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MOST physical systems and processes in the real world are
mathematically modeled in complex nonlinear systems,

which causes difficulties when it comes to system analysis and
synthesis. Among the available techniques used to model, an-
alyze, and design, the well-known Takagi–Sugeno (T–S) fuzzy
model approach has been recognized as being very effective at
describing the complex nonlinear systems in a general frame-
work [2], [4], [13], [45]. The T–S fuzzy models are described by
a set of fuzzy “If . . . then” rules with fuzzy sets in the antecedents
and linear time-invariant dynamic systems in the consequent,
which can approximate many typical nonlinear systems.

So far, the T–S fuzzy model has been extensively applied in
many dynamical systems, such as stochastic systems [21], neu-
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ral networks [17], [22], switched systems [47], network con-
trol systems [14], etc. Therefore, many control issues of T–S
fuzzy systems have been investigated, such as the fundamental
problems of stability analysis and stabilization [6], [23], [36],
reliable control strategies [44], H∞ control design [1], and fault
detection and fault estimation observer design [15], [29], [46].
As a major concern and fundamental problem in the area, sta-
bility analysis has, to date, been extensively studied whereas
most of results are obtained via quadratic Lyapunov function
approach. It is also noted that a linear matrix inequality (LMI)-
based formulation of the stability problem is preferred in the
literature, since the inherent flexibility of the LMI conditions
facilitates the investigation of control synthesis problems, for
T–S fuzzy systems [28]. In these methods, a numerical solution
is efficiently obtained by convex optimization techniques such
as the interior point method. Although LMI-based approaches
have been successful, there is still a serious problem in that
the results obtained via LMIs are quite conservative. There-
fore, studies on less conservative criteria have been widely con-
ducted, and some improvements have been made on the basis of
various approaches, such as different types of Lyapunov func-
tion [4], [42], [43]. Generally speaking, most existing stability
conditions of T–S fuzzy systems can be divided into two cat-
egories: membership-independent conditions and membership-
dependent conditions.

For the derivations of membership-independent stability cri-
teria for T–S fuzzy systems, the common Lyapunov function
approach is naturally adopted; see, for example, [42], and fur-
ther relaxed conditions are obtained in [41]. However, to find a
common matrix that satisfies all Lyapunov inequalities is rather
conservative, if not impossible in practice. Hence, several other
methods have been developed to relax those stability conditions,
among which, piecewise Lyapunov function [16] and fuzzy Lya-
punov function [38] (different nomenclatures in the literature,
such as nonquadratic Lyapunov function [4], basis-dependent
Lyapunov function [48], and weighting dependent Lyapunov
function [43]) have been well recognized to be effective. Us-
ing fuzzy Lyapunov functions, membership-independent con-
ditions have been proposed in [4]. The fuzzy Lyapunov func-
tion, unlike piecewise Lyapunov function approach, consists
of a fuzzy blending of multiple Lyapunov functions, which is
therefore smooth and can avoid the nonconvex problems in the
controller design. However, the serious drawback of the fuzzy
Lyapunov function approach is that the time derivatives of mem-
bership functions will appear in the stability analysis [32]. To
overcome this problem, a line-integral Lyapunov function is
proposed in [32], where the Lyapunov function is formulated
to be a line integral of a fuzzy vector along a path from the
origin to the current state. Then, by introducing slack matrix
variables into the LMI conditions of [32], less conservative



membership-independent conditions are obtained in [25]. Other
extensions of [32] can be found in [11] and references therein.
Recently, by employing a polynomial Lyapunov function (but
only in system state x(t)), new membership-independent condi-
tions in sum of squares (SOS) formulation are proposed in [39]
and [40], and it is interesting that the conservativeness of their
conditions can be reduced with the growth of the degree of x(t)
in the constructed Lyapunov function.

On the other hand, it is noted that all the stability condi-
tions in the literature mentioned previously are membership-
independent and therefore conservative to different extents,
since those conditions must be fulfilled for an arbitrary mem-
bership function. In fact, the region of attraction for fuzzy
systems may be membership-dependent [18], [19], [30], [35],
i.e., if some information of the membership functions in a re-
gion around the equilibrium is known, relaxed stability condi-
tions may be derived. Therefore, much more attention has been
devoted to obtain membership-dependent stability conditions
(see [3], [20] and references therein). For pioneer works in this
area, see the results that are developed by common quadratic
Lyapunov functions in [34] and references therein, where the
knowledge of membership functions’ shape is taken into ac-
count. In [38], by defining a fuzzy Lyapunov function approach,
improved stability criteria that depend explicitly on the upper
bound of time derivative of membership functions are estab-
lished. In the light of a null product item, results of [38] have
been generalized in [26]. By utilizing the appropriate proper-
ties of the time derivatives of membership functions, further
improved stability conditions with different conservativeness
have been presented in [9] and [25]. Broadly speaking, these
results obtained by fuzzy Lyapunov functions are less conser-
vative than those ignoring the information of the membership
functions. In view of this, a novel type of Lyapunov function is
explored in [24] and [27], where the function is given by a dou-
ble parametrization. One is parameterized by the membership
functions and the other is parameterized by the time derivatives
of the membership functions. By this setting, the information
that concerns the second time derivative of the membership
functions becomes available to describe the time-varying char-
acteristic of T–S fuzzy systems.

Therefore, properly using inherent information on the T–S
fuzzy systems to construct a Lyapunov function and properly in-
troducing LMI relaxations will lead to less conservative criteria.
All the aforementioned observations motivate us to carry out this
study. We propose a novel nonquadratic membership-dependent
Lyapunov functions, which can be numerically solved for a
given T–S fuzzy system to reduce the conservativeness com-
pared with existing stability criteria.

In this paper, the problem of stability of T–S fuzzy systems
in continuous-time domain will be investigated. The main con-
tributions of this paper lie in that the so-called nonquadratic
membership-dependent Lyapunov function, which is formu-
lated in a high degree form of both the system states and
the normalized membership functions, is proposed giving rise
to less conservative and numerically easily verified stability
criteria for T–S fuzzy systems. Moreover, it is also shown that the
conservativeness of our conditions can be reduced if the degree

of Lyapunov function increases. The rest of the paper is orga-
nized as follows. Section II recalls some definitions with respect
to T–S fuzzy systems and reviews some useful existing works.
In Section III, the existence conditions for the nonquadratic
membership-dependent Lyapunov function are presented to en-
sure the stability of the underlying T–S fuzzy systems, and the
relationships among these conditions are also discussed. Two
numerical examples are given in Section IV to demonstrate the
validity and less conservativeness of the obtained results. Fi-
nally, conclusions are presented in Section V.

Notations: In this paper, the notations used are fairly standard.
A � 0 and x � 0 (or A � 0, x � 0) mean that all elements of
matrix A and x are positive (or nonnegative); the notation P >
0(≥ 0) means that P is a real-symmetric and positive-definite
(semipositive definite) matrix;R,Rn , andRn×n denote the field
of real numbers, n-dimensional Euclidean space, and the space
of n × n matrices with real entries, respectively; N+ stands for
the set of positive integers; x{m} is a base vector that contains
all homogeneous monomials of degree m in x; In is the identity
matrix of order n; λ(A) are the eigenvalues of A;A ≡ [aij ]n×n ,
where aij is the ith line and jth column entry of A; for a
given vector v, vi (or (v)i) stands for its ith entry; ϑ(n,m) ≡
(n + m − 1)!/((n − 1)!m!); v(x,m, y, n) represents a polyno-
mial of degree m and n in x and y, respectively,∀m,n ∈ Z+ ;
for h ∈ Rn , ‖h‖∞ = max{|h1 | , |h2 | , . . . , |hn |}; A ⊗ B refers
to the Kronecker product of matrices A and B; and x⊗m =

m
︷ ︸︸ ︷

x ⊗ x ⊗ . . . ⊗ x denotes the mth Kronecker power in x. In addi-
tion, the notation co{h1 , h2 , . . . hm} denotes the convex hull of
h1 , h2 , . . . , hm .

II. PROBLEM FORMULATION AND PRELIMINARIES

The model that is proposed in [37] is described by fuzzy rules,
which expresses local linear relations of a nonlinear system, and
can be represented as follows:

Model rule i : IF θ1(t) is Mi
1 and · · · θp(t) is Mi

p

THEN ẋ(t) = Aix(t), i ∈ R = {1, 2, . . . r} (1)

where x(t) ∈ Rn is the state vector; Mi
j is the fuzzy

set; r denotes the number of model rules; θ(t) = [θ1(t),
θ2(t), . . . , θp(t)]T is the premise variables vector, and each
θj (t) is a measurable time-varying quantity that may be states,
measurable external variables, and/or time; and Ai, i ∈ R, are
real matrices with appropriate dimensions. By using a standard
fuzzy inference method, that is, using a singleton fuzzier, and
center-average defuzzier, a more compact presentation of the
continuous-time T–S fuzzy model can be given by

ẋ(t) = A(h(t))x(t) =
r

∑

i=1

hi(θ(t))Aix(t) (2)

where hi(θ(t)) are the normalized membership functions

hi(θ(t)) =
Πp

j=1M
i
j (θj (t))

∑r
i=1 Πp

j=1M
i
j (θj (t))

with Mi
j (θj (t)) representing the grade of membership of

premise variable θj (t) in Mi
j . In this paper, it is assumed



that the normalized membership function satisfies the following
properties:

h(θ(t)) = [h1(θ(t)), h2(θ(t)), . . . , hr (θ(t))]T

∈ {h(θ(t)) ∈ Rr :
r

∑

i=1

hi(t) = 1, hi(t) ≥ 0} (3)

∣

∣

∣ḣi(θ(t))
∣

∣

∣ ≤ φi, i ∈ R. (4)

Therefore, ḣ(θ(t)) ∈ co{h1 , h2 , . . . hl}, where hj ∈ Rr , j ∈
{1, 2, . . . , l} are given vertices with

∥

∥hj
∥

∥

∞ ≤ maxiφi , with
∑r

i=1 hj
i = 0. For simplicity, in what follows, h(θ(t)) will be

denoted by h(t).
In this paper, on the basis of Lyapunov stability theory, we

aim to develop less conservative stability conditions for T–S
fuzzy system (2) by exploring a new Lyapunov function. Before
proceeding, the following necessary definitions and lemmas are
given, which will be used to develop our main results in this
paper.

Definition 1 [8]: Let ẋ(t) = Ax(t), where A is an n × n
matrix. Then, A{m} is a ϑ(n,m) × ϑ(n,m) matrix that satisfies
the following equation:

ẋ{m}(t) = A{m}x
{m}(t) =

∂x{m}(t)
∂x

Ax. (5)

We extend Definition 1 for system (2) in the following.
Definition 2: Considering system (2), we define that

A{m}(h(t)) is a ϑ(n,m) × ϑ(n,m) matrix that satisfies the
following equation:

ẋ{m}(t) = A{m}(h(t))x{m}(t) =
∂x{m}(t)

∂x
A(h(t))x. (6)

Definition 3 [33]: If co{x1 , x2 , . . . , xm} denotes the con-
vex hull of x1 , x2 , . . . , xm , then co{x1 , x2 , . . . , xm}={

∑m
i=1

αixi : αi ≥ 0, 1 ≤ i ≤ m,
∑m

i=1 αi = 1}.
Lemma 1 [7]: Let Km ∈ Rnm ×ϑ(n,m ) be the matrix that sat-

isfies x⊗m (t) = Km x{m}(t). Then, the matrix A{m} in (5) can
be given by

A{m} = (KT
m Km )−1KT

m

(

m−1
∑

i=0

Inm −1−i ⊗ A ⊗ Ini

)

Km .

(7)
Lemma 2: The matrix A{m}(h(t)) in (6) can be given by

A{m}(h(t)) =
r

∑

i=1

hi(t)

[

(KT
m Km )−1KT

m

×
(

m−1
∑

i=0

Inm −1−i ⊗ Ai ⊗ Ini

)

Km

]

. (8)

Proof: From Definition 1, it can be seen that A{m} depends
linearly on A. Therefore, we can get (8) from Definition 2 and
Lemma 1. �

Lemma 3: Let A ∈ Rn1 ×n2 and B ∈ Rn2 ×n3 ; then, (AB)⊗k

= A⊗kB⊗k .

Lemma 4: For given matrices A ∈ Rn1 ×n1 and B ∈ Rn2 ×n2 ,
if λ(A) = {ε1 , ε2 , . . . εn1 } and λ(B) = {ε1 , ε2 , . . . εn2 }, then
λ(A ⊗ B) = {εiεj , i = 1, . . . , n1 , j = 1, . . . , n2}.

Remark 1: Note that Lemmas 3 and 4 can be trivially proved
by some properties of Kronecker product [10] and standard
matrix manipulations.

III. MAIN RESULTS

In this section, the following nonquadratic membership-
dependent type of Lyapunov function is proposed to obtain the
stability criteria for T–S fuzzy system (2):

v(x(t), 2m,h(t), z) =
∑

i

wi(x(t), h(t)) (9)

where i ∈ {1, 2, . . . , ϑ(n, 2m)ϑ(r, z)} and wi(x(t), h(t)) are
homogeneous forms of x(t) and h(t) with order 2m and z,
respectively. For instance, ∀x(t), h(t) ∈ R2

v(x(t), 2, h(t), 1)

= a1h1(t)x2
1(t) + a2h1(t)x1(t)x2(t) + a3h1(t)x2

2(t)

+ a4h2(t)x2
1(t) + a5h2(t)x1(t)x2(t) + a6h2(t)x2

2(t)

where ai, i ∈ {1, 2, . . . , 6}, are the real coefficients. Further-
more, we define the degree of the aforementioned Lyapunov
function as (m, z). Therefore, based on Lyapunov’s direct
method, the main objective of this paper is to propose a nu-
merical method to identify ai for system (2), such that along the
system solutions

v(x(t), 2m, h(t), z) > 0 ∀x(t) ∈ Rn/0n , h(t) satisfying (3) (10)

v̇(x(t), 2m, h(t), z) < 0 ∀x(t) ∈ Rn/0n , h(t) satisfying (3). (11)

Remark 2: By nonquadratic polynomial Lyapunov function
to analyzing the stability of T–S fuzzy system, see [12] and [40],
where the Lyapunov functions are formulated in a high-order
form of system state x(t) for a class of polynomial fuzzy system.
However, different from [40], the one in (9) is constructed by not
only x(t), but also h(t) in their high orders. From a mathematical
point of view, the Lyapunov function in (9), taking full advantage
of the inherent information on the system, has the potential to
improve the stability criteria, which will be discussed in more
detail later on.

Now, based on the new type of Lyapunov function proposed
previously, we are in a position to present our main results in
this paper.

Theorem 1: Consider the T–S fuzzy system (2), if there exist
parameter vectors

η ∈ Rϑ(n,m )ϑ(r,z )(ϑ(n,m )ϑ(r,z )+1)/2−ϑ(n, 2m )ϑ(r,2z )

λj ∈ Rϑ(n,m )ϑ(r,z+1)(ϑ(n,m )ϑ(r,z+1)+1)/2−ϑ(n, 2m )ϑ(r,2z+2)

j ∈ {1, 2, · · · , l}

such that, ∀j ∈ {1, 2, . . . , l},

V + V (η) > 0 (12)

Xj (η, hj ) + Xj (η, hj , λj ) < 0 (13)



where

V + V (η) ∈ Rϑ(n, m )ϑ(r, z )×ϑ(n, m )ϑ(r, z )

Xj (η, hj ) + Xj (η, hj , λj ) ∈ Rϑ(n, m )ϑ(r, z+1)×ϑ(n, m )ϑ(r, z+1)

are linear parameterization expressions of the matrices that rep-
resent a polynomial v(x(t), 2m,h(t), z) and its time derivative
in hj , respectively, then there exists a nonquadratic type of
Lyapunov function v(x(t), 2m,h(t), z), which guarantees that
system (2) is asymptotically stable.

Proof: A sufficient condition for (10) is the existence of appro-
priately defined SOS [31], [40] decompositions in x(t), which
can be verified by the existence of a positive-definite matrix
V(h(t)) (often called the Gram matrix [31]) for any h(t), such
that

v(x(t), 2m,h(t), z) = (x{m}(t))T V(h(t))x{m}(t) (14)

whereV(h(t)) is a matrix whose entries are homogeneous forms
of h(t) with degree z. Then, by choosing a matrix V appropri-
ately, we can rewrite (14) as

v(x(t), 2m,h(t), z)

= (x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V

×
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t). (15)

It is noted that the representation of matrix V describing
v(x(t), 2m,h(t), z) is not unique. Let V be a symmetric
matrix with variable entries; then, for a given polynomial
v(x(t), 2m,h(t), z), by expanding the right-hand side of (15)
and matching the corresponding coefficients, we can get linear
constraints on the entries of V in a linear system, where the num-
ber of independent constraints is ϑ(n, 2m)ϑ(r, 2z). Therefore,
a linear parameterization expression for the family of matrix V
representing v(x(t), 2m,h(t), z) is obtained in the following:

V1(η) = V + V (η) (16)

where η ∈ Rϑ(n,m )ϑ(r,z )(ϑ(n,m )ϑ(r,z )+1)/2−ϑ(n, 2m )ϑ(r,2z ) is a
vector of free parameters. It follows that

v(x(t), 2m,h(t), z)

= (x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V1(η)

×
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t). (17)

It is, therefore, obvious that if (12) holds, v(x(t), 2m,h(t), z) >
0∀x(t) ∈ Rn and ∀h(t) [defined in (3)].

On the other hand, (17) can be rewritten as follows:

v(x(t), 2m,h(t), z)

= (x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V1(η)

×
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)

= (x{m}(t))T V1(η, h(t))x{m}(t)

=
(
√

h(t)
{z})T

(x{m}(t) ⊗ Iϑ(r,z ))T V2(η)

× (x{m}(t) ⊗ Iϑ(r,z ))
√

h(t)
{z}

=
(
√

h(t)
{z})T

V2(η, x(t))
√

h(t)
{z}

. (18)

Then, from (3), (4), (18), Definitions 2, 3, and Lemma 2, one
has

v̇(x(t), 2m,h(t), z)

=
∂v(x(t), 2m,h(t), z)

∂x{m}
dx{m}

dt

+
∂v(x(t), 2m,h(t), z)

∂
√

h(t)
{z}

d
√

h(t)
{z}

dt

= 2(x{m}(t))T V1(η, h(t))A{m}(h(t))x{m}(t)

+ 2
(
√

h(t)
{z})T

V2(η, x(t))Y (h(t))ḣ(t)

= 2
l

∑

j=1

[

αj (t)(x{m}(t))T V1(η, h(t))(KT
m Km )−1KT

m

×
( m−1

∑

i=0

Inm −1−i ⊗
r

∑

i=1

hi(t)Ai ⊗ Ini

)

Km x{m}(t)

+
( r

∑

i=1

hi(t)
)2 (

√

h(t)
{z})T

V2(η, x(t))Y (h(t))αj (t)hj

]

= 2
l

∑

j=1

αj (t)[v1(η) + v2(η, hj )] (19)

where

l
∑

j=1

αj (t) = 1, αj (t) ≥ 0 ∀t ≥ 0

v1(η) = (x{m}(t))T V1(η, h(t))(KT
m Km )−1KT

m

×
(

m−1
∑

i=0

Inm −1−i ⊗
r

∑

i=1

hi(t)Ai ⊗ Ini

)

Km x{m}(t)

v2(η, hj ) =

(

r
∑

i=1

hi(t)

)2
(
√

h(t)
{z})T

V2(η, x(t))Y (h(t))hj

and Y (h(t)) ∈ Rϑ(r,z )×r is a polynomial matrix in h(t) whose
(i, j)th entry is given by

Yij (h(t)) =
∂

(
√

h(t)
{z})

i

∂hj (t)
.

It is noted that both v1(η) and v2(η, hj ) are homoge-
neous forms of degree 2m in x(t) and degree z + 1 in
h(t). Thus, one can find appropriate matrices Xj (η, hj )
∈ Rϑ(n, m )ϑ(r, z+1)×ϑ(n, m )ϑ(r, z+1) , such that, ∀j ∈ {1, 2,



. . . , l},

v1(η) + v2(η, hj )

= (x{m}(t))T
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)T

Xj (η, hj )

×
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t). (20)

Analogous to the procedure of (14)–(17), we can also get
a linear parameterization Xj (λj ) = Xj (η, hj ) + Xj (η, hj , λj )
for Xj (η, hj ) describing v1(η) + v2(η, hj ),∀j ∈ {1, 2, · · · , l},
such that

v1(η) + v2(η, hj )

= (x{m}(t))T
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)T

Xj (λj )

×
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t) (21)

where λj ∈ R
ϑ (n , m )ϑ ( r , z + 1 ) (ϑ (n , m )ϑ ( r , z + 1 )+ 1 )

2 −ϑ(n, 2m )ϑ(r,2z+2) is
a vector of free parameters. Equations (19)–(21) imply that (13)
is sufficient for (11).

Finally, we conclude that if (12) and (13) hold, there exists a
Lyapunov function for system (2) in the form of (9) to ensure
its stability, and the corresponding Lyapunov function of degree
(m, z) can be obtained by (17). This completes the proof. �

Remark 3: A sufficient condition for the existence of non-
quadratic membership-dependent Lyapunov function (9) is ob-
tained in Theorem 1. It can be seen from the proof that the
set of feasible solutions is the intersections of two affine sub-
spaces (confined by the Lyapunov function and its time deriva-
tive, respectively) and two cones (confined by the corresponding
positive-definite and negative-definite matrices, respectively).

Remark 4: It should be mentioned that a significant feature of
the considered Lyapunov function is the higher order composi-
tions of system state x(t) and normalized membership function
h(t), compared with most existing ones in the literature, which
enables us to take more freedom into the LMIs formulated in
(12)–(13) with the growth of the degree of the Lyapunov func-
tion (9). However, a question naturally arises: Can the conser-
vativeness of the stability conditions in Theorem 1 be reduced
when the degree grows? The following Theorem gives an answer
to this question.

Theorem 2: For given scalars m, z ∈ N+ , if there exist pa-
rameter vectors

η ∈ Rϑ(n,m )ϑ(r,z )(ϑ(n,m )ϑ(r,z )+1)/2−ϑ(n,2m )ϑ(r,2z )

λj ∈ Rϑ(n,m )ϑ(r,z+1)(ϑ(n,m )ϑ(r,z+1)+1)/2−ϑ(n,2m )ϑ(r,2z+2)

j ∈ {1, 2, . . . , l}
such that (12) and (13) are satisfied, then for any scalar k ∈ N+ ,
there exist parameter vectors

η̃ ∈ Rϑ(n,km )ϑ(r,kz )(ϑ(n,km )ϑ(r,kz )+1)/2 −ϑ(n,km )ϑ(r,2kz )

λ̃j ∈ R
ϑ (n , k m )ϑ ( r , k z + 1 ) (ϑ (n , k m )ϑ ( r , k z + 1 )+ 1 )

2 −ϑ(n,km )ϑ(r,2kz+2)

such that, ∀j ∈ {1, 2, · · · , l},

Ṽ + Ṽ (η̃) > 0 (22)

X̃j (η̃, hj ) + X̃j (η̃, hj , λ̃j ) < 0 (23)

where

Ṽ + Ṽ (η̃) ∈ R
ϑ (n , k m )ϑ ( r , k z )×ϑ (n , k m )ϑ ( r , k z )

X̃j (η̃, hj ) + X̃j (η̃, hj , λ̃j ) ∈ R
ϑ (n , k m )ϑ ( r , k z + 1 )×ϑ (n , k m )ϑ ( r , k z + 1 )

are linear parameterization expressions of the matrices repre-
senting a polynomial ṽ(x(t), 2km, h(t), kz) and its time deriva-
tive in hj , respectively. Moreover, if (22) and (23) have a so-
lution, ṽ(x(t), 2km, h(t), kz) is a Lyapunov function of degree
(km, kz) ensuring the stability of the T–S fuzzy system (2).

Proof: If (12) and (13) hold, it follows that

v(x(t), 2m,h(t), z)

= (x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V1(η)

×
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)

> 0 (24)

is a Lyapunov function of degree (m, z) guaranteeing the sta-
bility of system (2). Here, we particularly choose

ṽ(x(t), 2km, h(t), kz) = vk (x(t), 2m,h(t), z)

to be a Lyapunov function candidate. Then, Lemma 3 and (24)
yield

ṽ(x(t), 2km, h(t), kz)

= vk (x(t), 2m,h(t), z)

=
[

(x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V1(η)

×
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)
]⊗k

= [(x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

]⊗kV ⊗k
1 (η)

×
[(

√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)
]⊗k

= (x{km}(t))T
(
√

h(t)
{kz} ⊗ Iϑ(n,km )

)T

Ṽ1

×
(
√

h(t)
{kz} ⊗ Iϑ(n,km )

)

x{km}(t)

= (x{km}(t))T
(
√

h(t)
{kz} ⊗ Iϑ(n,km )

)T

(Ṽ + Ṽ (η̃))

×
(
√

h(t)
{kz} ⊗ Iϑ(n,km )

)

x{km}(t)

> 0 (25)

where Ṽ1 = TT
1 V ⊗k

1 (η)T1 with full rank matrix T1 satisfying

[(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)
]⊗k

= T1

(
√

h(t)
{kz} ⊗ Iϑ(n,km )

)

x{km}(t).



It is noted that λ(V1(η)) > 0. Thus, by Lemma 4, one can get
λ(V ⊗k

1 (η)) > 0, which implies that Ṽ1 > 0, i.e., there exists a
vector η̃ such that (22) is satisfied.

On the other hand, followed by (19), (21), (24), Definition 3,
and Lemma 3, one can get

˙̃v(x(t), 2km, h(t), kz)

=
dvk (x(t), 2m,h(t), z)

dt

= kvk−1(x(t), 2m,h(t), z)v̇(x(t), 2m,h(t), z)

= k
[

(x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V1(η)

×
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)
]⊗(k−1)

⊗ 2
l

∑

j=1

αj (t)
[

(x{m}(t))T
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)T

Xj (λj )
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t)
]

= 2
l

∑

j=1

kαj (t)
{

(x{km}(t))T
(
√

h(t)
{kz+1} ⊗ Iϑ(n,km )

)T

T T
2

[

V
⊗(k−1)
1 (η) ⊗ Xj (λj )

]

T2

(
√

h(t)
{kz+1}

⊗ Iϑ(n,km )

)

x{km}(t)
}

=
l

∑

j=1

αj (t)
{

(x{km}(t))T
(
√

h(t)
{kz+1} ⊗ Iϑ(n,km )

)T

×
[

X̃j (η̃, hj ) + X̃j (η̃, hj , λ̃j )
] (

√

h(t)
{kz+1}

⊗ Iϑ(n,km )

)

x{km}(t)
}

(26)

where the full rank matrix T2 satisfies

T2

(
√

h(t)
{kz+1} ⊗ Iϑ(n,km )

)

x{km}(t)}

= [
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)]⊗(k−1)⊗

× [
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t)].

By Lemma 4, it is also clear that TT
2 [V ⊗(k−1)

1 (η) ⊗
Xj (λj )]T2 < 0 since V

⊗(k−1)
1 (η) > 0 and Xj (λj ) < 0. So (26)

shows that if (12) and (13) are satisfied, there exist η̃ and λ̃j

such that (23) holds.
Finally, it is straightforward to see from (25) and (26) that

if (22) and (23) have a solution, then ṽ(x(t), 2km, h(t), kz)
is a Lyapunov function ensuring the stability of the T–S fuzzy
system (2). �

Remark 5: It should be noted from Theorem 2 that for a given
T–S fuzzy system, if we can find a nonquadratic membership-
dependent Lyapunov function of degree (m, z), then we can
also find a Lyapunov function of degree (km, kz) assuring the

TABLE I
RELATIONS BETWEEN THE NUMBERS OF LMI VARIABLES AND DEGREES OF

LYAPUNOV FUNCTIONS

Degree of
Lyapunov function (m, z)=(1, 1) (m, z)=(2, 2) (m, z)=(3, 3)

Numbers of
LMI variables 19 121 409

stability of the underlying system. However, the converse is
not true, which implies that increasing the orders of x(t) and
h(t) in a Lyapunov function (9) simultaneously will relax the
corresponding stability conditions obtained.

Remark 6: It should be pointed out that the reduction of
conservativeness is at the expense of increasing computational
complexity since more LMI variables will be involved with the
growth of the degree. Table I provides the relations between the
numbers of LMI variables and degrees of Lyapunov functions
for given parameters n = 2, r = 2, and l = 2. Another problem
should also be noted that the system matrices and the param-
eters of Lyapunov functions in the conditions of Theorem 1
are coupled in a special manner, which is different from some
common ones in the literature. This will bring some difficulty
in dealing with controller design problems since this coupling
is not easily decoupled by some standard LMI techniques used
in the literature. Therefore, how to get an equivalent result that
decouples the parameters of Lyapunov functions and the system
matrices deserves further investigation in future work.

On the other hand, the observations in Remark 5 lead to
another question: How do the stability conditions vary with the
individual orders of x(t) and h(t)? This stimulates us to present
the following result.

Theorem 3: For any given scalars m, z ∈ N+ , if there exist
parameter vectors

η ∈ Rϑ(n,m )ϑ(r,z )(ϑ(n,m )ϑ(r,z )+1)/2−ϑ(n,2m )ϑ(r,2z )

λj ∈ Rϑ(n,m )ϑ(r,z+1)(ϑ(n,m )ϑ(r,z+1)+1)/2−ϑ(n,2m )ϑ(r,2z+2)

j ∈ {1, 2, . . . , l}

such that (12) and (13) are satisfied, then there exist parameter
vectors

η̄ ∈ Rϑ(n,m )ϑ(r,z+1)(ϑ(n,m )ϑ(r,z+1)+1)/2−ϑ(n,2m )ϑ(r,2z+2)

λ̄j ∈ Rϑ(n,m )ϑ(r,z+2)(ϑ(n,m )ϑ(r,z+2)+1)/2−ϑ(n,2m )ϑ(r,2z+4)

such that ∀j ∈ {1, 2, . . . , l}

V̄ + V̄ (η̄) > 0 (27)

X̄j (η̄, hj ) + X̄j (η̄, hj , λ̄j ) < 0 (28)

where

V̄ +V̄ (η̄) ∈ Rϑ(n, m )ϑ(r, z+1)×ϑ(n, m )ϑ(r, z+1)

X̄j (η̄, hj )+X̄j (η̄, hj , λ̄j ) ∈ Rϑ(n, m )ϑ(r, z+2)×ϑ(n, m )ϑ(r, z+2)

are linear parameterization expressions of the matrices rep-
resenting a polynomial v̄(x(t), 2m,h(t), z + 1) and its time
derivative in hj , respectively. Moreover, if (27) and (28) have



a solution, v̄(x(t), 2m, h(t), z  + 1)  is a Lyapunov function 
of degree (m, z + 1)  ensuring the stability of the T–S fuzzy 
system (2).

Proof: As a special case, we can choose

v̄(x(t), 2m,h(t), z + 1) =

(

r
∑

i=1

hi(t)

)

v(x(t), 2m,h(t), z)

to be a Lyapunov function candidate, where v(x(t), 2m,h(t), z)
is a Lyapunov function satisfying (12) and (13). Then, we have
that

v̄(x(t), 2m,h(t), z + 1)

=

(

r
∑

i=1

hi(t)

)

v(x(t), 2m,h(t), z)

=
√

h(t)
T √

h(t)(x{m}(t))T
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V1(η)
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)

= (x{m}(t))T {
[
√

h(t)
T
Ir

√

h(t)
]

⊗

×
[
(
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

V1(η)(
√

h(t)
{z} ⊗ Iϑ(n,m ))

]

}

x{m}(t)

= (x{m}(t))T
(
√

h(t) ⊗
√

h(t)
{z} ⊗ Iϑ(n,m )

)T

× [Ir ⊗ V1(η)]
(
√

h(t) ⊗
√

h(t)
{z} ⊗ Iϑ(n,m )

)

x{m}(t)

= (x{m}(t))T
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)T

(T3 ⊗ Iϑ(n,m ))T

× [Ir ⊗ V1(η)](T3 ⊗ Iϑ(n,m ))
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t)

= (x{m}(t))T
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)T

(V̄ + V̄ (η̄))

×
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t) (29)

where T3 is a full rank matrix satisfying
√

h(t) ⊗
√

h(t)
{z}

=

T3
√

h(t)
{z+1}

. In accordance with the similar development in
Theorem 2, it can be seen from (29) that there exists a vector η̄
such that (27) is satisfied.

On the other hand

˙̄v(x(t), 2m,h(t), z + 1)

=

(

r
∑

i=1

ḣi(t)

)

v(x(t), 2m,h(t), z)

+ v̇(x(t), 2m,h(t), z)
r

∑

i=1

hi(t)

= 2
l

∑

j=1

αj

[

(x{m}(t))T
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)T

Xj (λj )

×
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t)
]

√

h(t)
T √

h(t)

= 2
l

∑

j=1

αj (t)
[

(x{m}(t))T
(
√

h(t)
T
Ir

√

h(t)
)

×
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)T

Xj (λj )

×
(
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t)
]

= 2
l

∑

j=1

αj (t)
[

(x{m}(t))T
(
√

h(t) ⊗
√

h(t)
{z+1}

⊗ Iϑ(n,m )

)T

(Ir ⊗ Xj (λj ))
(
√

h(t)⊗
√

h(t)
{z+1} ⊗ Iϑ(n,m )

)

x{m}(t)
]

= 2
l

∑

j=1

αj (t)
[

(x{m}(t))T
(
√

h(t)
{z+2} ⊗ Iϑ(n,m )

)T

× (T4 ⊗ Iϑ(n,m ))T (Ir ⊗ Xj (λj ))(T3 ⊗ Iϑ(n,m ))

×
(
√

h(t)
{z+2} ⊗ Iϑ(n,m )

)

x{m}(t)
]

=
l

∑

j=1

αj (t)
[

(x{m}(t))T
(
√

h(t)
{z+2} ⊗ Iϑ(n,m )

)T

× (X̄j (η̄, hj ) + X̄j (η̄, hj , λ̄j ))

×
(
√

h(t)
{z+2} ⊗ Iϑ(n,m )

)

x{m}(t)
]

(30)

where T4 is a full rank matrix that satisfies
√

h(t) ⊗
√

h(t)
{z+1}

= T4
√

h(t)
{z+2}

. Therefore, there exist η̄ and λ̄j

satisfying (27) and (28) if Xj (λj ) < 0.
Finally, from (29) and (30), it suffices that if (27) and (28) 

are feasible, then v̄(x(t), 2m, h(t), z  + 1)  is a Lyapunov func-
tion ensuring the stability of the T–S fuzzy system (2), which 
completes the proof. 

Remark 7: Note that for any given order m of x(t) in a 
Lyapunov function (9), Theorem 3 indicates that raising indi-
vidually the h(t)’s order in (9) will accordingly improve the 
performance of the stability conditions. This highlights, again, 
the importance of the membership functions in stability analysis 
for T–S fuzzy systems in the sense of Lyapunov stability, which 
is indeed the reason why we formulate the Lyapunov function 
in the form of (9).

Remark 8: We can conclude from Remarks 5 and 7 that the 
stability conditions will be relaxed by either increasing both or-
ders of x(t) and h(t), or increasing the order of only h(t). Here, 
a quite meaningful question should be pointed out. For any fixed 
order of h(t), can the conservativeness of corresponding stabil-
ity criteria be reduced by formulating higher degree Lyapunov



functions in x(t) individually? Such a relation cannot be estab-
lished theoretically and an example will demonstrate this point
in the next section.

As two extreme cases, if the degrees of the Lyapunov function
(9) are set as (1, 0) and (1, 1), then the Lyapunov function (9)
are reduced to the common quadratic Lyapunov function and
fuzzy Lyapunov function, which can be equivalently expressed
as

v(x(t), 2, h(t), 0) = xT (t)V x(t) (31)

and

v(x(t), 2, h(t), 1) = xT (t)
r

∑

i=1

hi(t)Vix(t) (32)

respectively. Then, based on these two types of Lyapunov
functions, it is not hard to get the following two corollaries,
respectively.

Corollary 1: If there exists a symmetric matrix V ∈ Rn×n ,
such that, ∀i ∈ R,

V > 0

AT
i V + V Ai < 0

then there exists a common quadratic Lyapunov function
v(x(t), 2, h(t), 0) = xT (t)V x(t), which guarantees that system
(2) is asymptotically stable.

Remark 9: Based on the Lyapunov function (31), the proof of
Corollary 1 can be trivially obtained by Theorem 1. It is clear
that Corollary 1 is identical to [16, Proposition 1].

Corollary 2: If there exist symmetric matrices Vi ∈ Rn×n , i ∈
R, such that, ∀i ∈ {1, 2, . . . l}, (k, k

′
) ∈ R × R, k ≤ k

′

Vk > 0 (33)
r

∑

k=1

hi
kVk +

1
2
(AT

k Vk ′ + Vk ′ Ak + AT
k ′ Vk + VkAk ′ ) < 0 (34)

then there exists a fuzzy Lyapunov function v(x(t), 2, h(t), 1) =
xT (t)

∑r
i=1 hi(t)Vix(t), which guarantees that system (2) is

asymptotically stable.
Proof: Analogous to the proof of Theorem 1 and choosing η =

0 and λj = 0, we can obtain that if (33) and (34) are satisfied,
then

v(x(t), 2, h(t), 1) = xT (t)
r

∑

i=1

hi(t)Vix(t) > 0 (35)

v̇(x(t), 2, h(t), 1)

=
r

∑

k=1

ẋT (t)hk (t)Vkx(t) +
r

∑

k=1

xT (t)hk (t)Vk ẋ(t)

+ 2
√

h(t)
T

diag
{

xT (t)V1x(t), xT (t)V2x(t), . . . ,

xT (t)Vrx(t)}diag

{

1
√

h1(t)
, . . . ,

1
√

hr (t)

}

ḣ(t)
2

=
r

∑

k=1

r
∑

k ′=1

hk (t)hk ′ (t)xT (t)(AT
k ′ Vk + VkAk ′ )x(t)

+
l

∑

i=1

αi(t)
[

xT (t)V1x(t), . . . , xT (t)Vrx(t)
]

hi

=
1
2

r
∑

k=1

r
∑

k ′=1

hk (t)hk ′ (t)xT (t)(AT
k Vk ′ + Vk ′ Ak

+ AT
k ′ Vk + VkAk ′ )x(t) +

l
∑

i=1

r
∑

k=1

αi(t)hi
kxT (t)Vkx(t)

=
r

∑

k=1

r
∑

k ′=1

l
∑

i=1

hk (t)hk ′ (t)αi(t)xT (t)

(

r
∑

k=1

hi
kVk +

AT
k Vk ′ + Vk ′ Ak + AT

k ′ Vk + VkAk ′

2

)

x(t)

< 0. (36)

These indicate that if (33) and (34) are feasible, then
v(x(t), 2, h(t), 1) = xT (t)

∑r
i=1 hi(t)Vix(t) is a fuzzy Lya-

punov function ensuring the asymptotic stability of the system
(2), which completes the proof. �

Remark 10: One can get from
∥

∥hj
∥

∥

∞ ≤ maxiφi , and (34)
that for any symmetric matrices Vk > 0, k ∈ R

r
∑

k=1

hi
kVk +

1
2
(AT

k Vk ′ + Vk ′ Ak + AT
k ′ Vk + VkAk ′ )

≤
r

∑

k=1

φkVk +
1
2
(AT

k Vk ′ + Vk ′ Ak + AT
k ′ Vk + VkAk ′ ).

Therefore, we can conclude from the aforementioned inequality
that the conditions of [38, Th. 1] are sufficient for the criteria of
Corollary 2, i.e., if there exist symmetric matrices Vk > 0, k ∈
R such that the conditions of [38, Th. 1] are feasible, then (33)
and (34) are feasible as well, but not vice versa.

IV. NUMERICAL EXAMPLE

We provide the following numerical examples in this section
to verify our main results that are developed in this paper.

Example 1: Consider the system used in [5] and [25], which
has three rules and the following local matrices:

A1 =
[

0.00 1.00
−0.06 −1.00

]

, A2 =
[

0.00 a
−1.94 −1.00

]

A3 =
[

0.00 b
−0.50 −1.50

]

.

The normalized membership functions are as follows:

h1(x1(t)) =
ω1(x1(t))

ω1(x1(t)) + ω2(x1(t)) + ω2(x1(t))

h2(x1(t)) =
ω2(x1(t))

ω1(x1(t)) + ω2(x1(t)) + ω2(x1(t))

h3(x1(t)) =
ω3(x1(t))

ω1(x1(t)) + ω2(x1(t)) + ω2(x1(t))
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Fig. 1. Stability regions obtained by some membership-independent condi-
tions recently reported.

1 2 3 4 5 6 7 8 9 10
1

5

10

15

20

25

30

35

40

45

50

a

b

Part I

1 2 3 4 5 6 7 8 9 10
1

5

10

15

20

25

30

35

40

45

50

a

b

Part II

Fig. 2. Stability regions obtained by some membership-dependent conditions
recently reported.

where

ω1(x1(t)) = exp

{

−1
2

(

x1(t) + 5
2

)2
}

ω2(x1(t)) = exp

{

−1
2

(

x1(t)
2

)2
}

ω3(x1(t)) = exp

{

−1
2

(

x1(t) − 5
2

)2
}

.

Next, for a ∈ [1, 10], b ∈ [1, 50], and
∣

∣

∣ḣi(t)
∣

∣

∣ ≤ 0.3,∀i ∈
{1, 2, 3}, we will compare the stability regions1 obtained by our
approach and the ones obtained by other typical existing meth-
ods in the literature [4], [9], [16], [24], [25], [26], [32], [38]. The
comparison results are depicted in Figs. 1, 2, and 3, by which
the following conclusions can be drawn.

1) It can be seen from Fig. 2(Part I) that, ∀(a, b) ∈ [1, 10] ×
[1, 50], we cannot find a feasible solution (marked by “�”)
using [38, Th. 1], which means that we cannot conclude
whether the system is stable or not.

2) From Figs. 1, 2, and 3, we can see that when the degree
of the Lyapunov function candidate is not less than (1, 2),

1Here the “stability regions” is slightly abused to mean the achieved scope of
a and b such that the system is stable.
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Fig. 3. Stability regions obtained by Theorem 1 of this paper with different
degrees of Lyapunov functions.

TABLE II
STABILITY REGION BY INDIVIDUALLY INCREASING THE DEGREE OF x(t) IN

LYAPUNOV FUNCTION CANDIDATE

Variations of degree of the
Lyapunov function candidate

Between the different degrees
of m and z

(m = 1, z = 2) → (m = 2, z = 2) Increased
(m = 1, z = 1) → (m = 3, z = 1) Decreased
(m = 2, z = 3) → (m = 3, z = 3) Uncertain
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x
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Fig. 4. Phase portrait of the underlying system for given parameters a =
10, b = 40.

Theorem 1 in our paper can yield larger stability regions
than most existing methods.

3) It is shown in Fig. 3 that the stability region obtained in
Theorem 1 can be enlarged by simultaneously increasing
the degrees of x(t) and h(t) in the Lyapunov function can-
didate (see (1, 1), (2, 2), and (3, 3), for example), which
verifies Theorem 2.

4) It can be easily seen from Fig. 3 that the stability region
obtained in Theorem 1 can be expanded by raising the
degree of h(t) in the Lyapunov function candidate (see
(1, 1), (1, 2) or (2, 2), (2, 3) or (3, 1), (3, 3), for example),
which verifies Theorem 3.

5) As we have mentioned in Remark 8, it can be also seen
from Fig. 3 and Table II that there is no certain rule on the
monotonicity in the variations of the stability regions as
the degree of x(t) varies.

For given parameters a = 10 and b = 40 (the correspond-
ing system is stable, which cannot be testified out by existing



TABLE III
COMPARISON RESULTS OF THE MAXIMAL VALUE OF k FOR THE SIXTH-ORDER POLYNOMIAL LYAPUNOV FUNCTIONS IN x(t)

Method Theorem 1 in [40] Theorem 1 in [12] Theorem 1
(m = 3, z = 1)

Theorem 1
(m = 3, z = 2)

Theorem 1
(m = 3, z = 3)

kmax 6.17 6.30
φi = 1 : 10.52
φi = 5 : 6.46
φi = 10 : 6.28

φi = 1 : 16.64
φi = 5 : 6.90
φi = 10 : 6.41

φi = 1 : 18.18
φi = 5 : 7.16
φi = 10 : 6.85

methods other than Theorem 1 in our paper), the phase portrait
of the underlying system is depicted in Fig. 4, where the red
curve is the state trajectory with x(0) = [−0.5, 0.4].

Example 2: Let us consider system (2) with two rules and the
following local matrices [12], [19], [40]:

A1 =
[

0 1
−2 −1

]

, A2 =
[

0 1
−2 − k −1

]

.

Our purpose here is to compare our results with those ob-
tained by a polynomial Lyapunov function approach (but only
in system state x(t)). As in [19], the system is analyzed by the
computation of kmax for different φi, i ∈ R, such that the stabil-
ity is guaranteed for any 0 ≤ k ≤ kmax . The comparison results
are listed in Table III for the sixth-order polynomial Lyapunov
functions in x(t). We get from Table III that the conservativeness
can be further reduced by increasing the degree of h(t).

V. CONCLUSION

The stability problem for T–S fuzzy systems has been stud-
ied in this paper. As a first attempt, a class of nonquadratic
membership-dependent Lyapunov functions for the underly-
ing systems has been proposed, where the Lyapunov function
candidate is formulated in polynomial forms in both the state
x(t) and the normalized membership function h(t). Then, the
membership-dependent conditions are developed for the exis-
tence of this new type of Lyapunov function for T–S fuzzy
systems, such that the system is stable. The results are further
verified to have less conservativeness with increased degrees of
the Lyapunov function. Furthermore, it has been demonstrated
that the stability criterion can be relaxed by individually increas-
ing the order of h(t) for a fixed order of x(t) in the Lyapunov
function. Numerical examples are provided to verify the ad-
vantages of the proposed approach, by comparisons with some
existing results.
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