
Fault Recovery in Time-Synchronized Mission Critical ZigBee-Based
Wireless Sensor Networks

•Davide Scazzoli1
• Atul Kumar1

• Navuday Sharma1
• Maurizio Magarini1 Giacomo Verticale1

Abstract Reliability and precise timestamping of events

that occur are two of the most important requirements for

mission critical wireless sensor networks. Accurate times-

tamping is obtained by synchronizing the nodes to each

other while reliability can be obtained by eliminating single

points of failure (SPF). In this paper, we address the SPF

problem of a ZigBee-based wireless sensor network by

means of using multiple coordinators with different per-

sonal area network identifiers (PAN IDs). We propose a

solution where members of a network switch from one

coordinator to another in case of failure by changing their

respective PAN ID. We verify experimentally that our

solution provides gains in terms of recovery speed and,

therefore, synchronization accuracy with respect to a

solution proposed in the literature.

Keywords Wireless sensor networks (WSNs) �
Reliability � Time synchronization � Single Point of Failure
(SPF) � Mission critical

1 Introduction

Wireless Sensor Networks (WSNs) are characterized by the
use of tiny, low cost and low energy devices, termed nodes,
that are designed to provide connectivity in an environment
without any preexisting infrastructure. Their main purpose is
to collect and aggregate data acquired from sensors, installed
on-board end nodes, that measure various physical quantities
[1]. When developing and designing a WSN platform, that is
thought for a specific application, devel-opers have to satisfy
a rather wide range of requirements. The search for a balance
between cost of sensor nodes and requirements represents a
challenging task in each specific application. Therefore, one
of the main goal in ongoing research activities is the
improvement of WSNs technical characteristics to expand
their field of application. This can be made possible, without
significantly increased costs, by developing new technologies
and protocols [1]. Concern-ing these two latter aspects,
recently, we have witnessed increasing interest in the use of
WSN for mission critical applications, where the requirement
of reliable data trans-mission from source to destination is
one of the most important challenges together with the
possibility of pro-viding precise timestamping of events [2].

The flexibility of WSNs allows their use in a variety of
innovative applications: from small body area networks, used
to monitor health parameters [3], to large arrays of sensor
nodes, used to monitor structural integrity [4] or
dangerous physical phenomenons such as volcanic erup-tions
[5]. Besides providing sustainability against ele-ments’
failures, in order to correctly interpret data collected from
multiple sensor nodes in different locations and time instants,
it is necessary to maintain a common notion of time across all
the nodes. This requirement is usually achieved by means of
time synchronization protocols [6].

& Maurizio Magarini

maurizio.magarini@polimi.it

Davide Scazzoli

davide.scazzoli@mail.polimi.it

Atul Kumar

atul.kumar@polimi.it

Navuday Sharma

navuday.sharma@polimi.it

Giacomo Verticale

giacomo.verticale@polimi.it

1 Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, 20133 Milan, Italy

This is a post-peer-review, pre-copyedit version of an article published in Int J Wireless Inf Networks, 2017, 24, 268-277. The final authenticated version
is available online at: http://dx.doi.org/10.1007%2Fs10776-017-0356-1

http://orcid.org/0000-0001-9288-0452
http://crossmark.crossref.org/dialog/?doi=10.1007/s10776-017-0356-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10776-017-0356-1&domain=pdf

A popular technology for providing connectivity in WSNs is
the IEEE 802.15.4 standard for Low-Rate Wireless Personal
Area Networks, which has been specifically developed for
low-power devices such as the nodes of a WSN [1]. Many
standards are available that rely on IEEE 802.15.4 for the
lower layers: ZigBee [7], WirelessHART [8], and 6loWPAN
[9]. Each of them has its own advan-tages and disadvantages
when used for implementing a WSN. Among these protocols
we focus here on ZigBee, being it the most widely adopted
standard in industrial applications mainly because its low
cost hardware [10].

Low energy consumption in ZigBee networks is achieved
thanks to the distinction of nodes in two cate-gories: Full
Function Devices (FFDs) and Reduced Function Devices
(RFDs). The FFD nodes are always on and are tasked with
providing the infrastructure of the network, thus allowing
extended sleep cycles for other devices. On the other hand,
RFD nodes are sleepy end devices that establish a single link
to one FFD, referred to as its parent [7]. The FFDs in a
ZigBee network are divided in Coor-dinator and Routers.
Each ZigBee network has a unique Coordinator, which is
tasked with network formation and maintenance. Only one
coordinator is allowed per network and once a network is
formed no other coordinators may join it even if the original
coordinator shuts down or has a failure. Different ZigBee
coordinators operating in the same physical channel will be
part of different networks, each one with its own unique
Personal Area Network Identifier (PAN ID). ZigBee does not
present a solution to deal with the loss of the coordinator,
leading to a Single Point of Failure (SPF) problem [11].
Since this is a well known problem, a solution has been
presented in [12] to address this issue. The proposed
approach solves the issue by storing backups of the
coordinator on a router node which, in case of failure, is
reprogrammed to become a clone of the missing coordinator.

In this paper, we propose and assess a simpler alterna-
tive based on the changing of the PAN ID. Our solution
gives advantages in terms of lower downtime, because it
takes advantage from ZigBee’s low network joining time
of end node devices, which is in the order of a few mil-

liseconds [13], and in terms of ease of implementation,
since it uses only features provided by the standard.
Moreover, we present a simple technique for achieving
time synchronization at the sensor level and experimentally
evaluate its performance, with special focus on the impact
that the WSN recovery after a failure has on the synchro-
nization of the sensor nodes within the network. Our
experiments were performed using commercial off the
shelf (COTS) devices, which are often ill suited to meet the
requirements of mission critical applications. The purpose
of this work is enabling devices that would otherwise be
unsuitable for mission critical applications to at least meet

requirements of link robustness. The specific requirements
of mission critical applications can be very different and
may include requirements that cannot be satisfied by Zig-
Bee such as very low latency, in those cases different
communication protocols may be able to overcome this
issue. Link robustness, however, remains a common
requirement to all critical applications where loss of con-
nection will lead to loss of profit or worse. We, therefore,
focus on this important aspect.

The rest of the paper is organized as follows. Section 2
gives a survey of the synchronization methods available for
WSNs and of the solutions present in the literature to solve
the ZigBee’s SPF problem. Our proposed solution to the
SPF problem is described in Sect. 3. Section 4 illustrates the
specific synchronization protocol implemented in our
prototype. Experimental results are given in Sect. 5 and,
finally, Sect. 6 concludes the paper.

2 State of the Art in Synchronization
and Solutions for Failure Recovery in Zigbee
WSNs

2.1 Methods for WSN Synchronization

Three basic methodologies for WSN synchronization are
available in the literature [14]:

– Relative timing each node monitors and compensates

for offset and clock drifts with respect to other nodes.

Synchronization is achieved by exchanging local

timestamps between different nodes.

– Relative ordering a relative order of events and

communications is achieved by comparing local clocks.

With this method it is not necessary to compensate

clock offset.

– Global synchronization if a global timescale such as

GPS is available, all the nodes will synchronize.

Global synchronization is the best solution with respect to

network overhead as each device can independently syn-

chronize itself without using network resources. The main

issue of global synchronization is the requirement of a GPS

receiver in each node which is in direct contrast with

requirements of low cost and low energy for WSNs. Rel-

ative ordering, on the other hand, is an attractive solution

for its reduced burden on the nodes with respect to global

synchronization. However, it is not a general solution as

this method only establishes an order of events without

offering actual clock synchronization. The most wide-

spread synchronization method for WSNs is relative timing

as it gives a good compromise between the other two

alternatives. Several timing protocols use this methodol-

ogy: Timing-sync Protocol for Sensor Networks (TPSN),

Flooding Time Synchronization Protocol (FTSP), and
Reference Broadcast Synchronization (RBS) [14]. These
protocols differ in the way they estimate the offset and
clock drift for the independent nodes [15]. A brief over-
view of these protocols is given below:

– TPSN is based on a server client paradigm where the
client sends a request for synchronization information
to a timing server. It is divided in two phases: level
discovery and synchronization. The level discovery
phase has the goal of creating a hierarchy that
establishes which nodes are servers and which nodes
are clients for each synchronization phase. Multihop
networks will have multiple levels where clients of one
level will act as servers for the level above them. In this
architecture the root node will always be at the bottom
level. The estimation of the offset is achieved by the
one-to-one exchange of timestamps between servers
and clients.

– FTSP is a variation of TPSN which was developed to
deal with frequent topology changes. There are two
main differences with respect to TPSN: the root node is
not fixed but it is instead constantly re-elected and the
synchronization information is flooded throughout the
network.

– RBS differs from the other protocols as it is based on a
receiver-to-receiver paradigm [16]. A reference beacon
is broadcast by a third party and all receiving nodes
exchange the relative time of reception for the beacon.
The sent beacon does not contain any timing informa-

tion and the synchronization is achieved by comparing
the times of reception that the receivers exchange
between one another.

provides limited solutions to manage failures. In the pre-
sent work, we are interested to the case where the failure of
a node can jeopardize the operation of the whole network,
as it might happen for the failure of the ZigBee PAN
coordinator.

A ZigBee network can be set up as a tree, star or mesh
network. However, all these topologies suffer from the SPF
problem. In a star topology the coordinator is always the
central node and, therefore, if the coordinator fails the
whole network fails. For tree topology, the coordinator must
be the root node and, in the event of a coordinator failure,
the network will experience a partial failure. On the other
hand, mesh topology is the most robust and, depending on
its configuration, the whole network may remain intact after
a coordinator failure. However, even in this last case, a
failure of the entire network is possible if, for example,
indirect binding of devices is used because binding
tables are getting lost after a failure of the coordinator.
New releases of the standard, such as ZigBee PRO, aim at
reducing this problem and introduce a distributed storing of
the binding tables across the routers [19]. Even in ZigBee
PRO, however, it is required to have a trust center that is
unique and, often, coincides with the coordinator of the
network. Should this trust center fail, the network can
continue working for some time, but functionalities such as
authentication for joining/rejoining devices will be lost.
Furthermore the network will progressively fail as the
security keys expire [19].

Since the solution adopted in ZigBee PRO solves only
partially the problem, a solution based on ZigBee is pro-
posed in [12] where backups of the coordinator are stored in
the routers. In the case of a coordinator failure the routers
can be reprogrammed to become a clone of the coordinator.
This solution is transparent to the application layer and
requires minimal hardware overhead. The downside is the
long time required to reprogram and reset a device, which
leaves a gap in the data if the coordinator is used as the
network sink. Moreover, many commercial devices do not
allow resetting device parameters, including the 64-bit
device unique identifier, thus making the solution difficult to
implement using COTS hardware.

3 Proposed Fast Recovery Procedure

The proposed fast recovery procedure relies on the use of
redundant PAN coordinators in hot standby, ready to pro-
vide connectivity to other devices. Also, we introduce a
procedure, implemented by the nodes belonging to the
compromised network, to detect the failure and re-connect
to a new coordinator. As is well known, ZigBee protocol is
designed to have a low joining time. Our solution exploits
this feature to minimize network downtime with respect to

As ZigBee provides a low transmission rate we imple-

mented a TPSN protocol [17] that will be discussed in Sect.
4. In order to minimize protocol overhead, we focused on a
static topology where the levels have been manually
assigned and where the discovery phase was not
implemented. We chose TPSN specifically over the other
two methods that require broadcasts because they are poorly
supported by the hardware we used to build our prototype.
The general advantages and disadvantages of a broadcast
approach versus a uni-cast approach are covered in Sect. 4.

2.2 Solutions for Failure Recovery in Zigbee WSN

In WSNs for mission critical applications the goal is to
avoid that the failure of a device impacts on the func-
tionalities of the rest of the network [18]. ZigBee has been
designed for low power, low cost and easy to deploy
wireless devices. It is mostly used in WSNs and other
applications requiring low data rate transmissions and only

[12]. For real-time applications, where data continuity is a
critical requirement, this can be achieved by introducing a
redundant management of hardware components as illus-
trated in Fig. 1. The Figure reports the case with 4 coor-
dinators and 2 sensors that allows to recover up to 3
coordinator failures and 1 sensor failure.

It is worth observing that, with such a setup, the system
can recover up to N � 1 coordinator failures and M � 1
sensor failures, where N and M are the number of employed
coordinators and sensors, respectively. Also, this allows us
to separate the redundancy of the coordinator from that of
the sensor which, as shown in Fig. 1, can have very dif-
ferent requirements. Gateways or data sinks are more
critical than individual sensors thus they often have more
stringent redundancy requirements which translate in a
higher number of redundant components like the example
shown in Fig. 1.

Each sensor node implements an algorithm to monitor
the connection status and discover coordinator failures by
timeouts. After detection of a failure it begins the recovery
procedures. A block diagram of the monitoring algorithm
which automates this procedure is reported in Fig. 2.

The algorithm distinguishes between Normal operation
and Failure recovery. A coordinator failure is detected by
the lack of ACK replies to the data messages that are sent
during normal operation. After a failure has been identified
the recovery procedure begins switching trough PAN IDs to
search for another coordinator. If no network joining noti-
fication is received, the algorithm will try again using a

Fig. 1 Proposed scheme for maintaining data continuity through

redundant sensor nodes during transition from active to backup

coordinator. Dotted lines represent links formed only in case of

failure. The scheme illustrates the case with N ¼ 4 coordinators and

M ¼ 2 sensor nodes for a particular measure. The sensor nodes can

have independent active and backup connections

Fig. 2 Algorithm to automate PAN ID change on all nodes of the
network. The PAN IDs of the available coordinator are assumed
known

different PAN ID. The list of available PAN IDs for
switching can be dynamically distributed by the coordina-
tors when a new device joins the network. This procedure is
executed on all network nodes that are affected by the
failure of the coordinator. The proposed algorithm has been
experimentally tested using commercial XBee S2 ZigBee
devices mounted on Arduino boards. A full description of
the experimental set-up will be given in Sect. 5.

The main difference with respect to the solution pro-
posed in [12] is that our proposed method is based on
switching to another network by changing the PAN ID
rather than having a router reprogrammed to become the
new coordinator. We have tested both the case of single
and multiple device recovery at the same time. The mea-

sured performance is the downtime with respect to the
solution proposed in [12] as well as the impact of network
formation overhead when multiple routers join a coordi-
nator at the same time. In case the event of multiple devices
switching exactly at the same time conflicts will be
resolved at the MAC layer. The downside of our approach

is the increased hardware cost required to improve the
downtime performance. If only end-devices need to re-
associate then the downtime will be very low as expected by
the ZigBee standard. However, a much higher down-time is
observed if routers also need to switch network as will be
seen in Sect. 5. However, the performance of this solution
can be improved by adding Quality of Service (QoS)
classes, where highest class will be the first to be allowed to
reconnect while other ones will have to wait a certain time
before attempting reconnection. It is easy, for example, to
implement QoS in the form of a time that lower classes have
to wait before initiating the failure recovery procedure, as
illustrated in Fig. 3.

4 Synchronization Management in WSNs

As explained in Sect. 2.1, synchronization protocols rely
on the exchange of timing information between nodes.
Because of this they are susceptible to random delays in the
delivery of the information which can impact on the syn-
chronization accuracy. The following non-deterministic
factors are responsible for the degradation in the accuracy
of synchronization protocols:

– Sender uncertainty covers all the variable delays

attributed to the sender. It can be subdivided in

– Send time the time taken by the node to construct a

packet and pass it to the MAC layer after its

transmission has been decided.

– Access time indicates how much the packet must

wait at the MAC layer before being transmitted. It

is highly variable and it depends heavily on

network traffic.

– Transmission time this is the delay introduced by

the transmission at the physical layer. It is mainly

deterministic, provided the connection speed does

not change. There is still some variations given by

possible interruptions during transmission.

– Propagation delay this delay is introduced by the

transmission medium. However, since the distance

between nodes in a WSN is often very small, in the

order of a few hundred meters at most, this contribution

is negligible.

– Receiver uncertainty covers the variable delays attrib-

uted to the receiver. It can be further subdivided in:

– Reception time analogous to the transmission time,

it is the time taken to receive the bits and pass them

to the MAC layer.

– Receive time the time taken to construct a packet

from the received bits and pass it to the upper

layers. The uncertainty is introduced by the variable

delays introduced by the operating system.

We will now explain in detail how offset and skew are
estimated within the synchronization protocol we used.
Offset is estimated by exchanging the four timestamps
from T1 to T4 between server and client, as illustrated in Fig.
4. The timestamps indicate the following specific events:

– T1 indicates the local time for the client when a

synchronization request is sent.

– T2 indicates the local time for the server when it

receives the synchronization request.

– T3 indicates the local time for the server when a

synchronization reply is sent.

– T4 indicates the local time for the client when it

receives the reply to its request.

Fig. 3 Example of a QoS implementation for network switching based on time windows

Fig. 4 Space–time diagram showing the four different time instants

used in the protocol

ð1Þ
With reference to Fig. 4, we have

T2 ¼ T1 þ Tf þ s;

T4 ¼ T3 � Tf þ s; ð2Þ

where Tf is the offset between the local clocks and s is the
transmission delay. Assuming the delay s is symmetric,
from (1) and (2) we can write

Tf ¼
ðT2 � T1Þ � ðT4 � T3Þ

2
; ð3Þ

s ¼ ðT2 � T1Þ þ ðT4 � T3Þ
2

: ð4Þ

A periodic compensation of the offset is simple to
implement on most devices. However, the accuracy of the
synchronization depends on the interval within which
synchronization packets are exchanged. Using this
approach the frequency offset between the various nodes
quickly builds up and increases the synchronization error.
The size of data used for synchronization is limited and its
impact can be further reduced by attaching them to data
frames. However, its burden remains proportional to the
number of nodes to synchronize for TPSN and to the
squared number of nodes to synchronize for RBS. In Zig-
Bee networks, where the number of nodes can be in the
order of thousands, this means that TPSN offers better
scalability. It is therefore beneficial to implement not only
clock offset correction but also frequency offset, or skew,
estimation. With reference to Fig. 5, the skew can be cal-
culated as

skew ¼
T 0
f � Tf

timing interval
; ð5Þ

where Tf is obtained from the timestamps T1 to T4 and T 0
f

from the timestamps T 0
1 to T 0

4. The advantages on protocol

overhead given by this approach come at the cost of

increased complexity and memory footprint. Particular

issues arise when skew estimation is implemented on

hardware constrained devices, such as the end-sensor

nodes, where sizeable precision errors can arise from

floating point multiplications. Hence, it is necessary to

avoid directly multiplying the clock but instead track offset
from a recent point in time.

While the Sender–Receiver approach of TPSN reduces
protocol overhead with respect to RBS, estimation of the
offset suffers from all the variable delays described at the
beginning of this Section. We have therefore implemented a
moving average filter in order to limit the impact of these
errors on skew estimation. If from one side the imple-

mentation of skew estimation is resource consuming, on the
other side the advantages in terms of reduced protocol
overhead and precision are substantial. We have quantified
the gain by taking measures from experimental results as
described in the next Section. More details about the aspect
of synchronization in WSNs can be found in [20] where the
trade-offs of sender–receiver architectures like TPSN with
respect to receiver–receiver ones like RBS are examined,
together with the impacts of the different types of variable
delays which affect these algorithms.

5 Experimental Results and Measures

For the SPF problem of ZigBee networks we have per-
formed several tests using COTS devices to measure the
downtime of our method with respect to resetting a node,
as proposed in [12]. Our experimental set-up consists of a
Raspberry Pi board that controls two coordinators and
several Arduino boards equipped with ZigBee S2 XBee
transceivers [21]. These boards are also wired to the
Raspberry Pi via their interrupt pins which are used for
forcing simultaneous events such as timestamping in order
to measure synchronization errors.

The experimental setup is displayed in Fig. 6. We have
measured a downtime defined as the interval between the
failure of the coordinator and the successful joining to the
new coordinator. The delay introduced by the fault dis-
covery algorithm was not considered as it is a common
factor. We have logged the data by using the utility called

Fig. 5 Algorithm to calculate the timing skew and offset

Fig. 6 A single client experimental set-up, multiple clients can be

connected at the same time with the same configuration

XCTU which is freely provided by the module manufac-

turer [22].
Figure 7 shows results of our measures for a single router

device for the two considered approaches. Data have been
obtained by 100 runs for each method. Numerical results
show that the proposed approach allows for a sig-nificant
reduction in downtime with respect to the node resetting
one. From a comparison of the results, the average
downtime reduction is around 15 s. However, it is worth
observing that the downtime of the proposed method
depends on the number of routers that have to perform the
switch. Since for end devices the switch happens very
quickly, within a few milliseconds, the limiting factor is
represented by the number of routers in the network because
they must implement network formation.

Results presented in [23] have been therefore expanded
by performing a similar experiment where routers have been
forced to reconnect at exactly the same time, using a wired
interrupt. The measured downtime for each of them is
shown in Fig. 8. From the numerical results we can see that
each router, on average, adds between 1 and 2 s of
downtime, that is caused by the overhead in establishing
new network connections and bindings. This result means
that the performance of our solution is dependent on the
number of routers that must perform this switch and it can
quickly worsen with respect to [12] for large numbers of
routers. On the other hand we have experimentally verified
that end devices are capable of joining a new network within
a few milliseconds, as expected by the ZigBee standard,
provided an active router or coordinator is in the range.

The experimental setup in Fig. 6 has been used to study
also the synchronization problem. We have a TPSN server
running on a Raspberry Pi and the TPSN clients running on
Arduino boards connected to the server via the ZigBee
XBee modules. In order to accurately measure the syn-
chronization error we used interrupts on the Arduinos
triggered by the Raspberry Pi’s GPIO. Both the two devices
were connected to a PC for data logging: the Arduino via
UART and the Raspberry Pi via Ethernet. Our first
experiment consisted in measuring the effects on the
synchronization of the network outage in both the case of
simple offset compensation and skew estimation. We let the
clients synchronize to the server for some time in order to
give enough samples for skew estimation. A number of 10
samples was used. After this, we simulated a network
failure by unplugging the transceivers from the server and
measuring the evolution of the synchronization error. The
results for this experiment are shown in Fig. 9. At time T ¼
0 the connection is stopped and the evolution of theFig. 7 Histogram of the observed downtime with the proposed

scheme versus resetting the node for a single router

Fig. 8 Histogram of the

observed downtime with

multiple routers switching at the

same time

points in Fig. 9, is in the order of a few milliseconds. As our
set-up consists of commercially available hardware and we
made no further assumption on link reliability, the shown
results can be expected in most deployment scenarios. It is
worth noting that by comparing the different downtimes of
the two methods reported in Fig. 7 with the evolution of the
synchronization error reported in Fig. 9 we can see that
there is an advantage in terms of synchronization accuracy.
In particular, we can measure values ranging from 3 ms to 7
ms of reduction in synchronization error for the case of
simple offset estimation and 20 ls to 40 ls for the case with
skew estima-tion. Finally, we studied the evolution of the
synchronization error during a recovery process using the
setup described in Fig. 6. For skew estimation we used a
moving average filter with 10 samples in order to average
the errors in offset estimation. We performed a test without
any offset between the two networks and one with a 10 ms
offset and studied its effects on the offset and skew esti-
mation. Synchronization messages are exchanged every 4 s.
Hence, we allow some time for filling up the skew
estimation filters and, then, we proceed to crash the net-
work coordinator at T ¼ 30 s. After a timeout the end
devices start synchronizing with the new network where, in
our setup, the synchronization is provided by the same
device to eliminate any uncertainty in the offset. The results
we have obtained are reported in Fig. 10, where it can be
seen that in the case without offset the synchronization error
follows the expected linear curve due to the clock drift and
no impact is observed on the skew estimation. In contrast,
for the case with offset its impact on the skew estimation as
the slope of the skew line is highly skewed. This is corrected
after 10 synchronization events as the error from the offset
introduced by the network switch is discarded by the
moving average filter.

Fig. 9 Evolution over time of the synchronization error with and
without skew compensation

error is measured trough timed interrupts triggered by the
wired connection. We have verified that skew estimation
significantly reduces the error of synchronization, partic-
ularly over extended periods of time. The accuracy of the
synchronization itself was limited by the use of application
layer timestamping as MAC layer one was not available on
the used COTS devices. The curves do not start exactly at
zero because we have some error in the offset estimation
itself caused by the variable delays explained in Sect. 4.
Furthermore, a small ripple is visible in the skew corrected
line. This is caused by the limited accuracy of the times-

tamps available on the Arduino, which, have a coarse
graduation of 4 ls. This error, however, is at least two
orders of magnitude lower than that introduced in the
offset estimation, which, as can be seen from the starting

Fig. 10 Evolution over time of

the synchronization error after a

network switch in T ¼ 30 s.

Results show both the case of no

offset and a 10ms offset

between networks

6 Conclusion

This paper focuses on the issue of time synchronization in

wireless sensor networks (WSNs), the problem of the Single

Point of Failure for ZigBee coordinators, and how the latter

impacts on the former.We propose a newmethod for dealing

with ZigBee coordinator failures based on using several

coordinators with different identifiers. Our proposal consists

in switching to a different network by changing the network

identifier to achieve a lower downtime and we have experi-

mentally verified a recovery which is up to 15 s faster than

another solution present in the literature. The lower down-

time further reduces the impact of a coordinator failure on the

synchronization error. We tested the efficacy of our solution

with an experimental set-up using commercial hardware

such as the XBee ZigBee modules and Arduino boards.

Further developments of this work involve improvements of

the synchronization algorithm to more energy efficient

solutions. The SPF solution can be extended to a more gen-

eral case of creation of an ad-hocWSNwithmobile gateways

such as, for example, those obtained using drones.

Acknowledgements This work has been partially funded by the EIT

Digital ACTIVE Project.

References

1. V. Butenko, A. Nazarenko, V. Sarian, N. Sushchenko, and A.
Lutokhin, ‘‘Applications of wireless sensor networks in next
generation networks,’’ Telecommunication Standardization Sec-
tor of ITU, (2014). Available at: https://www.itu.int/dms_pub/itu-

t/opb/tut/T-TUT-NGN-2014-PDF-E.pdf

2. M. A. Mahmood, W. K. G. Seah and I. Welch, ‘‘Reliability in
wireless sensor networks: a survey and challenges ahead,’’
Computer Networks, vol. 79, pp. 166–187 (2015).

3. Lo, Benny PL, Surapa Thiemjarus, Rachel King, and Guang-
Zhong Yang. ‘‘Body sensor networka wireless sensor platform for
pervasive healthcare monitoring.’’, pp. 77-80, (2005).

4. Xu, Ning, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak
Ganesan, Alan Broad, Ramesh Govindan, and Deborah Estrin.
‘‘A wireless sensor network for structural monitoring.’’ In Pro-
ceedings of the 2nd international conference on Embedded net-
worked sensor systems, pp. 13-24. Acm, (2004).

5. G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J.
Lees and M. Welsh, ‘‘Deploying a wireless sensor network on
an active volcano, IEEE Internet Computing,’’ vol. 10, pp. 18-25
(2006).

6. G. C. Gautam and N. C. Kaushal, ‘‘Quantitative and qualitative
analysis of time synchronization protocols for wireless sensor
networks,’’ International Journal of Sensors, Wireless Commu-

nications and Control, vol. 4, pp. 2-19 (2014).
7. ZigBee RF4CE specification version 1.00. Website. http://www.

zigbee.org.

8. HART Communication Foundation (HCF). WirelessHART
Communication Standard. HART 7.0 Specifications, 2007.

9. ‘‘6LoWPAN working group,’’ http://www.ietf.org/dyn/wg/char
ter/6lowpan-charter.html.

10. D.-M. Han and J.-H. Lim, ‘‘Smart home energy management
system using IEEE 802.15.4 and ZigBee,’’ IEEE Transactions on
Consumer Electronics, vol. 56, pp. 1403-1410 (2010).

11. A. Willig and H. Karl, ‘‘Data transport reliability in wireless
sensor networks - a survey of issues and solutions,’’ J. Praxis der
Informa-tionsverarbeitung und Kommunikation, vol. 28, pp.
86-92 (2005).

12. R. Klln and A. Zimmermann, ‘‘Transparent coordinator failure
recovery for ZigBee networks,’’ in Proc. Conference on Emerg-

ing Technologies & Factory Automation (EFTA), Mallorca,
Spain, pp. 1-8 (2009).

13. N. Baker, ‘‘ZigBee and Bluetooth: strengths and weaknesses for
industrial applications,’’ Computing and Control Engineering
16.2, pp. 20-25 (2005).

14. B. Kaur and K. Amandeep, ‘‘A survey of time synchronization
protocols for wireless sensor networks,’’ International Journal of
Computer Science and Mobile Computing, vol. 2, pp. 100-106
(2013).

15. A. Nayyer, M. Nayyer, L. K. Awasthi, ‘‘A comparative study of
time synchronization protocols in wireless sensor network,’’
International Journal of Computer Applications, vol. 36, pp.
13-19 (2011).

16. J. Elson, L. Girod, and D. Estrin, ‘‘Fine-grained network time
synchronization using reference broadcasts,’’ ACM SIGOPS
Operating Systems Review 36.SI, 147-163 (2002).

17. D. Djenouri and M. Bagaa, ‘‘Implementation of high precision
synchronization protocols in wireless sensor networks,’’ in Proc.
of Wireless and Optical Communication Conference (WOCC),
Newark, NJ, pp. 1-6 (2014).

18. F. Dobslaw, Z. Tingting, and G. Mikael ‘‘QoS assessment for
mission-critical wireless sensor network applications,’’ in Proc. of
Conference on Local Computer Networks (LCN), Sydney, NSW,
pp. 663-666 (2013).

19. Alliance, ZigBee. ‘‘ZigBee-2007 Layer PICS and Stack Profiles 6,
‘‘ZigBee Document 08006r03, Rev 3 (2008).

20. Ganeriwal, Saurabh, Ram Kumar, and Mani B. Srivastava,
‘‘Timing-sync protocol for sensor networks.’’ Proceedings of the
1st international conference on Embedded networked sensor
systems. ACM, (2003).

21. Digi International Inc. http://www.digi.com/

22. XCTU: Next generation configuration platform for XBee, Digi
International Inc. Available at: http://www.digi.com/products/

wireless-wired-embedded-solutions/zigbee-rf-modules/xctu

23. D. Scazzoli, A. Kumar, N.Sharma, M.Magarini, G. & Verticale,
‘‘A novel technique for ZigBee coordinator failure recovery and
its impact on timing synchronization.’’ In Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2016 IEEE 27th
Annual International Symposium on (pp. 1-5). IEEE.

https://www.itu.int/dms%5fpub/itu-t/opb/tut/T-TUT-NGN-2014-PDF-E.pdf
https://www.itu.int/dms%5fpub/itu-t/opb/tut/T-TUT-NGN-2014-PDF-E.pdf
http://www.zigbee.org
http://www.zigbee.org
http://www.ietf.org/dyn/wg/charter/6lowpan-charter.html
http://www.ietf.org/dyn/wg/charter/6lowpan-charter.html
http://www.digi.com/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu

	Fault Recovery in Time-Synchronized Mission Critical ZigBee-Based Wireless Sensor Networks
	Abstract
	Introduction
	State of the Art in Synchronization and Solutions for Failure Recovery in Zigbee WSNs
	Methods for WSN Synchronization
	Solutions for Failure Recovery in Zigbee WSN

	Proposed Fast Recovery Procedure
	Synchronization Management in WSNs
	Experimental Results and Measures
	Conclusion
	Acknowledgements
	References

