
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 1

Performance/Reliability-aware Resource
Management for Many-Cores in Dark Silicon Era

Mohammad-Hashem Haghbayan, Student Member, IEEE, Antonio Miele, Member, IEEE,
Amir M. Rahmani, Member, IEEE, Pasi Liljeberg, Member, IEEE, Hannu Tenhunen, Member, IEEE

F

Abstract—Aggressive technology scaling has enabled the fabrication
of many-core architectures while triggering challenges such as limited
power budget and increased reliability issues, such as aging phenom-
ena. Dynamic power management and runtime mapping strategies
can be utilized in such systems to achieve optimal performance while
satisfying power constraints. However, lifetime reliability is generally
neglected. We propose a novel lifetime reliability/performance-aware
resource co-management approach for many-core architectures in the
dark silicon era. The approach is based on a two-layered architecture,
composed of a long-term runtime reliability controller and a short-
term runtime mapping and resource management unit. The former
evaluates the cores’ aging status w.r.t. a target reference specified by
the designer, and performs recovery actions on highly stressed cores
by means of power capping. The aging status is utilized in runtime
application mapping to maximize system performance while fulfilling
reliability requirements and honoring the power budget. Experimental
evaluation demonstrates the effectiveness of the proposed strategy,
showing that outperforms most recent state-of-the-art contributions.

Index Terms—Dark Silicon, Lifetime Reliability, Many-core Architec-
tures, Mapping, Runtime Resource Management

1 INTRODUCTION

In the last decades, the aggressive technology scaling
have brought to the massive miniaturization of transis-
tors and the consequent integration of hundreds of cores
within the same chip, leading to the definition of many-
core architectures. However, with the end of Dennard
scaling, supply voltage has not followed the same ex-
ponential scaling trend experienced with transistors [1].
Therefore, physical limits imposed by device packaging
and cooling technology on peak power consumption
and peak power density have made it impossible to
power-on the entire chip at the same time, leading to
the so-called dark silicon problem [1]. In practice, the

• Mohammad-Hashem Haghbayan, Pasi Liljeberg, and Hannu Tenhunen
are with the Embedded Computer and Electronic Systems Laboratory,
Department of Information Technology, University of Turku, Turku,
Finland, 20520. Antonio Miele is with Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy,
20133. Amir M. Rahmani is with Department of Computer Science,
University of California, Irvine, USA, 92697 and Institute of Computer
Technology, TU Wien, Vienna, Austria, 1040.
E-mail: mohhag@utu.fi, antonio.miele@polimi.it, amirr1@uci.edu,
pakrli@utu.fi, hatenhu@utu.fi

designer has to specify a conservative Thermal Design
Power (TDP) to avoid excessive temperatures potentially
damaging transistor junctures; recently, Thermal Safe
Power (TSP, [1]) has been also proposed to dynamically
tune at runtime the available power budget according
to the working configuration. The final effect of the dark
silicon problem is the possibility to activate only a subset
of the processing cores at the nominal voltage/frequency
(VF) level, i.e. at maximum performance level, while
the rest of the resources must remain power-gated, in a
dark mode. According to projections of the International
Technology Roadmap for Semiconductors (ITRS) drawn
in 2013 [2], the percentage of dark silicon for a chip
designed at 22nm is around 50% while at 8nm it will
increase to 70%; this will represent a critical issue for
near future many-core systems.

Power budgeting strategies (TDP or TSP) are able
to avoid chip failures due to extreme power densities.
However, they cannot handle reliability threatens in the
long term period. In fact, modern devices use to experi-
ence higher temperature profiles, even if the peak values
are within the tolerated guard bands. As stated in the
ITRS report in 2011 [2], this trend together with the ex-
treme downscaling of CMOS technology, has lead to an
acceleration of aging and wear-out process of the chips.
Eventually, aging mechanisms, such as time dependent
dielectric breakdown (TDDB), negative bias temperature
instability (NBTI), and electromigration (EM), lead to
delay errors and, eventually, device breakdowns [3]. Past
studies [4] have shown that failure mechanisms are ex-
ponentially dependent on temperature, and a 10− 15◦C
difference in operating temperature may result in a 2×
difference in the overall lifespan of a device.

Runtime resource management approaches are gen-
erally adopted to control the activities of many-core
architectures. The main reasons are related to the high
dynamicity of the workload, having applications enter-
ing and leaving the system with a unknown fashion.
Moreover, applications are generally composed of a vari-
able number of interconnected tasks presenting different
computational characteristics and power profiles, and
may expose some performance requirement. As a conse-
quence, the runtime resource management is in charge

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 2

of achieving the optimal trade-off between the workload
performance and the system power consumption. In
this perspective, various dark-silicon-aware strategies for
application mapping and power management have been
proposed in the past (e.g. [1], [5]–[7]), but very few ones
(e.g., [8]–[11]) consider lifetime reliability issues. Indeed,
stress-agnostic workload distribution may lead to an un-
balanced aging among the cores thus causing a reduction
of the lifetime of the overall system. On the other side,
dark silicon may represent a new opportunity: in fact,
the abundance of cores and the infeasibility to use all
of them at the same time provide a unique opportunity
for the runtime management to spread the utilization
stress among the cores to prolong the system lifetime. In
conclusion, we claim that a paradigm shift from the conven-
tional performance-centric runtime resource management to
performance-reliability co-management is inevitable in many-
core systems designed for the dark silicon era.

Given these motivations, this paper proposes a
novel reliability-aware runtime resource management
approach for many-core systems to deal with the trade-
off between workload performance and architecture ag-
ing while honoring the given power budget. The ap-
proach is an enhancement of the state-of-the-art runtime
resource management layer i) by introducing a novel
runtime reliability analysis unit estimating the aging
status of each core in the architecture and computing a
set of metrics showing the related reliability trend over
the time, and ii) by extending the nominal application
mapping and resource management scheme to consider
also the reliability metrics and perform a balancing be-
tween workload performance and system’s reliability in
order to meet the required lifetime target. A preliminary
proposal of this approach has been presented in [10] by
considering only the mapping step. The key contribu-
tions of the more mature version of the framework that
we propose here are the following:

• Proposing a more mature two-step application map-
ping approach which considers reliability metrics
w.r.t. a lifetime target and the current VF map of the
architecture to balance the performance/reliability
trade-off while fulfilling the power budget.

• Defining a maximum VF capping strategy compliant
with state-of-the-art reliability-agnostic power man-
agement approaches to unstress specific areas of the
device that have been aged faster than the prevision.

• Presenting a more advanced reliability analysis unit
with a detailed discussion of the reliability monitor.

• Presenting an extensive experimental evaluation re-
vealing that the proposed approach can carefully
guarantee the required lifetime of the chip for differ-
ent power management strategies in long-term with
a negligible performance penalty.

The paper is organized as follows: Section 2 briefly
discusses the preliminaries on the many-core system and
the adopted reliability model. Then, the subsequent Sec-
tion 3 motivates this work by showing the potentialities

of the exploitation of dark silicon for dynamic reliability
management. Related work about dynamic reliability
management in many-cores is covered in Section 4. The
proposed approach is discussed in details in Section 5.
Experimental results are provided and discussed in Sec-
tion 6 and, finally, Section 7 concludes the paper.

2 BACKGROUND

We briefly introduce here the required background on
the many-core system and the reliability model.

2.1 The Many-core Architecture
The target platform is the modern many-core architec-
ture, such as the Intel SCC [12], the Kalray MPPA many-
core [13], or the Adapteva Epiphany [14]. All these plat-
forms present a similar Non-Uniform Memory Access
(NUMA) architecture, shown in Figure 1, consisting of
a 2D mesh of homogeneous processing nodes inter-
connected via a Network-on-Chip (NoC) infrastructure.
In the specific model we consider, as in [1], [5]–[7],
each node (or core) contains a single processor provided
with private instruction and data memories and a NoC
network interface. Finally, the platform is connected to a
host machine, controlling all its activities; for instance, in
Intel SCC the Management Console Personal Computer
(MCPC) manages the 48-core system via PCI-Express.

Many-core architectures are generally employed in
High Performance Computing (HPC) and embedded
HPC scenarios to accelerate computational-intensive ap-
plications such as image, video, or streaming process-
ing. Some interesting use cases discussed in [13] are
the autonomous driving or the cryptography acceler-
ation. The commonly-adopted programming model is
the dataflow one (as reported [12], [14] for Intel SCC
and Adapteva Epiphany) that represents the application
through a direct acyclic task graph [5]–[7], as shown in
the top-right part of Figure 1. In this model, the task
is a single function/portion of code requiring specific
input data, provided by precedent tasks, and producing
specific output data, transmitted to the subsequent tasks,

Figure 1. The target platform: architecture, RRM layer and
running workload.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 3

as described by the edges in the graph. To be executed,
an application has to be dispatched on the grid of
processing nodes; each task is mapped on a single idle
node, i.e., not executing any other task. Hence, no multi-
tasking is assumed at node level; in fact, as stated by
Intel in 2011 [12], given the abundance of cores, a one-
to-one mapping may ease the execution management.
For similar reasons, task migration is also not supported.
This solution has been later confirmed for the subsequent
platforms available on the market. Then, the execution
model states that a task is run in a non-preemptive way
as soon as all predecessor tasks have been completed and
input data received. Communication is performed by
means of messages passing based on the specific protocol
adopted by the NoC infrastructure.

A specific Runtime Resource Management layer (RRM
layer, [1]) is loaded on top of the discussed architecture
to handle two relevant issues in the system’s activities:
i) variable workload, and ii) the limited power budget.
Many-core architectures work in high evolving working
scenarios with applications entering and leaving the sys-
tem with an unknown trend; nevertheless, applications
are highly heterogeneous in terms of size and shape
of the task graph and may expose Quality of Service
(QoS) requirements, expressed in terms of minimum
throughput or latency to be satisfied. For this reason,
a Runtime Mapping unit (RTM unit), a control routine
running on the host machine, receives the execution
requests of the various users and decides at runtime
which group of resources to reserve for the each issued
application depending on the available units and power
budget. In case of unavailability of the minimum amount
of processing resources, the request is stored in a ready
list. To dominate the complexity of this phase, the RTM
unit usually acts in two steps: i) region selection, that finds
a set of neighboring idle cores to be reserved for the new
application, and ii) task mapping, that dispatches the tasks
of a single application onto the selected region.

Due to the dark silicon phenomenon, not all the avail-
able cores in the architecture can be switched on at the
same time. To handle this issue, a second control routine,
called Dynamic Power Management unit (DPM unit), is
executed on the host machine. The unit implements a
feedback control loop that receives the available power
budget in terms of TDP or TSP, and analyzes the current
power consumption for the architecture (related to the
active cores and running applications). The DPM unit
actuates on available per-core power-gating (PCPG) and
dynamic voltage and frequency scaling (DVFS) knobs
to modulate the power utilization at node granularity.
At the same time, the unit informs the RTM one on the
possibility to accommodate incoming applications, based
on an estimation of their power necessities. Finally, when
using DVFS actuation, the DPM unit transmits also the
current VF configuration. This piece of information is
relevant to map each application on a group of nodes
tuned with a minimum VF level able to guarantee the
expressed QoS requirements [15].

2.2 Reliability Model

The design of aging sensors is a widely explored research
line in the last decade (e.g. [16]). However, they are
not currently available in commercial devices. For this
reason, as in various previous work (e.g. [17]–[19]), we
here adopt the classical stochastic model for lifetime re-
liability generally employed in systems engineering and
also for electronic devices, as stated in [3] by JEDEC Solid
State Technology Association. The lifetime reliability of
a system, R(t), is expressed as the probability that the
system has been operational until t. R(t) formula for a
single digital component, such as a processing core, is
modeled by means of the Weibull distribution:

R(t) = e−(t
α(T))

β

(1)

being t the current instant of time (generally measured in
hours), T the constant worst-case processor temperature
(Kelvin degrees), β the Weibull slope parameter, and
α(T) the scale parameter, or aging rate. The α(T) param-
eter formulation depends on the considered wear-out
mechanisms (e.g. EM, TDDB or NBTI). As an example,
in this paper we consider the EM model, where α(T) is
modeled according to the Black’s equation:

α(T)EM =
A0(J − Jcrit)

−ne
Ea
kT

Γ
(

1 + 1
β

) (2)

where A0 is a process-dependent constant, J the current
density, Jcrit the critical current density for EM, Ea the
EM activation energy (a constant value), k the Boltz-
mann’s constant, n a material-dependent constant, and
Γ the gamma function.

For the sake of simplicity, Equation 1 considers only a
constant temperature. This aspect may cause pessimistic
non-accurate evaluation of the reliability especially when
the focus is on the analysis of a system with a variable
workload (which causes considerable temperature vari-
ations). Therefore, as shown in [20], Equation 1 can be
enhanced to consider temperature variations:

R(t) = e
−
(∑i

j=1

τj
αj(T)

)β
(3)

where τj represents the duration of each period of time
with constant steady-state temperature Tj in the core up
to time t (i.e., t =

∑i
j=1 τi).

When the system integrates various units, the overall
lifetime reliability Rs(t) is obtained by combining the
Ri(t) of the single parts as series, parallel and K-out-
of-N systems based on the architecture topology [20].
However, in this work we will not adopt such complex
formulation since we aim at analyzing the system at
node granularity level.

Finally, given this lifetime reliability model, the aver-
age lifetime of the system is estimated in terms of its
Mean Time To Failure (MTTF):

MTTF =

∫ ∞
0

R(t)dt. (4)

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 4

(a) Using NN [5] (b) Using SHiC [6] (c) Using MapPro [7] (d) Using reliability-aware
mapping

(e) Using reliability-aware
mapping and VF tuning

Figure 2. The effect of different runtime mapping approached on cores reliability after 4 years.

(a) Core reliability in function of
the temperature

(b) Core reliability in a varying sce-
nario

(c) Effects of a drastic change of the
temperature at time 2 year

(d) VF effect on core aging

Figure 3. Accurate analysis of the causes of a core aging.

3 MOTIVATIONS
Motivations at the basis of this work are discussed here.
We present a systematic and in-depth analysis on the
factors affecting the system’s aging. Then, we define how
reliability requirements are defined in this work.

3.1 Effects of RTM and DPM decisions on the aging
We analyzed the most relevant dynamic mapping strate-
gies for many-core systems proposed in the past, namely
NN [5], SHiC [6], and MapPro [7], in terms of the aging
effects on the various cores. A 12×12 many-core system
was considered, and EM mechanism was characterized
as in [20]. As shown in Figures 2(a)-(c), after a certain
amount of time (i.e., 4 years) each strategy causes a dif-
ferent aging (computed with Equation 3) on the various
processing units according to how they were used by
the mapping process. In all these situations, the aging
is highly unbalanced since such strategies are reliability-
agnostic. MTTF of the most aged core in each scenario
is equal to 5.4, 6.0, 6.0 years, respectively.

Indeed, if we carefully consider how such reliability-
agnostic strategies work, we may notice that when
there are various regions of cores suitable for executing
the newly-arrived applications, they take decisions only
by means of metrics prioritizing the minimization of
the network congestion and mapping fragmentation to
achieve a higher performance. Potentially there may be
several suitable regions, but the selection will be per-
formed in a reliability-agnostic way. As a consequence,
due to single objective management strategy in these
algorithms, some cores will be more frequently selected
and will age faster. At the opposite, a smarter algo-
rithm considering performance and aging together may

achieve the same level of performance and at the same
time balance the stress among the cores. Figure 2(d)
shows the results that we may achieve by considering
also a reliability metric within MapPro. In this case, the
MTTF can be improved by up to 9.2 years. Nonetheless,
such result can be further improved when considering
other actuation knobs such as the tuning of maximum
VF levels (Figure 2(e) with a MTTF of 10.7 years).

To better understand the relationship among utiliza-
tion, temperature and lifetime reliability in order to
properly define a reliability-aware RRM approach, let
us consider some simpler scenarios. Figure 3(a) shows
the reliability of a single core acting a constant steady-
state temperature. As already stated, this plot shows
how MTTF as an exponential relationship with the
temperature. As an obvious conclusion, the lower the
temperature, the longer the lifetime.

In the second scenario, depicted in Figure 3(b), we an-
alyze the reliability of a core working in two alternative
states causing a periodic temperature change between
60◦C and 90◦C, and we compare it with the one of the
same core working at the steady-state temperature of
75◦C, i.e. the average of the previous two values. As
we can see the second curve represents a considerable
overestimation of the former one. As a conclusion, as
also commented in [19], [21], aging cannot be accurately
controlled by monitoring the average temperature but it
is necessary to act directly on the reliability metric.

In the third scenario, we consider a core working at
a constant temperature of 60◦C and having a drastic
change in the workload at the time when the core’s
age equals to 2 years which causes an increase of the
temperature to 90◦C. As shown in Figure 3(c), this

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 5

change has a visible effect on the overall reliability only
when its duration is considerably long (in terms of
weeks or months) otherwise it is negligible. Therefore,
single fluctuations are in general imperceptible, while
the long term temperature profile will have a perceptible
effect on the aging trend. As a consequence, short term
performance bursts within the power bounds have no
dramatic effects on the system reliability.

Finally, when acting on the operating VF level, the
core is subject to considerable temperature variations. In
Figure 3(d), the plot shows the various reliability curves
related to the different VF levels of a core. If we analyze
the MTTFs, we may notice that while performance scale
linearly, there is an exponential falling trend in the
lifetime. Therefore, the VF knob also offers the possibility
to control the aging process, however it may degrade the
performance as a drawback.

Putting together all these facts, we believe that resource
management for modern and dark silicon aware many-core
systems necessitates an efficient multi-objective feedback-based
approach which considers per-core power, performance, ther-
mal and lifetime measurements all together. In other words, it
needs to be able to couple advanced power management knobs
such as DVFS and PCPG with dynamic application mapping
techniques to mutually co-manage performance and reliability.

3.2 Reliability Target

Another consideration is related to how we may define
a reliability goal pursued by the proposed reliability-
driver RRM approach. In many past works [22], [23], the
reliability goal was defined as the optimization of the
MTTF. However, this formulation suffers from various
issues w.r.t. the considered working scenario.

First of all, MTTF computation requires the R(t) curve
to be known in each instant of time, from 0 to ∞
as stated in Equation 4. This precondition holds only
when the system presents a predictable aging trend,
for instance, when the system has a periodic or fixed
activity plan defined at design-time (e.g. [24]). On the
other hand, when considering highly dynamic scenarios,
it is not possible to foresee the actual values of the
R(t) model in the future. Some past runtime reliability
management approaches (such as [22], [23]) compute
MTTF according to a very simple prediction of the future
aging trend based on the previous history and by using
approximated formulas. Indeed such computations lead
to completely unreliable MTTF values.

As discussed by ReliaSoft (a global leader in reliability
engineering software) in [25], another limitation of the
MTTF is its incapability to capture the shape of the
R(t) model over time. Indeed, curves presenting the
same MTTF may have different distribution over time.
If we consider the fact that in most of the situations the
duration of the service period of system is almost known
and established at the deployment step by the system
architect or the owner company, the maximization of
the MTTF beyond such a period does not provide any

additional advantage. At the opposite, as stated in [25], it
would be useful to maximize the value of the reliability
model within the service period, or at least to fulfill
a minimum threshold, to improve the probabilities of
the system to not fail before the system is retired. For
this reason, other past works [18] adopt an alternative
approach for defining the reliability target by setting a
given reliability level R(ttarget) the system must have at
the end of the envisioned lifetime ttarget. For instance,
the reliability target can be specified as follow: At the end
of the working life, estimated in ttarget = 10 years, the system
must have at least a reliability of R(ttarget) = 45%.

In conclusion, we select the target lifetime R(ttarget)
as the main metric in our proposed reliability manage-
ment technique. We show that using co-management of
resource and power, our approach can provide speci-
fied target lifetime in long term while satisfying other
constraints such as power budget in short term with a
negligible performance penalty.

4 RELATED WORK

The highly evolving and unpredictable characteristics of
the workload in the on-demand working scenario has
led to the definition of Dynamic Reliability Management
(DRM) approaches for multi-/many-core systems. The
DRM idea has been defined for the first time in [22],
where DVFS has been employed for mitigating the aging
of a single processor. However, to simplify the compu-
tations, the approach considers a reliability model based
on an exponential failure distributions, which is not real-
istic. Moreover, the DRM strategy is quite immature, and
considers single-processor systems. Later, further similar
approaches (e.g. [23]) acting on DVFS and considering
single-processor systems have been proposed; however
they also suffer from similar limitations.

Many DRM approaches have been proposed for bus-
based multi-core systems. Some examples are [26], [27],
which act on job scheduling to reduce aging effects,
and [17], [18], which exploit also DVFS tuning. How-
ever, many-core systems have a very different architec-
ture, programming paradigm and execution model from
the shared-memory bus-based multi-core counterpart. In
particular, since they are based on a NUMA message-
passing architecture, application mapping plays a more
crucial role in many-core systems and presents specific
characteristics for that architecture. Therefore, as also
empirically shown in the experimental campaigns dis-
cussed in Section 6, a straightforward porting of pre-
vious multi-core-based DRM policies to the considered
scenario would lead to ineffective solutions due to the
lack of tight connection with the application mapping.

The impact of lifetime reliability on runtime resource
management in NoC-based architectures has been con-
sidered in some works (e.g. [19], [21], [28]–[31]). The
strategy in [28] acts on DVFS to control the aging of
the units in a many-core architecture. However, single-
threaded applications are considered, and the appli-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 6

cation mapping and power budgeting are not com-
pletely addressed. The work presented in [21] defines
a reliability-aware mapping approach, however, it also
suffers from similar limitations of the previous ones.
Then, the work in [29] proposes a systematic analysis of
various mapping policies w.r.t. aging issues; examples
of considered policies are the uniform aging balancing,
the adoption of spare units or the rotation of a single
spare region. Once again, single-thread applications are
considered and power management is not addressed.
Indeed such DRM strategies cannot be easily integrated
into the complex RRM layer of many-core systems. As
we also demonstrate in the experimental evaluation in
Section 6, the straightforward integration of existing ap-
proaches is not effective, since they only consider a part
of the complex picture, and often, they have partially
contradicting objectives with the RRM policies.

The approaches proposed in [30], [31] define migration
controllers that move tasks from elder cores to younger
ones. However, the approach is too fine-grained as de-
vice reliability changes very slowly over time (in the or-
der of days). Therefore, a periodic migration of the work-
load would be necessary only for applications lasting
for days or weeks. Nevertheless the approaches which
are based on task migration, would lead to non-optimal
applications’ performance. Another mapping approach
has been presented in [19]; the mapping algorithm is
quite limited since it performs an almost-exhaustive ex-
ploration of the solution space and, moreover, it does not
consider performance optimization in the mapping, and
an enhancement in this direction seems to be infeasible.
A dynamic mapping approach based on a many-core
partitioning is introduced in [32]; even though the idea
is interesting, it presents some limitations as it does not
take into account power constraints.

Finally, there exists very few contributions for ad-
dressing this issue [8]–[11]. In [8], the mapping pol-
icy considers also the current aging and the process
variation status of the cores; however, again a shared-
memory architecture is considered and mapping policy
does not consider the topology and related communi-
cation issues in threads distribution. The work in [9]
proposes a machine-learning strategy to perform aging-
aware mapping. A simplified exponential model is used
for lifetime reliability. Nevertheless, also in this case
a shared-memory architecture is considered, and, as a
consequence, the mapping strategy is quite simplistic.
Nevertheless, none of these approaches take into account
DVFS tuning for aging mitigation.

Our first attempt to define a dark silicon and
reliability-aware mapping strategy for many-core archi-
tectures has been presented in [10]; as discussed in
Section 1, we will here enhance that work. Orthogonally,
in [11] we have also addressed reliability issues only
in power management. However, in that approach the
reliability is considered as a secondary metric to be opti-
mized; instead, in this work, we perform a resource and
power co-management to primarily guarantee lifetime

requirements; therefore, the two approaches cannot be
compared. Nonetheless, the approach in [11] is very spe-
cific and is “hardcoded” in an advanced DVFS strategy;
therefore, it cannot be employed with different strategies
for instance using only PCPG knob.

5 THE PROPOSED RELIABILITY-AWARE RE-
SOURCE MANAGEMENT APPROACH

Figure 4 shows the framework of the proposed approach.
It is an enhancement of the RRM layer (introduced in
Section 2.1) to handle aging issues concurrently to the
nominal application mapping and power management.

The enhanced RRM layer is organized into two main
parts being in charge of the workload execution and life-
time reliability management, respectively. Indeed, such
partitioning of the activities is motivated by the fact that
they follow two very different time horizons: application
mapping and power management activities are per-
formed with a short-term frequency, since applications
can be issued every moment and they last for a period
ranging from some seconds to few hours, while relia-
bility can be managed with long-term decisions, since
the aging of a system relatively is a slow phenomenon
and has perceptible effects over epochs lasting for days,
weeks or even months, as discussed in Section 3.1.

The central part of the framework in Figure 4 (filled
in gray color) represents the long-term controller, which
performs the reliability management and contains the
Reliability Monitor, the Reliability Analysis Unit and
Reliability-aware VF Capping Unit. The former is an
utility unit that computes that aging status of each
node within the architecture by continuously reading the
temperature from the per-core sensors and applying the
adopted reliability model. Then, the Reliability Analysis
Unit monitors the aging status of the various nodes
according to the information gathered by the Reliabil-
ity Monitor. In particular, according to the reliability
requirement R(ttarget) at the end of the lifetime ttarget
provided at the beginning of the service life by the
system architect, it computes the target reliability curve.
This curve represents an aging reference showing how
fast each node should age in order to fulfill the given
reliability requirement. Then, the unit periodically an-
alyzes the current reliability value of each node w.r.t.

Figure 4. The proposed reliability-aware RRM layer.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 7

the target aging reference to compute specific reliability
metrics describing the aging trend to be used in the map-
ping decisions. Finally, the Reliability-aware VF Capping
Unit takes additional recovery actions to unstress nodes
that have already consumed the available “reliability
budget”, i.e., their reliability is considerably below the
reference curve. Its main strategy is to cut maximum VF
levels of selected nodes to reduce temperature peaks,
and, consequently, slow down the aging trend.

The rest of Figure 4 represents the short-term controller,
containing the classical set of units devoted to the man-
agement of the nominal activities of the system. In this
proposal, such units have been specifically enhanced to
take also into account the reliability metrics provided
by the long-term controller in the decision process. In
particular, the reliability metrics are used as weight in
the mapping decisions in order to prefer the utilization
of younger nodes; while power management needs to
take into account the reliability-driven maximum VF
configuration. The internals of the various units are
discussed in details in the following subsections.

5.1 Reliability Monitor

The Reliability Monitor estimates the lifetime reliability
of each core within the architecture based on the model
in Equation 3. Since we assume a single sensor to be
integrated in each processing node, as it commonly
happens in modern architectures such as Intel SCC, the
reliability model is applied at per-core granularity level.
In details, the node’s temperature is sampled with a
time step (few milliseconds/seconds) in which we may
assume to be steady-state, and the instantaneous aging
rate αi is computed according to Equation 2. To keep
track of the aging trend, it is necessary to save the overall
profile of the αi values represented in the expression at
the exponent of Equation 3, that is

∑i
j=1

τj
αj(T) . Therefore,

we use a variable A(t), initialized to 0 at the beginning
of the operational life, and incremented at each time step
with the current aging value as follows:

A(ti) = A(ti−1) +
ti − ti−1
αt−1(T)

(5)

where ti − ti−1 is the interval (generally measured in
hours) between two subsequent measurements. Thus, in
each instant of time, A(t) can be used to compute the
reliability value R(t) of the core.

5.2 Reliability Analysis Unit

The Reliability Analysis Unit monitors the cores’ aging
status and provides reliability metrics to the short-term
controller. At the beginning of the operational life, the
unit defines a target reliability curve Rtarget(t), called
aging reference, according to the required reliability target
Rlifetime at the given lifetime tlifetime. This curve rep-
resents a sort of reliability budget each core is provided
with, i.e., how ideally the reliability of a node working at

a steady-state temperature should evolve during the op-
erational life at least to fulfill the reliability requirement.
Rtarget(t) is defined for each node as:

Rtarget(t) = e
−
(

t
αtarget

)β
(6)

where, αtarget is obtained by inverting Equation 1:

αtarget =
tlifetime

(−ln(Rlifetime))
1/β

(7)

Then, the unit computes for each node nw,h the differ-
ence of the current reliability and its target value:

∆Rw,h(t) = Rtarget(t)−Rw,h(t) (8)

This metric shows how each core is using the reliability
budget available according to the final reliability target:
• if ∆Rw,h(t) > 0, the core has been aged much more

than the expected reference value; therefore, it needs
to be offloaded by avoiding its usage to restore from
the excessive experienced stress.

• if ∆Rw,h(t) ≤ 0, the core is younger than the
expected age, and, thus, it can experience a higher
stress in the future.

Finally, all ∆Rw,h(t) values are transmitted to the RTM
unit and the Reliability-aware VF Capping one.

5.3 Reliability-aware RTM Unit
The proposed RTM Unit aims at optimizing the over-
all performance of the system (in terms of number
of completed applications over time), while guarantee-
ing reliability requirements. In the design of the RTM
unit, we followed the state-of-the-art two-step approach,
consisting in region selection and task mapping. We
enhanced the two most effective strategies proposed
in the literature, called MapPro [7] and CoNA [33],
respectively, to be provided with reliability awareness.

In the first step, MapPro starts the region selection
process with locating a suitable first node. This node
represents the center of an almost squared regions con-
taining at least the minimum number of cores required
for accommodating application tasks. This process is
here enhanced to consider also the aging status of the
various cores provided by the Reliability Analysis Unit.

The original MapPro strategy defines a square region
in terms of a first node nw,h and a radius r. Moreover,
a vicinity counter metric V C measures the suitability of
each region according to its characteristics such as the
size and the fragmentation. As an example, Figure 5(a)
shows two regions, A and B, located in different posi-
tions and having the same radius equal to 2. We here
replace the original vicinity counter metric used to iden-
tify the best region with a novel metric called Reliability
Factor (RF), incorporating reliability awareness. RF is
defined on a square region identified by the first node
nw,h and radius d as:

RF rw,h(t) =

i+r∑
i=i−r

j+r∑
j=j−r

Wni,j × (r − d+ 1)×Ri,j(t) (9)

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 8

(a) Region selection based on only
network characteristics.

(b) Reliability distribution of the
cores

(c) Region selection based on RF
distribution

(d) Mapping the application while
considering too stressed cores

Figure 5. An example to show reliability-aware mapping of a new coming application.

where Ri,j(t) is the reliability of core ni,j at time t, and
d is the distance from an occupied core to the center
(r ≥ d). The first two terms, that are the original ones,
aim at reducing mapping fragmentation and dispersion.
In particular, Wni,j is the weight of core ni,j :

Wni,j =

{
1 if ni,j is unoccupied
0 if ni,j is occupied (10)

It discourages the selection of regions where there are
busy cores to avoid fragmentation. The second term
pushes in the selection of the smaller square region, to
leave space to the accommodation of other applications.
Finally, the new Ri,j(t) factor pushes to the selection of
regions with younger cores. To this purpose, when a core
has ∆Ri,j(t) > 0, the actual Ri,j(t) value is replaced with
0 in the formula, to penalize the usage of such core.

Indeed, RF represents a metric to express the number
of free cores as well as determining the extent to which
the region around the selected first node is reliable.
Therefore, by using RF metric, the effect of occupied
cores in the region on internal congestion and selecting
a group of younger cores is considered together. For
instance, a core that is occupied in the inner most square
close to the first node has more impact on internal
congestion than the ones that are occupied in outer
squares, far from the first node. Therefore, the reliability
of the node closer to center of the region (i.e., first node)
affects the RF more than the ones that are farther away.

In Figure 5, we exemplify the process of region se-
lection by means of a scenario in which a new coming
application has to be mapped on a system while five
applications are in execution. Figure 5(a) shows the tradi-
tional vicinity counter taking into account only network
characteristic; the filling color shows the suitability of
each first node for the given radius r = 2 (the softer
the color, the more suitable the first node). As it can
be seen from the first node of Region A, comparing
to the one of Region B, has a higher vicinity value
which leads the mapping strategy to select n9,5 as the
first node. Figure 5(b) depicts, with the filling color, the
reliability distribution across the chip. It can be observed
that the nodes are more aged in Region A in contrast to
Region B. Moreover, nodes having ∆R > 0 are tagged

Algorithm 1 Reliability-aware region selection.
Inputs: newApp: New application;
Outputs: Q: Selected mapping;
Variables: appRadius: Radius for newApp;
RF : Reliability factor;
maxRF : Regions with the maximum RF value for each radius r;
firstNode: currently selected first node;
Constants: maxRadius: Radius of the architecture grid;
Body:
1: appRadius← (

√
|newApp| − 1)/2;

2: firstNode← maxRF [appRadius];
3: Q← map(firstNode, newApp);
4: //Updating RF value after mapping
5: for each nxy ∈ Q do
6: for each core nij in the architecture do
7: for r = 1 to maxRadius do
8: r′ ← maximum(|i− x|, |j − y|);
9: if r − r′ ≥ 0 then

10: RF r
ij ← RF r

ij - (r - r′)×Rxy(t);
11: if RF r

ij > maxRF [r] then
12: maxRF [r]← RF r

ij ;

as stressed (S). The newly-defined SF metric combines
V C and the reliability metric shown in Figure 5(b), thus
resulting to the scenario in Figure 5(c) where Region B
gets higher chances to be selected as the candidate for
task mapping.

Algorithm 1 shows the reliability-aware region se-
lection strategy based on MapPro. The algorithm per-
forms an immediate selection of the first node by using
two specific data structures, RF and maxRF , storing
the current status of the architecture. In particular, RF
is a cubic matrix containing the reliability factors for
all possible first nodes in each coordinate i, j in the
architecture and by considering all possible radius r
between 1 and maxRadius (representing the radius of
the architecture grid). It is worth mentioning that for
some r value, the identified region may overcome the
architecture bound. In such a case, hypothetical out-
of-border cores are considered as busy to discourage
selection of the region at the edge of the chip. Then,
maxRF is a lookup table containing for each radius r
between 1 and maxRadius the coordinates i, j of the first
node currently having the highest square factor. RF and
maxRF are initialized at the beginning by considering
an empty, new architecture.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 9

Algorithm 2 Reliability-aware task mapping.
Inputs: App: Application;
firstNode: Selected First Node;
Outputs: Q: Selected mapping;
Variables: ∆Rxy : Reliability metric for nxy ;
Freqxy : Current frequency of nxy received from DPM unit;
AppFreq : Minimum frequency for application QoS;
mapF lag: Mapping flag;
Tasks: Vector of tasks in App;
Nodes: Vector of architecture nodes;
nrecovery : selected node for contingency mapping;
Body:
1: AppFreq ← freq(App);
2: Tasks← CoNA_sort(App);
3: for each ti ∈ Tasks do
4: Nodes← not_busy_reliability_distance_sort(firstNode);
5: mapF lag ← false;
6: nrecovery ← None;
7: while Nodes 6= ∅ && !mapF lag do
8: nxy ← Nodes.pop_front();
9: if ∆Rxy(t) ≤ 0 && AppFreq ≤ Freqxy then

10: Q[ti] ← nxy ;
11: mapF lag ← true;
12: else if nrecovery 6= None && AppFreq ≤ Freqxy then
13: nrecovery ← nxy ;
14: if !mapF lag && nrecovery 6= None then
15: Q[ti] ← nrecovery ;
16: else
17: Q← ∅;
18: ABORT ();
19: return Q;

By entrance of a new application, the algorithm com-
putes the radius of the square region based on the
size of the application, i.e., appRadius (Line 1). Then,
the maximum RF value from maxRF lookup table is
identified and transmitted to the task mapping function,
map() (Lines 2–3). When the tasks are mapped onto
cores, RF and maxRF data structures are proactively
updated in order to allow the immediate mapping of
the next entering application. To do this, we analyze the
effect of each node selected by the map() function for
mapping the application on all the other nodes in the
architecture. Therefore, the algorithm scans all positions
in the RF matrix (Lines 5–7) and if the allocated node
nx,y is within the region identified by the first node
ni,j and radius r (Lines 8–9), its RF value will be
updated by subtracting their current value from the
weighted reliability of the occupied core according to
Equation 9 (Line 10). Concurrently, the maxRF for the
current radius r is updated, if necessary (Lines 11–12).

A similar process to update RF and maxRF is also
executed for free nodes when an application leaves the
system, with the difference of adding weighted reliability
of such nodes instead of subtracting at Line 10.

After determining the first node, the map() function
(Line 2 in Algorithm 1) implements the second step of
the RTM unit, i.e., the task mapping on the selected
nodes. The designed strategy, shown in Algorithm 2,
is an extension of CoNA, one of the most optimum
state-of-the-art approach for inter-region mapping. In the
first step, the algorithm gets the minimum frequency
required by the current application to satisfy possibly
specified QoS; as in [15], such value is precomputed ac-

cording to a worst-case contiguous mapping and stored
in a lookup table (Line 1). Then, application tasks are
sorted in a vector according to the CoNA strategy. The
overall idea of this strategy is that the optimal mapping
is the one presenting lower communication congestion,
since it is the dominant cause on the network perfor-
mance. Therefore, tasks sorting is based on the estima-
tion of the amount of communication (from the most
connected tasks to the least ones). In this way, the tasks
having heavier communication signs are mapped near
to the center (as discussed in the next), thus achieving
lower average distance from the other tasks.

Then, for each task ti, the algorithm looks for the best
candidate node for mapping. Therefore, all free nodes
are sorted and are scanned to select the first suitable
one (Lines 4–13). The sorting key is the product of
distance from the first node and reliability with the aim
of preferring the selection of nodes being younger and
closer to the center of region (i.e., first node). The se-
lected node has to fulfill both reliability and performance
requirements (Line 9). Otherwise, the algorithm looks
also for a contingency solution; in particular, the first
analyzed node satisfying only the frequency requirement
can be candidate (Lines 12–14) and used for a contin-
gency mapping only in case all the other nodes violate
the reliability budget (Lines 14–15). In fact as noted in
Figure 3(c), the usage of a stressed core for a small
amount of time will not cause any visible additional
worsening in its aging status. Finally, if no contingency
mapping is identified for the current node, i.e., there is
no node capable of guaranteeing the minimum VF level
demanded by the application, the function is aborted
and the application is re-inserted in the incoming queue
for a new attempt in the near future (Lines 16–18).

To complete the discussion of the example, in Fig-
ure 5(d), the final mapping of the application is depicted.
As it can be observed, stressed nodes have not been
used for task execution. Moreover, after task mapping,
the region selection strategy proactively updates the
RF matrix (for the sake of simplicity the filling color
represents again only the RF values for a radius r = 2).

5.4 Reliability-aware Power Capping Unit

Dynamic power management generally performed in
many-core systems is a complex process involving many
parameters and figures of merit. One of the main con-
sidered aspects is to sustain performance while avoiding
peak power violation. To do so, usually power man-
agement strategies tune different actuation knobs such
as PCPG and DVFS to increase the system utilization
which results in better concurrency and throughput. This
results in a heterogeneous power distribution on the chip
where some cores are power gated or operating at low
or high frequency which results in unbalanced reliability
of the cores. In such cases, while considering the system
reliability, even though the DVFS reduces the power
in some parts of the chip which results in reliability

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 10

Algorithm 3 Reliability-aware VF capping.
Inputs: ∆R: Reliability metrics;
Outputs: maxV Fij : maximum VF levels for the various cores;
Constants: Γ: Number of supported VF levels;
∆RTH : threshold value for ∆R violation;
Body:
1: for each node nij in the architecture do
2: if ∆Rij(t) > 0 then
3: maxV Fij ← Γ−

⌊
Γ · ∆Rij(t)

∆RTH

⌋
;

4: if maxV Fij < 1 then
5: V Fij ← 1;

improvement on that part, increasing the utilization has
negative effect on the efficiency of the resource manage-
ment in terms of balancing the reliability.

For this reason, to add flexibility to the framework, we
add a new external module to the DPM unit performing
reliability-aware maximum VF capping. The new unit
tunes in a long-term period the upper bound for core’s
operating VF based on the aging status. Such maximum
VF levels are then transmitted to the nominal DPM
unit. As demonstrated in the example in Figure 3(d),
this method can limit the heating and the temperature
peaks in too-aged nodes to perform a sort of stress
recovery. At the same time, it leaves to the DPM unit the
actual DVFS control to provide required performance.
The only critical situations in which this unit affects
system performance is caused by the attempt to map an
application with a high QoS demand on a considerably-
aged core. In fact, the mapping will fail since the core is
not able to offer the minimum frequency level, and the
application will be delayed as discussed in Section 5.3.

Algorithm 3 describes the proposed reliability-aware
VF capping process. The metric used to tune the VF
level of each node is once again ∆R. The larger its
value, the lower the set of maximum possible VF levels.
For each core in the system not satisfying the reliability
budget (∆Rij > 0), the maximum VF level, maxV Fij ,
is proportionally scaled down to the criticality of the
violation (Line 3). In particular, maxV Fij contains the
index of the available VF levels, numbered from min-
imum 1 to the maximum Γ (we assume VF levels to
be uniformly distributed in the frequency range and
increasingly sorted). The second constant is ∆Rth which
represents the reference to normalize the criticality of re-
liability budget violation. In case of excessive violations,
maxV Fij may be assigned with a negative number. In
that case, its value is restored to the minimum possible,
i.e., 1. Then, maxV Fij is transmitted to nominal DPM
unit. Finally, for the sake of simplicity in the RRM layer,
VF capping is performed only when the core is idle.

Two final comments can be drawn on the presented
approach. First, the proposed approach is able to have
a highly beneficial effects for all aging mechanisms de-
scribed with the model presented in Section 2.2, because
their α(T) formula is mainly an exponential function
of the temperature value (e.g., Equation 2 for EM). As
discussed also in [21], the only exception is Thermal

Cycling; in fact, it depends not only on the temperature
value but also on the amplitude and the frequency of
the temperature fluctuations. In this case, the benefits are
contained to the fact that limiting the usage of stressed
cores would limit also the amplitude and the frequency
of thermal cycles. A more specific approach targeting the
minimization of cycles would be an interesting extension
of this work.

Finally, the proposed approach does not impose any
performance overhead to the executed workload due
to the fact that all the four units of the RRM layer
are executed on the host machine, therefore separately
operating from the workload execution on the many-
core architecture. Moreover, an analysis of their compu-
tational complexity is relevant to understand the per-
formance impact of the four reliability-aware units on
the host machine. The Reliability Monitor is a process
that computes Equation 5 for the node every sampling
period, thus presenting a constant computational com-
plexity on a given architecture; similar consideration
can be drawn for the Reliability-aware VF capping unit.
Then, the Reliability-aware RTM unit has been obtained
by enhancing two state-of-the-art algorithms, without
changing their original computational complexity. As
evaluated in [7], [33], they have been designed for an
online employment. Indeed, their execution times on a
host machine, constituted by a modern desktop com-
puter, would be in the range of some microseconds.

6 EXPERIMENTAL RESULTS
A SystemC system-level simulation environment has
been employed to perform an experimental evaluation of
the proposed approach. The architectural model is based
on Noxim NoC simulator [34] and the processing node
was characterized according to the Niagara2 in-order
processor specifications from McPAT [35]. Physical scal-
ing parameters and other characteristics such as power
modeling and TDP were gathered from Lumos [36].
Hotspot [37] was integrated in the simulator for the
steady-state thermal model. Moreover, the considered
aging mechanism has been EM, characterized as in [20].
Similarly to [8], [18], in some of the experiments, we
considered also process variation to analyze its effects on
the aging and the capability of the proposed reliability-
aware approach to deal with this additional issue; in
particular, we modeled per-core maximum frequency
variation map as done also in [18] by means of a normal
distribution. For the experiments, we characterized a
realistic 12× 12 architecture with a squared floorplan,
a chip area of 138mm2 in 16nm technology, and TDP
of 90W. We set ttarget = 10 years and a per-node
R(ttarget) = 45%. Such values have been inspired by the
curve in Figure 3(a) characterized by a 60◦C steady-state
temperature, where, R(MTTF) ∼= 45% and MTTF ∼=10
years; indeed we consider this a challenging scenario to
demonstrate our approach.

TGG [38] has been used to generate workload appli-
cations. The workload has been defined as a random

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 11

Table 1
Summary of acronyms in Section 6.

DVFS Dynamic voltage frequency scaling
PCPG Per-core power gating
PAM Power-aware mapping
MOC Multi-objective controller
FC Frequency cutting
RA Reliability-aware (based of target reliability)
RS Region selection
TM Task mapping

sequence of applications, kept fixed in all experiments
for the sake of fair comparison. To evaluate our proposed
strategy in runtime mapping, we performed both long-
term simulations and short-term ones. Long-time simu-
lations were used to analyze the evolution of the lifetime
reliability of the various cores for the overall service life,
equal to 10 years; we enlarged the execution times of the
applications to last a few days to perform an accelerated
experiment (with a reasonable simulation time). Accord-
ing to [39], the workload in night time is half of the one
at day time. Thus, we divided each day into two equal
parts, i.e. day time and night time, such that workload
in the former is twice that of the latter. Finally, in short-
time simulations, we run for approximately 3 hours to
study the effects of the proposed RRM scheme on the
performance of the system.

We compared our approach against i) the nominal
layer composed of MapPro [7] and CoNA [33] (namely
without Rel.), ii) a rotation-based spare unit strategy [29]
integrated with the considered nominal approach (rota-
tion), and iii) the approach in [32] (dubbed as Sun), a
technique to balance the reliability by defining multiple
VF zones on the chip and corresponding task alloca-
tion. We selected these specific past works since they
are the closest ones to the proposed approach based
on the considered scenario, models, and optimization
goal. Moreover, they were re-adapted and aligned to
the proposed approach to consider same metrics and
objective functions for a fair comparison; in particular,
they have been adapted to use ∆R(t) as reliability met-
ric. Moreover, we decomposed the proposed approach
in various units to better evaluate the effectiveness of
each contribution: i) region selection based on Algo-
rithm 1 (RS), ii) task mapping based on Algorithm 2
(TM), iii) long-term reliability awareness based on ∆R(t)
metric in Lines 9–12 of Algorithm 2 (RA), and iv) VF
capping based on Algorithm 3 (VC); when RA basic
R(t) formula is used. Finally, to show the flexibility of
the proposed approach and its applicability to various
power management strategies, in our experiment we
considered two different state-of-the-art techniques: i)
power-aware mapping approach (PAM) [40], which acts
only on PCPG, and ii) multi-objective power controller
approach (MOC) [11], exploiting both PCPG and DVFS
to provide a more advanced and finer-grained control.
To help the reader, Table 1 summarizes all the acronyms.

In the first long-term experimental campaign we com-
pare different reliability-aware approaches on the system

lifetime while PAM is used for power management. In
PAM, based on the power feedback from the system
and a power estimation of the most recently coming
application, mapping the application is postponed until
the summation of instantaneous power and estimated
power of the new application is below TDP. Figure 6
shows the reliability curves for the various considered
approaches; each graph reports the minimum, the maxi-
mum and the average reliability values of the various
cores within the architecture against the target relia-
bility curve. From the achieved results we can draw
the following considerations: i) The nominal approach
(without Rel.) confirms to be reliability agnostic and
therefore it fails in satisfying the reliability target. ii)
The full-fledged approach (FC+RA+RS+TM) is able to
accurately exploit the reliability budget and satisfy the
target lifetime requirement. iii) Also RA+RS+TM obtains
similar results to the previous ones; this is because when
using PAM, VF capping presents a limited effectiveness.
This comes from the fact that DVFS is not supported
in PAM and, consequently, all cores are operating at
their highest frequency leading to larger amount of dark
areas; therefore, this gives more capability to resource
management unit to balance the reliability alone re-
gardless of VF capping process. iv) When considering
a subset of the units of the proposed reliability-aware
approach (in graphs named RS+TM, only TM, and only
RS) we obtain worse results, thus confirming the rele-
vance of all the various contributions to the fulfilling of
the reliability target. v) The considered past approach,
rotation, is not able to guarantee reliability requirements,
because it works separately from the nominal RRM
layer; therefore, differently from the multi-core scenario
where the strategy was originally employed, its periodic
disabling mechanism is conflicting with the necessities of
the RRM layer in the application mapping, thus causing
suboptimal performance results (Sun was not considered
in this experimental session since it is based on DVFS
while PAM is not). vi) From Figure 6 it is possible to
state that thanks to the direct feedback loop considering
the reliability metric, the full-fledged approach is able
to satisfy the requirements in the case process variation
is considered in the architecture. These curves present
more fluctuations than the ones in Figure 6, since the
architecture presents an heterogeneity in terms of core
operating frequencies; thus, balancing reliability while
providing high performance is more challenging.

To better demonstrate our claim, we report in Figure 7
the reliability distribution on the chip for these eight
scenarios after 4 years of activity. As can be seen, the reli-
ability distribution achieved by FC+RA+RS+TM is more
evenly distributed compared to all the other scenarios,
while the worst case in obviously the nominal approach.

In the second long-term experimental campaign we
perform similar experiments by using MOC [11] as a
power management strategy. MOC supports both PCPG
and DVFS; this last one enables dim silicon [36] as
discussed in Section 5.4, and, therefore, it introduces

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 12

(a) FC+RA+RS+TM (b) RA+RS+TM (c) RS+TM (d) only TM

(e) only RS (f) rotation (g) without Rel. (h) FC+RA+RS+TM while process
variation

Figure 6. Overall system reliability for the various resource management approaches with PAM.

(a) FC+RA+RS+TM (b) RA+RS+TM (c) RS+TM (d) only TM

(e) only RS (f) rotation (g) without Rel. (h) FC+RA+RS+TM while process
variation

Figure 7. Reliability distribution for the various resource management strategies with PAM after 4 years of activity.

further challenges in reliability management. The results
shown in Figure 8 lead to the following considerations:
i) The overall trend presented in the previous campaign
is confirmed, and, in particular, the effectiveness of the
proposed full-fledged approach and the worsening when
some units are disabled (RA+RS+TM, RS+TM and only
RS), while the nominal approach has serious reliability
issues. ii) Differently from the previous experiment, the
VF capping strategy is necessary to satisfy the reliability
requirement; the motivation is related to the fact that
MOC uses DVFS and therefore causes a disturbance
in the reliability balancing. iii) Both Sun and rotation
approaches are not able to meet the requirements. iv) The

effectiveness of the proposed approach when process
variation is considered is confirmed.

Finally, we perform short-term simulations to show
the impact of the proposed approach on the overall
system throughput. Figure 9 report system throughput
(in applications/hour) when using PAM and MOC, re-
spectively. These results confirm that the overall system
throughput penalty while applying our reliability-aware
approach is limited; 2% performance slowdown with
PAM and 7% with MOC. The higher penalty while using
MOC in contrast with PAM is due to the fact that using
DVFS decreases the dark areas resulting less freedom for
mapper to fulfill both performance and reliability.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 13

(a) FC+RA+RS+TM (b) RA+RS+TM (c) RS+TM (d) only RS

(e) Sun (f) rotation (g) without Rel. (h) FC+RA+RS+TM while process
variation

Figure 8. Overall system reliability for the various resource management approaches with MOC.

0

20

40

60
51.4

47.1
50.7 50.7 50.4 50.4

Throughput (appls/hour)

w
it

ho
ut

R
el

.

ro
ta

ti
on

on
ly

R
S

R
S+

TM

R
A

+R
S+

T
M

FC
+R

A
+R

S+
T

M

(a) with PAM

0

20

40

60
63.5

54.8
61.1 60.1 59.4 59.1 59

Throughput (appls/hour)

w
it

ho
ut

R
el

.

ro
ta

ti
on

Su
n

on
ly

R
S

R
S+

T
M

R
A

+R
S+

T
M

FC
+R

A
+R

S+
T

M

(b) with MOC

Figure 9. System throughput for the various resource
management strategies.

7 CONCLUSIONS

This paper has presented a novel reliability-performance
co-management approach for many-core systems in dark
silicon regime. The proposed approach enhances the
nominal RRM layer in such architectures with a set of
new units analyzing the lifetime reliability of the various
cores against to a lifetime target reference, and by ex-
tending the classical mapping unit to consider reliability
together with further performance-related metrics; more-
over, a specific reliability-aware unit performs core-level
maximum VF capping to recover from excessive stress.
Experimental results demonstrated the effectiveness of
the strategy to fulfill the target reliability in long term
with a negligible penalty on performance in applications’
execution and by not violating power budget, differently
from most recent reliability-aware counterparts.

REFERENCES
[1] A. Rahmani, P. Liljeberg, A. Hemani, A. Jantsch, and H. Tenhunen,

The Dark Side of Silicon, 1st ed. Springer, Switzerland, 2016.
[2] Semiconductor Industry Association et al., “International Technol-

ogy Roadmap for Semiconductors,” http://www.itrs2.net/.
[3] JEDEC Solid State Tech. Ass., “Failure mechanisms and models

for semiconductor devices,” JEDEC Publication JEP122G, 2010.

[4] Y. Xiang, T. Chantem, R. Dick, X. Hu, and L. Shang, “System-
level reliability modeling for MPSoCs,” in Proc. Conf. on Hard-
ware/Software Codesign and System Synthesis, 2010, pp. 297–306.

[5] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for Dynamic
Task Mapping in NoC-based Heterogeneous MPSoCs,” in Proc.
Int. Workshop on Rapid System Prototyping, 2007.

[6] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill
climbing for agile dynamic mapping in many-core systems,” in
Proc. Design Automation Conf. (DAC), 2013.

[7] M.-H. Haghbayan, A. Kanduri, A.-M. Rahmani, P. Liljeberg,
A. Jantsch, and H. Tenhunen, “MapPro: Proactive Runtime Map-
ping for Dynamic Workloads by Quantifying Ripple Effect of
Applications on Networks-on-Chip,” in Int. Symp. on Networks-
on-Chip (NOCS), 2015, pp. 1–8.

[8] D. Gnad, M. Shafique, F. Kriebel, S. Rehman, D. Sun, and
J. Henkel, “Hayat: Harnessing Dark Silicon and Variability for
Aging Deceleration and Balancing,” in Proc. Design Automation
Conference (DAC), 2015, pp. 180:1–180:6.

[9] T. Kim, X. Huang, H. B. Chen, V. Sukharev, and S. X. D. Tan,
“Learning-based dynamic reliability management for dark sili-
con processor considering EM effects,” in Proc. Conf. on Design,
Automation & Test in Europe (DATE), 2016, pp. 463–468.

[10] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and
H. Tenhunen, “A lifetime-aware runtime mapping approach for
many-core systems in the dark silicon era,” in Proc. Conf. on
Design, Automation & Test in Europe (DATE), 2016, pp. 854–857.

[11] A. Rahmani, M. Haghbayan, A. Miele, P. Liljeberg, A. Janthsch,
and H. Tenhunen, “Reliability-Aware Runtime Power Manage-
ment for Many-Core Systems the in Dark Silicon Era,” IEEE Trans.
on VLSI Systems, 2016, to appear.

[12] R. van der Wijngaart, T. Mattson, and W. Haas, “Light-weight
Communications on Intel’s Single-chip Cloud Computer Proces-
sor,” SIGOPS Oper. Syst. Rev., vol. 45, no. 1, pp. 73–83, 2011.

[13] Kalray, “Kalray MPPA Manycore,” http://www.kalrayinc.com/.
[14] Adapteva, “Adapteva Epiphany,” http://www.adapteva.com/.
[15] C. Silvano, G. Palermo, S. Xydis, and I. Stamelakos, “Voltage

Island Management in Near Threshold Manycore Architectures
to Mitigate Dark Silicon,” in Proc. Int. Conf. on Design, Automation
& Test in Europe (DATE), 2014, pp. 1–6.

[16] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-calibrating
online wearout detection,” in Proc. Int. Symp. on Microarchitecture
(MICRO), 2007, pp. 109–122.

[17] T. Kim, B. Zheng, H.-B. Chen, Q. Zhu, V. Sukharev, and S. X.-
D. Tan, “Lifetime Optimization for Real-time Embedded Sys-
tems Considering Electromigration Effects,” in Proc. Int. Conf. on
Computer-Aided Design (ICCAD), 2014, pp. 434–439.

[18] P. Mercati, F. Paterna, A. Bartolini, L. Benini, and T. Rosing,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MARCH 2017 14

“Dynamic variability management in mobile multicore processors
under lifetime constraints,” in Proc. of Int. Conf. on Computer
Design, 2014, pp. 448–455.

[19] A. Hartman and D. Thomas, “Lifetime improvement through
runtime wear-based task mapping,” in Proc. Int. Conf. Hard-
ware/software codesign and system synthesis, 2012, pp. 13–22.

[20] C. Bolchini, M. Carminati, M. Gribaudo, and A. Miele, “A
lightweight and open-source framework for the lifetime estima-
tion of multicore systems,” in Proc. Int. Conf. Computer Design,
2014, pp. 166–172.

[21] T. Chantem, Y. Xiang, X. Hu, and R. Dick, “Enhancing multicore
reliability through wear compensation in online assignment and
scheduling,” in Proc. Conf. on Design, Automation & Test in Europe
(DATE), 2013, pp. 1373–1378.

[22] J. Srinivasan, S. Adve, P. Bose, and J.A.Rivers, “The Case for
Lifetime Reliability-Aware Microprocessors,” in Proc. Int. Symp.
on Computer Architecture, 2004, pp. 276–287.

[23] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, “Multi-Mechanism
Reliability Modeling and Management in Dynamic Systems,”
Trans. on VLSI Systems, vol. 16, no. 4, pp. 476–487, 2008.

[24] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele,
“Combined DVFS and Mapping Exploration for Lifetime and
Soft-error Susceptibility Improvement in MPSoCs,” in Proc. Conf.
on Design, Automation & Test in Europe (DATE), 2014, pp. 61:1–61:6.

[25] ReliaSoft, “ReliaSoft’s Reliability Edge Newsletter,”
http://www.reliasoft.com/newsletter/2Q2000/mttf.htm, Volume
1, Issue 1, Accessed on 2016-07-26.

[26] A. Coskun, R. Strong, D. Tullsen, and T. S. Rosing, “Evaluating the
impact of job scheduling and power management on processor
lifetime for chip multiprocessors,” in Proc. Int. Conf. Measurement
and Modeling of Computer Systems, 2009, pp. 169–180.

[27] K. Ma and X. Wang, “PGCapping: Exploiting Power Gating
for Power Capping and Core Lifetime Balancing in CMPs,” in
Proc. Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT), 2012, pp. 13–22.

[28] U. R. Karpuzcu, B. Greskamp, and J. Torrellas, “The BubbleWrap
Many-core: Popping Cores for Sequential Acceleration,” in Proc.
Int. Symp. on Microarchitecture (MICRO), 2009, pp. 447–458.

[29] L. Huang and Q. Xu, “Characterizing the lifetime reliability of
manycore processors with core-level redundancy,” in Proc. Int.
Conf. on Computer-Aided Design (ICCAD), 2010, pp. 680–685.

[30] A. Y. Yamamoto and C. Ababei, “Unified reliability estimation and
management of NoC based chip multiprocessors,” Microprocessors
and Microsystems, vol. 38, no. 1, pp. 53–63, 2014.

[31] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and
B. Veeravalli, “Run-time mapping for reliable many-cores based
on energy/performance trade-offs,” in Proc. Symp. on Defect and
Fault Tolerance in VLSI and Nanotech. Systems, 2013, pp. 58–64.

[32] J. Sun, R. Lysecky, K. Shankar, A. Kodi, A. Louri, and J. Roveda,
“Workload Assignment Considering NBTI Degradation in Multi-
core Systems,” Journal Emerg. Technol. Comput. Syst., vol. 10, no. 1,
pp. 4:1–4:22, Jan. 2014.

[33] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg, and J. Plosila,
“CoNA: Dynamic application mapping for congestion reduction
in many-core systems,” in Int. Conf. on Computer Design (ICCD),
2012, pp. 364–370.

[34] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti,
“Noxim: An open, extensible and cycle-accurate network on
chip simulator,” in Proc. Int. Conf. on Application-specific Systems,
Architectures and Processors (ASAP), 2015, pp. 162–163.

[35] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in Proc.
Int. Symp. on Microarchitecture, 2009, pp. 469–480.

[36] L. Wang and K. Skadron, “Dark vs. Dim Silicon and Near-
Threshold Computing Extended Results,” in University of Virginia
Department of Computer Science Technical Report TR-2013-01, 2012.

[37] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan, “Temperature-aware microarchitec-
ture: Modeling and implementation,” ACM Trans. Archit. Code
Optim., pp. 94–125, 2004.

[38] “TGG: Task Graph Generator,” http://sourceforge.net/projects/
taskgraphgen/, last update: 2013-04-11.

[39] H. Liu, “A Measurement Study of Server Utilization in Public
Clouds,” in Proc. of Int. Conf. on Dependable, Autonomic and Secure
Computing, 2011.

[40] M.-H. Haghbayan, A.-M. Rahmani, A. Weldezion, P. Liljeberg,
J. Plosila, A. Jantsch, and H. Tenhunen, “Dark silicon aware power
management for manycore systems under dynamic workloads,”
in Proc. Int. Conf. on Computer Design (ICCD), 2014.

Mohammad-Hashem Haghbayan received the
BA degree in computer engineering from Fer-
dowsi University of Mashhad and the MS de-
gree in computer architecture from University of
Tehran, Iran. Since 2014 he is PhD student in
University of Turku, Finland. His research inter-
ests include high-performance energy-efficient
architectures, software-hardware microarchitec-
ture interaction, power management techniques,
and online/offline testing. He has several years
of experience working in industry and designing

IP cores as well as developing research tools before starting his PhD.

Antonio Miele is an Assistant Professor at
Politecnico di Milano since 2014. He holds a
M.Sc. in Computer Engineering from Politecnico
di Milano and a M.Sc. in Computer Science
from the University of Illinois at Chicago. In
2010 he received a Ph.D. degree in Information
Technology from Politecnico di Milano. His main
research interests are related to the definition of
design methodologies for embedded systems, in
particular focusing fault tolerance and reliability
issues, runtime resource management in hetero-

geneous multi-/many-core systems and FPGA-based systems design.

Amir M. Rahmani is EU Marie Curie Global
Fellow at University of California Irvine (USA)
and TU Wien (Austria). He is also an adjunct
professor (Docent) in embedded parallel and
distributed computing at the University of Turku,
Finland. He received his Master’s degree from
Department of ECE, University of Tehran, Iran,
in 2009 and Ph.D. degree from Department of
IT, University of Turku, Finland, in 2012. He also
received his MBA jointly from Turku School of
Economics and European Institute of Innovation

& Technology (EIT) ICT Labs, in 2014. His research interests span Self-
aware Computing, Runtime Resource Management, Healthcare Internet
of Things, and Fog Computing.

Pasi Liljeberg received the MSc and PhD de-
grees in electronics and information technology
from the University of Turku, Turku, Finland, in
1999 and 2005, respectively. He is currently a
full professor in Embedded Electronics Labo-
ratory. During the period 2007-2009, he held
an Academy of Finland researcher position. He
is the author of more than 250 peer-reviewed
publications, has supervised nine PhD theses.
Liljeberg is the leader of the Internet-of-Things
for Healthcare (IoT4Health) research group.

Hannu Tenhunen received the diplomas from
the Helsinki University of Technology, Finland,
1982, and the PhD degree from Cornell Uni-
versity, Ithaca, NY, 1986. In 1985, he joined
the Signal Processing Laboratory, Tampere Uni-
versity of Technology, Finland, as an associate
professor and later served as a professor and
department director. Since 1992, ha has been
a professor at the Royal Institute of Technology
(KTH), Sweden, where he also served as a
dean. He has more than 600 reviewed publica-

tions and 16 patents internationality. He is a member of the IEEE.

