Finite-time stability analysis and stabilization for linear
discrete-time system with time-varying delay

Zhuo Zhang®, Zexu Zhang™*, Hui Zhang™*, Bo Zheng",
Hamid Reza Karimi®

“Deep Space Exploration Research Center, School of Astronautics, Harbin Institute of Technology, 150080, China
bScientiﬁc Research Academy, Shanghai Maritime University, Shanghai 201306, China
“Department of Engineering, Faculty of Engineering and Science, University of Agder, Grimstad, Norway

Received 1 April 2013; received in revised form 19 February 2014; accepted 19 February 2014
Available online 28 February 2014

Abstract

The problem of finite-time stability for linear discrete-time systems with time-varying delay is studied in
this paper. In order to deal with the time delay, the original system is firstly transformed into two
interconnected subsystems. By constructing a delay-dependent Lyapunov—Krasovskii functional and using

a two-term approximation of the time-varying delay, sufficient conditions of finite-time stability are derived
and expressed in terms of linear matrix inequalities (LMIs). The derived stability conditions can be applied
into analyzing the finite-time stability and deriving the maximally tolerable delay. Compared with the

existing results on finite-time stability, the derived stability conditions are less conservative. In addition, for
the stabilization problem, we design the state-feedback controller. Finally, numerical examples are used to

illustrate the effectiveness of the proposed method.

1. Introduction

The phenomenon of time delay is very common in practical engineering systems, such as
biological systems, chemical systems, mechanical systems and networked control systems
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(NCSs) [1]. The existence of time delay might result to the performance deterioration or even
instability of system [2—8]. What is more, in many practical systems, the time delay is not constant
but time-varying. It should be noted that the stability of the system with time-varying delay is
generally poorer than that of the system with a constant time delay and the same upper bound [9].
In addition, if the time-varying delay is frequently changing and the range of variation is large, the

effect of time delay to the system stability will be significant. The problem of time-varying delay
has drawn considerable attention during the past few decades; see the filtering problems [10—17],
the controller design [18-23] and the stability analysis [24-27]. Though there is much research on
time-delay systems, the existing results are only sufficient conditions [28]. Persistent works are
devoted to reduce the conservatism of the conditions.

The direct Lyapunov method is a well-known approach which has been widely used to reduce
to conservatism of aforementioned conditions; see [29-33] and the references therein. Recently,
another effective but indirect approach named input—output (I0) approach has attracted increasing
attention. In this method, the original system is transformed into two interconnected subsystems.
By studying the interconnected subsystems, the obtained stability results are much less
conservative [34]. This approach was firstly studied for the system with constant time delays in
[35], then applied into various systems with time-varying delays; see [36—38] and the references
therein. The main idea of the IO approach is to approximate the time-varying delay and make the
approximation error as small as possible [34]. A new model transformation is proposed in [39],
which introduces a two-term approximation method. It is proved that the approximation error of
this two-term approximation method is smaller than that of the one-term ones [40], which means
that the conservatism is much less.

In many practical systems, the main concern is the behavior of the system in a finite-time
interval [41]. In such case, the traditional Lyapunov method is not applicable. Therefore, the
finite-time stability (FT'S) method is introduced. The initial condition of a system is given, then the

system is said to be finite-time stable, if the state variable of system does not exceed a certain
bound in a prescribed time interval [42]. Compared with the traditional Lyapunov method, the

FTS method is more practical and less conservative.

The FTS approach was firstly proposed in [43]. From then on, as the development of the LMI

method, FTS approach has been applied into various systems. In [44], the finite-time stability of
system with second-order sliding modes is studied. The FTS method is applied into a linear

singular system in [45]. In addition, various nonlinear systems have been discussed by using FTS
approach; see [46-50] and the references therein.

As the time delay is unavoidable in many practical systems, the aforementioned FTS method
should be used to investigate the time-delay systems; see [51] and the references therein.
However, in the literature [51], the time delay is assumed to be a constant, which would make the
results more conservative. Inspired by recent works on the FTS theory and two-term

approximation method, we derive some new results on the analysis of finite-time stability for

discrete-time systems with time-varying delay in this paper. The original system is firstly
transformed into two interconnected subsystems. Then, the two-term approximation is used to

approximate the time-varying delay. The stability of system is analyzed by using FTS theory.
Then the state-feedback controller is designed to stabilize an instable system. Finally, a
comparison is given to illustrate the effectiveness of the approach.

Notation: In this paper, R" means the n-dimensional Euclidean space. The superscripts — 1 and
T stand for the inverse and the transpose of matrix, respectively. In addition, sym(A) indicates (A
+ AT) for convenience, and * is used to describe the symmetry terms in a symmetry matrix. The
real matrix X>0 or X <0 respectively denote that X is positive definite or negative definite.



Amin(X) and A« (X) stand for the minimum and maximum eigenvalues of matrix X, respectively.
The formula a & b refers that @ and b are very approximate.

2. Problem formulation and preliminaries

Consider the following time-delay system:

(S) : x(k + 1) = Ax(k) + Ayx(k — h(k)). (1)

The initial condition is defined as
@@)=x(0), 6e{—hy, —hy +1,...,0}, (2)
sup [0+ 1) — O] [p(0 + 1) — p(0)] <p, 3)

Oe{—hy,—h+1,...,— 1}
where x(k) € R" is the state variable, A,A; € R"*" are constant matrices, /(k) represents the time-
varying delay and satisfies

hy < h(k) < hy, 4)

where i, and h, denote the lower bound and upper bound of h(k), respectively.
In addition, system (1) can be transformed into the following interconnected subsystems:

(1) = y(k) = Gw(k), (S2) : w(k) = Ay(k). )

In this paper, the purpose is to derive sufficient conditions which guarantee the finite-time
stability of system (1). Before proceeding, we introduce the definition of FTS as follow.

Definition 1. (Finite-Time Stability [51]). The linear system in (1) is said to be finite-time stable
with respect to (a, f, N), where 0 < a < 3, if the state variables satisfy

xl(k)yx(ky<p, Yke{l1,2,...,N}, (6)
under the following initial conditions:

sup @ (O)p(0) <a. (7)
0€{—hy—hy+1,...0}

3. Main results

In this section, we aim to: 1) transform system (1) into two interconnected subsystems (5) by

using the approach proposed in [39]; 2) derive the sufficient conditions which can guarantee

system (1) finite-time stable; and 3) consider an instable system, design a state-feedback controller
to stabilize the system.

3.1. Model transformation

This approach of model transformation has been proposed in [39], we will recall it as
follows.
In order to obtain G and A which are proposed in (5), we express x(k — h(k)) as follows:

x(k— h(k)) = %x(k—hl) + %x(k—hz) + %wd(k), ®)



where hi; =hy—hy and (1/2)x(k—hy), (1/2)x(k—hy) are used to approximate x(k— h(k)),
moreover, (h12/2)wy(k) represents the approximation error. Therefore, system (1) can be
rewritten as
A A h
x(k + 1) = Ax(k) + de(k—hl) + gx(k—hz) + 712Adwd(k). )
By defining a new variable 5(k) = x(k 4+ 1) — x(k), w,(k) can be rewritten as

walh = - [x(k—h(k))— Stk i)~ %X(k—hz)}

12
1 [kro-1 k=h—-1 1 |k=m-1
= X = X @)=~ X i, (10)
12 | i=k—h i=k—h(k) 12 |i=k—h
where
' I, i<k—h(k)—1,
D=\ _1, i>k—hk).

Therefore, subsystems S; and S, can be obtained as follows:

C[re+D] T A dAd JAd | BAd][ co .
) nk) | |A-1 1A, %Ad|’%Ad wa(k) |” (an
(82) + wa(k) = An(k), (12)

Hl&gre C(k)y = [x" (k) xT (k —hy) x" (k —hy)]", and subsystem (12) represents the simplification of

It should be noted that the interconnected subsystems (11) and (12) are equivalent to the
system (1).
3.2. FTS analysis and stability conditions

In this section, we aim to analyze the finite-time stability of systems (11) and (12).
Theorem 1. The systems (11) and (12) are finite-time stable with respect to (a, 3, N), where

0 <a< p, if there exist positive definite symmetric matrices P,Q;, Q- and Z, positive scalars 0,
6,, 03, 04, Osand y > 1, such that the following inequalities hold:

[ —2%P+0,+0, © 0 0 2hin(A—1"Z  247P ]
* -0, 0 0 hipAlZ Alp
% * x  —2hhL,Z  hLALZ  hpAlP
£ %k £ ES —27 0

i % * * % * —2P |




—yiNﬂel \/&92 Joh 0z Jahy04 \/595

% —6, 0 0 0

s st — 05 0 0 | <o, (14)
% % * —0, 0

% % * % —0s

O11<P<6y1, 0<Q, <031, 0<Q, <041, 0<Z <05, £ =[uh’s(hy + hy + 1)]/2. (15)

Proof. Choose the Lyapunov—Krasovskii functional candidates as follows:
V(k) = Vi(k) + Va(k) + V3(k),
Vi(k) = x" (k)Px(k),

Vo= ¥ x(D0x()+ Z K (D0x(0),

[=k7/’l| i=k—nh b3
—h-l kol
Viky=ha X X 1 (DZnG). (16)
= = ki

Then, the difference of the above Lyapunov function is described by
AV, (k) = xT (k + 1)Px(k + 1) —xT (k)Px(k)
1 1 hia !
= |Ax(k) + EAdx(k_hl) + EAdx(k_ h) + TAde(k)
1 1 h
xP {AX(k) +5 Agx(k—hy) + EAdx(k —hy) + %Adwd(k):| —x (k)Px(k)
1
= xT (k)(ATPA — P)x(k) + —xT(k — )AL PA x(k— hy)
2

+- xT(k hy)ATPA gx(k — h2)+h—wd(k)A§PAdwd(k)

—|—sym{ xT(K)AT PAgx(k — hy) + = xT(k)ATPAdx(k h) + iz X (K)AT PAgwa(k)
—i—le(k—hl)ATPAdx(k—hz)

h” o (k— hl)ATPAdwd(kH 23T (k= ho)AT PAGwa(K) (17)

k k
AV = Y AO0x)- X OO+ ¥ & (DO + Z X (D0x(0)

i=k—h+l i=k—nh i=k—hy+1 i=k—h
= x' (k) Qyx(k) —x" (k — 1)y x(k — hy) + x" (k) Qp2x(k) — x" (k — h2) Qpx(k — h2), (18)
—hi—1 . —h—1 k-1 -
AVs(k)=h X Z T MNZnG)—hz XX 0 ()Zn()
:—hz]—k+l+1 i:—hzj:k+i

—h -1
= hp Z [n" (k) Zn(k) —n" (k + i)Zn(k + i)]

i=—h



N T
= i (K)Zn(k) = hiy zh 0" (k + Zn(k + 08 (i) = hiyn" (k) Zn(k)
i= 2
k—hi—1 ,
—hi X [8On@O] Z[5(Dn ()] - (19)
i=k— hz
By recalling the system (12) and using Jensen's inequality [52], the inequality (19) can be
regarded as

k—h; —1
AVs(k)<h12nT(k)Zn(k)—[ Z 5(;);7(1)

i=k

k—hy —1
) [5(1')'1(1')]]

l=k7h2

1277T(k)Z77(k) hlzwd (k)ZWd(k)- (20)
Therefore, by using system (11), the above inequality can be rewritten as

hz
AV3(k) < xT(k)(A —I)" W3, Z(A — Dx(k) + x" (k— hy)AT f ZAx(k—hy)

h2
+xT (k—hy)AY %ZAdx(k —hy)
nt "
+w? (k) <A§ 712 ZA,— h%ZZ)wd(k> + sym {xT(k)(A -n' 7‘2 ZAgx(k—hy)

h2
+xT (k) A—-DT % ZAgx(k—hy)
T T h?Z T T h%2
+x (k)(A —I) —ZAde(k) +x (k - h] )Ad TZAdx(k — hz)

h3 h3
+x" (k—hy)AT =12 ZAdwd(k) + xT (k—hy)AL fZAdwd(k)] . (21)

Hence, it is concluded that

AV(k) <x"(K)[ATPA—P + O, + Q, + hi,(A—1)" Z(A—1)]x(k)

h?
+xT (k- hl)[ ATPA; + 1247 ZAd—Ql]x(k )

4

h2
+x7 (k—hy) {ZAgpAd + TIZAZZAd — Q2] x(k—hy)

h? ht
+wh(k) {ﬁ Al PA+ %AﬁZAd - h%zz] wa(k)
+sym{ T(k)[ ATPA; + 12 12 (A— I)TZAd] x(k—hy)
+xT (k) [—ATPAd + iy (A— I)TZAd] x(k—hy)

+x7 (k) [h —2ATpA, + -2 ‘2 (A— I)TZAd] wa(k)

h
+)CT(k - hl) l:ZAgPAd + %A;ZA‘]} x(k - hz)



h3
+xT (k- hl)[ 2ATPA, + fATZAd] wa(k)

h
+xT (k— hz)[ 2 ATPA+ 12ATZAd}wd(k)}

4
i.e.,
AV (k) < E(k)Q&(k),
where
T
Eky=|x"(k) x"(k—h)) x"(k—h) wik)|
Q1 Qp Qi Qu
o— ¥ Qpn 2y 0y
| % ¥ Qi3 3|
£ k ES Q44
1
Q=ATPA—P+Q, + 0, + L, (A=D"Z(A=1), 21, = Q)3 = EATPAd
h2
+ i A-D"ZA,,
h n 1 n?
Q= %ATPAJ + %(A—I)TZAd,sz = ZA§PAd + %A[fZAd—Qb
L 7 h%z T
Q)3 = ZAdPAd + TAdZAda
hia T h?z T 1 T h%z T
Qo4 = Q34 = 2 —=A,PA; + 4 —=A,7ZA4, Q233 = 4A PA; +—= 1 A ZA;— Oy,
h%z T h?z T 2
Quu=—FAPAG + =2 A(ZAI— I Z.
In addition, it is assumed that
y=hHP 0 0 0 Iy Iy Is I
0 0 0 O & Iy, Ilyz Il
nI=Q— = <0,
0 0 0 O ES £ I35 I3y
0 0 0 O % % * Ty
where

Iy =A"PA—yP + O, + Q) + B(A— D) Z(A—1),T12 = Q15,15 = Q13,

T4 = 4, [Ty = Q), I3 = 93, [1hg = L4, 133 = 33, [134 = 34, [134 = Qu4.

(22)

(23)

(24)

(25)

It should be noted that the matrix variable P is coupled with A and A, in inequality (25).

Therefore, in order to decouple the triple terms, inequality (25) is rewritten as

ATPA—yP+ 0, + 0, lATPAd TATPA, b ATPA,
* —Q, +1ATPA, LATPA, o ATPA,
M= s % — 0, +}AJPA "RAJPA,

* * * — 13,7 + "2 ATPA,



RyA—D"Z(A=1) "2(A—D"z4, "2(A-1ZzA; "2(A-DT24,

2 2 3
* "o AlzA, "o AlZA, "o AlzA,
+ 2 3
* * "o AlZA, "2 ATzA,
s " s " AT7A
4 Hqead
ATPA—yP+ 0, + 0, 1ATPA, 1ATPA, b ATPA,
* —Q, +1AIPA, LATPA, o ATPA,
= % % — 0, +1ATPA, o ATPA,
2
* * s — 1,7 + "2 ATPA,
T
hp(A—=D'Z hp(A—=D'Z
h T h T
e (-2)7! e 0 (26)
- h T - hip AT <0.
b alz healz
", AT 2, T
2Alz Az
By applying Schur complement lemma, the inequality (26) is equivalent to
ATPA—yP+ 0, + 0, 1ATPA, 1ATPA, b ATPA, hn(A—D"Z
* =0, + ;A PA JATPA b2 ATPA, he ATz
* ¢ 0, + A PA e AlPA, healz | <o.
¢ s s iz +"AlpA,  Mealz
% * sk * —Z
27

Then, by using Schur complement lemma one more time, the inequality (27) is equivalent to:

[—yP+0,+0, 0 0 hpA-D"z AP ]
* -0 h_ﬁzAgz %A;P
% =0 %Agz 1ATP 0 8
% * x  —hhzZ Atz healp
* & & —Z 0
L 3% % % % % —-P |

By introducing two substitutions P« 2P and Z > 2Z, the inequality (28) can be regarded as
inequality (13). Hence, if the inequality (13) holds, it concludes that /7<0. Then, we have

(=P 0 0 0 G—1DP 0 0 0
AV (k) < E()QE(K) = & (k) T + 000 Eky<é&" (k) 0 000
0 000 0 000
0 000 0 000

Ek) = (y — D" ()Px(k) < (y = DV (k),

(29)



i.e.,
V(k)<yV(k—1). (30)
Therefore, it infers that
V(k)<yV(k—1)<y*V(k—2)<---<y*V(0). (31)

Furthermore, the initial value of Lyapunov function can be described by

—1
V() =+"(0)Px0) + ¥ (D010 + S 00 +he 3 X0 GZn)

i=—h i=—h i=—h j=i

<lmax(P)xT(O)x(0) + ﬂmax(Ql)_ Zlh xT(i)x(i)
“h—1 -

+1max<Q2>4_*z T + () 5 TG (32)

=—hy j=1i

Then, by recalling the initial conditions in Egs. (3) and (7), inequality (32) can be regarded as

=1 —1
V(0)</1max(P)a+/1mdx(Ql) z a+/1mdx(Q2) E a+ hi2dmax(Z) 2 Z H

i=—h i=—h i=—hhj=i

= lmax(P)a + Amax(Ql)hl a+ Amax(QZ)h2a + j'max(Z)[ﬂh]z(hl + h2 + 1) /2 (33)

By applying Schur complement lemma, the inequality (14) is equivalent to
-6, 0 0 0 Jab,

—0;! 0 0 Jah 0
_},*Nﬁé)l—[\/agz «/ah|03 «/ah294 \/595] 3 s

0 0o -6 o0 Jahy0,
0 0 0o 65! Je0s
= —y Vo, + ab, + ah\0; + ahy04 + €05 <0. (34)

Therefore, via inequalities in Eqs. (15) and (34), the inequality (33) can be regarded as
V(0)<ab, + ah 03 + ahy04 + e0s <y~ pO1 <y =N BAnin(P). (35)
In addition, by combining inequalities (31) and (35), we can obtain
Amin(Px" (R)x(k) <x" (K)Px(k) < V(k) <7*V(0) < /" V(0) <y [y ™" Bmin(P)]

= lmin(P), k€ {1,2,---,N}. (36)
Hence, it is concluded that
xT (k)yx(k)<p, Yke (1,2, N}. (37)

i.e., the system composed of Egs. (11) and (12) is finite-time stable, which means that system (1)
is finite-time stable. This completes the proof. O

Remark 1. The inequalities (13)—(15) are LMIs, which can be easily calculated by the LMI
Toolbox in MATLAB. In addition, the results are related to the lower and upper bounds of
time delay.

Remark 2. It should be noted that the inequalities 6,/ <P <61, O, <6sl, Q, <041 and Z< 65l in
Eq. (15) are conservative. The approach to reduce the conservativeness is to minimize the

positive scalar y,,;,. Then, it concludes that Ayin(P) & 61, Anax(P) & 62, Anmax(Q) & 03,

Amax(Q2) = 04, Amax(Z) = 605, which can make the inequalities in Eq. (15) less conservative.



Remark 3. In inequalities (13) and (14), the upper bound %, of time delay is not given, which is
needed to be calculated. The computation method for h, is described by the following steps.
Choose an initial value for &, which should be larger than /. Then amplify the value of &,, until
the LMIs having infeasible solutions. For example, if the LMIs have infeasible solutions for
hy = 11, while have feasible solutions for 4, = 10, then we choose the upper bound of time delay
as h, = 10.

In above analysis, it is assumed that the time delay is time-varying. On the other hand, if the
time delay is constant, we will obtain the following corollary.

Corollary 1. The system in Eq. (1) with h(k) = h is finite-time stable with respect to (a, 5, N),
where O <a < p, if there exist positive definite symmetric matrices P and Q, positive scalars 0,

6, 8sand y > 1, such that the following inequalities hold:

[—yP+Q 0 A'P
% -0 AlP| <0, (38)
& & —P

[ —yNpo,  Jab, ahbs

% -6, 0 <0, (39)
L & & —0;
01 I<P<0,I, 0<Q<0sl. (40)

Proof. Consider the Lyapunov—Krasovskii functional candidates as follows:
V(k) = Vi(k) + Va(k),
Vi(k) = x" (k)Px(k),

—1

Vi = ¥ th(i)QX(i)- (41)
Since h(k) = h, we have

x(k + 1) =Ax(k) + Agx(k—h). (42)

With similar steps in Theorem 1, inequalities (38)—(40) can be easily obtained. This completes the
proof. O

3.3. Controller design

In this section, a state-feedback controller is designed, which can make the instable system

finite-time stable.
The system is given by

x(k + 1) = Ax(k) + Agx(k— h(k)) + Bu(k),

u(k) = Kx(k). (43)

Corollary 2. The closed-loop system in Eq. (43) is finite-time stable with respect to (a, ff, N),
where O <a < p, if there exist matrices W and Hg, positive definite symmetric matrices M, N, U,



V, H;, H,, H;, H,, Hs and positive scalar y > 1, such that the following inequalities hold:

[—oyMm+U+V 0 0 0 2hi [MA—1)" + WTB"]  2(MAT + W7 BT) |
* -U 0 0 hiaMAY MAT
* ® =V 0 hiaMAY MAT -0
* * % —20,N h3,NAY hiNAT ’
% % % % —2N 0
i % % % % % —2M |
(44)
—y NpH, JaH, +/ahHs; <Jah,H; ./¢Hg
% —H, 0 0 0
% % —H; 0 0 <0, (45)
& % & —Hy 0
% % % % —H;s
H <M<H,,0<U<H;3,0<V<H;,0<N<Hs,Hg>0,
e = [uht,y(hy + hy + 1)]/2. (46)
Further, if the LMIs in Eqs. (44)—(46) have feasible solutions, the control gain matrix is given by
K=WM" (47)
Proof. The closed-loop system (43) can be rewritten as
x(k + 1) = (A + BK)x(k) 4+ Agx(k— h(k)). (48)
Then, by applying Theorem 1, we can obtain
[—2P+0,+0, © 0 0 2hi(Ax—1'Z  2ALP |
* -0, 0 0 hiAlZ ALP
* ® = 0 hinALZ ALP
Q: , 2 <0, (49)
% % % —2h,Z hi,AZ hi2A,P
& & & & —2Z 0
L & & & & * —2P ]
where
Ax =A+ BK.

It should be noted that the inequality (49) contains matrix coupled terms which make the
inequality (49) non-LMI. In order to convert it into an LMI, perform a Schur complement to the
inequality (49) with

diag{Pp~', P~ P~ z= 1z p~1}.



Then we have

[—2yP~' 4+ P QP! + P10, 0 0 0 2hip [P~ A=) +PKTBT] 2(P~'AT + P~'KTBT) |
* —-pP'g,p! 0 0 hiP~1A] PIAY
* * -pP~'g,p! 0 hiP~ A} P=1AL -0
* * % —2h3,Z71 n,z 1A hinZ AT )
* % * * —2z! 0

| * * * % % —2P~! |

(50)



In addition, new matrix variables are defined as follows:

M=pP ' N=z'u=pP 'oP ,v=P 10, ,W=KP".
Therefore, the inequality Eq. (50) is equivalent to Eq. (44).
The inequality Eq. (14) can be regarded as

—}/_N/))H]I \/592] Jah 0s1  Jah,041 \/5951

% —60,1 0 0 0

% % N 0 0 |<o. (51)
* % % — 041 0

% % % % —6s1

Again, performing a Schur compliment to the inequality (51) with the matrix
diag{Pp~',Pp~',p~',p~1,Zz7 1) gives

—y NP1 0P~ JaPT ' (O,D)PT Jah PN 0P Jah P (0,)PT JeP~ N (OsD)Z !

* — P~ Y@, 1)P! 0 0 0

% * —P~1(6;n)P~! 0 0 <0.
% % * —P~Y@s)P ! 0

* s s * -z 0sDzZ"!

(52)
In addition, some new matrix variables are defined as follows:
H =P Y0.DP ', H,=P ' (@0,1)P~ ', Hy =P~ 1 (:1)P~ ",
Hy=P '(0,)P~"  Hs=2Z2"'0s1)Z" ', He =P~ ' (0s1)Z".

Hence, inequalities (52) and (15) are equivalent to Eqs. (45) and (46), respectively.
In consequence, via Theorem 1, the closed-loop system (43) is finite-time stable with respect
to (a, f,N), if inequalities (44)—(46) hold. In addition, the control gain matrix K is given by

K=wM~'.

This completes the proof. O

4. Numerical example

In this section, two examples are provided to demonstrate the effectiveness and less
conservatism of the proposed method in this paper.

Example 1. Consider the following time-delay system which has been used in [51]:

0.60 0.00 0.10 0.00

kt1)=
*+1) {0.35 0.70 020 0.10

]x(k) + [ ]x(k — h(k)). (53)

i) Firstly, the time delay is assumed to be time-varying. In addition, we choose (a,f,N) =
(2.1,80,100), = 1.1 and h; = 2. Then, via Theorem 1, by choosing the scalar y = 1.000012,
matrix variables in LMIs (13)—(15) and the upper bound h, of time-varying delay can be



calculated as follows:

b [ 656.848 —58.714} B {98.780 14.534]
T | —58714 126553 |°F' T | 14534 11.013 )
69.322 14.534
Q. = {14.534 8.916 }
[12.768 3.242
2= 30m 1.731}’“‘3(}’2) =10,

0, =120.107, 0, =664.130, 63 = 101.557, 6, =72.724, 05 = 13.654.

Therefore, the corresponding eigenvalues of the above matrices can be calculated as follows:

MP) = {120.130, 663.262}, A(Q,) = {8.669, 101.124},
M0,) = {5.601,72.637}, A(Z) = {0.849, 13.649}.

Moreover, it can be obviously seen that
0] </1min(P)a 92 >ﬂvmax(P)> 93 >Amax(Q1)a 94 >Amax(Q2): 95 >ﬁmax(z)'

Hence, it concludes that the system (53) with time-varying delay 2 < h(k) < 10 is finite-time
stable with respect to (2.1, 80, 100).
In order to show the trajectory of the state variable, we choose initial values as follows:

@Dy ci-10.—9...0 = [@(—10),p(=9), -, p(0)]

o 1 1 1 1 1 1 1 1 1 1
- . (54)
~1 -1 =1 =1 =1 =1 =1 =1 =1 —1 -1

In addition, it can be seen that the initial values satisfy the following conditions:

sup PT(O)pO)<a=2.1,
0,—9,--,0}

Oe(—1
sup [+ D) —pO)] [p(0 + 1) —p(@)] <p=1.1.
e {—10,—9,,—1}

The curves of state variables and the random time delays are shown in Figs. 1 and 2,
respectively.
Hence, it can be seen that, under the initial conditions in Eq. (54), the state responses of system

satisfy the following condition, which infers that the system is finite-time stable with
respect to (2.1, 80, 100):
xT (k)x(k)y<p=280,Vke{l,2,-,100}.

i) In order to compare the results in this paper with those in [51], we assume that the time delay
is constant. In addition, we choose (a, #, N) = (2.1, 20, 140). Therefore, based on Corollary 1,
by choosing the scalar y = 1.00024, the matrix variables in LMIs Eqgs. (38)—(40) and the
maximum of time delay are calculated as follows:

P 61.484 —3.217 5.150 1.434
| —3217 25972 |7 ° 1434 1.149])
sup(h) =29, 6, =25.350, 0, =64.628, 03 =5.718.
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Fig. 1. State responses of the system with time-varying delay 2 < h(k) < 10.
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Fig. 2. Randomized time-varying delay 2 < h(k) < 10.

Hence, the corresponding eigenvalues of the aforementioned matrices can be calculated as follows:
MP) = {25.682,61.773}, A(Q) = {0.688,5.611}.

Therefore, it can be seen that
01 <Anin(P), 62> Amax(P), 03> Amax (Q).

In consequence, based on Corollary 1, system (53) with the constant time delay i(k) =h =29 is
finite time stable with respect to (2.1, 20, 100).
In order to show the trajectory of the state variable, the initial conditions are given as follows:

P (-2 —28...0) = [@(—29), p(—28), -, p(0)]
. - | -

Fig. 3 shows the curves of state variables under the initial conditions in Eq. (55).
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Fig. 3. State responses of the system with constant time delay A(k) = 29.

Table 1
Upper bound of time delay in [51] and this paper.

hy < h(k) < hy h(ky=h
Upper bound of time delay in [51] 2<hk)<6 h(k)=h=11
Upper bound of time delay in this paper 2 <h(k)<10 hk)y=h=29

It infers from Fig. 3 that, under the initial conditions in Eq. (55), the state responses satisfy the
following condition, which implies that the system is finite-time stable with respect to

(2.1,20, 140):
x (k)x(k)y<p =20, Yke (1,2, -, 140}.

The upper bounds of time delays in this paper and literature [51] are respectively shown in Table 1.
It results from the above table that, the upper bounds of time delays in this paper are larger than
those in [51], which means that the approach in this paper is less conservative than that in [51].

Example 2. Consider the following system with a state-feedback controller:
0.80 0.30 0.15 0.00 0.20
et D)= [0.80 0.70]x * {0.40 o.os}c(k_h(k)wr [0.10}“(")’
u(k) = Kx(k). (56)
We choose (a, ,N) = (18.1,80,50), = 1.1 and h; =2. Then, via Corollary 2, by choosing the
scalar y = 1.00026, the control gain matrix K and the upper bound of time-varying delay are calculated
as follows:

K=[—1.0887 —2.9660], i =11.

In addition, initial conditions are given as follows:

PDpeci—11,—10.0 = [@(—11), (= 10), -+, (0)]

2 3 3 3 3 3 3 3 3 3 3 3
- NGY))
-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3



Moreover, it can be seen that the initial values satisfy the following conditions:

sup PT(O)p(0)<a=18.1,
0e{—11,—10,-0}

sup [9(0 + 1) =@ [p(0 + 1)~ @) <u = L1.
Oe{—11,—10,4-,—1)
The curves of time delay, state responses with the controller and without controller are
respectively shown in Figs. 4-6.

It results from Fig. 6 that, under initial conditions in Eq. (57), the system in Eq. (56) is instable
without controller. In addition, it infers from Fg. 5 that, the state responses satisfy the following
condition under the control gain matrix K =[ —1.0887 —2.9660 | which means that the
system is finite-time stable with respect to (18.1, 80, 50):

x! (k)x(k)<p =80, Yke{1,2,--,50}.
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Fig. 4. Randomized time-varying delay 2 < h(k) < 11.
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Fig. 5. State responses of the system with the controller.
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Fig. 6. State responses of the system without controller.
Finally, we can make the following conclusions:

a) The upper bound of time delay in this paper is much larger than that in literature [51], which
infers that the result in this paper is less conservative than that in [51].

b) The controller guarantees the instable system finite-time stable, which infers that the controller
is effective.

5. Conclusions

In this paper, the finite-time stability of systems with time-varying delays has been analyzed.
By using the input—output method, the original system is transformed into two subsystems which
are interconnected. A two-term approximation is used to approximate the time-varying delay.
Then, based on a Lyapunov—Krasovskii formulation, the sufficient conditions of finite-time
stability are derived. Moreover, a state-feedback controller is designed which can guarantee the
instable system finite-time stable. Finally, the validity and advantages of this approach are
illustrated through numerical examples.
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