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Abstract

This paper deals with the problem of robust stability and robust stabilization for a class of continuous-time

singular Takagi—Sugeno fuzzy systems. Sufficient conditions on stability and stabilization are proposed in
terms of strict LMI (Linear Matrix Inequality) for uncertain T-S fuzzy models. In order to reduce the

conservatism of results developed using quadratic method, an approach based on non-quadratic Lyapunov
functions and S-procedure is proposed. [llustrative examples are given to show the effectiveness of the given
results

1. Introduction

There have been several studies on analysis and design problems for Takagi—Sugeno models
[1] based on Lyapunov theory and LMI (Linear Matrix Inequality) formulations [2]. These studies
use quadratic Lyapunov functions to derive sufficient conditions for the stability and stabilization
(see among others [6-8]) and non-quadratic Lyapunov functions [4,5,9-13] for less conservatism.
In the last few decades, there have been considerable research efforts on the study of singular
systems. This is due to the extensive applications of singular systems in many practical systems,
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such as circuits, boundary control systems, chemical processes, and other areas. For more details
on this, we refer the reader to [14—-17] and the references therein. Singular systems are also
referred to as descriptor systems, implicit systems, generalized state-space systems, differential-
algebraic systems or semi-state systems [14,15]. A great number of fundamental notions and
results in control and systems theory based on state-space systems have been successfully
extended to singular systems (see [18-28] and the references therein). Recently stability and
stabilization of singular fuzzy systems [29-39] and singular linear systems have been addressed
(see [40—42] and reference therein). However, up to date and to the best of our knowledge, the
class of singular fuzzy systems has not yet been fully investigated and this will be the goal of
this paper.

Most of the results developed for this class of systems are not easily tractable and often
conservative. All these results are established using a quadratic Lyapunov function with common
symmetric and positive-definite matrix that leads to some conservatism. In order to relax these
previous derived constraints, our goal is to extend results on non-quadratic stability to the class of
singular fuzzy systems. Both problems of robust stability and robust stabilization for a class of
continuous-time singular fuzzy models with norm-bounded uncertainties are considered in LMI
formulation. Finally, a numerical example is provided to demonstrate the effectiveness of the
proposed methods.

The rest of this paper is organized as follows. In Section 2, the problem is formulated and the
goal of the paper is stated. In Section 3, the main results are given and these include results on
stability and robust stability.

Notation: The notation X > Y (respectively, X >Y), where X and Y are symmetric matrices,
means that X — Y is positive semi-definite (respectively, positive definite), R" and R"™"™ denote,
respectively, the n dimensional Euclidean space and the set of all n x m real matrices. The
superscript “T” denotes matrix transposition, symbol (%) denotes the transpose elements in the
symmetric position and [ is the identity matrices with compatible dimensions and Z = {1, 2, ..., r}.
For a matrix Z € R™™ with rank Z = n. <n, let Z+ € R"™"~") be any matrix such that ZZ+ =0
and Z+TZ+ >0. When Z is of full column rank matrix, we take Z+ =0 by convention.

2. Problem statement

T-S models are described by fuzzy rules of the type IF-THEN that represent local input
output models for nonlinear systems. The considered singular fuzzy systems with r-(M, ..., M)
fuzzy sets are described as follows:

Plant rule i: IF z;(f) € M;; and --- and z,(¢) € M,

{ Ex(t)=Apx(t) + Bu(t), ieZ (1

y(1) = Cx(1)

with A\izAi+AAi(t) and §i=B,-—|—AB,-(t). Then, the overall singular fuzzy system is
described by

Ei) = £ u()Aa() + Bu()

y(1) = Cx(1)

(@)



where

() = )

) =

with w;(z(¢)) = HJ’ _ 1Mjj(zj()), r is the number of sub-models and z(#) is the premise variable
depending on measurable variables. x(r) € R" is the state vector, A; € R™*" are the ith state
matrix, AA;(t) and AB;(t) are time-varying matrices representing parametric uncertainties in the
plant model. The matrix E may be singular with 0 <rank(E) = ng <n. When the matrix E is
nonsingular, the system (2) is referred to as regular system.

The considered uncertainties in this note are known in the literature as norm-bounded
uncertainties, they are admissibly norm-bounded, structured and satisfy

AA,'(I) = DA, FA’(I)EA’, AB,([) = DB;FBi(t)EBi

T ) =1 3

with Dy, and Ey are known real matrices with appropriate dimensions and Fy, satisfies
F ﬂ;’r (t)F4(t) <1, VieI. When they are equal to zero, the system will be referred to as nominal
system.

Now consider the nominal part of descriptor fuzzy system (2) with u(¢) = 0 in the following:

Ei() = 3 aC)s) )

The descriptor model (4) is said to be stable if dV (x(r)) /dt < — al|x(?)]|2, &> 0 for a given Lyapunov
function candidate V(x(z)) = 0, Vx(¢) # 0 and the following conditions are satisfied [14]:

(i) det(sE—A;) is not identically zero, i.e. nominal system (4) is said to be locally regular.
(i) deg(det(sE —A;)) = rank(E), i.e. nominal system (4) is said to be locally impulse free.

In the rest of the paper, we will assume that the solution of the system (4) exits.

In this paper we are interested in developing sufficient conditions that can be used to check if the
given system in Eq. (4) is stable and robust stable in case of the presence of norm-bounded
uncertainties. Our methodology in this paper will be mainly based on the Lyapunov theory and
LMI formulation.

The following useful lemmas [2,3] will be using in the rest of the paper.

Lemma 1. Let H and E be given matrices with appropriate dimensions and F satisfying
F T F <. Then, we have for any £>0,

1

HFE+E'F'TH" <eHH' +;ETE. (5)
Lemma 2. Let Fy(x(2)), ..., Fy(x(t)) be quadratic functions of the variable x(t) € R". If there
exist positive scalars ty, ..., ty such that Fo(x(1))— Y.1_ 7;Fi(x(1)) < 0, then Fo(x(t)) <0 for all
x(t) such that Fy(x(1)) <0, for ie {1,2,...,q}.
Lemma 3. Condition Y _, i = 11Oz ;<0 is fulfilled provided the following
conditions hold ¥ (i,j) € T* and i #

;<0 (6)

2
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3. Main results

In this section, result assuring the global asymptotic stability of system (4) is proposed in
terms of non-strict LMIs. Based on this result, strict LMI conditions are developed. Then, these
results are extended to the case of uncertain T-S descriptor systems.

3.1. Stability analysis

The following theorem gives global asymptotically stable of nominal system (4).

Theorem 1. The singular fuzzy system (4) is stable if there exist nonsingular matrices P; and
positive scalars Ty such that the following matrix inequalities hold for each (i, k) € 7%

E'"Pi=P/E>0 (8)

A" Pc+Pl A+ Y tiE " [Pr—Pj]<0 ©)
=1
Proof. Let us choose the following Lyapunov function:

Vix() =x"(OET Pix(t), E'Py=P/E>0, keZ
and define the Lyapunov function candidate as follows:
V(x(1)) = max{Vi(x(1))} = max{V, (x(r)), V2(x(1)), ..., V,(x(1))}, (10)

The derivative of V(x) with respect to time ¢ along the system trajectory (2) is given for all
ke by

V(x)=Vi(x(t)) if ETP,>E"P;, foralljeZ (11)

Therefore, when ET Py > E" P}, for all j € Z, we have

V@) =i (DE" Pux(t) +x T (ET Pi(t)=x" (1) 3 uzONA; Pr + P Ailx(1) (12)
i=1
Consequently if for all j € Z we have A;" Py + P,/ A;<0 when E" P, > E" P}, we get V(x)<O0.
Using Lemma 2, the conditions (8) (9) are obtained. O

Corollary 1. The nominal singular fuzzy system of Eq. (2) with u(t) = 0 is stable if there exist
nonsingular matrices P;and positive scalars Ty such that the following matrix inequalities hold

for each (i, k) e T*:

EP,=P'E" >0 (13)

APy + P A" + Y tE[Py—Pj]1<0 (14)
j=1
Proof. The proof is similar to the one of Theorem 1 by considering the dual system
ETx(1) = Y- uz(0)A x(1).  ©

Remark 1. The conditions of Theorem 1 include the quadratic conditions. In fact when P; = P,
YieZ, we have V(x(f)) = max{V (x(t)), Vo(x(?), ..., V. (x(1))} =x T (HE T Px(r) and ETP =
PTE>0.



The proposed result of Theorem 1 gives sufficient stability conditions in terms of non-strict
LMIs which contain equality constraints [43]. This may lead to numerical problems since equality

constraints are usually not satisfied perfectly. Thus, from the numerical point of view, strict LMI
conditions are more suitable than non-strict ones. In order to avoid this problem, the following

result gives strict LMI conditions.

Theorem 2. The nominal singular fuzzy system of Eq. (2) with u(t)= 0 is stable if there exist
matrices X;>0 and Q; and positive scalars Ty such that the following matrix inequalities hold

for each (i, k) € T*:

AT (X(E+20) + XE+ZQy) "Ai + Y tiE T [Xk—X;]E<O (15)
j=1

with ETZ =0 and Z € R™" 7).

Proof. Let P, =X;E + ZQ,. Then, it is easy to see that ETPi:PiTE:ETXiEZO and
ET[Py—P;]=ET[X;—X;JE. Consequently, conditions of Theorem 2 lead to the one of
Theorem 1. O

With the same reasoning, the following dual form of Theorem 2 could be proved:
AGET +200) + (GET +200 AT + X tuE[X—X]ET <0 (16)
j=1

with EZ = 0.

The conditions of Theorem 1 are bilinear in the variables P;, VieZ, and 7 for all
(i,j,k) € Z°. The solution in some cases cannot easily be found. To overcome this conservatism
another way to keep this relaxation, with transformation of the conditions of Theorem 1 in LMI
formulation in P;, ie€Z, consists of fixing the real parameters 7,4, and solving the resulting
coupled set of LMIs.

Now consider uncertain singular fuzzy models (2). Based on the results of Theorem 1, the
following theorem proposes robust stability conditions in strict LMI terms.

Theorem 3. The uncertain singular fuzzy system (2) with u(t) = 0 is stable if there exist matrices
X;>0 and Q,, positive real numbers &5, and Ty such that the following matrix inequalities hold
for all (i,k) e T*:

Qi (XeE +Z0,) " Dy

v (Xk Or) Dy, -0 (a7
(*) —Siﬂ

with ETZ =0, Z e R™"=") gnd

Qi = (XiE + ZQp) TAi + A (XiE + ZQ)) + SiEfI Ep+ Y tiE X —X|E (18)
i

Proof. The dynamics of the uncertain singular fuzzy models (2) is stable if the conditions of
Theorem 2 hold where A; is substituted by A; + AA;(7), i.e.:

,
PlA;+ A Pe+ P/ DoFpEs, +E{F,D{ Pc+ Y tjuE" [X,—X;]E<0 (19)
j=1



Using Lemma 1, we have for any £,>0,ieZ:
P,;r Dy, Fu,Eq+ E;FJD/IP;( <& lP,j DA,'D,IPk + siE/IEA,.(ZO) Applying the Schur complement

on this inequality, the results for the robust stability is
obtained.

Remark 2. The same procedures used to solve the conditions of Theorem 2 can be used to
transform the conditions of Theorem 2 to a tractable problem that can be solved using classical
numerical tools.

3.2. Robust stabilization

In this section robust stabilization of closed-loop model (2) is studied by considering the
control law

u(t) = Zl Hi(Z()K ix(1) 21
where K; are the gain parameters to be determined. Then, closed-loop model (2) becomes
Ei)= X % (2O E() (1) (22)

with Xﬂ =1/4\i + E,’K}.

Note that a robust control law could be proposed by using directly the above results, i.e.
Theorem 2 for the nominal case and Theorem 3 for the uncertain one. However the obtained
conditions lead to nonlinear constraints very difficult to solve with existing numerical tools. In the

following, sufficient stability conditions to design control law (21) are given by decoupling the
product of Lyapunov matrices by K; and introducing free variables G.

Theorem 4. The uncertain singular fuzzy system (22) is stable if there exist matrices X;>0,
Gand @, positive real numbers &; and Ty such that the following matrix inequalities hold for all
(i,k)eT? and i #k:

2 <0 (23)
2
mzii + X+ 2 <0 (24)

with EZ=0, wy =Y/ _ \tiEXc —XE" + ¢y + ¢y + €a(Da D) +DpDy). ¢y =AG +
B;Y; and

Wik (k) Ge) (%)
XET +200+ ¢y =G —G=GT (% (%)
Zie = EnG EsG  —el 0 (25)
Ep Yy EpY; 0 —eyl

The control gains are calculated by

K,=Y,G™! (26)



Proof. Based on the dual condition of Theorem 2, the dynamics of the uncertain singular fuzzy
models (22) is stable if the following conditions hold:

—~ ~T r
AiXGET +Z200)+ XGET +200) A, + Y mpEX —XET <0 (27)
j=1

In order to decouple the product of Lyapunov matrices X; by K; and introducing free variables G,
the following sufficient conditions are proposed:

r ~ ~T ~
Y aEXi—X)ET +AuG+G A, (XET +20)" +AiG-GT
j=1 <0 (28)

% —-G-GT

Note that to get Eq. (27), it suffices to pre-multiply Eq. (28) by [/ 11,1] and post-multiplying it by
[1 11,»,]T where G is a free nonsingular matrix. Knowing that X,-,G =¢; + AA(DG + ABi(1)Y,
with ¢; = A;G + B;Y;and Y; =K, conditions (28) can be rewritten with /=k as follows:

0 Y EXe—XET + ¢y + by XET +20)" + ¢y —G'
k= /=1

() -G-GT

+YMﬁm+A&@n+nMﬁm+A&@nfA&@G+A&®n

*) 0 ] 29)

The second term on the right-hand side of Eq. (29) can be written as

[A&@G+A&@n+0Mﬁm+A&®nf A&@G+A&@n]
() 0

ErG ExG

Enye Enve| T (30)

Dy, Dy,
I

FAi(t) 0
0  Fp()

Applying Lemma 1 and the Schur complement to Eq. (29) with Eq. (30), we get X <0 where X

is defined in Eq. (25). Using Lemma 3, we obtain conditions (23) and (24). This completes the
proof.

Remark 3. This formulation has the advantage to remove the equality constraint involving
singular matrix E and the control gains are dependent on supplementary free variable G instead
of Lyapunov matrices. These strict LMIs design conditions can be solved using existing
numerical tools. This formulation covers existing results and leads to less of conservatism for the
design problems.



4. Numerical examples
4.1. Robust stability analysis

To show the validness of our result, let us consider a numerical example of two uncertain sub-
models as follows:

~-10 —01 -02 -10 -0.1 0.0
A= 00 00 10|, A=| 00 -05 10 (31)
00 —006 —1.0 00 —194 —10
0.01 0.037"
Dy, =Ds, = | 002 |, Ey =E4; =002 (32)
0.02 0.02

The singular matrix, E, is given by

1 10
E=]01 1 1 (33)
0 00

Solving the conditions (17), we get the following feasible problem:

[ 1.2080 0.4847  1.1553 '| [ 1.8741 0.5974 1.3532
Py=1|—0.7060 0.1723 —-0.3908 |, P,= | —1.2871 —0.1044 —0.8313
{ 1.1162  0.7645  1.5245 J { 1.2700 0.5218 1.3634
(34)
with &A= 1.7329, &A= 0.5966, and 711, =0, 7121 = 0.1, 7201 = 0.7 and 73, = 0.
Consequently, we can conclude that the system is robust stable. However, quadratic conditions
given in [30] are not feasible and then fail to prove the stability of this example. This illustrative

example shows that the given stability conditions introduce more of relaxation and allow to
improve the results obtained by the quadratic method with or without uncertainties.

4.2. Robust stabilization

Now, consider the following uncertain T-S model with four sub-models as follows:

[ 0.20 0  10.00 0.20 0 13.00
A= |—-400 —700 0 |, Ay=|—-400 —1000 0 (35)
1.0 0 010 1.00 0 0
[ 0.50 0 13.00 0.50 0 10.00
Ay=|—100 —1300 0 |, A,=|—-1.00 —10.00 0 (36)
| 1.00 0 0.30 1.00 0 0



0.2 0.5 0.3 0.2

Bi=| 10 |, Bo=| 10 |, B3=| 1.0 |, Bs=| 1.0 (37)
—1.0J | —1.2] {—I.OJ | —1.2]
(0.1 0.1 0.1 [ 0.1 ]
Dyy=102|, Dp=|—-01|, Dy=|04{, Dy=1|-05 (38)
10.3 | —0.5 | 0.2 | —0.1]
[ —0.5 0.2 0.5 —0.21
Ey =|—-05|, Ejy=|02|, E;=|[05|, E;=]| —03 (39)
| =05 0.5 0.5 0.5
[ —0.2
Df =|-15 (40)
| 05
with D, = D, = Dg, = Dp,, Eg, =0.5, Eg, =1, Ep, =1 and Ep, = 0.5. The singular matrix is
1.2 0 00
E=1]00 1 05 41)
0.0 0 00

Then Z" =[0, —0.5,1.0]. The resolution of the conditions of Theorem 4 leads to feasible
problem:

[0.7178 0.3942  0.1971 0.0290 0.2708 0.1354
X, =10°]03942 4.1415 —05731|, X,=10°|0.2708 5.5791 0.1457
|0.1971  —0.5731  5.0012 0.1354 0.1457 5.3606

(42)
[0.2047 0.1679 0.0839 34417  —0.4934 —0.2467
X;=10%|0.1679 62159 0.4641 |, X,=10°| —0.4934 58729  0.2925
| 0.0839 0.4641 5.5198 —0.2467 02925  5.4340

(43)

1.2899 0.0661  —0.4220
G=10°| —0.1798  0.5444 0.0464 (44)
—-0.2601 —0.0689 0.1121

We get the controller gains:
K, =[3.9406,1.1107,14.5782], K, =[1.7050,0.3506,5.9574] (45)
K3 =[2.3766,0.4073,8.7317], K4 =1[4.4962,0.7605, 16.4140] (46)

As stated above, quadratic conditions derived in [30] fail to prove the stability of the given
example with or without uncertainties. This example shows that the derived stability conditions
allow to improve the results obtained by the quadratic method.



5. Conclusion

This note deals with the problems of robust stability and stabilization for a class of continuous-
time singular Takagi—Sugeno fuzzy systems. Strict LMI conditions are given for stability,
stabilization and their robustness. The derived stability conditions are proved to be less
conservative than previous results and particularly include quadratic conditions. The LMI
framework is used to establish the different results on stability and its robustness. The developed
results can easily be solved using existing numerical tools. Examples, where quadratic conditions
fail to show the stability, are given to illustrate the advantage of the proposed results.
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