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This paper deals with the use of matrix inequalities for the aim of multi-modal piezoelectric shunt damping.
The paper shows that the shunt impedance can be seen as a controller in a state space model of the
electro-mechanical system; this makes it possible to use the mentioned approach to find the layout of
the impedance for different kinds of control problems. The particular focus is on passive multi-mode
vibration control with the aim of finding the optimal shunt impedance among the passive and realizable
candidates. The proposed method overcomes most of the problems related to the development of the op-
timal shunt electrical network, which arise when using the most common shunt design strategies for
multi-mode control. The results were validated experimentally and compared to well-established methods
for multi-mode shunt damping. The proposed method proved to be effective, and the results demonstrate
the capability of the matrix inequality approach to provide attenuation levels that are usually higher than
those from the reference methods.
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1. Introduction

The use of piezoelectric actuators shunted to electric impedances as vibration controllers is a well-established topic [1].
According to the kind of impedance used, it is possible to provide a vibrating structure with a control action focused on just
one mode or on several modes together. In the former case, the impedances commonly used are a simple resistance [1,2]
and the parallel or series connection of a resistance and an inductance [1-5].

There are several possibilities to build the shunt impedance for multi-mode control:

1. the use of a negative capacitance (NC) [6-10] coupled to a resistance. Indeed, the coupling between an NC (which is an
active component made from an operational amplifier [11-13]) and a simple resistance can provide a broadband damping
action and thus control different modes together [6,9,14]. However, the use of an NC makes the control semi-active and
thus poses some problems related to system instability;

2. the use of non-linear shunt impedances based on switches (e.g. [15,16]). Such methods offer good control performance.
This approach can sometimes require a complex controller structure when the switches in the shunt impedance have to
be driven by digital systems. Nevertheless, Lallart et al. [17] demonstrated that this complexity can be reduced by using
self-powered circuits that can remove the need for digital controllers;
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3. the use of passive impedances (i.e. made from resistances, inductances, and capacitances) that are properly designed to
tune the control action on the modes considered. This approach does not suffer from any possible problem related to
instability thanks to the passive nature of the shunt impedance, and it does not require any digital system or feedback
Sensor.

The third approach plays an important role due to its passivity, lack of instability, and lack of additional devices, espe-
cially in the industrial and aerospace fields. There are different methods of designing a proper shunt impedance for a given
control problem. The methods can be divided in to those that work with either one or more piezoelectric actuators, and
those based on several piezoelectric actuators together, which often exploit the advantages of periodic structures.

For the first type, Hollkamp was the first to propose an impedance design method using a single piezoelectric patch
working on different modes at the same time [18]. The proposed network design is made from as many branches connected
in parallel as the number of modes to be damped. The main problems related to this method are the cross-talk between the
branches of the circuit, which requires perfectly decoupled modes, and the complexity of the procedure to fix the values of
all the electric components.

Wau [19] and Behrens et al. [20] respectively proposed the current blocking (CB) and current flowing (CF) methods, where
the shunt impedance is again made from as many branches as the number of modes to control. All the branches are again
connected in parallel. In CB [19], there are N; elements in each branch connected in series (where N; is the number of modes
to be damped). The first of these elements is a parallel connection of a resistance and an inductance, while the other
elements are parallel connections of a capacitance and an inductance. Although a method was proposed to simplify the
design of the shunt impedance somewhat, the complexity of the circuit is evident, especially when the number of modes to
control increases. Another problem with the CB method is that there are some degrees of freedom in the tuning of the
network. Indeed, the values of some electric components must be fixed arbitrarily without any guidelines, which results in
non-optimal control actions.

In the CF technique [20], each branch is made from three elements: a resistance, a capacitance, and an inductance. The
values of the resistances in the shunt impedance must be fixed by numerical minimisation [21]. Furthermore, there are
some degrees of freedom that lead to a non-optimal solution in this case as well, although Cigada et al. [22] proposed some
guidelines to overcome this problem. There are also cross-talk effects that are not accounted for in the tuning procedure and
can be solved just by using numerical minimisations [22].

Fleming et al. [23] introduced a smart method that can be seen as a mix of CB and CF. The shunt network is a combination
of cells connected in series and parallel (i.e. series-parallel approach). Like in other approaches [19,20], the main drawback
of the method is that there are some degrees of freedom in the tuning of the network with arbitrarily fixed component
values. The same paper also shows that adding a capacitor to the shunt circuit decreases the global coupling coefficient and
thus the damping performance. This effect is related to all multi-mode shunts working with a single patch because of the
unavoidable addition of capacitors in the shunt circuit [24]. This problem could be mitigated by using multiple piezoelectric
actuators.

Several techniques have also been proposed to tune the shunt impedances using more than one piezoelectric actuator
together. Moheimani et al. [25] proposed a multi-mode control approach with more than one piezoelectric actuator shunted
by a multi-input impedance, which relies on the representation of the shunt damping as a feedback controller. They pre-
sented only tests carried out with a synthetic controller. The method provides good performance, but there are again some
degrees of freedom that must be fixed by the user without any guidelines. Moreover, Fleming and Moheimani [26] pre-
sented an approach to design shunt impedances for multi-mode control based on well-established methods such as linear
quadratic Gaussian (LQG) control, H, control, and H,, control. This approach works with one or more piezoelectric actuators.
The three control methods were compared, showing that shunts can provide good attenuation performance. However, the
main issue is that LQG and H,, controllers required active components in the shunt impedance (e.g. negative reactive
components).

Maurini et al. [27] studied electric vibration absorbers made of distributed piezoelectric devices for the control of beam
vibrations. The absorbers were obtained by interconnecting an array of piezoelectric transducers uniformly distributed on a
beam with different modular electric networks. The electrical network is expected to show resonances at specific target
frequencies. Batra et al. [28] showed that this is possible by interconnecting passive branches comprising inductances and
capacitances. Giorgio et al. [29] proposed a method to control N; modes of undamped systems with N; interconnected
actuators. The approach does not guarantee the realisation of the network with passive elements, even if further compli-
cation of the method could allow this constraint to be satisfied. Andreaus et al. [30] proposed a method for controlling the
flexural vibrations of beams with more than one actuator by finding an electrical circuit analogue to a Timoshenko beam
through a Lagrangian method. The main limit of this approach is related to the lumped nature of the piezoelectric devices
used and the electric circuit, which link the lowest controllable wavelength to the size of the piezoelectric patch (i.e. the
lowest controllable wavelength is approximately equal to the size of the actuators). However, the problem can be limited by
using enough elements per wavelength. Moreover, given the electrical network, the values of the capacitive and inductive
elements are fixed to match the mechanical resonances of the beam. As for the resistances, the tuning procedure is not
straightforward. Although some approaches to tune additional resistances are given to provide the appropriate damping to
the electric impedance, no criteria are available to fulfil a given control problem (e.g. H..). Bisegna et al. [31] proposed a
multi-modal vibration damping method for an elastic beam equipped with multiple piezoelectric actuators connected to an



electric network. Two analytical models of the electromechanical coupled structure were considered: a homogenized one
and a discrete one. Lossouarn et al. [32] recently proposed a multi-modal control strategy by coupling a beam to a network
representing its electrical analogue. Such a network is designed by using the direct electromechanical analogy applied to a
transverse lattice of point masses representing the discrete model of the beam. The electrical and mechanical structures are
then linked by an array of piezoelectric actuators. The main drawback of the approach, which is currently under in-
vestigation, is again that no clear criteria are available for fixing the properties of the additional resistances to be added to
the shunt network for tuning the damping levels. The extension to bi-dimensional structures (e.g. plates) of the methods
based on shunt networks that are the electrical equivalent of the mechanical system would require the synthesis of a
lumped circuit analogue to a Kirchhoff-Love plate discretised by the finite difference method. This would significantly
increase the problem complexity in terms of both the procedure to derive the shunt network and the network layout.
Lossouarn et al. [33] recently addressed this problem and proposed a new method to derive the electrical analogue of a bi-
dimensional structure. The method relies on a finite difference approximation of the Kirchhoff-Love theory and the use of
the direct electromechanical analogy.

To improve the performance of the traditional techniques used with a single piezoelectric actuator, Airoldi and Ruzzene
[34] showed that CB coupled to a periodic layout of piezoelectric actuators can improve much of the attenuation perfor-
mance provided by the pure CB, thanks to the bandgaps generated by periodicity.

Collet et al. [35] developed a numerical method for modelling and optimising two-dimensional smart metacomposites
(i.e. distributed shunted piezoelectric patches). This numerical technique was proved to be capable of coping with the
multimodal wave dispersion behaviour over the whole first Brillouin zone when considering periodically distributed two-
dimensional shunted piezomechanical systems.

Bao et al. [36] and Yan et al. [37] recently developed multi-modal attenuation methods by means of non-linear shunted
piezoelectric actuators for periodic structures. Such an approach exploits non-linear switching shunt impedances in the
context of periodic structures with good results.

Despite all the described tuning strategies offering good results, the main limitation is that they refer to specific ap-
plications, such as the control of beams or plates or the use of one or more actuators. Furthermore, they often do not allow
for a specific control target to be set. Thus, this paper presents a new general approach to multi-mode vibration reduction
that can be applied to both mono- and bi-dimensional structures by employing either one or more piezoelectric actuators.
Therefore, the method does not necessarily rely on distributed structure layouts. Moreover, the proposed approach is aimed
at providing the optimal controller for given control applications, and it relies on the linear matrix inequality (LMI) theory.
The LMI approach allows for a control target to be set (e.g. Hy or H,, on displacement, velocity, or acceleration) and for
constraints to be imposed on the control features. The particular focus is on passive control. Therefore, the method allows an
expression of the shunt impedance to be found that satisfies the fixed control target, assuring that it can be realised by a
passive physical network.

The layout of the paper is as follows. Section 2 presents the model used to describe the electro-mechanical structure.
Section 3 explains how to apply the LMI approach to piezoelectric shunt and how to set and solve the control problem by
even imposing passivity and conditions to make the electric network feasible. Section 4 explains how to derive the shunt
impedance layout. Finally, Section 5 shows the experiments carried out to demonstrate the reliability of the approach.

2. System model

The model of the electro-mechanical system (EMS, composed of the vibrating structure, the piezoelectric actuator, and
the shunt impedance) must describe both the mechanical and the electrical dynamics. We consider a generic structure
excited by an external forcing E.,, where the actuator is shunted by an impedance Z (see Fig. 1a). Q, is the charge in the
upper electrode (-Q,, in the lower electrode), and Vj, is the voltage between the electrodes. The displacement W of any point
x of the structure at time t can be expressed as a modal summation:

N
W(x, t) =) ®,(x)q,(t)
r=1 (])

where g, is the ™ modal coordinate, N is the number of modes considered (theoretically N — ), and @, is the r"
eigenmode (scaled to the unit modal mass) of the structure. The modal coordinates are the solutions of the following
problem [2,6,38,39]:

G,+2& 0,4, + (urzqr -4 Vy=F Vre(l, ..., N} )

-0yt L+ B =0 5

where , is the r'" eigenfrequency of the EMS in short-circuit (SC, i.e. Z=0), & is the associated non-dimensional
damping ratio, and F, is the harmonic modal force. y, is a modal coupling coefficient that describes the energy transfer
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Fig. 1. A generic structure with a shunted piezoelectric patch (a) and electric model of the EMS (b).

between the piezoelectric patch and the " mode. Thus, the behaviour of the EMS is described by two equations: Eq. (2) and
Eq. (3). Eq. (2) describes the equations of motion of the system. The term y. couples these equations of motion to Eq. (3),

which models the electric behaviour of the EMS (see Fig. 1b, where the term Zfi 4G, is abbreviated as Q). C,, is the

electrical capacitance of the piezoelectric patch with blocked structure, which also corresponds to the value of the capa-
citance at infinite frequency [6]. R, is the resistance associated with the piezoelectric patch, which is usually very high [40].

[V, is intended as an integral in time (i.e. /V,dt).
The terms y. can be found analytically [39], through a finite element model [38], or experimentally by measuring the
effective coupling coefficients associated with each mode [6] (see Section 5.1). In the case of low modal density, if we

consider only the modes between the u™ (i.e. r = u) and the h'" modes (i.e.r = h, with h > u), Eqs. (2) and (3) can be written
as:

G,+280,4, + 07q, — Vo =F Vre{u,.., h} %)

h |%
Cmvp—Qp+z;(lq,+%+SVp+MVp=0
I=u P (6))

where S is a term that accounts for the contribution of the modes lower than the u™ mode, while M is a term that accounts
for the contribution of the modes higher than the h™ mode. According to previous studies [6,9], we have:

n=h+1 ®n (6)

Therefore, Eq. (5) can be rearranged as:

h
V.
CDVP_QD"’IZ:ZICII"'/I)ZO
=u

R, @)
where:
N 2
X
G=C+ Yy &
b n=h+1 wn2 (8)

C, can be found by measuring the value of the capacitance of the piezoelectric actuator midway between w;, and w4 [6].

Hence, the whole dynamics of the EMS in the frequency range of interest is described by Eqs. (4) and (7). To use the LMI
approach to solve a given control problem, the EMS model needs to be represented in terms of state space variables. The
state space representation provided in this paper plays a key role since it also allows the shunt impedance to be seen as a
controller. Indeed, expressing Z as a controller allows the passivity requirement to be imposed directly on the impedance Z
in the LMI problem (see Section 3.1.3), which is one of the targets of the proposed control approach. The following sub-
section explains how to derive the state space representation of the EMS model described by Egs. (4), (7), and (8).



2.1. State space representation of the electro-mechanical system
According to Egs. (4) and (7), we can write the following system of equations:
G4,+2&w,q, + w,zqr -1V =F Vre{u,.. h}
q,=q, Vre{u,..h)
GV — Qp"'leql /p =
€))
By defining:
— ~ Qp
V= VNCfIJ and Q = —

/S (10)

Eq. (9) can be written as:

-1
Gy+2¢8w.q, + o (1+b )qr + b, Z bag, + bo, Z bwg, + rHC{r ‘/\7=Fr +b.wQ Vre{u,.. h}
I=u I=r+1 P P

¢r=¢q, Vre{u,...h}
h v o
Z g, — / + Q
I=u 11
where b, = y /(a),\/CT) ), and / V is intended as an integral in time (i.e. / Vdt). The vector g of the state variables is now defined as:
g
9y
&= q,
4,

_/\7_ 12)

The length of vector g is 2(h — u + 1)+1 = n,, where n is the order of the system. The system described by Eq. (11) can be

written in state space notation:

g= Ag""BwQ + BfFext
Zy= ng""Dsz + DyFeye
y= C g+Dwa + D ext (13)

where z, is the target variable of the control (e.g. the displacement W, velocity W, and acceleration W of the system
computed at a given point x, of the structure); y is the output of the system, which is - [ V in this case. Finally, Q is seen as a

control action provided to the vibrating system.
If we choose the displacement at a point x,, as the target variable, we have z, = W. In the case of a single force F,,; acting

on point x;, the matrices of Eq. (13) are:

b,w
_zfuwu _w112(1+b5) 0 _wubuwuﬂbuﬂ 0 _wubu("hbh R Cu
1 0 0 0 0 0 0
2 2 by 10y
0 _a)u+1bu+1mubu _25u+1("u+1 _("u+l(1+bu+]) 0 _(‘)u+1bu+1mhbh - RC
PP
A= O 0 ! 0 o0 0 9
2 2 byon
0 —wpbpoyby 0 —opbpoy by o =280 _wh(]+bh) “RC
p-p
0 0 0 0 1 0 0
1
0 —wyb, 0 —oyyibyyg 0 —wpby “RC.
i pp | 14)




[ Dy (xp) 1 [ w,b,
0 0
cI)U+1(Xf) wu+1bu+l
B=| O B,=| ©
Dp(xp) wpby
0 0
| 0 | . 1 ] (15)
C = [O ,(xy) 0 Dy X)) - 0 @y(xp) O]v Cy = [0 - 0 —]]' D,, =Dy = Dyw = Dyf =0 (16)

The size of the matrix A is [2(h — u + 1)+1]x[2(h — u + 1)+1], while the length of vectors By, B,,, C,, and C, is
2(h—u+1)+1

It is noticed that the model can be easily extended to the case of more than one disturbance force acting on the system.
Moreover, Appendix A gives the expression of the matrices of the state space system for the cases of z, = W and z, = W.

The model can be easily extended to the case where two or more piezoelectric patches are connected in series/parallel, as
well as the case of an NC connected to the patch. Indeed, in both cases, Eq. (9) is still valid, provided that new system
parameters are used:

® in the case of a series/parallel connection of piezoelectric actuators, we have an equivalent piezoelectric actuator. The
values of the equivalent y, C,, and o, due to all the actuators must be calculated or measured for the new equivalent EMS
[38];

® in the case of an NC connected to the piezoelectric actuators, the equivalent C, value (and o, in the case of a series
connection between the patch and the NC) due to the addition of the NC must be calculated or measured for the new
equivalent EMS [6].

Therefore, the state space representation described by Eq. (13) is generally valid.
The state space model describes the EMS as a controlled system via a feedback loop, as illustrated in Fig. 2 (where D,,,

and D are not shown because they are always null matrices). This is accomplished by considering Q as a control action and
- /\7 as the output of the system. Based on Fig. 1b and Eq. (10), the transfer function of the controller K (see Fig. 2) can be
expressed as:

Q Q, 1 Y

-GV, CGZ G, a7

- _
K__fv_

where the admittance Y is 1/Z. Hence, the model presented herein can describe the EMS as a system controlled by a
feedback loop, and the controller is the electric admittance shunted to the piezoelectric actuator (divided by C,). This control
problem is an output feedback problem.

It is now possible to set the control targets and the constraints on the controller structure. The next section discusses
how to translate these requirements to an LMI problem and how to find the most suitable transfer function of Z.

1
|
|
|
|
|
|
|

Fig. 2. Output feedback scheme in the Laplace domain, where s is the Laplace operator and I is the identity matrix.



3. The use of linear matrix inequalities in piezoelectric shunt damping

In the controller synthesis process, the main goal is to design a controller with characteristics that satisfy a given target,
which is multimodal control in this case. Moreover, constraints on the controller characteristics may sometimes be required
as well, and the passivity of the shunt network is addressed in this paper. The main drawback of the passive shunt damping
is that the achievable performance is strongly dependent on very fine tuning of the whole control system. For this reason,
much effort must be spent in the process of controller optimisation to achieve satisfactory vibration attenuation
performance.

In this scenario, the definition of a design approach for the controller that can simultaneously account for the control
target and the passivity constraint of the network is fundamental. As mentioned in Section 1, the most common approach is
based on the choice of the passive network layout (i.e. a positive real function), which has a fixed layout. Its parameters are
then optimised to minimise the given objective function. The most relevant methods that rely on this approach are the CB
and the CF techniques [19,20]. However, one of the drawbacks related to these techniques is that the choice of the optimal
controller is limited by its fixed structure. Therefore, not all possible passive network layouts are considered in the opti-
misation process. It follows that the structure of the electrical network is not optimised, and therefore, the approach might
not lead to the optimal network among all the possible configurations, thus limiting the performance of the control as well.

In light of this, we focused our attention on the LMI approach, which allows for the control targets ranging over all the
possible passive networks to be satisfied. Indeed, the LMI approach allows the synthesis of the optimal admittance Y over
the class of all the positive real functions that guarantee the physical feasibility of the network. It uses a state space re-
presentation of the system and the classical approach for controller synthesis. Since the admittance Y (as well as the im-
pedance Z; see Eq. (17)) is seen as a controller in the state space representation of the EMS (see Section 2.1), the search for
passive impedances translates to a search for passive controllers.

The LMI approach is emerging as a powerful tool to solve control problems, especially thanks to the possibility of
managing different kinds of targets. Several objective functions can be expressed as LMIs, such as the H, norm, which can be
used to impose limits on signal root mean square (RMS), the H,, norm to limit the frequency response function (FRF) peak,
pole placement, robust regulation, as well as the passivity of the controller. Moreover, even multi-objective control can be
addressed with the LMI approach [41-44] by considering two or more objective functions in the optimisation problem.

This work focuses on single- and multi-objective optimisation problems involving the passivity constraint of the shunt
impedance (i.e. the controller) and the H, and H., norms as objective functions. Nevertheless, the procedure showed in the
following can be easily extended to any kind of control target that can be expressed as a matrix inequality. Section 3.1 shows
the LMI formulation for the two control targets considered (H, and H,.) and for the passivity constraint. The mentioned
section deals with single-objective optimisation, and therefore each control problem is presented separately. Section 3.2
addresses the matrix inequality formulation for multi-objective control.

3.1. LMI formulation of the objective functions

In this section, the H, and H,, control as well as the passivity of the controller are formulated as LMI problems. Control
specifications for the closed-loop transfer function T linking the disturbance F,.,; and the target variable of the control z, are
taken into account. Referring to Fig. 2, T,; can be expressed in the Laplace domain as:

T,e = C,(sI-[A + B,KC,]) "B + D, KC(sI-[A + B,KC ]y 'B; + D¢ 8)

where s is the Laplace operator, and I is the identity matrix. All the matrices that are always null (i.e. regardless of
whether the target variable is displacement, velocity, or acceleration) are neglected in Eq. (18).
A state space representation of the controller K can be derived as well:

g =Ag +By
Q=Cg,+ Dy 19)

where Ay, By, C,, and Dy, are the state space matrices of the controller, and g, is the state vector. The transfer function of
the controller K can thus be expressed as:

K(s) = C(sI — A 'By + Dy (20)
The state space representation of the closed-loop system is then obtained from Eqs. (13) and (19):

gcl = Aclgcl + Bchext
Zy= cclgcl + Dchext 21

where the closed-loop state vector is:



H
R § - 22)

The expressions of matrices A, By, C, and D, are provided in Appendix B. Hence, the transfer function T,z of Eq. (18) can
be expressed as a function of the closed-loop matrices using Eq. (21):

TzF = Cc:l(sI - Acl)_1Bcl + Dcl (23)

In the LMI approach, each control target or specification is expressed as a constraint on the admissible Lyapunov
functions for the internally stable closed-loop system [43]:

3 V(g,) =glPg, P>0:AJP+PA,; < 0 24)

where V is a quadratic Lyapunov function, P is the Lyapunov matrix, g is the closed-loop state-space vector, and A, is
the state matrix of the system. The superscript T indicates the transposed matrix.

Since the additional constraints are related to targets on the transfer function T; of Eq. (23), the related LMI formulation
will be thus expressed as a function of the closed-loop matrices A, By, Cy, and D, (see Egs. (25) and (26) further in the
paper). Therefore, the solution of the LMI problem will provide state space matrices that satisfy the given specifications.
Then, according to the expressions in Appendix B, the matrices A, By, C, and D, of the controller and the transfer function K
can be derived. Subsections 3.1.1 to 3.1.3 show the LMI constraints related to the different control specifications addressed in
the paper (H., control, H, control, and passivity, respectively).

3.1.1. H. control
For H., control, the objective is to find a controller K such that |Tg|_ is minimised. As demonstrated in [42,43] , there
exists a controller K such that ”TlF”m <y and A is stable if and only if the following problem is feasible for some symmetric

P>0, y > 0, and Ay, By, C,, and D, of compatible dimensions [45]:

AP + PA, PB, C]
BP -1 D |<0
C D, -1 25)

cl

It follows that the solution of the problem requires minimising y.

3.1.2. H, control
In this case, the control target is to design a controller K such that ||T2FH2 is minimised. As can be demonstrated [43], there

exists a controller K such that [T, <u and A, is stable if and only if the following problem is feasible for some symmetric

P>0, Q, 42, and Ay, B,, C,, and D, of compatible dimensions [43]:

[AZIPH’Ad PBd] 0 [p (s

>0, tr@Q <%, Dy=0
BP I ] !

(26)

cl

where Q is a symmetric matrix. It can be deduced from Eq. (26) that the solution to the problem requires minimising u.
It is noticed that, according to Appendices A and B, the condition D, = 0 is never fulfilled when controlling acceleration
(i.e. z, = W). Therefore, the present problem formulation prevents the control of acceleration when the target is to minimise

H, norm. Conversely, H,, control can be carried out when z, = W because the condition D, = 0 is not required (see Section
3.1.1, Eq. (25)).

3.1.3. Passivity

The passivity of the controller represents an additional constraint in the minimisation problem, and it can be expressed
as an LMI as well. In this case, the unknown variables are the controller matrices Ay, By, C,, and D,. The passivity of the
controller can be expressed as a quadratic function:

tx . .
/ ~=Qy(1)V(1)de 2 0,7 Qy(t). Vyo) an

wheret, is the integration time, Qp is the current flowing in the controller, and V}, is the voltage at its terminals. If passivity is
satisfied, then the transfer function of the controller is positive real. Therefore, the passivity of the controller can be ex-
pressed as an LMI constraint using the positive real lemma [42]. It follows that a controller K(s) is positive real if and only if
there exists P>0 such that:



AP +PA, PB, - Cf <0
BEP _Ck _Di{ - Dk - (28)

where P is the Lyapunov matrix.

According to Eq. (17), the passivity of the controller implies the passivity of the impedance Z. Egs. (25), (26), and (28)
show how it is possible to translate the target of the control problem and the constraints on the controller features into
LMIs. Nevertheless, the careful reader could easily notice that, actually, Egs. (25), (26), and (28) do not represent LMIs since
the dependence on the decision variables is not linear. As an example, referring to Eq. (25), the expression AJP + PA_, is not
affine in the variables P and A. Indeed, it involves the product between the controller variables (which are included in the
A, expression, see Appendix B) and the Lyapunov matrix P. Consequently, these problems are non-linear and thus cannot be
solved by LMI optimisation (e.g. using the ellipsoid method or the interior-point method [44,46]). Nevertheless, for the state
feedback case and even for the output feedback systems (which is the case considered in this paper), there exists a change of
variables that makes all the inequalities affine in a new set of unknowns, thus making the constraints linear and easily
solvable [43].

3.2. Multi-objective control

In the case of multi-objective control, two or more specifications must be addressed at the same time. Therefore, the goal
of the optimisation process is to derive a stabilising controller K that allows for all targets to be satisfied at the same time. As
an example, the case of mixed H, / H,, control is presented.

In this problem, the target is to minimise the norm \|T2F||2 while taking into account a constraint on the value of | T, .

which is fixed. Therefore, as soon as the limit on the H., norm y is assigned, there exists a controller K such that HTzF”2 <u,

||TzF||°°<y, and A is stable if and only if the following problem is feasible for some P_>0,P,>0, Q, 42, and A,, By, C, and D, of
compatible dimensions [42]:

[ASPﬁPZAd PzBd] -0 [Pz c

> 0, tr@Q <% Dy=0,
BlR, I ] !

cl
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BiP, -1 Dj| <0

Cqy Dy /1 (29)

where P_ is the Lyapunov matrix related to the H, problem, while P, is the Lyapunov matrix related to the H, problem. The
subscripts of the Lyapunov matrices are indeed used to mark and discriminate the Lyapunov matrices related to the two
different control problems (H,, and H, in this example).

The first set of inequalities is related to the H, specification (see Eq. (26)), while the second is related to the constraint on
the H,, norm (see Eq. (25)). This kind of problem will provide a solution that is a trade-off between the results of the H,, and
H, solutions.

All the inequalities of Eq. (29) must be satisfied at the same time by the single feedback gain K, and thus the problem is
non-convex in the variables P, P, Ay, By, C, Dy, x#, and Q. To treat the problem in the LMI framework, it is necessary to look
for a single Lyapunov matrix:

P=P=P_ 30

and then to introduce a change of the controller variables [43] that makes all the inequalities affine in the problem
variables, as already mentioned for the single-objective control.

As shown in the example related to mixed H,/H_, control, all the types of constraints expressed as matrix inequalities can
be combined to set the desired multi-objective problem. Such problems lead to a set of nonlinear matrix inequalities that
cannot be solved with the LMI approach.

To face this problem, as already mentioned, some linearization procedures can be applied to the output feedback systems
[43], allowing for a solution of the original set of nonlinear inequalities. Nevertheless, despite this linearization represents a
solution to the multi-objective output feedback control, it introduces some conservatism and therefore suffers from some
limitations. First of all, the change of the controller variables, proposed in [43] to linearize the matrix inequalities, requires
the order of the controller n, to be equal to that of the system (i.e. n, = n,). This translates to the restriction of the possible
controllers considered for solving the control problem. Secondly, the constraint of Eq. (30) must be added to address multi-
objective problems. This introduces conservatism in the solution, imposing a common Lyapunov matrix as a solution of all
sets of matrix inequalities (one set for each control objective/specification). Finally, the linearization process can lead to an
ill-conditioned problem, especially if added states are present in the state-space representation of the considered systems



[45] (such as the integral of the voltage in the case considered). It is remarked that, despite its effectiveness in solving the
problem, such a linearization is not straightforward. Although there are methods to apply linearization even when reduced-
order controllers are searched for (as in the present application), the complexity of these methods increases substantially,
and their application is thus difficult [43]. For these reasons, we approach the nonlinear problem in two different ways: the
linearization of the problem using approximations and the use of non-linear solvers. The two solutions are described and
discussed in Section 3.3.

3.3. The solution of bilinear matrix inequalities

As mentioned in the previous section, the multi-objective output feedback control problem leads to a non-linear matrix
inequality problem — in particular, a bilinear matrix inequality (BMI) problem. The control problem has been formulated as
a BMI to overcome the limitations introduced by the linearization and to propose an optimisation that allows for any order
of the controller. Two procedures for the solution of the non-linear problem were applied. The first is an iterative procedure
based on the linearization of the problem using approximations, which allows for the BMI to be solved locally and enables
the use of linear solvers (see Section 3.3.1). The second is using non-linear solvers (see Section 3.3.2).

3.3.1. Iterative solution of the BMI

The use of linear solvers (e.g. based on the interior-point approach) requires linearizing the BMI using approximations to
obtain an LMI problem again. One of the main drawbacks of this approach is that a local solution (local minimum) can be
found, meaning there is no assurance of finding the optimal solution. Different linearization methods are available, such as
an iterative procedure proposed in [45] and the path following algorithm [47].

This approach showed to be very sensitive to numerical problems. One reason is that the problem variables stretch over
wide ranges (e.g. on order of 10° for P and the order of 107 for y and ). Another is the presence of sparse matrices. We
tested this approach using solvers based on the interior point algorithm [46] and managed them with YALMIP [48,49]. They
provided good results when only one structural mode had to be damped, but failure often occurred when increasing the
number of modes to be controlled. Actually, only one of the solvers tested (MOSEK [50]) sometimes provided satisfactory
results, even when increasing the number of modes.

3.3.2. Non-linear solvers

The use of non-linear solvers based on the Newton method [51] or the trust region method [52] were much more
reliable. The trust region method is more robust than the Newton method when sparse matrices must be managed [51], as
in this case, so we decided to focus on this algorithm. The results achieved were much more reliable than when using the
iterative approach based on linearization (i.e. Section 3.3.1), and the use of non-linear solvers was much more robust (i.e. we
verified convergence even when increasing the number of modes taken into account). It is possible to employ commercial or
open-source software to run these solvers (e.g. [53,54]). The procedure to manage these BMI problems is explained below
and requires fixing some initial conditions. The case of H,, control coupled to the passivity constraint is considered here as
an example for the sake of clarity (however, there are no differences for H, and mixed H, | H., controls):

1. the order of the controller n, is chosen (more details about such a choice will be provided at the end of the section) and a
first-attempt real positive controller is fixed, finding the matrices Ay o, By g, C; o, and Dy ,. The subscript 0 indicates the
first-attempt solution. Usually, we used the solution from the CF technique to fix the initial values of the matrices. Just the
basic CF method was used [20] , without applying any optimisation [21,22];

2. once the matrices Ay g, By o, Cy o, and Dy 4 are defined, they are used to solve both the linear H,, problem (Eq. (25)), finding
the minimised y and the related Lyapunov matrix P, and the linear problem related to the passivity (Eq. (28)), which has
the Lyapunov matrix Py as the only unknown. It is noticed that, since the controller matrices are fixed to be equal to the
first-attempt solution, both the H., and the passivity problem are linear in the unknown variables y and P, and P,
respectively. The subscripts of the Lyapunov matrices are used to indicate the Lyapunov matrices related to the two
different control problems. The resulting P matrices and y value are referred to as P o, Py o, and y,, since they are the first-
attempt solutions;

3. then, the BMI solver uses P, g, Py, 75, Axo» Bko» Cko» and Dy as initial conditions for the multi-objective problem and
minimises y, providing P, ;, Py 1, 7, A 1, By 1 C 1, and Dy ; as results. The problem formed by conditions (25) and (28) is a
BMI because the unknowns are the Lyapunov matrices P_ and Py, as well as y, A,, By, C,, and D;;

4. step 3 is run again with P, ;, Py 4, 7;, Ay 1, By 1, €y, and Dy ; as the initial conditions.

)

In this procedure, step 4 is then iterated until y satisfies a certain stopping condition.

The procedure described allows to find A, By, C,, and D, and thus the transfer function K(s) of the controller. The transfer
function of the impedance Z(s) can then be calculated using Eq. (17). The order of the controller n, must be chosen arbitrarily
at the beginning of the procedure. We carried out different tests and found that the use of n, = ny—1 and n, = n,—2 provide
good results. Nevertheless, n, can be fixed to any desired value, keeping the method as general as possible. If n is kept lower



than ny—2, the damping performance decreases, at least for part of the modes considered. If n, is kept higher than n,—1, no
significant attenuation improvements are noticed, although the values of the required electrical components (e.g. in-
ductances) can decrease if compared to the case of n, = ng—1. This allows for a simpler inductance implementation in certain
applications, but it also leads to a higher complexity of the whole circuit because the number of elements constituting Z
increases with ny.

It is noticed that the non-linear solvers do not apply any linearization to the problem. The procedure used here requires
only a linearization at the beginning to fix the initial conditions (item 2 in the previous list).

4. Synthesis of the shunt impedance

The order of the controller that results from the BMI problem is equal to n,. As mentioned, this order is fixed by the user
(see point 1 of the numbered list in Section 3.3.2) by imposing a first-attempt controller Ky and then finding the corre-
sponding first attempt matrices Ay ¢, By ¢, Cy o, and Dy o. These matrices thus have a fixed size, as do the matrices Ay, By, Cy,
and Dy resulting from the BMI problem. Hence, the resulting optimal controller K will have the same order n, as in the first
attempt. Its transfer function K(s) has the following generic analytical form:

268% + A5 4SS + Ao
5,5° + 6, 1% . 4655 + 8 31

K(s) =
The coefficients 4 and § are real positive scalars thanks to the passivity condition, and ¢ = n,. According to Eq. (17), we
have:

Z(s) = 5.5% + 6,_18° 4. +58 + &
(AeS” + Ag18” .. 4Ass + 19)C,y (32

This form of the impedance Z (i.e. real positive coefficients and equal orders of the numerator and denominator)
guarantees practical realisability of the shunt circuit with passive elements (i.e. resistances, inductances, and capacitances)
[55,56]. This is an important outcome of the BMI/LMI approach applied to the shunt damping.

There are a number of methods in the literature to synthetize an electric circuit starting from positive real transfer
functions, and we used the classical method by Brune [57,58]. This method describes how to implement a finite one-port
network where the driving-point impedance is a prescribed function. This approach enables the design of lumped-element
equivalent circuits with a minimum number of elements, which are positive if the function describing the one-port im-
pedance is positive real. The elements of the circuits are only capacitors, inductors, and resistors, and the interconnect
structure generally contains ideal transformers [59]. No details about the method are given here for the sake of conciseness.
However, details about the procedure are available elsewhere [57-59].

5. Experiments

This section describes the experimental tests carried out to show the effectiveness of the BMI/LMI approach to shunt
damping. Section 5.1 describes the test setup, and Section 5.2 provides details about several tests where we simulated the
shunt network using a synthetic impedance. Finally, Section 5.3 gives a detailed description of one of the tests carried out
with a physically implemented shunt impedance Z.

5.1. Test setup

The experimental setup was an aluminium cantilever beam with one piezoelectric patch bonded at its clamped end. The
beam was 161 mm long, 25 mm wide, and 1.1 mm thick, while the piezoelectric patch was 51 mm long, 25 mm wide, and
0.38 mm thick. The structure was excited by means of a contactless actuator composed of a coil and a magnet bonded to the
beam near its tip (see Fig. 3a). Current flowing in the coil results in a proportional force exerted on the beam [60]. The
current was measured using a current clamp, and the response of the structure was measured through a laser Doppler
velocimeter in a co-located position with the exerted force (on the other side of the beam). The second, third, and fourth
eigenmodes were considered, and their modal data are presented in Table 1. The eigenfrequencies and non-dimensional
damping ratios were estimated by an experimental modal analysis with the piezoelectric patch short-circuited. The algo-
rithm for modal parameter extraction was the polyreference least square frequency domain method. . was estimated by

means of measurements of the ' coupling coefficient kf = /(w2 — ©2)|0? (@, is the '™ eigenfrequency with the pie-
zoelectric patch in open-circuit (OC)) and then making the following computation [6]:

Z =k Mo [Cy. 33)



Transformers

capacitors constituting Cz and Cp
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Fig. 3. Experimental setup (a) and the circuit used to implement the shunt impedance Z for H, control on the displacement of the third and fourth modes
(see Section 5.3) (b). No resistances are visible in figure b, even if they were present in the circuit; indeed, they were made from the series of potenti-
ometers for easy tuning and were not directly built on the board. The cables coming from these potentiometers and reaching the board are visible.

Table 1
Data of the experimental setup.

Mode number o, [(27) [Hz] & [%] kreff

2 195.94 0.43 0.0428
3 500.98 0.40 0.0400
4 1004.39 0.44 0.0924

where C, is the measured piezoelectric capacitance value after the ' eigenfrequency. The trend of the measured piezo-
electric capacitance is plotted in Fig. 4. Fig. 5 shows the FRF of the system for the modes in Table 1.

The following subsections discuss the experiments. The reader will notice that the first mode is not used for these tests,
where we considered H,,, H,, and mixed H, / H,, control. The reason is that the amplitude of the first mode in the transfer
function T,; is more than 10 dB higher than the amplitudes of the other three modes in short-circuit condition. This in turn
means that the control action would basically be focused on just the first mode if it is taken into account when synthetizing
the controller. This would prevent demonstration of the capabilities of the shunt impedance to work on many modes at the
same time. Therefore, we aimed at damping the other three modes (modes 2, 3, and 4) in the tests shown herein.

5.2. Tests with a synthetic impedance

Many tests have been carried out to validate the BMI approach, but only some are described here for brevity. These tests
were carried out without synthetizing a real passive shunt impedance (i.e. one made from resistances, capacitances, and
inductances). Instead, a synthetic device was used to simulate the shunt impedance [61]. This approach allowed us to avoid
any possible uncertainty about the values of the electric elements composing the shunt impedance and thus enabled to test
the BMI approach without additional errors from external factors (i.e., uncertainty on the values of the electrical
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Fig. 4. Measured capacitance of the piezoelectric patch (circles are experimental measurements).
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Fig. 5. Trend of IT,¢ in SC. Experimental and numerical curves are almost superimposed.

parameters). Therefore, the use of the mentioned synthetic system was useful for testing the reliability of the LMI/BMI
approach and was considered as the first step of the experiments.

Table 2 lists the tests considered and the attenuation levels achieved. Fig. 6 and Fig. 7 show comparisons between the
numerical and experimental FRFs for tests A and B as examples. The value of n, used to obtain these results was equal to
twice the number of modes considered in the control problem, meaning that n, was lower than the order of the EMS (i.e.
n, = n,—1). Table 2, Fig. 6 and Fig. 7 indicate good agreement between the numerical simulations and the experiments, thus
demonstrating the effectiveness of the BMI approach and the reliability of the EMS model. Fig. 8 presents a magnification of
the peaks in Fig. 7 for a clearer comparison of the curves.

One interesting result is related to the comparison between the attenuation provided by the BMI approach and those
from well-established techniques using single piezoelectric actuators, CF and CB. Tests A and C from Table 2 are chosen as
examples. Comparisons of the BMI results and those from the CB and CF methods are presented in Fig. 9a and Fig. 9b for test
A and Fig. 9¢ and Fig. 9d for test C. In both cases, the CF technique fails to provide attenuation on the first considered mode
(i.e. the CF and SC curves are almost superimposed for the first mode). This is mainly due to the difficulties associated with
the minimisation procedure (see Section 1), which basically does not converge. The BMI instead always provides better
results than the state-of-the-art methods. Such a result is really interesting, especially because the initial controller for the
BMI approach is from the non-optimised CF method (see Section 3.3.2). Therefore, it is evident that the initial controller
does not provide satisfactory results and that the BMI algorithm is then able to converge to a better solution successfully.

Fig. 9 thus highlights the reliability and the effectiveness of the BMI approach in finding the optimal controller for a given
control problem. It is noticed that the CF and CB methods use either series or parallel resistances for each inductance. A
more complex approach with a combination of series and parallel resistances for each inductance would make the damping
performance closer to that of the BMI approach, but the choice of the values for these additional elements is not
straightforward.

Finally, we applied the BMI method also for H., control of just one mode (the results are not shown here for brevity). The
optimal shunt impedance and the consequent attenuation for this kind of control on a single mode have already been
described analytically in the literature [2]. BMI actually leads to this optimal solution, even when starting from an initial

Table 2
Description of tests with the order of the controller ny equal to ns—1.
Test ID Target variable z, Test type

Attenuation (numerical) Attenuation Difference (experiment—prediction)

[dB] (experimental) [dB] [dB]
A Displacement Mixed H,/H., on 11.0 on mode 3 10.5 on mode 3 -0.5 on mode 3
modes 3 and 4 11.9 on mode 4 12.1 on mode 4 0.2 on mode 4
B Displacement Mixed H,/H., on 6.9 on mode 2 6.5 on mode 2 -0.4 on mode 2
modes 2,3 and 4 5.0 on mode 3 4.9 on mode 3 -0.1 on mode 3
15.2 on mode 4 14.6 on mode 4 -0.6 on mode 4
C Displacement H.. on modes 10.6 on mode 2 10.9 on mode 2 0.3 on mode 2
2 and 3 10.3 on mode 3 9.2 on mode 3 -1.1 on mode 3
D Displacement H., on modes 12.2 on mode 3 11.6 on mode 3 -0.6 on mode 3
3 and 4 7.0 on mode 4 6.7 on mode 4 -0.3 on mode 4
E Velocity H., on modes 2, 10.6 on mode 2 12.0 on mode 2 1.4 on mode 2
3 and 4 9.5 on mode 3 9.1 on mode 3 -0.4 on mode 3
16.1 on mode 4 17.4 on mode 4 1.3 on mode 4
F Velocity Mixed H,/H., on 3.1 on mode 3 3.0 on mode 3 -0.1 on mode 3

modes 3 and 4

14.3 on mode 4

14.1 on mode 4

-0.2 on mode 4
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Fig. 8. Trend of IT,¢ for test B; magnification of the peaks of Fig. 7: mode 2 (a), mode 3 (b), mode 4 (c).
controller (see Section 3.3.2) that is far from the optimal one (e.g. errors up to about 30% intentionally imposed on the
electric components of the initial shunt impedance). In this case, even the linear solvers (see Section 3.3.1) can yield the
optimal solution.

5.3. Test with practical implementation of the shunt impedance

The second step of the experiments involved using a real shunt impedance Z. We performed different tests and we
discuss one of them in detail in this section, which is for H, control of the displacement of the third and fourth modes. The
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order ny of the controller was set as n,—1. The impedance Z resulting from the BMI problem had the following expression:

1. 88-10°s%+2. 32-10%3 + 5. 38:10'%s2+2. 14-10'°s+1. 72-10"°

Z(8) =
( s%42.24.10°s3+2. 46-10%5%2+2. 97-10'%s+9. 61-10" (34)

Brune’s synthesis led to the network in Fig. 10 (see Table 3 for the values of the electric components). It is noticed that
two negative inductances are present in the circuit (even though the whole shunt impedance is passive). These negative
elements just come from Brune’s synthesis procedure. This problem could be avoided by using other synthesis methods
[55,56], but they may require higher complexity. Nevertheless, the whole shunt impedance is still passive, and such negative
elements can be realised easily by using transformers (see Appendix C).

A critical aspect related to the practical implementation of the impedance in Fig. 10 is related the vertical branches (i.e.
the wire with Ly and G; and that with L and (), which should not have any resistance (see Fig. 10). However, the inductors
and capacitors on these wires are not ideal and therefore show a resistance value that cannot be completely null. Never-
theless, this criticality can be reduced using some tricks when building the network. As an example, the capacitances can be
implemented by small capacitances in parallel, resulting in a resistance value that is lower than that of a single capacitance.
This makes these parasitic resistances small (in this case, Ry = 0.07 Q and Ry, = 0.92 Q) and thus unable to influence the
behaviour of the shunt impedance.

Moreover, attention is needed when building all the resistances depicted in Fig. 10. Indeed R,, R¢, and R; must account for
the resistance values associated with the non-ideal inductors in series with these resistors. Therefore, the optimal values of
Ry, Rc and R were obtained by summing the residual resistance values of the non-ideal inductors with proper resistors in
series. As an example, for a residual resistance R, of the inductor representing Ls, R, has been obtained by adding a proper
resistance R, in series to the inductor such that R, = R, + R, ;. The final layout of the shunt impedance is shown in Fig. 3b,
which highlights the experimental setup used to build it.

The theoretical impedance (Fig. 10) matches well with the experimental results shown in Fig. 11. The experimental
impedance was measured by imposing a voltage at the impedance terminals and measuring the current flowing in the

——Gs — G

Fig. 10. Impedance Z (the values of the variables are provided in Table 3).



Table 3
Values of the parameters in Fig. 10.

Ry [] L [H] Gp [nF] Ly [mH] Rc [@] L¢q [mH] Lcp [mH] G [uF] Lp [mH] Rg [@] Lg [mH]
89.64 131 35.84 80.7 1.98 -76.04 -0.27 5.43 78 330.5 0.28
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Fig. 12. Trend of IT,¢: experimental and numerical curves (magnification of modes 3 and 4).

circuit. It is noticed that the shunt impedance provided by the BMI has a similar number of electric components to that
provided by the CB when two modes are controlled (as in this case). However, the complexity of the CB shunt impedance
increases much more than that of the BMI when the number of modes to be damped increases.

Fig. 12 shows the comparison between the experiments and the simulations in terms of IT,{. There is good agreement
between the curves, showing the reliability of the model and the BMI approach, even in presence of a physical shunt
network. The experimental FRFs were estimated using both chirp and random excitations, which produced similar results.

The capability of the BMI approach to provide satisfactory results paves the way for further development: the use of
matrix inequalities not only to design the shunt impedance, but also to choose the number, type, and location of the
actuators [62]. Indeed, the model described by Eqs. (4), (7), and (8), as well as its state space representation, can be extended
to a case where more than one piezoelectric actuator is attached to the vibrating structure. This would allow for a global and
general approach to shunt damping.

6. Conclusions

This paper has dealt with multi-modal vibration damping by means of shunted piezoelectric actuators. An approach
based on matrix inequalities has been presented to provide good attenuation levels and assure the passivity and the rea-
lisability of the shunt impedance without posing restrictions on the impedance layout or requiring any arbitrary assumption
on the network component values. This was made possible by setting up a multi-objective control problem based on matrix
inequalities. The approach relies on the description of the electro-mechanical system using a state space representation
where the shunt impedance is seen as a controller in a feedback loop.

The matrix inequality problem was shown to be non-linear; more specifically, a BMI problem. Thus, the solution requires
non-obvious approaches. We tested two techniques: an iterative procedure based on the linearization of the problem using
approximations (which enables the use of linear solvers), and non-linear solvers. These approaches allow for designing
controllers with any desired order and pose no restrictions or conservatism on the solution. The use of non-linear solvers
was more robust compared to the linearization of the problem using approximations.



The experiments showed that the proposed approach is reliable and effective. The BMI method achieved better at-
tenuation performance than the well-established methods. This was also due to the possibility of posing specific control
targets (e.g. H, and H,, control). The matrix inequality approach will be further investigated to the aim of developing of a
general approach where the number, type, and location of actuators will also be considered as problem variables, as well as
the features of the shunt impedance.

Appendix A

If the target of control is velocity reduction, we need to change the output variable z,, which will no longer be dis-
placement but velocity, i.e. z, = W. Therefore, we change the form of the matrix C, (see Eq. (13)):

C, = [q)u(xm) 0 Qyixp) 0 - Pp(xy) O 0] (A1)
For controlling acceleration, we need to change C,, D,,,, and D, (see Eq. (13)):

C,=Cp+ Cupny + - + oy Dy = @ (X1 )®y(Xp) + Py t(X) Py 1(Xg) + - + Pp(X)P(Xg);

D,y = <I)u(xm)buwu + CI)u+1(Xm)bu+1‘0u+l +.oF q)h(xm)bhwh (A2)
where:
[ b
C = () =280, _w142(1+b5) 0 _wubuwu+1bu+1 -~ 0 _a’ubuwhbh _Ru_(‘c’u]
L p-p (A.3)
2 2 bu+1wu+l
Cz(u+1) =D, Xy) 0 _wu+1blz+1wubu =28, 110y 11 _wu+l(]+bu+1) 0 _wu+1bu+lwhbh _T
p-p (A4)
[ )
czh = (Dh(xm) 0 _“’hbhwubu 0 _“’hbhwuﬂbuﬂ _thmh _whz(l"'bf%) _hwh:I
| RyG, (A.5)
Appendix B
The expressions of matrices Ay, B, Cy, and Dy (see Eq. (21)) for z, = W, z, = W, and z, = W are as follows:
A +B,D\C, B,C B
= ,B,=| f|c,=[¢c,+D,DC, D, ClD,=[D
cl [ Bl(cy Ak cl |: 0:| cl [ z zwk-y w l(] cl [ zf] B.1)

Appendix C

When Brune’s method is used to synthesise the electrical network, the possible presence of negative inductances in the
circuit is always associated with the configuration shown in Fig. C.1a, where L; and L, are positive inductances, while L; is a
negative one. Such a circuit can be practically implemented relying on the transformer concept, based on inductances L, and
L, (see Fig. C.1b). Indeed, the use of the transformer allows us to reproduce the behaviour of the circuit in Fig. C.1a according
to the following equations:

L= Lp + ktrasf\/LpLs
LZ = Ls + ktrasf\/LpLs

Ly = — Ko LpLs (C.1)

where 0 < ke, <1; kyasr is the coupling coefficient of the transformer, which expresses its efficiency.

According to Eq. (C.1), it is thus possible to derive the values of Ly, L, and ki, from the desired values of L;, L, and L;:

LP =L +1L;
Li=L,+ 1L,
L
kt f= - 3
rasl LPLS

(C2)
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Fig. C.1. Circuit to build (a), its practical realisation (b), and the layout of the transformer (c).

It is possible to demonstrate that when Brune’s method leads to the network in Fig. C.1a, the value of k¢ is equal to 1
(i.e. perfect coupling) [57]. A practical implementation of the transformer in Fig. C.1b is shown in Fig. C.1c. The values of L,

and L, depend on the relative magnetic permeability 4, the area A, crossed by the flux, and the mean path of the flux lines
lf:

n A
Lp=Nc2p(Pn+ Tf s]

A
l‘szl\,czs(l)22+lll-;1 S]
f (C.3)

where N, and N are the numbers of turns of the coils of L, and L, respectively. B; and Py, are the dispersions of the

transformer due to non-perfect coupling (B; and P,, must be null in this case because k., = 1). In this application, the
transformer was built with an iron ring as a core, with an inner diameter of 28.5 mm, outer diameter of 51.8 mm, and
thickness of 21.3 mm. Finally, x, was 4300.

Even if the perfect coupling required by Brune’s method is not physically feasible, a value of k. near 1 can be achieved
with the typical values of the electrical variables involved in shunt applications and properly designing and building the
circuit. This can be seen in the experimental FRF of the shunt impedance used in this application in Fig. 11. This experimental
FRF matches well the theoretical one, which means that the value of k. is sufficiently near 1. More details about trans-
formers can be found in the wide referenced literature (e.g. [63]).
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