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This paper is concerned with the problem of H1 filtering for a class of two-dimensional Markovian jump linear systems described by the 
Fornasini–Marchesini local state-space model. The systems under consideration are subject to state-delays and deficient mode 
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1. Introduction

It is well known that many phys
Among various m-D systems, in part
ption of deficient mode information is compre-hensive that simultaneously includes the 
ain transition probabilities. By invoking the properties of the transition probability matrix, 
 domains, a new H1 performance analysis criterion for the filtering error system is firstly 
arisation procedures, two approaches for the filter synthesis are proposed. It is shown that 
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rocesses or systems have intrinsic multi-dimensional (m-D) characteristics [14]. 
 the two-dimensional (2-D) systems have received considerable research interests 
t areas, such as 2-D digital filtering [17,33], linear image processing [23,32], and 
-D sys-

tems have been reported in the open literature. To mention a few, the stability problem for 2-D systems was investigated in 
[5,10]. The control and filtering problems were considered in [6,8,18,30,33,35]. The model approximation problem was ad-
dressed in [32,40].

On the other hand, Markovian jump linear systems (MJLSs), initially introduced by Krasovskii and Lidskii [13], have been 
widely investigated in the past decades, and a great deal of elegant results have been obtained [1,4,9,11,15,16,22,24–
26,31,34,36,38,42]. The motivation for the study of this class of systems is the fact that many dynamical systems subject 
to random abrupt variations can be modeled by MJLSs, which are described by a set of classical differential (or difference) 
equations and a Markov stochastic process (or Markov chain) [2]. It is known that 2-D systems are no exception for this case. 
As a critical factor, the transition probabilities (TPs) in the Markov chain determine the system behavior and performance, 
and many analysis and synthesis issues on MJLSs have been exploited assuming the perfect information on the TPs. However,
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in many practical scenarios, it is questionable to obtain all the precise mode transition information, and the cost is probably 
high. Thus, it is significant and challenging, from control perspectives, to further study more general jump systems with defi-
cient mode information [2,12,37,39,43,44]. Specifically, the authors in [39] addressed the robust H1 filtering problem for a 
class of MJLSs with norm-bounded uncertain TPs. The authors in [43] investigated the H1 filtering problem for a class of 
MJLSs with partially unknown TPs. Unfortunately, the aforementioned results are only concerned with one-dimensional (1-
D) systems. In addition, it has also been well recognised that time-delay, which is frequently a source of instability and 
performance degradation, exists commonly in MJLSs [11,27–29,38]. However, to the authors’ best knowledge, few re-sults 
have been reported on the H1 filtering for 2-D MJLSs with state-delays and deficient mode information, which simul-
taneously involves the exactly known, partially unknown and uncertain TPs. This motivates us for the present study.

In this paper, we will tackle the H1 filtering problem for a class of 2-D MJLSs described by the Fornasini–Marchesini local 
state-space model. The systems under consideration are subject to state-delays and deficient mode information, which 
simultaneously incorporates the exactly known, partially unknown and uncertain TPs. By the properties of the transition 
probability matrix and the convexification of uncertain domains, a new sufficient condition for H1 performance analysis of 
filtering error system will be firstly presented. Then via some matrix inequality linearisation procedures, two approaches for 
the filter synthesis will be proposed. It is shown that both the full-order and reduced-order filters can be obtained by solving 
a set of linear matrix inequalities. Simulation studies will be finally performed to show the effectiveness of the pro-posed 
filtering design methods. Compared with the existing results on robust H1 filtering for 2-D discrete-time MJLSs with state-
delays, the main contributions of the work in this paper are twofold: (i) The filtering problem for a class of 2-D discrete-time 
MJLSs with deficient mode information, which simultaneously includes the exactly known, partially unknown, and 
polytopic-type uncertain TPs, is considered. The corresponding filtering design results are expected to be more general and 
thereby more practicable. (ii) By a linearisation approach, together with Projection lemma, some less conservative filter 
synthesis conditions are obtained for 2-D MJLSs with state-delays.

Notations. The notations used throughout the paper are standard. Rn denotes the n-dimensional Euclidean space; SymfAg is 
the shorthand notation for A þ AT; the notation P > 0 means that P is real symmetric and positive definite; I and 0 repre-sent 
the identity matrix and a zero matrix, respectively; ðS; F ; PÞ denotes a complete probability space, in which S is the sample 
space, F is the r algebra of subsets of the sample space, and P is the probability measure on F ; E½�� stands for the 
mathematical expectation; �k k  refers to the Euclidean norm of a vector or its induced norm of a matrix; l2f½0; 1Þ; ½0; 1Þg de-
notes the space of square summable sequences on f½0; 1Þ; ½0; 1Þg. Matrices, if not explicitly stated, are assumed to have 
appropriate dimensions for algebra operations.

2. Problem formulation and preliminaries

Fix a complete probability space ðS;F ;PÞ and consider the following two-dimensional (2-D) discrete-time Markovian
jump linear systems (MJLSs) represented by the Fornasini–Marchesini (FM) local state-space (LSS) model with state-delays
in each of the two independent directions of information propagation,
ðRÞ : xðiþ 1; jþ 1Þ ¼ A1ðrði; jþ 1ÞÞxði; jþ 1Þ þ A2ðrðiþ 1; jÞÞxðiþ 1; jÞ
þ Ad1ðrði; jþ 1ÞÞxði� d1; jþ 1Þ þ Ad2ðrðiþ 1; jÞÞxðiþ 1; j� d2Þ
þ B1ðrði; jþ 1ÞÞwði; jþ 1Þ þ B2ðrðiþ 1; jÞÞwðiþ 1; jÞ;

yði; jÞ ¼ Cðrði; jÞÞxði; jÞ þ Dðrði; jÞÞwði; jÞ;
zði; jÞ ¼ Lðrði; jÞÞxði; jÞ; ð1Þ
where xði; jÞ 2 Rnx is the state vector; yði; jÞ 2 Rny is the measured output; zði; jÞ 2 Rnz is the objective signal to be estimated;
wði; jÞ 2 Rnw denotes the disturbance input vector which belongs to l2f½0;1Þ; ½0;1Þg; and d1 and d2 are two constant positive
integers representing delays along vertical and horizontal directions, respectively. A1ðrði; jþ 1ÞÞ;A2ðrðiþ 1; jÞÞ;Ad1ðrði; jþ 1ÞÞ;
Ad2ðrðiþ 1; jÞÞ;B1ðrði; jþ 1ÞÞ;B2ðrðiþ 1; jÞÞ;Cðrði; jÞÞ;Dðrði; jÞÞ, and Lðrði; jÞÞ are real-valued system matrices. These matrices are
functions of rði; jÞ, which is described by a discrete-time, discrete-state homogeneous Markov chain with a finite state-space
I :¼ f1; . . . ;Ng and a stationary transition probability matrix (TPM) P ¼ ½pmn�N�N , where
pmn ¼ Prðrðiþ 1; jþ 1Þ ¼ n rði; jþ 1Þj ¼ mÞ ¼ Prðrðiþ 1; jþ 1Þ ¼ n rðiþ 1; jÞj ¼ mÞ; 8m;n 2 I ;
with pmn P 0 and
PN

n¼1 pmn ¼ 1. For rði; jÞ ¼ m 2 I , the system matrices of the mth mode are denoted by
ðA1m;A2m;Ad1m;Ad2m;B1m;B2m;Cm;Dm; LmÞ, which are real known and with appropriate dimensions. Unless otherwise stated,
similar simplification is also applied to other matrices in the following.

Remark 1. The unique characteristic of 2-D process is that the information propagation occurs in each of the two
independent directions. Attempts to analyse these processes using traditional one-dimensional (1-D) systems theory fail
(except for a few very restrictive special cases) because such an approach ignores their inherent 2-D systems structure. For
instance, when 1-D Markov chains are employed to model a gas absorption with Markovian jump parameters, the state
evolution for the underlying systems can be represented by xðiþ 1Þ ¼ AðrðiÞÞxðiÞ þ AdðrðiÞÞxði� d1Þ þ B1ðrðiÞÞwðiÞ.
Alternatively, by utilising the 2-D MJLSs to describe the above scenarios, the Markovian dynamic model can be expressed



as FM LSS model (1). Since xði þ 1; j þ 1Þ in (1) can be viewed as the one-step forward shift from xði; j þ 1Þ in the direction of i 
coordinate or xði þ 1; jÞ in the direction of j coordinate, we need two vectors to identify the relationship among xði þ 1; j þ 1Þ; 
xði; j þ 1Þ and xði þ 1; jÞ, which can describe the information propagation more accurately. This can also well explain that such 
a 2-D framework leads to more complex structure than 1-D case, and it is thus more challenging and difficult to investigate 
the analysis and synthesis of 2-D systems.

In this paper, the transition probabilities (TPs) of the jumping process are assumed to be uncertain and partially accessed,
i.e., the TPM P ¼ ½pmn�N�N is assumed to belong to a given polytope PP with vertices Ps; s ¼ 1;2; . . . ;M,
PP :¼ P P ¼

PM
s¼1 asPs;as P 0;

PM
s¼1 as ¼ 1

���n o
, where Ps ¼ ½pmn�N�N;m;n 2 I , are given TPMs containing unknown elements

still. For instance, for system (R) with four operation modes, the TPM may be as,
p11 ~p12 p̂13 p14

p̂21 p22 ~p23 p24

p31 p̂32 p33 p̂34

p41 ~p42 p̂43 p̂44

26664
37775;
where the elements labeled with ‘‘^’’ and ‘‘ �’’ represent the unknown information and polytopic uncertainties on TPs, respec-
tively, and the others are known TPs. For notational clarity, 8m 2 I , we denote I ¼ I

ðmÞ
K [ I

ðmÞ
UC [ I

ðmÞ
UK as follows,
I
ðmÞ
K :¼ fn : pmn is knowng;

I
ðmÞ
UC :¼ fn : ~pmn is uncertaing;

I
ðmÞ
UK :¼ fn : p̂mn is unknowng:
Also, we denote
pðmsÞ
UK :¼

X
n2I ðmÞ

UK

p̂mn ¼ 1�
X

n2I ðmÞ
K

pmn �
X

n2I ðmÞ
UC

~pðsÞmn; ð2Þ
where ~pðsÞmn represents an uncertain TP in the sth polytope, 8s ¼ 1; . . . ;M.
The boundary conditions of system (R) in (1) are given by,
fxði; jÞ ¼ /ði; jÞ; 8j P 0; �d1 6 i 6 0g;
fxði; jÞ ¼ uði; jÞ; 8i P 0; �d2 6 j 6 0g;
/ð0; 0Þ ¼ uð0;0Þ: ð3Þ
Throughout this paper, the following assumptions are made.

Assumption 1. System (R) in (1) is stochastically stable.
Assumption 2. The boundary condition is assumed to satisfy
lim
T1!1

E
XT1

j¼0

X0

i¼�d1

ð/Tði; jÞ/ði; jÞÞ
( )

þ lim
T2!1

E
XT2

i¼0

X0

j¼�d2

ðuTði; jÞuði; jÞÞ
( )

<1: ð4Þ
The aim of the H1 filtering problem to be addressed in this paper is to estimate the signal zði; jÞ by a linear dynamic filter
of the following mode-dependent FM-type structure,
x̂ðiþ 1; jþ 1Þ ¼ Af 1ðrði; jþ 1ÞÞx̂ði; jþ 1Þ þ Af 2ðrðiþ 1; jÞÞx̂ðiþ 1; jÞ
þ Bf 1ðrði; jþ 1ÞÞyði; jþ 1Þ þ Bf 2ðrðiþ 1; jÞÞyðiþ 1; jÞ;

ẑði; jÞ ¼ Cf ðrði; jÞÞx̂ði; jÞ þ Df ðrði; jÞÞyði; jÞ;
x̂ði; jÞ ¼ 0; for i ¼ 0 or j ¼ 0; ð5Þ
where x̂ði; jÞ 2 Rnf is the filter state; ẑði; jÞ is the estimation of zði; jÞ; and Af 1ðrði; jþ 1ÞÞ 2 Rnf�nf ;Af 2ðrðiþ 1; jÞÞ 2 Rnf�nf ;

Bf 1ðrði; jþ 1ÞÞ 2 Rnf�ny ; Bf 2ðrðiþ 1; jÞÞ 2 Rnf�ny ;Cf ðrði; jÞÞ 2 Rnz�nf , and Df ðrði; jÞÞ 2 Rnz�ny are mode-dependent filter gains to be
determined. It is noted that in this paper, we consider both the full-order and reduced-order filters, that is, nf ¼ nx for the
full-order filter and nf < nx for the reduced-order filter.

Augmenting the model in (1) to include the states of the filter in (5), we obtain the following 2-D filtering error system,
ðRÞ : �xðiþ 1; jþ 1Þ ¼ A1ðrði; jþ 1ÞÞ�xði; jþ 1Þ þ A2ðrðiþ 1; jÞÞ�xðiþ 1; jÞ
þ Ad1ðrði; jþ 1ÞÞE�xði� d1; jþ 1Þ þ Ad2ðrðiþ 1; jÞÞE�xðiþ 1; j� d2Þ
þ B1ðrði; jþ 1ÞÞwði; jþ 1Þ þ B2ðrðiþ 1; jÞÞwðiþ 1; jÞ;

�zði; jÞ ¼ Cðrði; jÞÞ�xði; jÞ þ Dðrði; jÞÞwði; jÞ; ð6Þ



where �xði; jÞ :¼ xTði; jÞ x̂Tði; jÞ
� �T

;�zði; jÞ :¼ zði; jÞ � ẑði; jÞ, and
A1ðrði; jþ 1ÞÞ :¼
A1ðrði; jþ 1ÞÞ 0

Bf 1ðrði; jþ 1ÞÞCðrði; jþ 1ÞÞ Af 1ðrði; jþ 1ÞÞ

" #
;

A2ðrðiþ 1; jÞÞ :¼
A2ðrðiþ 1; jÞÞ 0

Bf 2ðrðiþ 1; jÞÞCðrðiþ 1; jÞÞ Af 2ðrðiþ 1; jÞÞ

" #
;

Ad1ðrði; jþ 1ÞÞ :¼
Ad1ðrði; jþ 1ÞÞ

0

" #
; Ad2ðrðiþ 1; jÞÞ :¼

Ad2ðrðiþ 1; jÞÞ

0

" #
;

B1ðrði; jþ 1ÞÞ :¼
B1ðrði; jþ 1ÞÞ

Bf 1ðrði; jþ 1ÞÞDðrði; jþ 1ÞÞ

" #
;

B2ðrðiþ 1; jÞÞ :¼
B2ðrðiþ 1; jÞÞ

Bf 2ðrðiþ 1; jÞÞDðrðiþ 1; jÞÞ

" #
;

Cðrði; jÞÞ :¼ Lðrði; jÞÞ � Df ðrði; jÞÞCðrði; jÞÞ �Cf ðrði; jÞÞ
� �

;

Dðrði; jÞÞ :¼ �Df ðrði; jÞÞDðrði; jÞÞ; E :¼ Inx 0nx�nf

� �
: ð7Þ
Now, for a more precise description of the main objective of this paper, we introduce the following definitions.

Definition 1 ([14,33]). The filtering error system (R) in (6) is said to be stochastically stable if for wði; jÞ ¼ 0 and the
boundary condition satisfying (4), the following condition holds,
E
X1
i¼0

X1
j¼0

ð �xði; jþ 1Þk k2 þ �xðiþ 1; jÞk k2Þ
( )

<1:
Definition 2 ([14,33]). Given a scalar c > 0, system (R) in (6) is said to be stochastically stable with an H1 disturbance 
attenuation performance index c if it is stochastically stable with wði; jÞ ¼ 0, and under zero boundary conditions /ði; 
jÞ ¼ uði; jÞ ¼ 0 in (3), satisfies
~zk kE2
< c ~wk k2;
where
~zk kE2
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
X1

i¼0

X1

j¼0
k�zði; jþ 1Þk2 þ k�zðiþ 1; jÞk2
� �n or

;

~wk k2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1

i¼0

X1

j¼0
kwði; jþ 1Þk2 þ kwðiþ 1; jÞk2
� �r

; ð8Þ
for all non-zero w 2 l2f½0;1Þ; ½0;1Þg and under zero boundary conditions.
Therefore, the objective of this paper is to design an H1 filter in the form of (5), such that the 2-D filtering error system

(R) in (6) with deficient mode information is stochastically stable with a prescribed H1 performance index c.

3. Main results

In this section, based on a Markovian Lyapunov–Krasovskii functional (MLKF), a new H1 performance analysis criterion
for the two-dimensional (2-D) filtering error system (R) in (6) with deficient mode information will be firstly derived. Then,
by some matrix inequality linearisation techniques, two approaches to the H1 filter synthesis will be developed.

3.1. H1 filtering analysis

In this subsection, by the properties of the transition probability matrix (TPM) and the convexification of uncertain do-
mains, an H1 performance analysis criterion for the 2-D filtering error system (R) in (6) with deficient mode information is
presented, which will play a key role in solving the H1 filter synthesis problem.

Proposition 1. The 2-D MJLS with state-delays and deficient mode information in (6) is stochastically stable with a guaranteed
H1 performance c, if there exist positive-definite symmetric matrices fP1m; P2mg 2 Rðnxþnf Þ�ðnxþnf Þ, and fQ1;Q2g 2 Rnx�nx , such
that the following matrix inequalities hold,



AT
mP

ðsÞ
n Am þ LT

mLm þHm < 0; m 2 I ; n 2 I
ðmÞ
UK ; s ¼ 1; . . . ;M; ð9Þ
where
Hm :¼ diag �P1m þ ETQ1E;�P2m þ ETQ 2E;�Q1;�Q 2;�c2I;�c2I
n o

;

Am :¼ A1m A2m Ad1m Ad2m B1m B2m

� �
; E :¼ I nx 0nx�nf

� �
;

Lm :¼ Cm 0 0nz�2nx Dm 0
0 Cm 0nz�2nx 0 Dm

" #
;

PðsÞn :¼
X

n2I ðmÞ
K

pmnðP1n þ P2nÞ þ
X

n2I ðmÞ
UC

~pðsÞmnðP1n þ P2nÞ þ pðmsÞ
UK ðP1n þ P2nÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n2I ðmÞ
UK

;

pðmsÞ
UK :¼ 1�

X
n2I ðmÞ

K

pmn �
X

n2I ðmÞ
UC

~pðsÞmn: ð10Þ
Proof. Consider the following MLKF for the 2-D filtering error system in (6),
Vði; jÞ :¼
X2

k¼1

Vkð�xði; jþ 1Þ; rði; jþ 1ÞÞ þ
X4

k¼3

Vkð�xðiþ 1; jÞ; rðiþ 1; jÞÞ; ð11Þ
where
V1ð�xði; jþ 1Þ; rði; jþ 1ÞÞ :¼ �xTði; jþ 1ÞP1ðrði; jþ 1ÞÞ�xði; jþ 1Þ;

V2ð�xði; jþ 1Þ; rði; jþ 1ÞÞ :¼
Xi�1

k¼i�d1

�xTðk; jþ 1ÞETQ1E�xðk; jþ 1Þ;

V3ð�xðiþ 1; jÞ; rðiþ 1; jÞÞ :¼ �xTðiþ 1; jÞP2ðrðiþ 1; jÞÞ�xðiþ 1; jÞ;

V4ð�xðiþ 1; jÞ; rðiþ 1; jÞÞ :¼
Xj�1

k¼j�d2

�xTðiþ 1; kÞETQ 2E�xðiþ 1; kÞ: ð12Þ
Then, based on the MLKF defined in (11), it is known that the 2-D filtering error system in (6) is stochastically stable with
an H1 performance c under zero boundary conditions for any non-zero wði; jÞ 2 l2f½0;1Þ; ½0;1Þg if the following inequality
holds,
J :¼ DVði; jÞ þ ~zk k2
E2
� c2 ~wk k2

2 < 0; ð13Þ
where
DVði; jÞ :¼ E
X2

k¼1

Vkð�xðiþ 1; jþ 1Þ; rðiþ 1; jþ 1ÞÞ j �xði; jþ 1Þ; rði; jþ 1Þ ¼ m

( )

þ E
X4

k¼3

Vkð�xðiþ 1; jþ 1Þ; rðiþ 1; jþ 1ÞÞ j �xðiþ 1; jÞ; rðiþ 1; jÞ ¼ m

( )

�
X2

k¼1

Vkð�xði; jþ 1Þ; rði; jþ 1ÞÞ �
X4

k¼3

Vkð�xðiþ 1; jÞ; rðiþ 1; jÞÞ;
and k~zkE2
and k ~wk2 are defined in (8).

Taking the time difference of Vði; jÞ along the trajectories of 2-D filtering error system in (6), yields
DV1 :¼ E½V1ðxðiþ 1; jþ 1Þ; rðiþ 1; jþ 1ÞÞj�xði; jþ 1Þ; rði; jþ 1Þ ¼ m� � V1ð�xði; jþ 1Þ; rði; jþ 1ÞÞ

¼ �xTðiþ 1; jþ 1Þ
X
n2I

pmnP1n

!
�xðiþ 1; jþ 1Þ � �xTði; jþ 1ÞP1m�xði; jþ 1Þ

¼ �xTðiþ 1; jþ 1Þ
X

n2I ðmÞ
K

pmnP1n þ
X

n2I ðmÞ
UC

XM

s¼1

as ~pðsÞmn

!
P1n þ

X
n2I ðmÞ

UK

p̂mnP1n

0B@
1CA

� �xðiþ 1; jþ 1Þ � �xTði; jþ 1ÞP1m�xði; jþ 1Þ; ð14Þ

DV2 :¼ E½V2ðxðiþ 1; jþ 1Þ; rðiþ 1; jþ 1ÞÞj�xði; jþ 1Þ; rði; jþ 1Þ ¼ m� � V2ð�xði; jþ 1Þ; rði; jþ 1ÞÞ

¼ �xTði; jþ 1ÞETQ 1E�xði; jþ 1Þ � �xTði� d1; jþ 1ÞETQ 1E�xði� d1; jþ 1Þ; ð15Þ
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DV3 :¼ E½V3ðxðiþ 1; jþ 1Þ; rðiþ 1; jþ 1ÞÞj�xðiþ 1; jÞ; rðiþ 1; jÞ ¼ m� � V3ð�xðiþ 1; jÞ; rðiþ 1; jÞÞ

¼ �xTðiþ 1; jþ 1Þ
X
n2I

pmnP2n

!
�xðiþ 1; jþ 1Þ � �xTðiþ 1; jÞP2m�xðiþ 1; jÞ

¼ �xTðiþ 1; jþ 1Þ
X

n2I ðmÞ
K

pmnP2n þ
X

n2I ðmÞ
UC

XM

s¼1

as ~pðsÞmn

!
P2n þ

X
n2I ðmÞ

UK

p̂mnP2n

0B@
1CA

� �xðiþ 1; jþ 1Þ � �xTðiþ 1; jÞP2m�xðiþ 1; jÞ; ð16Þ

DV4 :¼ E½V4ðxðiþ 1; jþ 1Þ; rðiþ 1; jþ 1ÞÞj�xðiþ 1; jÞ; rðiþ 1; jÞ ¼ m� � V4ð�xðiþ 1; jÞ; rðiþ 1; jÞÞ

¼ �xTðiþ 1; jÞETQ2E�xðiþ 1; jÞ � �xTðiþ 1; j� d2ÞETQ2E�xðiþ 1; j� d2Þ: ð17Þ
Therefore, based on the MLKF defined in (11), together with consideration of (6) and (14)–(17), we have,
J ¼ 1Tði; jÞ AT
m P1n þ P2n
	 


Am þ LT
mLm þHm

h i
1ði; jÞ; m;n 2 I ; ð18Þ
where
1ði; jÞ :¼ �xTði; jþ 1Þ �xTðiþ 1; jÞ xTði� d1; jþ 1ÞxTðiþ 1; j� d2Þ wTði; jþ 1Þ wTðiþ 1; jÞ
� �T

;

Hm :¼ diagf�P1m þ ETQ 1E;�P2m þ ETQ 2E;�Q 1;�Q 2;�c2I;�c2Ig;
Am :¼ A1m A2m Ad1m Ad2m B1m B1m

� �
;

Lm :¼ Cm 0 0nz�2nx Dm 0
0 Cm 0nz�2nx 0 Dm

" #
;

Pln :¼
X

n2I ðmÞ
K

pmnPln þ
X

n2I ðmÞ
UC

XM

s¼1

as ~pðsÞmn

!
Pln þ

X
n2I ðmÞ

UK

p̂mnPln; l ¼ 1;2: ð19Þ
Considering the fact that 0 6 as 6 1;
PM

s¼1 as ¼ 1, and 0 6 p̂mn

pðmsÞ
UK

6 1;
P

n2I ðmÞ
UK

p̂mn

pðmsÞ
UK

¼ 1, (18) can be rewritten as,
J ¼
XM

s¼1

as

X
n2I ðmÞ

UK

p̂mn

pðmsÞ
UK

1Tði; jÞ AT
mP

ðsÞ
n Am þ LT

mLm þHm

h i
1ði; jÞ

h i
; m 2 I ; n 2 I

ðmÞ
UK ; s ¼ 1; . . . ;M; ð20Þ
where
PðsÞn :¼
X

n2I ðmÞ
K

pmnðP1n þ P2nÞ þ
X

n2I ðmÞ
UC

~pðsÞmnðP1n þ P2nÞ þ pðmsÞ
UK ðP1n þ P2nÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n2I ðmÞ
UK

;

pðmsÞ
UK :¼ 1�

X
n2I ðmÞ

K

pmn �
X

n2I ðmÞ
UC

~pðsÞmn: ð21Þ
According to (20), it is easy to see that (13) holds if and only if 8s ¼ 1; . . . ;M,
1Tði; jÞ AT
mP

ðsÞ
n Am þ LT

mLm þHm

h i
1ði; jÞ < 0; m 2 I ; n 2 I

ðmÞ
UK ; ð22Þ
which is implied by (9). This completes the proof. h
Remark 2. By fully exploiting the properties of TPM, together with the convexification of uncertain domains, a new suffi-
cient condition for H1 performance analysis has been derived for the 2-D filtering error system (R) with state-delays and
deficient mode information in Proposition 1. It is noted that there exist product terms between the Lyapunov matrices
and system matrices in condition (9), which brings some difficulties for filter synthesis problem. In the following, by some
matrix inequality linearisation techniques, two approaches for the filter design will be proposed.

Before proceeding further, we present the following Projection lemma, which will be used in the filter synthesis
procedure.

Lemma 1 ([3,21]). Given matrices W ¼WT 2 Rn�n;U 2 Rk�n;V 2 Rm�n, the following linear matrix inequality problem,
WþUTXTVþVTXU < 0
is solvable with respect to the variable X if and only if



UT
?WU? < 0 if V? ¼ 0; U? – 0;

VT
?WV? < 0 if U? ¼ 0; V? – 0;

UT
?WU? < 0; VT

?WV? < 0 if V? – 0; U? – 0;
where U? and V? denote the right null spaces of U and V, respectively.
3.2. H1 filter synthesis

In this subsection, based on the Projection lemma and some bounding inequalities, two approaches for the solvability of
the H1 filtering problem will be proposed. It will be shown that the parameterised representations of the filter gains can be
constructed in terms of the feasible solutions to a set of strict linear matrix inequalities (LMIs).

Theorem 1. Consider the 2-D MJLS in (1) with state-delays and deficient mode information, and filter in the form of (5). The
filtering error system in (6) is stochastically stable with an H1 performance c, if there exist positive-definite symmetric matrices
fP1m; P2mg 2 Rðnxþnf Þ�ðnxþnf Þ; fQ1;Q2g 2 Rnx�nx , and matrices Gmð1Þ 2 Rnx�nx ;Gmð2Þ 2 Rnf�nf ;Gmð3Þ 2 Rnf�nx ;Um 2 Rð4nxþ2nfþ2nwÞ�nx ;

fAf 1m;Af 2mg 2 Rnf�nf ; fBf 1m;Bf 2mg 2 Rnf�ny ;Cfm 2 Rnz�nf , and Dfm 2 Rnz�ny ;m 2 I , such that the following LMIs hold,
�I Lm

� HðsÞmn þ SymfAmg

" #
< 0; m 2 I ; n 2 I

ðmÞ
UK ; s ¼ 1; . . . ;M; ð23Þ
where
HðsÞmn :¼ diagfPðsÞn ;�P1m þ ETQ 1E;�P2m þ ETQ 2E;�Q1;�Q 2;�c2I;�c2Ig;

Am :¼ Gm A1m A2m Ad1m Ad2m B1m B2m

� �
;

Lm :¼
0nz�ðnxþnf Þ Cm 0 0nz�2nx Dm 0

0nz�ðnxþnf Þ 0 Cm 0nz�2nx 0 Dm

24 35;

Gm :¼

�Gmð1Þ �HGmð2Þ

�Gmð3Þ �Gmð2Þ

�Um 0

2664
3775; H :¼

I nf

0ðnx�nf Þ�nf

" #
;

A1m :¼

Gmð1ÞA1m þ HBf 1mCm HAf 1m

Gmð3ÞA1m þ Bf 1mCm Af 1m

UmA1m 0

2664
3775;

A2m :¼

Gmð1ÞA2m þ HBf 2mCm HAf 2m

Gmð3ÞA2m þ Bf 2mCm Af 2m

UmA2m 0

2664
3775;

Ad1m :¼

Gmð1ÞAd1m

Gmð3ÞAd1m

UmAd1m

2664
3775; Ad2m :¼

Gmð1ÞAd2m

Gmð3ÞAd2m

UmAd2m

2664
3775;

B1m :¼

Gmð1ÞB1m þ HBf 1mDm

Gmð3ÞB1m þ Bf 1mDm

UmB1m

2664
3775; B2m :¼

Gmð1ÞB2m þ HBf 2mDm

Gmð3ÞB2m þ Bf 2mDm

UmB2m

2664
3775;

PðsÞn :¼
X

n2I ðmÞ
K

pmnðP1n þ P2nÞ þ
X

n2I ðmÞ
UC

~pðsÞmnðP1n þ P2nÞ þ pðmsÞ
UK ðP1n þ P2nÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n2I ðmÞ
UK

; ð24Þ
with E;Cm;Dm, and pðmsÞ
UK defined in (7) and (10), respectively. Moreover, if the above conditions have a set of feasible solutions

ðP1m; P2m;Q 1;Q 2;Gmð1Þ;Gmð2Þ;Gmð3Þ;Um;Af 1m;Af 2m;Bf 1m;Bf 2m;Cfm;DfmÞ, then an admissible nf -order filter in the form of (5) can be
constructed as,
Af 1m ¼ G�1
mð2ÞAf 1m;Af 2m ¼ G�1

mð2ÞAf 2m;Bf 1m ¼ G�1
mð2ÞBf 1m;Bf 2m ¼ G�1

mð2ÞBf 2m; ð25Þ
and Cfm and Dfm can be obtained directly from (23).



Proof. It follows from Proposition 1 that if we can show (9), then the claimed results follow. Nevertheless, it is easy to see
that in (9), the system matrices are coupled with Lyapunov matrices. Therefore, it is anticipated that the conditions in (9) are
not convenient when using for filter design purpose. To resolve this problem, in the following, the Projection lemma (Lemma
1) will be utilised to eliminate the coupling between the system matrices and Lyapunov matrices. To this end, we
reformulate the inequality in (9) as,
Am

I ð4nxþ2nfþ2nwÞ

" #T
PðsÞn 0
� LT

mLm þHm

" #
Am

I ð4nxþ2nfþ2nwÞ

" #
< 0; m 2 I ; n 2 I

ðmÞ
UK ; s ¼ 1; . . . ;M; ð26Þ
where Am;Lm;P
ðsÞ
n and Hm are defined in (10).

Explicit null space calculation yields,
�I ðnxþnf Þ Am
� �

? ¼
Am

I ð4nxþ2nfþ2nwÞ

" #
:

Then, assigning
W
PðsÞn 0
� LT

mLm þHm

" #
;

X Gm 2 Rð5nxþ3nfþ2nwÞ�ðnxþnf Þ;

U �I ðnxþnf Þ Am
� �

;

U?
Am

I ð4nxþ2nfþ2nwÞ

" #
;

V I;
V? 0
and applying Projection lemma to (26), yield
PðsÞn 0
� LT

mLm þHm

" #
þ Sym Gm �I ðnxþnf Þ Am

� �� �
< 0; m 2 I ; n 2 I

ðmÞ
UK ; s ¼ 1; . . . ;M: ð27Þ
Now, it is easy to see that in (27), the Lyapunov matrices have been separated from the system matrices. Thus, the main
task hereafter is to convexify the products of the system matrices with the slack variables.

For simplicity in the filter design procedure, we first specify the slack variables as,
Gm ¼
Gmð1Þ HGð2Þ
Gmð3Þ Gð4Þ


 �
0ð4nxþ2nfþ2nwÞ�ðnxþnf Þ

264
375; m 2 I ; ð28Þ
where H :¼ I nf
0nf�ðnx�nf Þ

� �T
;Gmð1Þ 2 Rnx�nx ;Gð2Þ 2 Rnf�nf ;Gmð3Þ 2 Rnf�nx , and Gð4Þ 2 Rnf�nf . Then, for matrix inequality linearisa-

tion purpose, similar to [19,20,33], performing a congruent transformation to
Gmð1Þ þ GT
mð1Þ HGð2Þ þ GT

mð3Þ

� Gð4Þ þ GT
ð4Þ

" #
ð29Þ
by diag I nx ;Gð2ÞG
�1
ð4Þ

n o
yields
Gmð1Þ þ GT
mð1Þ HGð2ÞG

�T
ð4ÞG

T
ð2Þ þ GT

mð3ÞG
�T
ð4ÞG

T
ð2Þ

� Gð2ÞG
�T
ð4ÞG

T
ð2Þ þ Gð2ÞG

�1
ð4ÞG

T
ð2Þ

" #
:¼

Gmð1Þ þ GT
mð1Þ HGð2Þ þ GT

mð3Þ

� Gð2Þ þ GT
ð2Þ

24 35: ð30Þ
Thus, instead of (28), one can directly specify the matrix Gm of the following form without loss of generality,
Gm ¼
Gmð1Þ HGmð2Þ

Gmð3Þ Gmð2Þ


 �
0ð4nxþ2nfþ2nwÞ�ðnxþnf Þ

264
375; m 2 I : ð31Þ
It is noted that in this way the matrix variable Gmð2Þ can be absorbed by the filter gain variables Af 1m;Af 2m;Bf 1m and Bf 2m by
introducing
Af 1m :¼ Gmð2ÞAf 1m; Af 2m :¼ Gmð2ÞAf 2m; Bf 1m :¼ Gmð2ÞBf 1m; Bf 2m :¼ Gmð2ÞBf 2m: ð32Þ



This feature enables one to make no congruent transformation to the original matrix inequality and all the slack variables
can be set as Markovian switching.

Moreover, it is noted that the filter gains are not involved in the first row of the system matrices A1m;A2m;Ad1m;Ad2m;B1m

and B2m in (7), such that to further reduce the design conservatism, we can specify the slack variable as
Gm ¼
Gmð1Þ HGmð2Þ

Gmð3Þ Gmð2Þ

Um 0

264
375; m 2 I : ð33Þ
Then, by substituting the matrix Gm defined in (33) into (27) and applying Schur complement, together with consideration of
(32), one readily obtains (23).

On the other hand, the conditions in (23) imply that �Gmð2Þ � GT
mð2Þ < 0, which means that Gmð2Þ is nonsingular. Then, the

filter gains can be constructed by (25). The proof is thus completed. h
Remark 3. Theorem 1 provides a sufficient condition for the solvability of nf -order H1 filtering for the 2-D MJLS in (1) with
state-delays and deficient mode information. It is noted that the H1 filtering problem for 2-D discrete-time MJLSs has been
considered in [33]. However, there are some remarkable differences between our results and those in [33]. Firstly, the state-
delays are considered in system (1), whereas the 2-D delay-free MJLSs were considered in [33]. Secondly, in this paper the
exactly known, partially unknown and uncertain transition probabilities (TPs) have been simultaneously incorporated into
the TPM for 2-D MJLSs, which is more general and practical for engineering applications, while the TPs considered in [33] are
assumed to be completely known. Moreover, based on Proposition 1 combined with Projection lemma, Theorem 1 gives a
unified formulation of full-order and reduced-order H1 filtering design for 2-D MJLSs with state-delays and deficient mode
information, while in [33], only the full-order H1 filtering design was investigated by a traditional decoupling inequality. It
will be shown in the simulation section that the above points are crucial to reduce the conservatism of filtering design for the
underlying 2-D MJLSs.

It is noted that the conditions given in Theorem 1 are derived based on the Projection lemma. For comparison purposes, in
the following, we also propose another nf -order H1 filtering design method based on the same performance criterion pre-
sented in Proposition 1 and a traditional decoupling inequality, but without using Projection lemma. The corresponding re-
sult is summarised in the following theorem.

Theorem 2. Consider the 2-D MJLS in (1) with state-delays and deficient mode information, and filter in the form of (5). The
filtering error system in (6) is stochastically stable with an H1 performance c, if there exist positive-definite symmetric matrices
fP1m; P2mg 2 Rðnxþnf Þ�ðnxþnf Þ; fQ1;Q2g 2 Rnx�nx , and matrices Gmð1Þ 2 Rnx�nx ;Gmð2Þ 2 Rnf�nf ;Gmð3Þ 2 Rnf�nx ; fAf 1m;Af 2mg 2 Rnf�nf ;

fBf 1m;Bf 2mg 2 Rnf�ny ;Cfm 2 Rnz�nf , and Dfm 2 Rnz�ny ;m 2 I , such that the following LMIs hold,
�I 0 Lm

� PðsÞn � SymfGmg Âm

� � Hm

264
375 < 0; m 2 I ; n 2 I

ðmÞ
UK ; s ¼ 1; . . . ;M; ð34Þ
where
Hm :¼ diagf�P1m þ ETQ1E;�P2m þ ETQ 2E;�Q1;�Q2;�c2I;�c2Ig;

Âm :¼ Â1m
bA2m

bAd1m
bAd2m

bB1m
bB2m

h i
;

Lm :¼ Cm 0 0nz�2nx Dm 0
0 Cm 0nz�2nx 0 Dm

" #
;

Gm :¼
�Gmð1Þ �HGmð2Þ

�Gmð3Þ �Gmð2Þ


 �
; H :¼

I nf

0ðnx�nf Þ�nf

" #
;

bA1m :¼
Gmð1ÞA1m þ HBf 1mCm HAf 1m

Gmð3ÞA1m þ Bf 1mCm Af 1m

" #
;

bA2m :¼
Gmð1ÞA2m þ HBf 2mCm HAf 2m

Gmð3ÞA2m þ Bf 2mCm Af 2m

" #
;

bAd1m :¼
Gmð1ÞAd1m

Gmð3ÞAd1m


 �
; bAd2m :¼

Gmð1ÞAd2m

Gmð3ÞAd2m


 �
;

bB1m :¼
Gmð1ÞB1m þ HBf 1mDm

Gmð3ÞB1m þ Bf 1mDm

" #
; bB2m :¼

Gmð1ÞB2m þ HBf 2mDm

Gmð3ÞB2m þ Bf 2mDm

" #
;

PðsÞn :¼
X

n2I ðmÞ
K

pmnðP1n þ P2nÞ þ
X

n2I ðmÞ
UC

~pðsÞmnðP1n þ P2nÞ þ pðmsÞ
UK ðP1n þ P2nÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n2I ðmÞ
UK

; ð35Þ



with E;Cm;Dm, and pðmsÞ
UK defined in (7) and (10), respectively. Moreover, if the above conditions have a set of feasible solutions

ðP1m; P2m;Q 1;Q 2;Gmð1Þ;Gmð2Þ;Gmð3Þ;Af 1m;Af 2m;Bf 1m;Bf 2m;Cfm;DfmÞ, then an admissible nf -order filter in the form of (5) can be con-
structed as,
Af 1m ¼ G�1
mð2ÞAf 1m; Af 2m ¼ G�1

mð2ÞAf 2m; Bf 1m ¼ G�1
mð2ÞBf 1m; Bf 2m ¼ G�1

mð2ÞBf 2m; ð36Þ
and Cfm and Dfm can be obtained directly from (34).
Proof. By Schur complement, (9) is equivalent to
�I 0 Lm

� � PðsÞn

	 
�1
Am

� � Hm

264
375 < 0; m 2 I ; n 2 I

ðmÞ
UK ; s ¼ 1; . . . ;M; ð37Þ
where Am;Lm;P
ðsÞ
n and Hm are defined in (10).

For matrix inequality linearisation purpose, performing a congruent transformation to (37) by
diag I 2nz ;Gm; I ð4nxþ2nfþ2nwÞ

n o
, and it follows from
PðsÞn � Gm
	 
T

PðsÞn

	 
�1
PðsÞn � Gm
	 


P 0; ð38Þ
that
�GT
m PðsÞn

	 
�1
Gm 6 PðsÞn � Gm � GT

m: ð39Þ
Based on (39), we have that the following inequality implies (37),
�I 0 Lm

� PðsÞn � SymfGmg GmAm

� � Hm

264
375 < 0; m 2 I ; n 2 I

ðmÞ
UK ; s ¼ 1; . . . ;M: ð40Þ
Then, similar to the manipulations given in the proof of Theorem 1, we can specify the slack variable Gm as follows without
loss of generality,
Gm :¼
Gmð1Þ HGmð2Þ

Gmð3Þ Gmð2Þ


 �
; ð41Þ
where H :¼ I nf
0nf�ðnx�nf Þ

� �T.
Now, substituting the slack variable Gm into (40) and defining the following matrices
Af 1m :¼ Gmð2ÞAf 1m; Af 2m :¼ Gmð2ÞAf 2m; Bf 1m :¼ Gmð2ÞBf 1m; Bf 2m :¼ Gmð2ÞBf 2m; ð42Þ
one can readily obtain (34). In addition, since Gmð2Þ are nonsingular as implied by (34), it is easy to see that the filter gains can
be constructed by (36). The proof is thus completed. h
Remark 4. Based on a traditional decoupling inequality (39), Theorem 2 provides another sufficient condition for the solv-
ability of nf -order H1 filtering of 2-D MJLS (1) with state-delays and deficient mode information. Nevertheless, by observing
the conditions given in Theorems 1 and 2 carefully, it is interesting to see that Theorem 2 is actually a special case of The-
orem 1 with Um ¼ 0. It will be shown in the simulation section that Theorem 1 is generally less conservative than Theorem 2
due to the more freedom in the solution space.
4. Simulation studies

In this section, we demonstrate the effectiveness of the proposed approaches in this paper via a simulation example.
Consider a two-dimensional (2-D) Markovian jump linear system (MJLS) with state-delays in the form of (1) with param-

eters as follows,



A11 Ad11 B11

A21 Ad21 B21

L1 C1 D1

264
375 ¼

0:3 0 0:15 0 0:3
0:2 0:1 0 0:1 0:5
0:1 0 0 0:1 0:2
0:2 0:2 0 0:1 0:4
�1 1 1 0 0
0 �0:8 1 0:6 0:3

2666666664

3777777775
;

A12 Ad12 B12

A22 Ad22 B22

L2 C2 D2

264
375 ¼

0:2 0 0:1 0 0:2
0:1 0:3 0 0:1 0:5
0:2 0 0 0 0:5
0:1 0:1 0 0:1 0:1
�1:5 0:3 0:2 0:5 0

0 �0:5 0:5 0:6 0:5

2666666664

3777777775
;

A13 Ad13 B13

A23 Ad23 B23

L3 C3 D3

264
375 ¼

0:1 �0:2 0:3 0 0:1
�0:2 0:1 0 0:1 0:25
0:25 0:1 0:1 0 0
0:05 0:3 0 0:1 �0:28

1 0:5 0:3 0:2 1
0 0:3 1 �0:3 0:3

2666666664

3777777775
;

A14 Ad14 B14

A24 Ad24 B24

L4 C4 D4

264
375 ¼

0:3 �0:2 0:2 0 0:1
�0:2 0:3 0 0 0:4
0:25 0:1 �0:1 0 0
0:05 0:5 0 0:1 0:2
�0:5 0 1:5 0 �0:3

0 0:2 0:8 0:6 0:3

2666666664

3777777775
:

Four different cases for the transition probability matrix (TPM) are given in Table 1, where the transition probabilities (TPs)
labeled with ‘‘^’’ and ‘‘ �’’ represent the unknown and uncertain elements, respectively. Specifically, Case 1, Case 2, Case 3, and
Case 4 stand for the completely known TPs, deficient statistics of mode information (including known, partially unknown and
uncertain TPs), partially unknown TPs, and completely unknown TPs, respectively.

For Case 2, it is assumed that the uncertain TPs comprise three vertices Ps; s ¼ 1;2;3, where the third rows
Psð3Þ; s ¼ 1;2;3, are given by
P1ð3Þ ¼ p̂31 0:2 p̂33 0:4½ �;
P2ð3Þ ¼ p̂31 0:5 p̂33 0:3½ �;
P3ð3Þ ¼ p̂31 0:3 p̂33 0:1½ �;
and the other rows in the three vertices are given with the same elements, that is,
Psð1Þ ¼ 0:3 0:2 0:1 0:4½ �;
Psð2Þ ¼ p̂21 p̂22 0:3 0:2½ �;
Psð4Þ ¼ 0:2 p̂42 p̂43 p̂44½ �; s ¼ 1;2;3:
Our purpose here is to design a filter of the form (5) for the above system such that the 2-D filtering error system is sto-
chastically stable with an H1 performance c. A detailed comparison between the minimum H1 performance indices cmin

obtained based on Theorems 1 and 2 is listed in Table 2. The results clearly show the advantages of Theorem 1 over
Table 1
Four different TPMs.

Case 1: Completely known TPM Case 2: Deficient TPM1
0:3 0:2 0:1 0:4
0:3 0:2 0:3 0:2
0:1 0:5 0:3 0:1
0:2 0:2 0:1 0:5

2664
3775

0:3 0:2 0:1 0:4
p̂21 p̂22 0:3 0:2
p̂31 ~p32 p̂33 ~p34
0:2 p̂42 p̂43 p̂44

2664
3775

Case 3: Deficient TPM2 Case 4: Completely unknown TPM
0:3 0:2 0:1 0:4
p̂21 p̂22 0:3 0:2
p̂31 p̂32 p̂33 p̂34
0:2 p̂42 p̂43 p̂44

2664
3775

p̂11 p̂12 p̂13 p̂14
p̂21 p̂22 p̂23 p̂24
p̂31 p̂32 p̂33 p̂34
p̂41 p̂42 p̂43 p̂44

2664
3775



Theorem 2 presented in this paper. Meantime, by inspection of Tables 1 and 2, it is easy to see that the more information on
TPs is available, the better H1 performance can be obtained, which is effective to reduce the conservatism of filtering design.
Therefore, the introduction of the uncertain TPs is significant.

Specifically, considering Case 2 shown in Table 1 and by applying Theorem 1, the feasible solutions of cmin ¼ 0:3725 for
the full-order (nf ¼ 2) filter and cmin ¼ 0:8165 for the reduced-order (nf ¼ 1) filter are obtained respectively, and the corre-
sponding filter gains are given by,
Table 2
Compar

TPM

Case
Case
Case
Case
for the full-order filter and
for the reduced-order filter, respectively.
In order to further illustrate the effectiveness of the designed H1 filters, we present the simulation results with the above

solutions. Let the boundary conditions be
ison of minimum H1 performance for different TPMs.

s Theorem 1 Theorem 2

Full-order Reduced-order Full-order Reduced-order

1 0.2842 0.7518 0.6072 1.1084
2 0.3725 0.8165 0.8673 1.5292
3 0.3920 0.9077 1.1952 1.7297
4 0.4877 1.0604 1.8212 2.3384



Fig. 1. One possible system mode evolution.

Fig. 2. Responses of the filtering error �zði; jÞ for the full-order case: the 1st component.

Fig. 3. Responses of the filtering error �zði; jÞ for the full-order case: the 2nd component.



Fig. 5. Responses of the filtering error �zði; jÞ for the reduced-order case: the 2nd component.

Fig. 4. Responses of the filtering error �zði; jÞ for the reduced-order case: the 1st component.
xðt; iÞ ¼ xði; tÞ ¼ �1 1:4½ �T; 0 6 i 6 10;

0 0½ �T; i > 10;

(

where �4 6 t 6 0, and choose the delays d1 ¼ 4 (vertical direction), d2 ¼ 4 (horizontal direction), and disturbance input
wði; jÞ as
wði; jÞ ¼
0:2; 0 6 i; j 6 10;
0; otherwise:

�

With one possible realisation of the Markovian jumping mode shown in Fig. 1, the time responses of filtering errors are given
in Figs. 2–5, respectively. It can be clearly observed from the simulation curves that, despite the deficient TPs, the filtering
errors for both full-order and reduced-order filters converge to zero under the above conditions.
5. Conclusions

This paper has investigated the problem of H1 filtering for a class of two-dimensional (2-D) Markovian jump linear sys-
tems (MJLSs) with state-delays and deficient mode information. Such deficient mode information simultaneously involves
the exactly known, partially unknown and polytopic-type uncertain transition probabilities, which are more general and
practical. By the properties of the transition probability matrix (TPM) together with the convexification of uncertain do-
mains, a new bounded real lemma for the filtering error system is firstly derived. Via some linearisation procedures, two
methods have been proposed for the design of full-order and reduced-order filters. A simulation example has been given
to illustrate effectiveness of the proposed approaches.



Finally, it is worth mentioning that the H1 filtering design results presented in this paper are actually delay-independent,
which do not include any information on the size of delays (i.e., the time-delays are allowed to be arbitrarily large). Extension
of the current results to the delay-dependent case is interesting and expected to be less conservative, which deservers fur-
ther investigation. Applications of the proposed results to some real-world complex 2-D systems such as the image data pro-
cessing and transmission [30], thermal processes [32], gas absorption [33], and water stream heating [14], are also part of our
future works.
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