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ABSTRACT

This paper is concerned with the problem of . filtering for a class of two-dimensional Markovian jump linear systems described by the
Fornasini-Marchesini local state-space model. The systems under consideration are subject to state-delays and deficient mode
information in the Markov chain. The description of deficient mode information is compre-hensive that simultaneously includes the
exactly known, partially unknown and uncertain transition probabilities. By invoking the properties of the transition probability matrix,
together with the convexification of uncertain domains, a new H,, performance analysis criterion for the filtering error system is firstly
derived. Then, via some matrix inequality linearisation procedures, two approaches for the filter synthesis are proposed. It is shown that
both the full-order and reduced-order filters can be constructed by solving a set of lin-ear matrix inequalities. Finally, simulation studies
are provided to illustrate the effective-ness of the proposed design methods.

1. Introduction

It is well known that many physical processes or systems have intrinsic multi-dimensional (m-D) characteristics [14].
Among various m-D systems, in particular the two-dimensional (2-D) systems have received considerable research interests
due to their wide applications in different areas, such as 2-D digital filtering [17,33], linear image processing [23,32], and
repetitive processes control [7,41]. In recent years, a great number of significant results on analysis and synthesis of 2-D sys-
tems have been reported in the open literature. To mention a few, the stability problem for 2-D systems was investigated in
[5,10]. The control and filtering problems were considered in [6,8,18,30,33,35]. The model approximation problem was ad-
dressed in [32,40].

On the other hand, Markovian jump linear systems (M]LSs), initially introduced by Krasovskii and Lidskii [13], have been
widely investigated in the past decades, and a great deal of elegant results have been obtained [1,4,9,11,15,16,22,24—
26,31,34,36,38,42]. The motivation for the study of this class of systems is the fact that many dynamical systems subject
to random abrupt variations can be modeled by MJLSs, which are described by a set of classical differential (or difference)
equations and a Markov stochastic process (or Markov chain) [2]. It is known that 2-D systems are no exception for this case.
As a critical factor, the transition probabilities (TPs) in the Markov chain determine the system behavior and performance,
and many analysis and synthesis issues on MJLSs have been exploited assuming the perfect information on the TPs. However,
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in many practical scenarios, it is questionable to obtain all the precise mode transition information, and the cost is probably
high. Thus, it is significant and challenging, from control perspectives, to further study more general jump systems with defi-
cient mode information [2,12,37,39,43,44]. Specifically, the authors in [39] addressed the robust #,, filtering problem for a
class of MJLSs with norm-bounded uncertain TPs. The authors in [43] investigated the . filtering problem for a class of
M]JLSs with partially unknown TPs. Unfortunately, the aforementioned results are only concerned with one-dimensional (1-
D) systems. In addition, it has also been well recognised that time-delay, which is frequently a source of instability and
performance degradation, exists commonly in MJLSs [11,27-29,38]. However, to the authors’ best knowledge, few re-sults
have been reported on the H, filtering for 2-D MJLSs with state-delays and deficient mode information, which simul-
taneously involves the exactly known, partially unknown and uncertain TPs. This motivates us for the present study.

In this paper, we will tackle the # filtering problem for a class of 2-D MJLSs described by the Fornasini-Marchesini local
state-space model. The systems under consideration are subject to state-delays and deficient mode information, which
simultaneously incorporates the exactly known, partially unknown and uncertain TPs. By the properties of the transition
probability matrix and the convexification of uncertain domains, a new sufficient condition for ., performance analysis of
filtering error system will be firstly presented. Then via some matrix inequality linearisation procedures, two approaches for
the filter synthesis will be proposed. It is shown that both the full-order and reduced-order filters can be obtained by solving
a set of linear matrix inequalities. Simulation studies will be finally performed to show the effectiveness of the pro-posed
filtering design methods. Compared with the existing results on robust H,, filtering for 2-D discrete-time MJLSs with state-
delays, the main contributions of the work in this paper are twofold: (i) The filtering problem for a class of 2-D discrete-time
MJLSs with deficient mode information, which simultaneously includes the exactly known, partially unknown, and
polytopic-type uncertain TPs, is considered. The corresponding filtering design results are expected to be more general and
thereby more practicable. (ii) By a linearisation approach, together with Projection lemma, some less conservative filter
synthesis conditions are obtained for 2-D MJLSs with state-delays.

Notations. The notations used throughout the paper are standard. R"” denotes the n-dimensional Euclidean space; sym{A} is
the shorthand notation for A + A”; the notation P > 0 means that P is real symmetric and positive definite; I and 0 repre-sent
the identity matrix and a zero matrix, respectively; (S, 7, P) denotes a complete probability space, in which S is the sample
space, F is the o algebra of subsets of the sample space, and P is the probability measure on F; E[-] stands for the
mathematical expectationj|-|| refers to the Euclidean norm of a vector or its induced norm of a matrix; L{[0, o), [0, co)} de-
notes the space of square summable sequences on {[0, oo), [0, oco)}. Matrices, if not explicitly stated, are assumed to have
appropriate dimensions for algebra operations.

2. Problem formulation and preliminaries

Fix a complete probability space (S,F,P) and consider the following two-dimensional (2-D) discrete-time Markovian
jump linear systems (M]LSs) represented by the Fornasini-Marchesini (FM) local state-space (LSS) model with state-delays
in each of the two independent directions of information propagation,

(Z) X+ 1,j+1) =A(r(i.j+ 1)x(i,j + 1) + A (r(i + 1,j))x(i + 1,))
+An(r(i,j+1)x(i —di,j+1) +An(r(i+1,j)x( + 1,j — d2)
+Bi(r(i,j+ 1))w(i,j+ 1) + Bo(r(i + 1,j))w(i + 1,j),
y(i,j) = C(r(i.j)x(i.j) + D(r(i,j))w(i.j),
2(i.j) = L(r(i,j))x(i,J), (1)

where x(i,j) € R™ is the state vector; y(i,j) € R" is the measured output; z(i,j) € R™ is the objective signal to be estimated;
w(i,j) € R™ denotes the disturbance input vector which belongs to [, {[0, ), [0,)}; and d; and d, are two constant positive
integers representing delays along vertical and horizontal directions, respectively. A, (r(i,j + 1)),A2(r(i + 1,j)),Aa1 (r(i,j + 1)),
Ap(r(i+1,j)),Bi(r(i,j+ 1)),Bx(r(i + 1,j)), C(r(i,j)), D(r(i,j)), and L(r(i,j)) are real-valued system matrices. These matrices are
functions of r(i,j), which is described by a discrete-time, discrete-state homogeneous Markov chain with a finite state-space
7 :={1,...,N} and a stationary transition probability matrix (TPM) IT = [7n,] .y, Where

T = Pr(r(i+1,j+ 1) =njr(@,j+1)=m)=Pr(r(i+1,j+1)=n|r(i+1,j) =m), VmneZ,

with m,, > 0 and Z',L] Ttmn = 1. For r(i,j)=m e Z, the system matrices of the mth mode are denoted by
(A1m, Aom, Adim, Ad2m, Bim, B2m, Cm, D, Lm ), which are real known and with appropriate dimensions. Unless otherwise stated,
similar simplification is also applied to other matrices in the following.

Remark 1. The unique characteristic of 2-D process is that the information propagation occurs in each of the two
independent directions. Attempts to analyse these processes using traditional one-dimensional (1-D) systems theory fail
(except for a few very restrictive special cases) because such an approach ignores their inherent 2-D systems structure. For
instance, when 1-D Markov chains are employed to model a gas absorption with Markovian jump parameters, the state
evolution for the underlying systems can be represented by x(i+ 1) =A(r(i))x(i) + Aq(r(i))x(i — dq1) + By (r(i))w(i).
Alternatively, by utilising the 2-D MJLSs to describe the above scenarios, the Markovian dynamic model can be expressed



as FM LSS model (1). Since x(i + 1,j + 1) in (1) can be viewed as the one-step forward shift from x(i, j + 1) in the direction of i
coordinate or x(i + 1, j) in the direction of j coordinate, we need two vectors to identify the relationship among x(i + 1,j + 1),
x(i,j + 1) and x(i + 1, ), which can describe the information propagation more accurately. This can also well explain that such
a 2-D framework leads to more complex structure than 1-D case, and it is thus more challenging and difficult to investigate
the analysis and synthesis of 2-D systems.

In this paper, the transition probabilities (TPs) of the jumping process are assumed to be uncertain and partially accessed,
i.e, the TPM II=[Tpm,ly,y iS assumed to belong to a given polytope Py with vertices Il;,s=1,2,...,M,
Py = 1‘[‘1‘[ =M o0 = 0,35, o = 1}, where g = [Ty, M, 1 € Z, are given TPMs containing unknown elements
still. For instance, for system (X) with four operation modes, the TPM may be as,

Ty Ty Tz Mg

To1 Ton Tz T

T31 Tz 33 Tiag

a1 Tay Taz Taa
where the elements labeled with “*” and “ ~” represent the unknown information and polytopic uncertainties on TPs, respec-
tively, and the others are known TPs. For notational clarity, ¥m € Z, we denote T = 7" UZ{) UZY as follows,

I .= {n: T, is known},
I .= {n: T, is uncertain},
7 .= {n: fiyy is unknown}.
Also, we denote
Tl o= 3 o = 1= 3 Mo — > 7 2)
nezly) nez{™ nez™

where 7%, represents an uncertain TP in the sth polytope, Vs = 1,..., M.
The boundary conditions of system (X) in (1) are given by,
{x(ij) = ¢(ij). ¥ >0, —d <i<O}
{x(i.j) = @), Vi=0, —d<j<O0}
¢(0,0) = ¢(0,0). (3)

Throughout this paper, the following assumptions are made.

Assumption 1. System (X) in (1) is stochastically stable.

Assumption 2. The boundary condition is assumed to satisfy
. T, 0 . T, 0 _
Jim [E{Z > (d)T(i,j)d)(i,j))} + lim [E{Z > (@T(ivj)ﬁﬂ(l,j))} < oo 4)
j=0i=—d, i=0j——d,

The aim of the H., filtering problem to be addressed in this paper is to estimate the signal z(i,j) by a linear dynamic filter
of the following mode-dependent FM-type structure,

X(i+1,j+1) =An(r(i,j+ 1)X(A.j+ 1) + Ap(r(i + 1,))x(i + 1.))
+ B (r(t,j+ 1))y(.j + 1) + B(r(i+ 1,))y(i + 1,)),

2(i,j) = Cy(r(i,j))x(i,j) + Dy (r(i, j))y(i.Jj),

X(i,j)=0, fori=0 or j=0, (5)
where X(i,j) € RY is the filter state; z(i,j) is the estimation of z(i,j); and An(r(i,j+ 1)) € R An(r(i+1,j)) € R¥",
Bei(r(i,j +1)) € RY*™ Bey(r(i + 1,j)) € R"™, Ce(r(i,j)) € R™*", and Dy(r(i,j)) € R=*" are mode-dependent filter gains to be
determined. It is noted that in this paper, we consider both the full-order and reduced-order filters, that is, ny = n, for the
full-order filter and ny < n, for the reduced-order filter.

Augmenting the model in (1) to include the states of the filter in (5), we obtain the following 2-D filtering error system,

(Z) X[+ 1,7+ 1) = A(r(i,j + 1)x(A.j+ 1) + A (r(i + 1,1)X( + 1,])

+Aq (r(i,j+ 1)EX(i — di,j+ 1) + Aga(r(i + 1,))EX(i + 1,j — d)
+Bi(r(i,j + D)W(i,j + 1) + Bo(r(i + 1,j))w(i + 1)),
2(i,j) = C(r(i,j))x(i,j) + D(r(i,j))w(i.j), (6)



where X(i,j) := [x"(i,j) )?T(i,j)]T,Z(i,j) :=z(i,j) — 2(i,j), and

A (rii+1 A(r(i.j+1)) 0

1 r l> = ’
(ri.j+1)) |:Bf1(r(i,j+l))C(r(i,jJr])) An(r(ij + 1))

Ao (ri 1 Ay (r(i+1,j)) 0

Ay (r(i+1,j)) = |:Bf2(r(i+1,]))C(T(l‘+‘ljj)) Afz(r(i+1,j))]’

vy An(r(ij+1 B A (r(i 1.
An(r(ij+1) :—{ WO Fattieg) :_{ “(r('o””)}
B pli i By (r(i,j+1))

Bi(r(i,j+1)):= [Bfl(r(i,j+1))D(r(i7]-+])) )

By(r(i+1,j)) :

By(r(i+1,)))
[for(i +1.0)D(r(i +1.4)) } ’
C(r(i.g)) := [L(r(i.j)) = Dp(r(i.j)C(r(i.§))  —Cp(r(i.j))].
D(r(i.j)) := =Dy(r(i.))D(r(i.j)), E:=[In, Onoxn, . 7

Now, for a more precise description of the main objective of this paper, we introduce the following definitions.

Definition 1 ([14,33]). The filtering error system (X) in (6) is said to be stochastically stable if for w(i,j) =0 and the
boundary condition satisfying (4), the following condition holds,

E{ii(fc(i,ﬁ 1? + [|x( + 1,,-)|2)} < oo

i=0 j=0

Definition 2 ([14,33]). Given a scalar y > 0, system (X) in (6) is said to be stochastically stable with an A, disturbance
attenuation performance index 7y if it is stochastically stable with w(i, j) = 0, and under zero boundary conditions ¢(i,
J) = @(i,j) = 0 in (3), satisfies

12lle, < VIl

where

ol = {0 S (126 + DI + i+ 1)) .
W, := \/Z,ZO > (Iwiij+ 117 + Iwii+ 1.)11), 8)

for all non-zero w € 1,{[0, ), [0, )} and under zero boundary conditions.
Therefore, the objective of this paper is to design an H, filter in the form of (5), such that the 2-D filtering error system
() in (6) with deficient mode information is stochastically stable with a prescribed ., performance index 7.

3. Main results

In this section, based on a Markovian Lyapunov-Krasovskii functional (MLKF), a new ., performance analysis criterion
for the two-dimensional (2-D) filtering error system (X) in (6) with deficient mode information will be firstly derived. Then,
by some matrix inequality linearisation techniques, two approaches to the H,, filter synthesis will be developed.

3.1. H., filtering analysis

In this subsection, by the properties of the transition probability matrix (TPM) and the convexification of uncertain do-

mains, an ., performance analysis criterion for the 2-D filtering error system (X) in (6) with deficient mode information is
presented, which will play a key role in solving the #, filter synthesis problem.

Proposition 1. The 2-D MJLS with state-delays and deficient mode information in (6) is stochastically stable with a guaranteed
Ho. performance 7, if there exist positive-definite symmetric matrices {P1y, Pay} € R®TWX0H) “and {Q4,Q5} € R™*™, such
that the following matrix inequalities hold,



AP My + LY L+ O <0, meZ, nelly, s=1,....M, 9)

where

@m = diag{_le + ETQ1E7 _P2m + ETQZEy _Qh _Q27 —VZL —V21}7
Am = [E]m KZm Edlm Ed2m Elm EZm}’ E:= [I Mx O”XX”f ]7
Em 0 Onzx2nx 5m 0
Lm = _ _
0 Cm Onz><2nx 0 Dm
= > Tun(Pin+Pan) + > T (Pra + Pan) + 75 (Prn + Pan),
nefﬁp) neI(’"J

(m)
neIw\

T =1 - Z Tnn = Y T (10)

nez(" neI (m)

Proof. Consider the following MLKF for the 2-D filtering error system in (6),
ka (ij+1).r(j+1) +ZVk (i+1,4),r(i+1,))), (11)
k=

where
Vi®({,j+1),r(1,j+ 1)) == X' (1, j + VP (r(i,j + 1)x(i,j + 1),
i1
VoX(i,j+ 1), 1@ j+1)) == > X'(k,j+ DE'QEX(k,j+ 1),
k=i—d,

V(4 1,0), 10+ 1.J)) = K+ 1))Po (i + 1,J)R( + 1)),

i1

Valk(i+ L)+ 1) = S K1(+ 1, ETQuBR( + 1,K) (12)
k=j—dy

Then, based on the MLKF defined in (11), it is known that the 2-D filtering error system in (6) is stochastically stable with

an H,, performance y under zero boundary conditions for any non-zero w(i,j) € 1,{[0, >), [0, 00)} if the following inequality
holds,

9= AV(i.j) +[12[F, - 7 [wl); <0, (13)

where

2
AV(i,j) := [E{ka(x(i+1,j+ 1,ri+1,j+1)) | x(,j+1),r(,j+1) = m}

k=1

k=

{i (i+1,j+1), (i+1,j+1))x(i+1,j),r(i+1,j):m}

4

—ka (1,5 +1),r(1,j+ 1)) = > Vi +1,j), (i + 1,§)),

k=3

and ||z||¢, and ||w||, are defined in (8).
Taking the time difference of V(i,j) along the trajectories of 2-D filtering error system in (6), yields

AV =BV (x(+ 1,5+ 1),r(+ 1,j+ )X+ 1), r(i,j + 1) =m] = Vi(x(i,j + 1), r(i,j + 1))
=X'(i+1j+1) anan>x(i+ 1,j+1) = X"(i,j + 1)PipX(i,j + 1)

neZ

l+11+] annpln+z Zas mn>Pln+ annpln

neIA’m neIU") s=1 neI(m’

XX+ 1,j+1) = X'(i,j+ 1)P1nX(i,j + 1), (14)

AVy = E[Va(x(i+1,j+1), 7+ 1,j+ 1)R(Aj+ 1),r([,j+ 1) =m] = Va(x(i,j + 1),r(i.j + 1))
= X1(1,j + DE'QEX(i.j+ 1) = X'(i — di.j+ DE'QEX(i — d1,j + 1), (15)
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AVs = E[V3(x(i+1,j+1),r({(+1,j+1)X(>[I+1,j),r(i+1,j) = m] = V3(X(i+ 1,j),r(i + 1,j))

=X(i+1j+1) annPZrI))_‘(i +1,j+1) =X+ 1,j)PomX(i + 1))

nel

l+1]+] annp2n+z Zas mn>P2n+ annPZn

ﬂEZ neI s=1 neI

xX({i4+1,j4+1) —x"(i +1.,j)P2mx(l+1,j), (16)

AV = E[Vax(i+1,j+ 1), + 1,j+ D)X+ 1,J),r(i +1,j) = m] = Va(x(i + 1,j),r(i+ 1.J))
= X1(i+ 1.)E QuER(i +1,j) — X'(i +1,j — d2)E"QuER(i + 1, — d). (17)
Therefore, based on the MLKF defined in (11), together with consideration of (6) and (14)-(17), we have,
3= ¢"(0.J) [AL (Prn + Pon) An + L Lm + On S(if), mneT, (18)

where

i) = [¥(j+1) &(+1,j) &Mi—dij+ 1D+ 1,j-dy) wiij+1) wii+1)],
O := diag{—Pim + E'QE, ~Pom + E'QuE, —Q;, —Qy, —7*1, 7?1},
Am = [Aim A Asim Acm Bim Bim)

|:Em 0 Onzx2nx Em 0 :|

Lm = _ _
0 Cun Opson, 0 Dp

M
P S oot 3 zasfrgs:)m S P - 1.2 (19)
neI}i'.") neIm) s=1 neIZz)

Considering the fact that 0 < o < 1, Zg”:l os=1,and 0 < Zm < 1 an

(ms)

,"S) =1, (18) can be rewritten as,

LZ%Z [ (l])[.AT Am+£;£m+@m];(i,j)], meZ, neI™ s=1,..M, (20)
s=1 e Z‘"’) “K
where
= " Tn(Pin+Pon) + Y Weh(Pin + Pan) + 1 (Prn + Pan),
nez™ nezm m)
nEIMK
T =1 - Z Tn — Z 7). (21)

nel’ neI
According to (20), it is easy to see that (13) holds if and only if Vs = 1,..., M,
) [ALPY A + Lo Lo+ Onclif) <O, meT, nezfy), (22)

which is implied by (9). This completes the proof. O

Remark 2. By fully exploiting the properties of TPM, together with the convexification of uncertain domains, a new suffi-
cient condition for ., performance analysis has been derived for the 2-D filtering error system (X) with state-delays and
deficient mode information in Proposition 1. It is noted that there exist product terms between the Lyapunov matrices
and system matrices in condition (9), which brings some difficulties for filter synthesis problem. In the following, by some
matrix inequality linearisation techniques, two approaches for the filter design will be proposed.

Before proceeding further, we present the following Projection lemma, which will be used in the filter synthesis
procedure.

Lemma 1 ([3,21]). Given matrices W = W' € R™" U € R¥", vV € R™", the following linear matrix inequality problem,
W+ U™V + VTXU < 0

is solvable with respect to the variable X if and only if



uTwu, <0 ifv, =0, U, #0,
Viwv, <0 if U, =0, Vv, =0,
UTwu, <0, VIwv, <0 ifv, #0, U, #0,

where U, and V, denote the right null spaces of U and V, respectively.

3.2. H,, filter synthesis

In this subsection, based on the Projection lemma and some bounding inequalities, two approaches for the solvability of
the H., filtering problem will be proposed. It will be shown that the parameterised representations of the filter gains can be
constructed in terms of the feasible solutions to a set of strict linear matrix inequalities (LMIs).

Theorem 1. Consider the 2-D MJLS in (1) with state-delays and deficient mode information, and filter in the form of (5). The
filtering error system in (6) is stochastically stable with an ‘H,, performance v, if there exist positive-definite symmetric matrices
{P1m,P2m} c R(rl)<+r1j)><(n,(+nf)7 {Q]?QZ} c Rnxxnx, and matrices Gm(]) = Rn"xn",Gm(z) e Rn,xnf7cm(3) c Rnfxn,(7 Un € R(4nx+2nj+2n‘,v)><rl)<7
{Afim:Apam} € RV {Bfim, Bom} € RV*™, Cpy € R™*™, and Dy, € R™*",m € Z, such that the following LMIs hold,

_*I @$L+§;m{ﬁm} <0, meZ, neZll, s=1,...,M, (23)
where
O, = diag{Py),—Pin + E'QiE. ~Pam + E'QE, —Q1, —Qa, =71, =771,
.7\,1. = [?m 7\1m sz Zdlm ZdZm Em EZm}v

-Onzx(nx+nf) 6m 0 Onz><2nx 5m 0
‘Cm = _ — )

_Onzx(nx+nf) 0 Cm Onz><2nx 0 Dm

[ =Gy —HGmg)

I,
Gm = | —Gmzy —Gmp |, H:= ,
O(nx—n[)xnf
| —Un 0

[ GmyAim + HBrimCrn - HAf1m |
Ain = | GuaAim +BiimCn  Apim

UmAlm 0 4
[ Gm(1yAom + HBpomCrm - HApom |

Aom = Gm3yAom + EmeCm Eme

L UnmAom (U
Gm)Adim Gm)Ad2m
Adgim = | Gm@Adim |» Asm = | Gme)Adzm
UnAdim UnAdiom
Gm)Bim + HBj1mDi Gm)Bom + HBj3mDi
Bim = Gm@Bim + BpimDm | Bom = Gm(3)Bam + BamDm |
UnBim UnBom
PY = Tun(Pin+Pan) + D Tan(Prn + Pan) + 7 (Prn + Pan), (24)
nez™ nez™ W

with E, Cpn, D, and '3 defined in ( 7) and (10), respectively. Moreover, if the above conditions have a set of feasible solutions
(P1m, Pam, Q1, Qa, Gm@1ys Gm2), Gm(3)s Um, Afims Arams Brims Bram Cm, Dpin ), then an admissible ng-order filter in the form of (5) can be
constructed as,

Af]m = Gr;}z)zf]rmAme = G;zz)ﬁf2m73f1m = G,;zz)gflmstZm = G;:z)Ef2m7 (25)

and Cys, and Dy, can be obtained directly from (23).



Proof. It follows from Proposition 1 that if we can show (9), then the claimed results follow. Nevertheless, it is easy to see
thatin (9), the system matrices are coupled with Lyapunov matrices. Therefore, it is anticipated that the conditions in (9) are
not convenient when using for filter design purpose. To resolve this problem, in the following, the Projection lemma (Lemma
1) will be utilised to eliminate the coupling between the system matrices and Lyapunov matrices. To this end, we
reformulate the inequality in (9) as,

T
Am
I (4nx+2np+2ny)

where Ap, L, PY and O, are defined in (10).
Explicit null space calculation yields,

A
[71(nx+nf) -Am]L=|:I " :|

(4nx+2nf+2nw)

Py 0

n

*  LE L+ Op

A
[ " }<O, meZ, neZl, s=1,....M, (26)

I (4nx+2np+2ny)

Then, assigning
w2 0
* Ly Lm+ Op
X — Gm c R(Snx+3nf+2nw)><(nx+nj)

u { _I (”x+1’l[) 'Am } )

A
[UL " )
I (4nx-+2ny+2ny)

v
V., 0

)

and applying Projection lemma to (26), yield

Py 0
[* £ Lot On + 8ym{Gn [~ in) An]} <0, meZ, neZy, s=1,...,M. (27)

Now, it is easy to see that in (27), the Lyapunov matrices have been separated from the system matrices. Thus, the main
task hereafter is to convexify the products of the system matrices with the slack variables.
For simplicity in the filter design procedure, we first specify the slack variables as,

[Gmm HG@)}
Gn = Gma)  Guy , melI, (28)
O(4nx+2nf+2nw)><(nx+n,r)

where H := [T n,  Onpxnenp) ]T, Gm1y) € R**™, Gy € R, Gp(sy € RY*™, and G, € R*". Then, for matrix inequality linearisa-
tion purpose, similar to [19,20,33], performing a congruent transformation to

[ Gty + G;(l) HGp) + G%(a)] (29)
L * G+ Gl
by diag{l nx,G(z)G(jf)} yields
_ 5 B T = =T
Gty + Gty HG2)Gig) Gy + Gz Gia) Gy } | G F Gy HG) + Gy (30)
L * G(Z)G(:l-l)-c-(l-Z) + G(Z)G(:‘]) G;rz) * G(Z) + Ch(rz)
Thus, instead of (28), one can directly specify the matrix G,, of the following form without loss of generality,
|:Gm(1) HGpy2 }
Gm = Gna  Gme , meTl. (31)

0(4nx+2nf+2nw)><(nx+nf)

It is noted that in this way the matrix variable G, can be absorbed by the filter gain variables Afim, Arom, Bfim and By, by
introducing

Eflm = Gm(Z)Af1m7 Eme = Gm(Z)Af2m7 Eflm = Gm(Z)Bf1m7 Eme = Gm(Z)Bf2m~ (32)



This feature enables one to make no congruent transformation to the original matrix inequality and all the slack variables
can be set as Markovian switching.

Moreover, it is noted that the filter gains are not involved in the first row of the system matrices A1, A2m, Adim, Ad2m, Bim
and B,,, in (7), such that to further reduce the design conservatism, we can specify the slack variable as

Gm(l) HGm(Z)
Gm = Gm(3) Gm(z) , mel. (33)
Un 0

Then, by substituting the matrix G,, defined in (33) into (27) and applying Schur complement, together with consideration of
(32), one readily obtains (23).

On the other hand, the conditions in (23) imply that —Gp) — G;(z) < 0, which means that G, is nonsingular. Then, the
filter gains can be constructed by (25). The proof is thus completed. O

Remark 3. Theorem 1 provides a sufficient condition for the solvability of ns-order H., filtering for the 2-D MJLS in (1) with
state-delays and deficient mode information. It is noted that the #., filtering problem for 2-D discrete-time MJLSs has been
considered in [33]. However, there are some remarkable differences between our results and those in [33]. Firstly, the state-
delays are considered in system (1), whereas the 2-D delay-free MJLSs were considered in [33]. Secondly, in this paper the
exactly known, partially unknown and uncertain transition probabilities (TPs) have been simultaneously incorporated into
the TPM for 2-D MJLSs, which is more general and practical for engineering applications, while the TPs considered in [33] are
assumed to be completely known. Moreover, based on Proposition 1 combined with Projection lemma, Theorem 1 gives a
unified formulation of full-order and reduced-order ., filtering design for 2-D MJLSs with state-delays and deficient mode
information, while in [33], only the full-order H,, filtering design was investigated by a traditional decoupling inequality. It
will be shown in the simulation section that the above points are crucial to reduce the conservatism of filtering design for the
underlying 2-D MJLSs.

It is noted that the conditions given in Theorem 1 are derived based on the Projection lemma. For comparison purposes, in
the following, we also propose another n;-order H., filtering design method based on the same performance criterion pre-
sented in Proposition 1 and a traditional decoupling inequality, but without using Projection lemma. The corresponding re-
sult is summarised in the following theorem.

Theorem 2. Consider the 2-D MJLS in (1) with state-delays and deficient mode information, and filter in the form of (5). The
filtering error system in ( 6) is stochastically stable with an H., performance v, if there exist positive-definite symmetric matrices
{Pim,Pam} € RWHX(41) 1y, Q,} € R™*™, and matrices Gm1) € R™ ™, Gme2) € R, Gingz) € R ™, {Ap1m, Apom} € RY*,
{Bfim.Bam} € RY"™,Cp € R"Z”‘f and Dy, € R™*™ m € Z, such that the followmg LMIs hold,

-1 0 L
x PO —Sym{Gn} Am| <0, meZ, neIl), s=1,...,M, (34)
* * @m

where
On = diag{—Pn + E'QE, —Pom + E'QuE, —Q;,—Q,, =L =13,

Ap = [-Alm vZZm ;ldlm :Zlem B’lm EZm]7

Em 0 OnZ x2ny 5m 0
Ly = — — |,
0 Cn Opon, 0 Dn

G, — {me(l) —HGyy } T I
—Gma)  —Gm On, ”I)X"f

- {Gm A1 + HBf1nCrn HAflm]

m Gma)Atm + BrimCm A
. {G (Azm + HBjanCin HAfz,,,]

| GuAom +BanCn Apam

Gm Adlm > . AdZm
Gm<3>Ad1m} oem [Gm AdZm}
|:Gm(1)Blm + I‘igmem ] By Gm1)Bom + IiBﬁmDm }
Gm(3)B1m + Bf]mDm Gm(g)BZm + BmeDm
= > Tn(Pin+Pan) + Y 7 (Pin + Pan) + 5 (Pin + Pau), (35)

(m

-:Zldlm = |:

Blm =

(m)
nez!™ nez);
K nez



with E,Cy, Dy, and n}}’,?) defined in (7) and (10), respectively. Moreover, if the above conditions have a set of feasible solutions
(Pim, Pam, Q1, Q2. Gm(1)s Gme2) Gm(3), Arims Arams Betm, Bram Cpms Dgm), then an admissible ng-order filter in the form of (5) can be con-
structed as,

Aflm = G;;](z)ﬁflmv Ame = G,;zz)ngma Bflm = G;n:z)gflrm Bme = G%:Z)szm’ (36)
and Cy, and Dy, can be obtained directly from (34).

Proof. By Schur complement, (9) is equivalent to

| 0 Lom
s (P An| <0, meZ, neIly, s=1,...M, (37)
* * On

where Ap, L, P and ©,, are defined in (10).
For matrix inequality linearisation purpose, performing a congruent transformation to (37) by
diag{l an,s Gm, 1 (4nx+2nf+2nw)}- and it follows from

(P~ ) (PY) " (PY — Gp) > 0, (38)

that

—GL(P9) "G < PY — G — GT.. (39)

n

Based on (39), we have that the following inequality implies (37),

-1 0 Lo
PO —8ym{Gn} GnAnm| <0, meZ, neZly) s=1,.. M (40)
* * O

Then, similar to the manipulations given in the proof of Theorem 1, we can specify the slack variable G, as follows without
loss of generality,

G HG
G, i { m(1) m@} (41)
Gm(E}) Gm(2)
where H := [ Onfx(nx,n,)]T.
Now, substituting the slack variable G, into (40) and defining the following matrices
Eﬂm = Gm(Z)Af]m7 Eme = Gm(Z)Ames Ef]m = Gm(Z)Bf]m7 Ef2m = Gm(Z)Bmea (42)

one can readily obtain (34). In addition, since Gn2, are nonsingular as implied by (34), it is easy to see that the filter gains can
be constructed by (36). The proof is thus completed. O

Remark 4. Based on a traditional decoupling inequality (39), Theorem 2 provides another sufficient condition for the solv-
ability of ny-order M, filtering of 2-D MJLS (1) with state-delays and deficient mode information. Nevertheless, by observing
the conditions given in Theorems 1 and 2 carefully, it is interesting to see that Theorem 2 is actually a special case of The-
orem 1 with Uy, = 0. It will be shown in the simulation section that Theorem 1 is generally less conservative than Theorem 2
due to the more freedom in the solution space.

4. Simulation studies

In this section, we demonstrate the effectiveness of the proposed approaches in this paper via a simulation example.
Consider a two-dimensional (2-D) Markovian jump linear system (M]JLS) with state-delays in the form of (1) with param-
eters as follows,



03 0 015 0 03
02 01 0 01 05

Ay Agi B

ot _Jor 00 o1 02

LZ‘ g” D“ “ 102 02 0 01 04l

o 11 1 0 0
L0 -08 1 06 03
r02 0 01 0 02
01 03 0 01 05

A Anz Bi 02 0 0 0 05

A22 Ad22 322 =

01 01 0 01 01}
L, G D

-15 03 02 05 O

L 0 -05 05 06 05
rol1 -02 03 O 0.1
-02 01 0 01 025
025 01 01 O 0
005 03 o0 01 -028
1 05 03 02 1
L O 03 1 -03 03
ro3 -02 02 0 01
-02 03 0 0 04
025 01 -01 O 0
0.05 05 0 01 02
-05 0 15 0 -03
0 02 08 06 03

Az Ans Bz
Ay Aps By | =
Ly G Ds

Ay Aps B
Au Aps Bu | =
Ly Cy Dy

Four different cases for the transition probability matrix (TPM) are given in Table 1, where the transition probabilities (TPs)
labeled with “*” and “ ~” represent the unknown and uncertain elements, respectively. Specifically, Case 1, Case 2, Case 3, and
Case 4 stand for the completely known TPs, deficient statistics of mode information (including known, partially unknown and
uncertain TPs), partially unknown TPs, and completely unknown TPs, respectively.

For Case 2, it is assumed that the uncertain TPs comprise three vertices Il;,s =1,2,3, where the third rows
I3y, s = 1,2,3, are given by
M3 =[7;1 02 733 04],
I3 = [ft31 05 733 0.3],
33 = [t31 03 @33 0.1],
and the other rows in the three vertices are given with the same elements, that is,
i1y =[03 02 01 04],
o) = [7t1 7 03 0.2],
I54) = 0.2 T4y T4z Taa), $=1,2,3.
Our purpose here is to design a filter of the form (5) for the above system such that the 2-D filtering error system is sto-

chastically stable with an H,, performance ). A detailed comparison between the minimum ., performance indices y,,;,
obtained based on Theorems 1 and 2 is listed in Table 2. The results clearly show the advantages of Theorem 1 over

Table 1
Four different TPMs.
Case 1: Completely known TPM Case 2: Deficient TPM1
[03 02 0.1 0.4} [03 02 01 047
03 02 03 02 )y M 03 02
0.1 05 03 01 f31 T3p 733 T3y
102 02 0.1 05 102 Tty T4z Tias |

Case 3: Deficient TPM2 Case 4: Completely unknown TPM
[03 02 01 04 [1 T2 T3 Tog |
Ty Tz 03 02 ] M1 T2 T3 T4
31 T32 T33 734 Ti31 732 T33 734
102 Tty 743 Tlag | a1 Tlap M43 Tlaq |




Theorem 2 presented in this paper. Meantime, by inspection of Tables 1 and 2, it is easy to see that the more information on
TPs is available, the better H,, performance can be obtained, which is effective to reduce the conservatism of filtering design.
Therefore, the introduction of the uncertain TPs is significant.

Specifically, considering Case 2 shown in Table 1 and by applying Theorem 1, the feasible solutions of 7y, = 0.3725 for
the full-order (n; = 2) filter and y,;, = 0.8165 for the reduced-order (n; = 1) filter are obtained respectively, and the corre-
sponding filter gains are given by,

-0.2907 —0.5806 0.1148  —0.2178 1.0069  —0.9991

A | Ap | Bpn | | 04310 —ose0s | 01ss7 —03431 | Lolss 16523
B | Cn | Dp | 07502 06785 | 03168 07481 | 09118 0.2625
| 13746 —1.3233 | —0.2774 05985 | —0.0706 —0.2100
[ 00578 —0.0563 | —00478 00322 | 04004 —0.4400
[ Apio | Apo | Bpa | | —02052 02000 | -0.0068 00049 | 10568 —1.0386
| Bioo | Cp2 | Dpp | | 12095 —1.0256 | 11492 —L11168 | —L5547 —0.0643
00308 —0.1820 | —0.1419 01379 | —0.7340 0.0079
[0.0440 —02385 | —00224 03327 | —0.0526 —0.0746 |
[ s | Aps | Bpa || 00118 —0.0642 | —0.0224 03331 | -0.3249 03102
| Bias | Cps | Dgs | | 0006 —0.2206 | 0.1683 —09209 | —03499 12851

| 0.3014 —0.1682 0.0564 —0.3115 —0.0068  0.0624

[ 0.2470 —0.1912 —0.0162  0.0552 ~0.0277 —0.0233 |
Ay ‘ Apoy } Byiy 0.0232 —0.0180 —0.0167  0.0570 0.5089  —0.6281
Byoy ‘ Cha . Dyy 0.0590 —0.2520 0.0251  —0.0203 —0.2573  —0.0700

| 0.3160 —0.6959 0.0384 —0.0312 —0.0613  0.2259

for the full-order filter and

r B 0.0489 —0.0360 0.0670  —0.2345
Apr | Apar | By

. = | 12361 00725 | —2.0398 11727
| Bz | Ot | Dp | . ;
—0.8066 | —0.0580 | 0.8319 —0.9382

r 1 0.0244 0.0418 0.0871  —0.2716
Apz | Apz | B

T = 1.1955 0.7964 —0.0779 —0.2383
L Bf22 Cra Dya ] . .
I —0.9380 —0.0983 —0.9163  0.0294
r 1 —0.1928 —0.0227 —0.1702 —0.1229
Apz | Ajpoz | Bris

B/?z:s Crs Dy

= | —0.0839 —0.5695 0.1941  0.4818

- | —0.0645 —0.1908 01754 —0.2067 |

r B 0.0016 0.0001 —0.1959  0.1095
Apy | Ajpos | Brus

| Bfar | Cpa | D |

= | —0.0295 —0.0097 —0.2792  —0.0460

—0.2449 —0.0149 —0.0948  0.2629

for the reduced-order filter, respectively.
In order to further illustrate the effectiveness of the designed .. filters, we present the simulation results with the above
solutions. Let the boundary conditions be

Table 2
Comparison of minimum H,, performance for different TPMs.
TPMs Theorem 1 Theorem 2
Full-order Reduced-order Full-order Reduced-order
Case 1 0.2842 0.7518 0.6072 1.1084
Case 2 0.3725 0.8165 0.8673 1.5292
Case 3 0.3920 0.9077 1.1952 1.7297

Case 4 0.4877 1.0604 1.8212 2.3384
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Fig. 1. One possible system mode evolution.
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Fig. 2. Responses of the filtering error z(
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Fig. 3. Responses of the filtering error z(i,j) for the full-order case: the 2nd component.
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Fig. 4. Responses of the filtering error z(i,j) for the reduced-order case: the 1st component.

o

o 0

V/
l’\
:‘?&
()
/
NP
I
S
03}

Y
0

)
N

i
e

VY

3
i
0
4

NI
X
i
)
%
\

h
y
)
A
Y
Bt
o
o
A

4
4
)
%

Filtering error
:3
)

q

20 20

Fig. 5. Responses of the filtering error z(i,j) for the reduced-order case: the 2nd component.

[-1 14], o0<i<1o0,

x(t, i) =x(i,t) =
(t1) =x(1) {[o (O i>10,

where —4 <t <0, and choose the delays d; = 4 (vertical direction), d, = 4 (horizontal direction), and disturbance input
w(i,j) as

.. 0.2, 0<i,j<10,
w(i,j) = .
0, otherwise.
With one possible realisation of the Markovian jumping mode shown in Fig. 1, the time responses of filtering errors are given
in Figs. 2-5, respectively. It can be clearly observed from the simulation curves that, despite the deficient TPs, the filtering
errors for both full-order and reduced-order filters converge to zero under the above conditions.

5. Conclusions

This paper has investigated the problem of #,, filtering for a class of two-dimensional (2-D) Markovian jump linear sys-
tems (M]JLSs) with state-delays and deficient mode information. Such deficient mode information simultaneously involves
the exactly known, partially unknown and polytopic-type uncertain transition probabilities, which are more general and
practical. By the properties of the transition probability matrix (TPM) together with the convexification of uncertain do-
mains, a new bounded real lemma for the filtering error system is firstly derived. Via some linearisation procedures, two
methods have been proposed for the design of full-order and reduced-order filters. A simulation example has been given
to illustrate effectiveness of the proposed approaches.



Finally, it is worth mentioning that the 7, filtering design results presented in this paper are actually delay-independent,
which do not include any information on the size of delays (i.e., the time-delays are allowed to be arbitrarily large). Extension
of the current results to the delay-dependent case is interesting and expected to be less conservative, which deservers fur-
ther investigation. Applications of the proposed results to some real-world complex 2-D systems such as the image data pro-
cessing and transmission [30], thermal processes [32], gas absorption [33], and water stream heating [ 14], are also part of our
future works.
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