of execution time interferences
in a multi-core processor provided by Gracioli et al. [18], one
could categorize the interferences in:

1) Intra-task interference: it is mainly the effects of having
different tasks of the same application or of using large
portions of memory that may cause several cache misses.
The delays caused by this interference are self-inflicted,
and consequently in this work they are assumed a priori
analyzed and part of the normal WCET of the tasks.

2) Intra-core interference: it is caused by tasks co-running
in the same core. It is mainly composed of the context
switch time and the time needed to solve cache misses
caused by the other applications. It strongly depends on
the cache architecture and arbitration.

3) Inter-core interference: it is the delay caused by cache
misses in shared cache levels among cores and shared
resource access by processes running in other cores,
including the operating system resources. These are the
most difficult to analyze, since they cover several sys-
tem components and unpredictable timing interactions
between them. In particular, system calls may cause
unexpected delays in multi-core systems due to the
kernel-space concurrency.

As already discussed, getting a strict upper bound of task
WCET, even considering an isolation environment, it is dif-
ficult or even impossible in COTS platform. Computing the
WCET of RT tasks is then necessary in order to apply a state-
of-the-art measurement-based technique.

B. Resource management control

To simplify the subsequent analysis, let us make the follow-
ing assumptions:
« only one single RT task 7rr is present in the system,
together with other BE tasks;
« the resource manager selects a constant enforcing period
P(z) = P" and V¢; € C the time allocated to the RT task

lin case of multiple RT tasks the selection of P can be made globally to

the system or for single task. State-of-the-art schedulers are able to manage
both conditions.

T(0) $85(0) 7 (0) S8E(1)
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>
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(a) Free-execution: the RT task is allowed to run until the end of the
job. The resource manager has to set the correct enforcing period P.
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(b) Constrained-execution: the RT task time is limited by ST7(z) and
consequently the jobs are segmented over multiple periods.

Fig. 1. The two possible resource management controls.

SET and the time allocated to BE tasks SZ¥. The fine-
gralned allocation of SBE to each BE task to maintain
the best QoS is out of the scope of this paper;

« the RT task is divided in a sequence of inter-arrival jobs,
considering the time-triggered model.

These assumptions allow us to lighten the subsequently
used notation, but they can be easily relaxed. In particular,
the first assumption can be extended to have multiple tasks,
considering the mutual interference of RT tasks in the WCET
Wi

A resource manager can enforce the CPU time assignment
in MCS with two different policies: Free Execution and
Constrained Execution.

1) Free Execution: The RT tasks are free to run until they
have completed their jobs, then BE tasks can run during the
remaining time until another RT task requires the CPU or SB¥
is reached.

Selecting P as the inter-arrival period of the RT task allows
the resource manager to select the fraction of remaining time
to be assigned to BE tasks — and consequently the fraction
of the remaining time in which the CPU remains idle. This
scenario is depicted in Figure la.

Let be cgr € C the CPU assigned to the RT task and
THET () the time actually used by the RT task in the period
2. It follows that THT(2) < P and:

TRT('Z) Texpecled( ) + I(Z) (3)

where T, Xpected(z) is the execution time expected in case
the real-time task runs in isolation. The assumption of an
additive interference is generally valid [19] [20]. Thus, from
the definition of WCET: T2 4(2) < wh

I(z) instead is the overhead caused by other tasks,
particular due to intra-core and mter-core interferences. It is
easily noticeable that even if W § DZET the deadline can
be missed if I(z) is big enough to cause T77(z) > DET.
Consequently, it is important to assess the magnitude of 7(z)
in order to assign the correct time to RT and BE tasks.

Let be for any ¢; € C
{SEF(0),85"(1), ...,

SBE(z) = SEP(z = 1)}
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Fig. 2. The memory, cache and processor architecture of big.LITTLE
Exynos5422.

the vector of previously assigned CPU c¢; time to best effort
tasks. Thus, one can write:
I(z) = d™"(SEE

citenr (2)) + A" (SGE(2)) )

In this form I(z) is the sum of two functions of the assigned
execution time:

o d®": interferences generated in the current period, as a

function of assigned time of BE tasks in other CPUs;

e dP™: the remains from previous periods, as a function of

previously assigned BE times.

Due to non-determinism and complexity of considered
systems, analytical forms of d®" and dP™ do not exist.
However, Section V presents some experimental evaluation
of the magnitude of them and it shows that d*" exhibits a
linear trend over the parameters. Under this assumption, d°***
can be written as:

A (S e (2)) = D dE(SEE() )
Ve, €Cici#Ccrr

The effort required to the resource manager policy is
mitigated since it can consider independently the inter-core
interferences.

2) Constrained Execution: The RT task is allowed to
execute in the CPU cgrr € C for a fraction of P, then it
is suspended until the next period. In this case, the goal of
the resource manager is even more critical, since a too small
assignment of CPU time to RT task may lead to a deadline
miss.

The period P may be smaller than inter-arrival time, in this
way the computation of RT tasks can be split in several peri-
ods, according to the resource manager policy. This scenario
is depicted in Figure 1b.

This is a typical case of continuous running processes — i.e.
always in the ready state — that have to maintain a QoS. The
execution time for the real-time task in period z is constrained

by the allocation Sgg; (z). Consequently, the allocated time
must be:
k o &
> Shh (=W 43 71() (©)
z=1 z=1

where I(z) is the overhead due to interferences caused by
other tasks and k is a sufficiently large number of periods.
The previous considerations on I(z) can be also applied for
this case.

TABLE I
BENCHMARK MEASURED LATENCIES OF EXECUTION WITHOUT THE
DISTURBANCES CAUSED BY STRESSER PROCESSES

Benchmark WCET  ACET MCET STDEV STDEV
(ps) (15) (us) (s) (%)
ctx 19.26 18.46 18.43 0.23 1.25
fentl 19.39 16.98 17.85 1.75 10.29
mmap 228.71 223.63 223.60 1.17 0.52
proc 1222.60 1082.57  1084.08 37.83 3.49
signal 13.13 12.93 12.93 0.07 0.52
syscall 1.86 1.89 1.86 0.02 0.88
unix 5543 56.22 55.40 0.26 0.47
fifo 64.96 64.65 64.64 0.14 0.22
fs 79.90 77.93 77.78 0.53 0.68
pipe 65.43 65.07 65.10 0.18 0.27
sem 2.14 1.81 1.80 0.10 5.35
udp 82.52 81.76 81.83 0.44 0.54
TABLE II

BENCHMARK MEASURED LATENCIES OF EXECUTION WITH THE PRESENCE
OF STRESSER PROCESSES IN OTHER CORES

Benchmark WCET ACET MCET STDEV  STDEV
(1) (us) (/75)) (us) (%)

ctx 19.79 19.26 19.31 0.25 1.28
fentl 20.39 17.90 19.15 1.96 10.96
mmap 362.69 27236  271.02 17.78 6.60
proc 1598.75 1424.74 1432.00 48.05 3.37
signal 13.85 13.41 13.23 0.32 2.39
syscall 1.99 1.95 1.96 0.01 0.68
unix 61.58 60.76 60.77 0.27 0.45
fifo 75.52 74.38 73.75 0.92 1.24
fs 91.38 87.76 88.49 2.96 3.38
pipe 72.62 72.35 72.35 0.10 0.14
sem 3.24 2.76 2.72 0.18 6.44
udp 86.37 85.24 85.19 0.36 0.42

V. EXPERIMENTAL EVALUATION

The effects of cache and memory sharing in MCS systems
are well discussed in literature, thus the subsequent evaluation
focuses on latencies induced by the operating system.

Specifically, in Linux user-space processes may affect the
execution of other threads including OS system calls, even if
the PREEMPT_RT patch is applied and the affected tasks have
real-time priority. This is due to the contention of OS-level
resources and synchronization mechanisms, that may lead to
unpredictable latencies and thus unwanted non-deterministic
behaviours.

A. System setup

The system used in testing is an ODROID XU-3 powered
by ARM big.LITTLE architecture as depicted in Figure 2.
The Exynos5422 Cortex is composed of 4 Cortex Al5 cores
(big) and 4 Cortex A7 cores (LITTLE).

A Linux system able to achieve real-time constraints cannot
trust only in the PREEMPT_RT patch. The system setup is a
long and meticulous process that requires strong skills as also
highlighted by previous work [8] [10]. The most important
steps in order to obtain a Linux system with the lowest possible
latencies/jitters and the highest degree of determinism are:
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Fig. 3. WCET and ACET overhead comparison of the first and second group of benchmarks. Data are normalized over the ACET in non-stressed condition.

o Properly configure the kernel at compile-time, by setting
the preemption model, tuning the Read-Copy-Update
(RCU) framework, selecting the appropriate timer tick
policy, and many others small features to enable or
disable.

o Select and configure the kernel modules to load. Each
kernel module may introduce timers, kernel threads and
IRQ routines, that have to be properly evaluated in terms
of latencies and jitter. Usually, the non-essential kernel
modules should not be loaded.

o Pin the IRQ threads and timers to CPUs where RT tasks
are not expected to run, paying attention to the cache
architecture.

e Selection and pinning of user-space system applications,
based on the actual necessity of each of them.

After applying each configuration item, the effects on the
system must be evaluated step-by-step. Linux provides several
tools to check it, e.g. the analysis of interrupts and timers
via the statistics provided by /proc/« files or the essential
tool ftrace that allows one to analyze the kernel execution
and its latencies [21]. The version of Linux used in next
experiments is the 4.8 (October, 2016).

In addition to the system configuration, each RT application
has to be modified to increase the determinism and avoid
latencies [22]. First of all, the RT process has to set the
RT scheduling policy (in our experiments SCHED_FIFO) and
scheduling priority. Then, it should perform several steps to
increase predictability, e.g. avoiding page-fault via stack pre-
faulting and memory locking.

B. Methodology

In the subsequent analyses the Imbench micro-benchmark
[23] suite has been used. This suite is extensively used
in literature and it provides several benchmarks to test the
operating system performance. In particular, we focused on
response latencies, i.e. most of the 1at_ + benchmarks:

e ctx: context switch time

o fcntl: locking/unlocking files latency

o mmap: time needed to map in memory IMB of data

e proc: time needed to spawn a child and exit, it measure
the performance of fork system call

e signal: latency to install and catch POSIX signals

e syscall: latency of a simple getpid system call

e unix: inter-process communication latency via UNIX
sockets

o fifo: inter-process communication latency via FIFOs

o fs: time needed to create and delete 500 files

e pipe: inter-process communication latency via PIPEs

e sem: latency of semop system call

¢ udp: local communication latency via UDP sockets

We slightly modified the suite in order to add the extra setup
needed for RT applications and the measure of number of
cycles (via the PMCCNTR register of the ARM CPU), besides
the normal time measurement. This is performed in order to
check during post-processing the data validity, since the pure
time can be counterfeit by DVFS and clock instability.

In order to create stress-conditions in the system we used the
stress—ng tool [24] — a derivative work from the stress
program created by Waterland [25]. The tool allows us to
select the system function to stress and the number of threads
to be used.

ODROID XU-3 implements a non-bypassable DVES that
may enter in action if the temperature raises beyond a warning
point. This behaviour is enabled even if the operating system is
set to do not perform any frequency scaling. Unexpected fre-
quency changes were a problem in first measurements in labo-
ratory environment temperature. Consequently, we decided to
fix the frequency of big cores to 1.8 GHz and frequency of
LITTLE cores to 1 GHz. After this downgrading, we have
never experienced any other frequency change. Moreover, to
be minimize the risks, we also added an extra cooling system
to the board and a software that monitors for any frequency
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Fig. 4. Deterioration of ACET, WCET and MCET w.r.t. their values in isolation. The overhead is caused by stresser processes on proc and mmap benchmarks

as the number of CPU cores available for BE tasks increase.

switching during our measurements.
All the tests have been repeated several times as specified
in next sections.

C. OS-induced overhead

To quantify the overhead induced by the operating system
calls, the big cores were divided in two groups, two cores
dedicated to run the stress—ng and two cores to run the
benchmark. LITTLE cores are used to run all the migratable
IRQs, system and kernel threads.

We selected several benchmarks from the Imbench suite and
divided them in two groups based on the execution time?: the
first group for benchmarks able to run in less than a second,
and the second group for the other benchmarks. The former
group was executed for 20000 times while the second group
for 500 times. The tests are repeated in stressing conditions,
properly tuning the parameters of st ress—ng command, i.e.
the number of threads to use and the size of cache levels.

Then, the usual statistics calculated on the results were:
Worst-Case Execution Time (WCET), Average-Case Execu-
tion Time (ACET), the Median-Case Execution Time (MCET)
and standard deviation. The results are shown in Table I for the
normal execution and in Table II under full stress conditions.

In Figure 3a and Figure 3b the WCET and ACET of two
groups of benchmarks can be compared between normal and
stressed conditions.

It is possible to notice a deterioration of WCET in the range
[3;59]% and of the ACET in the range [4;52]%. In the ctx,
unix, and £s benchmarks MCET is higher than ACET only
in stressed conditions, showing a worsening of the distribution
of the samples. Benchmarks pipe and udp perform better
during stressed conditions in terms of MCET w.r.t. ACET

2This execution time refers to the time of running the entire benchmark,
including the application setup. It should not be confused by the measured
latencies.

and in terms of standard deviation, but the absolute values of
WCET, ACET and MCET are worse than normal non-stressed
case.

The standard deviation is in general higher for most of
the benchmarks during stressing conditions, suggesting an
increase of variability of the kernel-space execution. Conse-
quently, the execution time of RT tasks becomes less pre-
dictable. This is expected in a complex OS like Linux where
RT tasks run concurrently with BE tasks and sharing system
resources.

From the data we can state that inter-process communica-
tions — like fifo, pipe, udp, unix — are less affected by
the BE workloads. The absolute values of standard deviations
slightly decrease, indicating that the syscall execution does not
introduce further variability. Consequently, this reduction can
be explained by the increasing of the total execution time in
the absence of other variability sources.

Conversely, the mmap, proc, sem significantly impact on
the ACET and WCET. Also mmap and proc increase their
standard deviations, in particular the mmap standard deviation
increases of a factor of 15 in absolute terms. The mmap is
actually a library call implemented by the C library (1ibc)
that in turn calls the mmap_pgoff () system call. This
kernel-space function — and nested function calls — uses several
semaphores and mutexes that are probably the cause of the
remarkable increase of variability.

It is possible to conclude that a RT task may experience
unexpected delays if it uses any system call, due to the pres-
ence of other tasks in the system, with some calls potentially
impacting more than others. Even if our tests were executed
in extreme stress conditions, the introduced overheads are not
negligible and must be taken in account in the WCET analysis
or limited by the resource manager. Besides this, the different
variability effects must be taken in account through an accurate
profiling of the application. Depending on which system calls



are used in the RT and BE tasks, the confidence interval width
considered by the resource management policy has to be tuned
according to the previous variability considerations.

D. Experimental verification of linearity

In order to check if the term d“*™ in Equation 4 can be
written as a sum of independent interferences of each core,
we tested a linearity in the increasing of overhead when the
number of CPUs dedicated to stresser processes increases.
Also in this experiment stress—-ng was used for stressing
the cores dedicated to BE tasks, and we selected the proc
and mmap to respectively test the process and the memory
management of the Linux kernel.

As we can see in Figure 4a and Figure 4b, ACET and MCET
maintain a very good linear trend, WCET presents an higher
variability but consistent with the standard deviation of these
benchmarks. Consequently, at least for 4 cores or less, it is
possible to assume valid the Equation 5, i.e. d*" is linearly
independent with respect to the single d."™ of each core.

VI. CONCLUSIONS AND FUTURE WORKS

The interest in Linux real-time systems is increasing and
with that the challenges to be addressed. As highlighted in the
state of the art, a systematic analysis of real-time capability
of recent Linux kernel is required. Specifically, the impact of
PREEMPT_RT patch and the subsequently comparison with
co-kernel approaches have to be assessed. In our opinion, the
lack of this analysis is one of the most urgent topic, especially
for the use of Linux in industrial applications.

This article proposed a model to be used by a resource
manager in order to properly allocate tasks over available
CPUs. In the experimental part, we performed a quantitative
analysis on the OS-induced overhead when real-time tasks are
executed in MCS context. In this regard, we discovered that
a non real-time task may increase the WCET and ACET of
a critical task of over 50% only using Linux system calls. To
this overhead, the well known interferences caused by caches
have to be added. At the end, we verified that the interferences
caused by multiple tasks on different CPUs can be considered
independent among them, simplifying the proposed model.

This work wants to be the first but essential step to extend
the Barbeque Run-Time Resource Manager [26] as a possible
solution to mitigate such interferences enabling an efficient
execution of mixed-criticality tasks on a Linux platform.
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