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Predicting petrophysical properties by means of digital core analysis strongly relies on the operator expertise and becomes very challenging when dealing with clay 
microporosity, due to resolution limits and a general lack of recommendations. In the standard workflow, 3D images of rock samples are acquired via X-ray computed 
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to-mography and processed, to reconstruct pore geometries that are used to set up numerical experiments for the calculation of physica
permeability. In the present paper, the limits of the standard workflow are investigated and specific strategies are proposed to make the entire
dependent and more reliable when dealing with tight samples. A global thresholding technique is applied for the identification of the pore spa
performance has been found to be strongly related to contrast, noise and presence of rock microporosity. Threshold selection is more robust if c
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computational grid directly on the 3D stack of images. Methods to compute porosity, specific surface and average pore diameter are described. A
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Fredrich et al., 2014). As a matter of fact, digital analysis is nowadays 
regarded with interest not only for its capability of predicting the main 
petrophysical properties, but also because it gives a valuable physical 
insight into the micro-scale phenomenona. In the standard workflow, 
cores are imaged, for instance by X-ray micro-tomography, to obtain a 
digital reconstruction of the inner pore structure. Then, numerical 
methods are used to simulate single and multiphase flow to retrieve the 
petrophysical properties of interest. The complete digital process in-
volves several modeling choices, such as the choice of the parameters 
employed for the processing and segmentation of the image, the size of 
conventional reservoirs are unpractical and/or lead to unreliable evalu-
ations (Wang et al., 2015).

the subvolume used for the simulations, the solver and the boundary 
conditions. The choice of the representative sample size is particularly 
The limits of traditional experimental methods has rapidly turned 
digital core analysis into a commercial predictive tool (Blunt et al., 2013;

* Corresponding author.
E-mail address: augusto.dellatorre@polimi.it (A. Della Torre).
 under the CC-BY-NC-ND 4.0 lice
i.org/10.1016/j.petrol.2017.06.0
critical because it directly affects the computational cost of the numerical 
simulation (Blunt et al., 2013. Andr€a et al., 2013a). Even so, most
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2. Methodology

The analyzed Digital Rock Physics (DRP) workflow consists of: (i)
image processing, to identify and separate matrix and pores; (ii) the
generation of a computational mesh; (iii) performing numerical simula-
tion, to determine the effective properties of the sample.

challenges are related to the processing of the image dataset for the 
reconstruction of the void space, as it is difficult to define a standard 
workflow able to provide accurate results over wide range of porosities 
and permeabilities. After the tomographic acquisition images are usually 
processed, for example by adjusting contrast or by reducing brightness 
inhomogeneities and noise. At the present, several techniques have been 
proposed to perform an automatic image editing and segmentation 
(Schlüter et al., 2014; Iassonov et al., 2009; Eibenberger et al., 2008; 
Buades et al., 2005; Huang and Chau, 2008), but porosity estimations are 
still inaccurate in rocks where a significant fraction of the porosity is 
below the image resolution (Awang et al., 2015; Long et al., 2013; Golab 
et al., 2010; Sok et al., 2009). As for tight sandstones and carbonates, the 
resolution of Micro Computed Tomography (micro-CT) scanners, which 
is in the order of few microns, is not enough to resolve micro-porous 
structures. On the contrary, these features can be clearly observed and 
identified with a resolution of nanometers, e.g. with 2D acquisition by 
means of Scanning Electron Microscope (SEM) or 3D imaging by means 
of Focused Ion Beam Scanning Electron Microscope (FIB-SEM) (Long et 
al., 2013; Golab et al., 2010; Sok et al., 2009). Nano resolution images 
cannot be directly used to construct a computational grid and to perform 
numerical simulations, due to the limitations in computational resources 
and to the requirements on the representativeness of the sample. The 
integration between SEM data and micro-tomography by mapping sub-
resolution porosity visible in a 2D SEM image to gray scale levels in a 3D 
tomographic image has found to be a successful strategy (Sok et al., 
2009), but it is still a quite challenging task to be performed, since it 
requires unconventional experimental procedures for data registration. 
As a matter of fact, the conventional workflow for image processing is 
applied also to rocks with a high amount of micro-porosity. Manual 
thresholding is usually performed targeting a compromise between the 
need of an accurate representation of the geometry and the loss of detail 
caused by the low resolution of the images. As a results, rock charac-
terization is subject to a high degree of uncertainty; in particular, 
comparative studies have shown that the values predicted for porosity 
and permeability have a variation range with respect to mid-range values 
that is up to about 30% for porosity and 40% for permeability (Andr€a et 
al., 2013a,b).

In the present study, a complete Digital Rock Physics (DRP) workflow 
is applied both to conventional and low permeable rock samples 
following a direct simulation approach. The proposed methodology is 
implemented on the basis of open-source tools, namely Fiji (Schindelin et 
al., 2012) and OpenCV (Bradski et al., 2000) for image processing and 
OpenFOAM® (Weller et al., 1998; OpenFOAM Foundation) for Compu-
tational Fluid Dynamics (CFD) simulations. Current challenges in the 
application of the workflow to tight samples are addressed, aiming at the 
development of a procedure that is highly automatic and able to improve 
the reliability in the geometrical and fluid-dynamic characterization of 
low permeable rocks. The effect of the presence of microporosity on the 
quality of the segmentation when applying an automatic thresholding is 
investigated. An image-based mesh generation strategy is developed to 
minimize the possible loss of accuracy during the reconstruction of the 
geometry and retain as much information as possible. Moreover, strate-
gies to account for the effect of microporosity on the fluid flow in the 
numerical simulations are proposed and discussed.

The article is organized as follows. Firstly, the methodology that has 
been adopted is presented and details for each step are provided. Then, 
the available datasets of conventional and tight rocks are described. 
Finally, results for the geometrical and fluid-dynamic properties of the 
samples are shown and discussed.
2.1. Image processing

The image processing phase consists of: (1) cropping; (2) histogram
equalization; (3) denoising; (4) segmentation.

Firstly, images are cropped to ensure that edge artifacts at the corners
are removed and to allow the choice of a proper Representative
Elementary Volume (REV). The histogram equalization technique is used
for contrast enhancement. Datasets that are characterized by low contrast
show a steep curve for the cumulative density function of gray values,
since most of the voxels are concentrated in a narrow range of intensities.
Histogram equalization spreads the intensity distribution across the full
intensity range (0–255 in a 8-bit image). Due to image integrity reasons,
the output image has a nearly flat histogram, with a greater amount of 
details that are visually distinguishable. Despite contrast enhancement 
destroys some structural information of the input image (Schlüter et al., 
2014), it is necessary to improve the quality of the segmentation, espe-
cially if global thresholding is applied (Iassonov et al., 2009). Moreover, 
contrast enhancement has the practical advantage of making the seg-
mentation algorithm more robust and improving the threshold detection 
at the same time (Schlüter et al., 2014). The algorithm for histogram 
equalization has been implemented on the basis of the procedure 
described in Easwaran (2009) and applied to the full 3D stack at once.

The third step, denoising, is required to improve the signal to noise 
ratio of tomographic images. Denoising techniques basically apply an 
averaging between pixels to reduce noise. As a side effect, averaging 
reduces image detail, typically blurring edge regions or removing small 
features. In order to avoid excessive loss of details while still improving 
the reliability of the segmentation, edge-preserving noise reduction fil-
ters have been designed (Eibenberger et al., 2008). Among these, there 
are Bilateral Filter (BF) and Non-Local Means (NLM). The main 
difference between the two is that in BF averaging is performed over the 
pixels that surround a target pixel, while in NLM all pixels in the image 
are considered. For this reason, NLM is expected to be more robust than 
BF when dealing with noisy data (Buades et al., 2005). NLM is also very 
efficient in artifacts removal, as for ring effect (Schlüter et al., 2014). In 
both algorithms, information about pixel location and intensity is stored 
and used to determine the relative weight within the averaging process. 
Usually, some input parameters control the averaging window size and 
intensity limits, but these have to be manually set. BF and NLM versions 
included in Fiji and OpenCV have been tested. In particular, 2D and 3D 
implementations are available, except for BF in OpenCV. In this case, its 
3D version has been obtained by averaging the output of three sequential 
2D slice-by-slice denoising operation performed along the three main 
directions. Denoising parameters have been varied systematically to 
study how segmentation and effective properties are affected by different 
operator choices.

The last step of image processing is segmentation, which aims at 
identifying the pore space. A histogram-based global thresholding tech-
nique has been selected for application, because of its simplicity and its 
possible extension to multi-region segmentation. Moreover, denoised 
images of the given samples do not show any significant artifact, so 
locally adaptive thresholding seem not to be necessary. The threshold 
value for the pores has been chosen at the first minimum of the stack 
histogram. This approach avoids any pre-classification of voxels or any 
assumption about background-foreground classes. For comparison pur-
poses, a more refined strategy based on Gaussian Mixture Models (GMM) 
has been adopted (Huang and Chau, 2008). The stack histogram is fitted 
with Gaussian distributions, whose parameters are estimated by the 
Expectation Maximization (EM) algorithm (Dempster et al., 1977; 
McLachlan and Krishnan, 2007). The number of Gaussians and initial 
guesses for the parameters are automatically retrieved by the minima 
and maxima of the histogram. Optimal thresholds are found at the 
minima of the statistical distribution resulting from the sum of the 
Gaussians.

The quality of segmentation is strongly limited by image resolution. 
In particular, the voxels containing microporosity appear as shades of 

gray and can be easily misclassified by a single thresholding technique,



since they make the ideal separation between the pore phase and the 
solid phase less clear. It may also happen that, in presence of micropo-
rosity, the stack histogram shows two peaks in the low intensity range. In 
this case, the pore space is identified by selecting the threshold value at 
the second minima of the stack histogram. The reason for this choice and 
the implications in terms of estimated porosity and permeability will be 
presented later on in this work (Sec. 4). However, it is important to 
highlight the fact that if microporosity is not described, not only total 
porosity is underestimated, but also connectivity. This strongly affects 
the estimations of the average pore diameter, average flow velocity, 
overall flux and other parameters sensitive to stagnant regions (Leu et al., 
2014).

The application of the described four-step methodology have shown 
that, for the available datasets, morphological operation, e.g. erosion/
dilation, were not necessary. These techniques are generally used when 
there are artifacts that need to be removed (Iassonov et al., 2009), or to 
find the skeleton of the pore space within a network modeling approach 
(Blunt et al., 2013). Obviously, when one wants to apply such morpho-
logical operations, the risk of indiscriminately removing not only 
spurious noise but also true features has to be considered.

2.2. Mesh generation

A voxel-based mesh generation strategy has been developed for 
creating the computational grid. A novel mesh generator has been 
implemented on the basis of the OpenFOAM® library to allow direct 
meshing on the denoised image stack. The meshing process is outlined in 
Fig. 1, where dotted blocks are optional. The process is automatic and 
faster, if compared to other approaches, because the final mesh is ob-
tained without the need for extracting a Stereolithography (STL) repre-
sentation of the pore-grain interface. The final mesh is obtained 
iteratively, by further refining the initial mesh.

Mesh generation starts from a cartesian background grid, which is 
superimposed on the 3D image stack domain. The initial cell size Δxi is 
related to the image resolution res according to

Δxi ¼ res⋅2N

so that at the N-th iteration it will be equal to the pixel size. At each 
iteration, the gray level statistics (minimum, maximum and average 
value) of the pixels contained in one cell is computed and associated to 
that cell. Local information about average gray are used for cell classi-
fication and for modeling the microporosity, as it will be explained in the
Fig. 1. Mesh generation.
next section. Cells are classified as fluid cells, solid cells or boundary 
cells, on the basis of the threshold chosen during the image processing 
phase. Solid cells are excluded from further analysis, while fluid and 
boundary cells are kept. Boundary cells are refined by splitting hexaedral 
cubic cells into eight. The process iterates until the pixel size is reached. 
Finally, the mesh is split into multiple regions and only connected paths 
are kept. The final mesh has a stair-step pattern (castellated mesh) and 
includes only fluid cells. Fig. 2 shows the refinement process over an 
initial background mesh with cubic cells of 64 pixel side.

Two additional steps can also be performed, namely throats refine-
ment and smoothing. Throats refinement improves the accuracy of the 
numerical solution in the throats and narrow restrictions, where the flow 
speed is higher. It is not strictly required if, for example, the image has a 
high resolution, since the mesh has been generated with the minimum 
cell size of a pixel. On the other hand, if the resolution is low, throats may 
contain too few cells and the accuracy of numerical results may be 
affected. High speed regions can be identified, for example, by running a 
preliminary flow simulation with a potential flow solver, that will pro-
vide a first attempt solution to the velocity field. In fact, one can have an 
idea of where the main flow paths are by displaying the velocity field, 
even regardless of its actual magnitude. Once these critical regions are 
identified, refinement is achieved by splitting the cubic cells and/or by 
further refining near the walls. Fig. 3 examplifies the mesh refinement 
based on high speed region identification. Fig. 3a is an enlarged view of a 
2D cut of a pore throat and displays the magnitude of the velocity field as 
it is obtained by running the preliminary potential flow simulation with a 
fixed inlet velocity of 1 mm/s. It is reasonable to assume that the high 
speed region consists of all red cells where the speed is greater or equal to 
ten times the Darcy inlet velocity. One level of volume refinement is 
applied to these cells, and one additional layer is added at the walls. The 
refined mesh is shown in Fig. 3b. The sensitivity of the calculated 
permeability on the refinement is discussed in Sec. 4. The second 
optional step is smoothing. The smoothing of the rock surface helps in 
getting a surface that is more realistic than a stair-step mesh. Mesh 
morphing is handled with the native OpenFOAM® mesh generator 
snappyHexMesh, so that mesh quality is ensured. Mesh smoothing re-
quires the extraction of a STL surface from the castellated mesh. Since the 
proposed methodology avoids the creation of a surface reconstruction at 
image processing level, the surface should be created via an interpolation
Fig. 2. Mesh generation: (a) background mesh and first iterations of the refinement cycle
(b) removal of unconnected regions and final mesh.



Fig. 3. Mesh refinement: (a) identification of high speed regions by a potential flow 
simulation (b) throat and wall refinement.
∇⋅u ¼ 0 (1)

ðu⋅∇Þu ¼ g� ∇ðp=ρÞ þ ν∇2u (2)

where u is the flow velocity, p is the pressure, ρ is the fluid density, ν is 
the fluid kinematic viscosity, g is the gravitational acceleration and ∇ is 
the nabla operator. The system of Eqs. (1) and (2) can be further 
simplified by assuming creeping or Stokes flow conditions, which means 
that the left-hand side of Eq. (2) can be neglected.

The experimental set-up of a permeameter is reproduced by imposing 
a uniform fixed velocity at the inlet, along the longitudinal direction of 
the sample, namely the z-direction. The inlet value is set in order to grant 
creeping flow conditions. No-slip conditions are imposed at the walls. 
Under these assumptions, the absolute permeability can be computed 
from the Darcy law considering the pressure gradient estab-lished in the 
z-direction. The prediction can be directly compared with the 
experimental value corrected in order to take into account the 
Klinkenberg effect.

Reliable estimations of macroscopic quantities require the simulation of 
a sufficiently long sample. If the sample is too small, the solution is not 
representative, but if it is too long, heterogeneity effects may be too 
relevant. Mostaghimi et al. (2012) have found, as a rule of thumb, that the 
REV needed for flow-based measures is up to twice as large as the REV 
based on geometrical quantities, such as porosity or specific surface area 
(Mostaghimi et al., 2012). The dependency of absolute permeability on 
sample length has been investigated, while keeping the cross-sectional area 
constant. This corresponds to the assumption that permeability is

of the castellated mesh, which might be too expensive in terms of time 
and resources. For single-phase flows, drawbacks seem to overcome the 
gain in accuracy of the results. For this reason, mesh smoothing is avoi-
ded and simulations are run on the castellated mesh. In case of multi-
phase flow simulations, a step-like mesh requires special care, espe-cially 
when capillary forces are evaluated (Raeini et al., 2012), but that is 
beyond the scope of the present paper.

2.3. CFD model

Conservations of mass and momentum are solved numerically for a 
single-phase, isothermal, steady flow of an incompressible, Newtonian 
fluid. Under these assumptions, the governing Navier-Stokes equations 
reduce to (Frisch, 1995):
more sensitive to a change in length than to change in cross-section, 
which seems reasonable if the aspect ratio (length to width) is 
not excessive.

Fluid-dynamic permeability is very sensitive to an arbitrary choice of 
the threshold (Leu et al., 2014). If the threshold value is high, perme-
ability may be overestimated; if it is too strict, full path connectivity may 
not be ensured. With a finite resolution, the assumption that all 
computational fluid cells are completely empty (open-pores) has no 
physical basis. Pixel intensities depend on the presence of microporosity, 
so it is possible to identify microporous regions and treat them accord-
ingly. In the proposed approach, unresolved porosity regions have been 
included in the pore space, mimicking their presence with an increased 
fluid resistance. A local resistivity source term, R, has been included in 
the conservation of momentum (Eq. (2)) as a generic Darcy resistance 
term (Dullien, 2012):

R ¼ νdiu (3)

where di is a resistivity factor associated to the microporosity. In the
proposed simplified model, di is computed as a linear function of the
average grayscale level gi associated to each cell. For example, to apply
the model in the range ½gmin; gmax�, the resistivity factor is defined for each
cell i as:

di ¼

8>>><
>>>:

0; if gi < gmin
dmax

gmax � gmin
ðgi � gminÞ; if gmin � gi � gmax

dmax; if gi > gmax

The grayscale range ½gmin; gmax� defines the region in which micropo-
rosity is present and it can be identified on the basis of the analysis of the
histogram of the image, considering the region of transition between
open pores and solid media. As it will be exemplified in the following
sections, a reasonable criterion is to assign gmin to the gray level of the
peak associated to the open pores and gmax to the threshold value adopted
for the image segmentation.

3. Dataset

The considered datasets consist of 3D stack of images of four samples 
obtained from X-ray microtomography. Image resolution and dimensions 
are reported in Table 1. For each sample, the experimental value for the 
helium effective porosity and absolute gas permeability is available from 
measurements performed at eni laboratories (see Table 2). Datasets S1 
and S2 refer to sandstones, which are characterized by an experimental 
value of permeability that is two orders of magnitude higher than for 
datasets T1 and T2. Scanning Electron Microscopy (SEM) and mercury 
porosimetry results have highlighted that T1, T2 and S2 contain a high 
percentage of microporosity due to clays.

4. Results and discussion

Results for the geometrical and fluid-dynamic characterization of the 
four samples are presented. These include the evaluation of the total and 
connected porosity Φ, the specific surface Ssp, the equivalent pore size 
Deq, the absolute permeability k along the longitudinal axis and the tor-
tuosity τ.

Table 3 collects the final results for all the samples presented in Table 
1. In particular, for sample S1 three tomographic acquisitions have been 
made to investigate the presence of significant heterogeneity at the plug 
scale.

4.1. Geometrical characterization

    The geometrical characterization follows the workflow described in 
the previous sections. Image processing is exemplified considering a



Resolution (μm) Dimensions (pix)

Tight rock 1, T1 2.175 700 � 700 � 2444
Tight rock 2, T2 2.73 1292 � 1292 � 1600
Sandstone 1, S1 2.13 992 � 1015 � 992
Sandstone 2, S2 2.05 988 � 1015 � 992

Table 2
Experimental data for helium effective porosity and absolute gas permeability.

Porosity (%) Permeability (md)

Tight 1, T1 10.6 0.4
Tight 2, T2 12.7 0.5
Sandstone 1, S1 20.3 60
Sandstone 2, S2 16.6 55

Table 3
Summary of the results for the geometrical and fluid-dynamic characterization of the
available samples. Cropped dimensions: T1 512 � 512 � 1600, T2 512 � 512 � 1024, S1
512 � 512 � 512, S2 512 � 512 � 896.

Nb. cells
(MLN)

Φconn (%) Ssp (1/mm) Deq (μm) k (md) τ (�)

T1 19.1 8.0 42.1 7.5 0.6 2.3
T2 15.5 12.8 38.6 13.2 1.8 2.1
S1-a 10.0 21.1 53.9 15.7 529 1.5
S1-b 9.7 9.4 59.8 5.5 6.6 2.0
S1-c 13.8 25.5 61.7 16.4 1202 1.4
S2 16.0 16.6 58.4 11.4 60.6 1.7

Table 1
Resolution per pixel of the micro-CT images.
centred subsample of T1, having a squared cross-section of 512 � 512
pixels and a total length of 1600.

–Fig. 4a b shows how the histogram associated to the image stack
appears before and after being digitally processed. Fig. 4a is the original 
stack histogram of the 8-bit centred subsample of T1. Intensities range 
from 0 (black) to 255 (white). Lighter gray values correspond to solid 
mineral phases, darker gray values to pores. Peaks identify phases having 
a similar attenuation coefficient. It can be noticed that, if the image stack 
is not processed, contrast is too poor and peaks cannot be distinguished. 
Fig. 4b shows the stack histogram after contrast enhancement and 
denoising. Gray values are well distributed over the entire range of in-
tensities and minima for thresholding can be clearly identified. 
Compared to bilateral filtering (BF), non-local means (NLM) produces 
higher maxima and lower minima. The pore space distribution retrieved 
with bilateral filter is bell-shaped, whereas with non-local means it is 
right-skewed and resembles a lognormal distribution. This suggests that 
the blurring effect introduced by bilateral filter is more pronunced. 
Anyway, the location of the first minimum, that identifies the threshold 
between pores and solid, remains unchanged, taking the value of 46 for
Fig. 4. Image processing - effects on the stack histogram of a 512 � 512 cropped sample: a) o
mixture fitting.
BF and 45 for NLM. The corresponding value for the total porosity is 
slightly higher for NLM (9.2% against 8.0% with BF). Peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) (Wang and Bovik, 
2002) have been evaluated to assess the quality of denoising in a quan-
titative way. With the current parameter setting, the dataset processed 
with NLM has an associated PSNR that is slightly higher, suggesting a 
better performance in terms of denoising. The SSIM index for both filters 
is greater than 0.9, so structural information are not excessively dis-
torted. For gaussian-like data distributions, it is also possible to estimate 
mode locations using a mixture model (Huang and Chau, 2008). Soft, or 
probabilistic, ownerships may perform better with respect to hard as-
signments in case of nearby peaks. Fig. 4c shows the Gaussian Mixture 
Model that fits the histogram processed by BF. In this example, data have 
been clustered using a mixture of four Gauss distributions, one for each 
detectable peak. The maximum likelihood parameters of the fitting dis-
tributions have been obtained using the Expectation Maximization al-
gorithm, under the assumption that each mode corresponds to a normal 
distribution. The GMM thresholding approach results in lower values of 
threshold (40) and total porosity (7.1%).

For the geometrical characterization to be reliable, a Representative 
Elementary Volume (REV) of the sample shall be considered. Once the 
threshold is selected, the size of the REV is calculated by increasing the 
sample length, while keeping fixed its cross-section. For each length, the 
total porosity of the subsample is evaluated. Fig. 5a shows that, after an 
initial decrease, the total porosity remains almost constant for sample 
lengths exceeding 0.6 mm (9:2% ± 0:5). A change of one percentage 
point can be regarded as acceptable, because it lies within the experi-
mental error. The local porosity value of each slice gives an idea of the 
heterogeneity within the sample (see Fig. 5b). If the same procedure is 
applied to a sample having a smaller cross-section, the estimated REV 
length will not be the same. However, this difference has been verified to 
be negligible for static properties estimation. On the contrary, for dy-
namic properties like permeability, a larger cross-section may provide a 
better connection of the flow paths. This issue will be further discussed 
later on. For the tight rock T1, SEM images with a resolution of 0.16 
microns were also available. Thus, it has been possible to conduct a 
deeper investigation on the limits of resolution when trying to charac-
terize a tight sample. Fig. 6a shows a representative detail for the sample 
in the original SEM, with the relative histogram reported in Fig. 7. Three 
types of porosities are clearly distinguishable: open pores, intergranular 
porosity and a clay-rich microporous region. Open pores are highlighted 
in blue in Fig. 6c and correspond to the first mode of the histogram. The 
intergranular porosity and the clay-rich microporous region, highlighted 
in red in Fig. 6e, correspond to middle grays. Intergranular porosity is 
made of tiny slot-like pores along grain boundaries, whose relative 
contribution to the porosity appears to be smaller than that of the clay-
filled pores. It can be also noticed that the clay-rich region provides 
direct connection between the two open pores shown in Fig. 6c, which 
might play a role in the definition of the preferential flow paths. Recent
riginal; b) after contrast enhancement and bilateral filtering/non-local means; c) gaussian



Fig. 5. REV for static properties: total porosity for a sample of increasing length (a); porosity as a function of the longitudinal axis (b). Average values (dotted lines) refer to the total
porosity of the whole sample (9.2%).

Fig. 6. Open pores and microporosity in SEM (a)-(c)-(e), 0.16μm/pix, and low-resolution 
SEM (b)-(d)-(f), 2.4μm/pix. Original images (a)–(b); open pores (c)–(d), 8.0% porosity; 

microporous region (e)–(f), 18.4% porosity.

Fig. 7. Histogram of the SEM image (0.16μm/pix): open pore region in blue, microporous 
region in red. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

different lengths. From Table 4 it can be noticed that a test
studies in tight gas sandstones suggest that clay-filled microporosity, and 
not slot-like pores, is the most important flow path (Golab et al., 2010). 
Lower-resolution images have been constructed from the original SEM 
images by pixel averaging (see Fig. 6b), so that the final resolution (2.4 
μm) is comparable to that of the tomographic acquisition. Then, open 
pores and microporous regions have been identified by visual in-spection 
(Fig. 6d-f). By comparing Fig. 6c with Fig. 6d, it can be inferred that open 
pores are satisfactorily well-resolved at both resolutions; on the contrary, 
the morphological structures of the slot-like pores and of the clay 
features are completely lost (Fig. 6f). Nonetheless, as long as clay-filled 
pores are included in the segmentation, connectivity seems to be 
ensured. This result is further discussed in the next section, where a 
threshold-sensitivity analysis is performed to highlight the role of 
microporosity in providing connectivity of the flow paths and better es-
timations for porosity and permeability.

Geometrical properties are computed once the mesh has been 
generated and after non-connected regions are removed. The analysis 
aims at quantifying the connected porosity, the specific surface and the 
average pore size. The computation of the connected porosity Φconn and 
specific surface Ssp is straightforward by the definition. The former is 
defined as the ratio between the pore volume that can be accessed by the
flowing fluid and the total (bulk) volume of the considered test section. 
The latter is given by the ratio between the surface area at the walls and 
the total (bulk) volume of the considered test section. In order to 
estimate the average pore size, the pore space morphology has been 
analyzed using the maximum inscribed sphere method (Silin and Patzek, 
2006). This approach relies on the description of the pore space via 
clusters of inscribed spheres and has been proven to be effective in pore 
networks extraction from tomographic images (Dong and Blunt, 2009). 
Therefore, it has been developed and implemented in the OpenFOAM®, 
to be used as a post processing tool. At first, the entire domain is explored 
to find the range of all possible values of the radii of the maximal 
spheres. Since each sphere is cell-centred and shall touch the solid 
surface, the range will be limited by the minimum and maximum 
distances, over the entire domain, between the cell centre and the nearest 
wall (Fig. 8a). Starting from the largest possible sphere, increasingly 
smaller spheres are built and if two of them touch, they are merged and 
clustered (Fig. 8b). It must be remarked that in order to cope with the 
step-like discrete represen-tation of the sphere, it is advisable to adopt a 
lower and upper limit for the radius of the sphere, instead of one value 
only. At the end of the process, the entire pore volume is filled and an 
average pore diameter can be obtained analyzing the size distribution of 
the sphere radii. In particular, the average pore diameter has been 
calculated as a volume-weighted average, so that the relative 
contribution of each diameter is given by the percentual volume of 
occupation of the sphere. Then, this value is compared to a theoretical 
estimation of the equivalent diameter Deq ¼ 4Vpore=S, obtained assuming 
that the pore space is reduced to an equivalent capillary tube of volume 
Vpore and surface area S.

The aforementioned geometrical characterization is here exemplified 
for a cropped sample of S1, having a cross-section of 256 � 256 pixels. For 
this sample, the pore space has been identified in the range of in-tensities 0 
to 67 (see the stack histogram reported in Fig. 9). From Fig. 9 it can be also 
noticed that the pore distribution is narrow, suggesting that pores are well 
resolved. The representativeness of the sample is checked by considering 



Fig. 8. Pore space morphology analysis, S1 (256 � 256 � 256): visualizations of the
maximum distance from the wall (a) and of the spheres filling the pore space (b).

Table 4
Geometrical characterization of S1. Centred cropped sample, squared cross-section
256 � 256. Dependency on the test section length.

Length (pix) Ssp (1/mm) Φtot (%) Φconn (%)

128 59.1 26.3 26.2
256 57.6 24.5 24.4
384 58.9 23.9 23.8
512 59.7 23.4 23.2
640 60.0 22.4 22.3
768 57.8 22.1 21.9
section of 0.3 mm long is sufficient to capture the porosity and specific
surface. In the same table, values for the total porosity Φtot are provided
and refer to the estimation of the porosity before the removal of the
unconnected regions from the mesh. For this sample, the difference be-
tween the total and connected porosity is negligible, suggesting that the
pore space is well connected. The maximum inscribed sphere method
applied to this sample gives an average pore diameter of 17 microns,
which is in good agreement with the theoretical equivalent diameter (16
microns). This result seems reasonable, as it aligns with the literature
studies upon the validity of a capillary tube model for sands.

4.2. Fluid-dynamic characterization

The fluid-dynamic characterization of the samples includes the esti-
mation of their absolute permeability and tortuosity. CFD simulations are
carried out on the 3D finite volume open-source platformOpenFOAM®. If
not stated otherwise, no additional refinement has been applied to the
base mesh having cell size equal to pixel size.

The governing equations have been solved imposing a fixed inlet
Fig. 9. Stack histogram of S1, NLM denoising applied.
value for the velocity, a fixed reference pressure at the outlet, no slip and 
zero pressure gradient at the walls. Permeability values are retrieved 
from the Darcy equation. So, in order to ensure a Darcy regime, all the 
calculations have been performed setting the inlet velocity to 1 mm/s. 
This value has been selected after comparing the results obtained from 
the basic steady-state solver for incompressible flows to those obtained 
from a Stokes solver, where inertial terms have been removed from the 
equations. As shown in Table 5, the absolute permeability retrieved by 
imposing 1 mm/s (k@1 mm/s) differs from that obtained under Stokes 
flow conditions (kstokes) for less than 1%. It must be noticed that Table 5 
refers to simulations that do not take into account a model for micro-
porosity, i.e. microporous region are considered as open pores; therefore, 
the reported permeability values are far from being a reliable estimation 
for the tight sample under analysis. Considering that microporous 
regions are mainly located around the open pores and that they represent 
a resistance term (see Sect. 2.3), when microporosity is included in the 
analysis the flow experiences an increase in velocity due to a reduction in 
the effective cross-section area. Even so, the calculated Reynolds number 
is less than 1, meaning that the flow regime is still laminar and the Darcy 
regime assumption holds.

A mesh sensitivity analysis has been undertaken to test the need for 
further refinement in high velocity regions. Throat refinement has been 
performed as detailed in Section 2.2. Fig. 10 is an enlarged view of a 
longitudinal slice of the sample in a high speed region. Fig. 10-a displays 
the solution for the velocity field on the base mesh, while Fig. 10-b is the 
solution obtained for the refined mesh. As expected, refinement 
improves the velocity profile near the walls, but the maximum value is 
correctly predicted in both cases. The estimated values for absolute 
permeability have been collected in Fig. 11. For this sample, refinement 
has a negli-gible effect on the accuracy of the results, with a calculated 
maximum percentage error of 1.5%.

In order to perform a sensitivity analysis on the REV size, sample 
dimensions and position have been sistematically changed and results 
have been collected in Figs. 11 and 12b. Fig. 11 is an example of REV 
analysis performed on a subsample of S1, where absolute permeability is 
computed considering different sample lengths and a fixed cross-section 
(256 � 256). It can be noticed how permeability decreases for increasing 
sample length, until it approaches an almost constant value for samples 
longer than 0.8 mm. This trend is actually confirming the expectations. 
In particular, if the sample is very short, inlet and outlet patches are very 
close to each other, the number of almost-straight flow paths connecting 
them is higher and, therefore, permeability is higher. On the contrary, in 
a longer sample tortuosity is favored and some lateral flow paths may be 
lost, decreasing permeability. In this example, a sample that is 0.8 mm
Table 5
T2 cropped sample, 256 � 256. No subgrid model is applied. Sensitivity on the inlet value 
for the velocity.

Length (pix) kstokes (md) k@1 mm/s (md)

512 94 93
768 112 111
1024 112 111
1280 120 119
1536 98 97



Fig. 10. Effect of the refinement on the velocity field in a high velocity region.

Fig. 11. REV for dynamic properties, S1 (256 � 256): permeability as a function of the 
longitudinal axis and effect of mesh refinement.
long can be regarded as a representative one, confirming that the REV for 
permeability estimations is bigger than that obtained for static properties 
(refer to Table 4).

Furthermore, the effect of sample position and cross-section has been 
investigated. Fig. 12 shows REV analysis performed on three different 
subsamples of T2. Their location is depicted in Fig. 12a: sample A and B 
(yellow) have a squared cross-section of 0.7 mm-side, while sample C 
(red) has a squared cross-section of 1.4 mm-side. The initial decrease in
Fig. 12. REV for dynamic properties, T2: sensitivity analysis on sa
–

permeability is very pronounced for sample A. For sample B and C, 
permeability reaches a constant value at approximately 1.5 mm (150 md 
for B, 174 md for C). On average, sample A is tighter (93 md@1.5 mm, 
111 md@2.1 mm). It has to be remarked that these estimations do not 
take into account the subgrid model for microporosity. For sample A, 
permeability remains constant up to 4.0 mm; whereas, for sample B, it 
further decreases when the sample is longer than 2.8 mm. This suggests 
that sample B is more heterogeneous than sample A. For the considered 
sample, cross-section size and position does not affect to a great extent 
the constant value reached by permeability, at least for what concerns 
the order of magnitude. The exact value depends on both of them, since 
some main flow path may be excluded or interrupted.

Since the values of permeability for T2 overestimate the experimental 
measures up to two order of magnitude, sensitivity analysis on threshold 
choice has been performed. In particular, the pore distribution has been 
first identified on the image histogram by the minimum criteria (Fig. 13a, 
and then threshold has been varied within the corresponding gray in-
tensity range (0 60). The segmentation at the lowest threshold value that
has been considered (20) includes only the open pores, as shown in Fig. 
13b, and yields to an unconnected domain. For higher threshold values 
sub-resolution pores, that are characterized by an intermediate gray-level 
between open pores and solid phase (Fig. 13c), are also included in the 
segmentation and the pore space is found to be con-nected. Porosity and 
permeability results have been collected in Table 6. It can be noticed that 
open pores account for less than half of the experimental porosity. 
Comparing total and effective porosity, the dif-ference between the two 
values decreases increasing the threshold value, meaning that the flow 
paths connectivity is improved. Results for permeability are consistent 
with the fact that in these simulations the microporosity model has not 
been applied: indeed, micropores have been included in the domain 
without considering that they provide an addi-tional fluid-dynamic 
resistance compared to the open pores.

Fig. 14 shows in red corrected permeability values for T1, T2 and S2 
obtained with the introduction of the subgrid linear model for micro-
porosity. The model is applied in the gray intensity range delimited by 
the first maxima and the first minima of the denoised stack histogram. 
For example, in case of the sample T2, whose histogram is reported in 
Fig. 13 a, the grayscale range for the application of the subgrid model is 
½gmin ¼ 20; gmax ¼ 60�. On the other hand, in the range between 0 and the 
first maximum, pores are fully open and, therefore, subgrid model is not 
required.

Fig. 15 is a cut of the T2 sample, showing how the local resistivity 
values changes according to the average gray value of the cells. Re-
sistivity di is null for open pores, then increases linearly in the micro-
porous region up to a certain value, namely dmax. Theoretically, dmax 

would represent the resistivity of the solid phase or the inverse of its 
permeability, so it is potentially infinite. In practice, dmax is a parameter
mple position and cross-section. No subgrid model is applied.

mailto:md@1.5
mailto:md@2.1


Fig. 13. T2 cropped sample, 512 � 512 � 1536. Stack histogram (a) and details of the
segmentation (b–c). Grayscale ranges: 0–20 (b); 21:40 (c).

Table 6
T2 cropped sample, 512 � 512 � 1536. No subgrid model is applied. Porosity and absolute
permeability dependence on threshold.

Threshold Φtot (%) Φconn (%) k (md)

20 5.1 –

25 6.9 5.5 2.3
30 8.6 7.6 12.4
40 11.3 10.6 50.9

Fig. 15. Microporosity modeling in sample T2: (a) average gray field; (b) local 
resistivity value computed on the basis of a linear model. Open pores, in black, have a null 
resistivity.

–

a
e
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that controls the mean value of the resistivity of the microporous region. 
Therefore, one option is to set dmax in order to retrieve a permeability 
value for microporosity that is consistent with those available from 
literature correlations for clays derived from nanoporous structural 
models (Long et al., 2013). Obviously, the other option is to set dmax to 
match directly the laboratory measurements for the sample that is under 
analysis. Table 7 summarizes the effect of different dmax settings on 
permeability estimations for T2 (256 � 256 � 768). Without the subgrid 
model, numerical predictions are higher than the experimental value by 
two orders of magnitude. As expected, permeability decreases with 
increasing dmax.
Fig. 14. Permeability correction by a subgrid linear model for microporosity. Initial
predictions are shown in black, red values are obtained when the subgrid (sg) model is
applied (dmax ¼ 1eþ 13 m�2). Subsamples dimensions: 256 � 256 for T1/T2, 512 � 512
for S2. Graylevel range of application [min,max]: [22,47] for T1, [20,60] for T2, [25,54]
for S2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
τ ¼ 〈u〉
〈uz〉

where 〈⋅〉 stands for the volumetric average, u is the magnitude of the 
velocity field and uz the component along the macroscopic flow direc-
tion. This definition includes recirculation effects and edge effects. Re-
sults for T2 show that the proposed approach consistently reproduces the 
role of microporosity in affecting the tortuosity of the flow paths.

Table 7 includes also results on tortuosity. Tortuosity (τ) is 
 measure of pore connectivity and requires the estimation of the effective 
longation of the flow paths. Finding streamlines can be a non-trivial, time 
onsuming and error-prone task even in relatively simple system (Matyka 
t al., 2008). In order to avoid any issue of having incomplete streamlines 
r in dealing with dead-end pores, tortuosity has been calculated from the 
elocity field, as proposed in Duda et al. (2011)
4.3. Validation

Table 3 collects the average numerical predictions obtained for 
representative subvolumes of the rock samples. Numerical predictions 
for porosity and absolute permeability are in good agreement with 
experimental values. In particular, the application of the proposed seg-
mentation strategy has led to porosity estimations that are within the 
experimental error, without any special issue in their determination. On 
the contrary, the estimation of the absolute permeability is more critical, 
with initial numerical predictions that were overestimating experimental 
data by a factor of 10 or more. For three of the four analyzed samples (S2,
Table 7
Subgrid linear model: sensitivity on the selected value for the maximum resistivity. Non-
corrected values: k ¼ 180md, τ ¼ 1:7.

dmax (m�2) k (md) τ

1eþ13 20.9 1.84
1eþ14 4.4 1.96
1eþ15 0.7 2.04
1eþ16 0.08 2.07



Fig. 16. Heterogeneity effects: tomographic acquisitions of S1 in a high permeable layer 
(a) and in a low permeable layer (b).
T1, T2), SEM images have confirmed that the mismatch is due to the 
presence of micropores, whose size is such that they cannot be resolved 
at the tomographic resolution. In these cases, the application of the pro-
posed subgrid model has been necessary to predict the measured order of 
magnitude of the absolute permeability. On the other hand, for S1 (S1-a) 
the mismatch is due to the presence of heterogeneity at the plug scale, 
that makes numerical and experimental values not comparable, since 
measurements and simulations are performed at different scales. As a 
matter of fact, simulations have been performed on a reconstructed 
volume of about 2 cubic millimeters, while experiments are made on a 
much longer core plug, where the less permeable layers strongly affect 
the fluid flow.

In order to support the experimental observations about the layered 
structure of S1, multiple microtomographic acquisitions have been made 
at different locations of the plug, within a lower permeable layer (S1-b) 
and a higher permeable layer (S1-c). From Fig. 16 it is evident that in S1-
c open pores are wider and more well distributed. The average effective 
porosity for this sample is about 25%, with a predicted absolute 
permeability of 1.2 d (sample S1-c in Table 3) that is 200 times higher 
than the value obtained for S1-b. The application of the proposed subgrid 
model on S1-b and S1-c has a negligible effect over permeability pre-
dictions, confirming that the inner structure is well resolved and that 
heterogeneity is the main responsible for the deviations from the 
experimental measurements.
4.4. Computational time

Fig. 17 shows the simulation CPU time as a function of the number of 
cells, i.e. increasing representative volumes, for a low and a high 
permeable sample. Decomposed cases are run on 4 processors Intel® 

Core™ i7 CPU 860@2.80GHz. Base meshes have been generated without 
further throats refinement. In refined meshes, high speed regions have 
been refined by one level in the volume and one level near the walls. As
Fig. 17. Effect of mesh size on CPU time for a high permeable sample (S1-a) and a low
permeable (T2) sample on base meshes, refined meshes and considering the application of
the subgrid model (sg).
expected, the run time increases linearly with the number of cells. For
these simulations, the application of the subgrid model is associated to a
slightly increased computational time.

5. Conclusion

A complete workflow has been proposed to predict rock properties for
sandstones and tight rocks. The implications of having a limited resolu-
tion in the tomographic images have been investigated, with particular
attention to the presence of rock microporosity. Despite clay features
cannot be resolved, a histogram-based thresholding strategy combined
with the introduction of a resistivity source term in the governing
equations have produced encouraging results. In particular, predictions
of the effective porosity and absolute permeability are consistent with the
experimental data.

A novel meshing strategy has been developed in OpenFOAM® to
allow direct meshing on the denoised image stack, with the advantage of
being automatic and fast. As a matter of fact, the time spent for mesh
generation is 10–20% of the total time taken by the entire workflow,
which is a small percentage considering that single-phase steady-state
flow simulations are quite fast (order of mins or hour); moreover, this
time can be regarded as negligible when more time-consuming transient
multi-phase flow simulations are addressed. Furthermore, the possibility
of refining the mesh inside throats and narrow restrictions allows to
reach a compromise between the quality of the results and the cost, in
terms of time and resources.

CFD single-phase flow simulations have been performed to compute
geometrical and fluid-dynamic properties of four different samples. The
dependence of rock properties on the quality of the segmentation, on the
size and the position of the REV has been investigated. For all samples,
effective porosity estimations show a reasonable agreement with labo-
ratory measurements. For tight samples and sandstones containing a high
percentage of clays, microporosity contributes both in increasing the
connectivity and in increasing the resistance to the fluid flow. If only the
first one is considered, it has been found that predictions of absolute
permeability can exceed experimental values by orders of magnitude.
The application of the proposed model for subgrid porosity leads to more
reliable predictions. It is possible to calibrate the model on the basis of
literature correlations available for specific clay types thanks to multi-
scale imaging approaches. Future works may investigate the presence
of different types of microporosities, for example by coupling informa-
tion from microtomography and SEM.
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