
LogDet Divergence-Based Metric Learning With
Triplet Constraints and Its Applications

Jiangyuan Mei, Student Member, IEEE, Meizhu Liu, Member, IEEE,
Hamid Reza Karimi, Senior Member, IEEE, and Huijun Gao, Fellow, IEEE

I. INTRODUCTION

METRIC learning or similarity learning is a powerful tool
which has been widely applied in various computer

vision and pattern recognition applications, including image
search [1], image annotation [2] and scene categorization [3].
The basic idea of metric learning is to study a similarity
metric over the input feature space of instances. Compared
with the process of feature extraction, learning an appropriate
similarity metric plays a more important role in measuring
the similarity of instances. We can use the same data with the

Manuscript received November 27, 2013; revised May 15, 2014 and
September 9, 2014; accepted September 11, 2014. Date of publication
September 22, 2014; date of current version October 7, 2014. This work
was supported in part by the National Natural Science Foundation of China
under Grant 61333012, Grant 61273201, and Grant 61203035, in part by
the Deutscher Akademischer Austauschdienst Program.. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Nikolaos V. Boulgouris.

J. Mei is with the Research Institute of Intelligent Control and
Systems, Harbin Institute of Technology, Harbin 150001, China
(e-mail: meijiangyuan@hit.edu.cn).

H. Gao is with the Research Institute of Intelligent Control and Systems,
Harbin Institute of Technology, Harbin 150001, China, and also with the
Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia
(e-mail: huijungao@gmail.com).

M. Liu is with Yahoo Labs, Yahoo Inc., New York, NY 10018 USA (e-mail:
meizhu@yahoo-inc.com).

H. R. Karimi is with the Department of Engineering, Faculty of Engineer-
ing and Science, University of Agder, Kristiansand 4630, Norway (e-mail:
hamid.r.karimi@uia.no).

Color versions of one or more of the figures in this paper are available online.

same feature space to accomplish different tasks with different
similarity metrics. For example, a face image set with different
facial expressions can be used for either face recognition or
facial expression recognition, as shown in Fig. 1. And the
main difference between these two tasks lies in the selection
of the similarity metric. That is to say, a good metric learning
algorithm can address the difficult problem of selecting and
weighting features to a certain extent.

In this paper, we use Mahalanobis distance as the simi-
larity metric to measure the feature space of instances. The
Mahalanobis distance is a standard distance metric parame-
terized by a Positive Semi Definite (PSD) matrix M . Given
a dataset {xi }, with xi ∈ �d , i = 1, 2, · · · , n, the square
Mahalanobis distance between instances xi and x j is defined as

dM
(
xi , x j

) = (
xi − x j

)T
M

(
xi − x j

)
. (1)

When we apply singular value decomposition to the
Mahalanobis matrix, it can be decomposed as M = H�H T .
Here H is a unitary matrix which satisfies H H T = I . Left
unitary matrix is the transpose of right unitary matrix due
to the symmetry of Mahalanobis matrix M . And � is a
diagonal matrix which contains all the singular values. Thus,
the square Mahalanobis distance can be rewritten as

dM
(
xi , x j

) = (
xi − x j

)T
H�H T (

xi − x j
)

= (
H T xi − H T x j

)T
�

(
H T xi − H T x j

)
(2)

From Eqn. 2 we can see that the Mahalanobis distance
has two main functions. The first one is to find the best
orthogonal matrix H to remove the couplings among features
and map the original feature space to a new coordinate
system. The second one is to assign weights � to the new
features according to their relationship to the task. These
two functions enable Mahalanobis distance to measure the
similarity among feature spaces of instances effectively in
various applications. In Fig. 1, we use two different coordinate
systems with weighted axial length to represent Mahalanobis
metrics. The same instances with the same features can be
measured and classified to different results.

In our framework, there are another two important points
in our framework. The first one is the selection of constraints.
In this paper, we use triplet constraints in the algorithm. From
Fig. 1, we can see the main difference of learning these two
Mahalanobis distance lies in the selection of triplets. The
total quantity of triplets is cubic to the number of instances.
Thus, we can only select part of them in metric learning
process. How to make full use of the most useful triplets
is one of the key problems in our algorithm. Therefore, we

Fig. 1. The framework of our proposed LDMLT algorithm. In the original datasets, there are many face images with different facial expressions. Various
fearures, such as geometric and appearance features are extracted from original images using the state-of-the-art feature extraction methods. Then, different
triplet constraints are built for different tasks, such as face recognition and facial expression recognition. And the obtained Mahalanobis metric can be used
in the corresponding task. In the proposed LDMLT algorithm, there is a dynamic triplets building process which can improve the performance.

propose a dynamic triplets building strategy which can update
triplets using the current learned Mahalanobis distance. The
feedback can further enhance the performance of the metric
learning algorithm. The second point is how to deal with
high dimensional feature space. The feature extraction process
is sometimes aimless. In order to preserve details which
might be useful in the classification task, as many features
as possible would be extracted in feature extraction process.
This will lead to a high dimensional feature space, which is not
benefit for learning, storing and evaluating Mahalanobis matrix
efficiently. Therefore, we apply a compressed representation
method in our algorithm which can well solve the problem.

This paper is a comprehensive extension of our previous
work [5]. The main contributions of this paper are sum-
marized as follows. (1) We demonstrate the superiority of
the triplet constraint compared with the label constraint and
pairwise constraint and apply it in the online metric learning
model. Meanwhile, we obtain a more accurate regularization
parameter (compared with that in our previous work [5])
which can guarantee that the obtained Mahalanobis matrix is
bounded between 0 and unit matrix I in the iterative process.
(2) The paper applies a compressed representation method
in the proposed algorithm to learn, store and evaluate the
Mahalanobis matrix for high dimensional dataset efficiently.
The method can reduce running time sharply at the price of
losing a little classification precision. (3) This work presents a
dynamic triplets building strategy which can utilize the most
important triplets in metric learning according to the current
Mahalanobis distance. The strategy is proven to improve the
performance of metric learning significantly in the following
experiments. (4) The LDMLT algorithms are applied to various
applications, including facial expression recognition and image
retrieval. The experimental results demonstrate the proposed
algorithms can achieve improved performance.

The remainder of this paper is organized as follows.
In Section II, the review of literatures is presented. Then we
describe the proposed algorithms in Section III. In Section IV,

experimental results on UCI database, CK+ and Caltech
dataset are presented to demonstrate the effectiveness of the
proposed algorithm. Finally, we draw conclusions and point
out future directions in Section V.

II. RELATED WORK

Recently, many scholars have proposed lots of metric learn-
ing algorithms to get perfect similarity metrics. Generally,
these algorithms can be categorized into unsupervised and
supervised metric learning [6]. In this paper, we mainly discuss
the supervised metric learning which can be further catego-
rized as offline distance metric learning and online distance
metric learning.

The offline distance metric learning algorithms train
Mahalanobis metric by using all the constraints at one
time. The most famous one is large margin nearest neigh-
bor (LMNN) [7] metric learning algorithm. This method
applies the idea of support vector machine (SVM) to the
metric learning. The objective Mahalanobis function is to
maintain consistency of data in the same class while keeping a
large margin at the boundaries of different categories. Another
classical algorithm is the probabilistic global distance metric
learning (PGDM) [8]. In this method, the metric learning is
converted to a convex optimization problem with respect to
their similarity relationships. In [9], the BoostMetric algorithm
introduces the boosting-based technique into metric learning.
The method trains trace-one rank-one matrices as weak learn-
ers, and the positive linear combination of these matrices is
the objective Mahalanobis matrix. In [10], the BoostMetric
algorithm is further developed. The proposed MetricBoost
algorithm decomposed proximity relationships over triplets
into pairwise constraints, which improves the computation effi-
ciency to a certain degree. However, one weak point of these
offline distance metric learning algorithms is the low execution
efficiency, especially when the size of training samples is very
large. If using the standard semidefinite program to solve the
optimization problems, the computational complexity would

be O
(
n3

)
, while n is the size of training samples. Meanwhile,

some of these work require eigenvalue decompositions, which
is also cubic to the dimensionality of the data [11].

The online distance metric learning algorithms update the
Mahalanobis matrix only using one constraint at each opti-
mization iteration. In [11], the information theoretic metric
learning (ITML) algorithm minimizes the LogDet divergence
between the target distance function and the predicted distance
function with pairwise constraints. And the model is converted
to a iteration formulation. The computational complexity of
ITML is about O

(
Nd2

)
, while d is the dimensionality of

the data and N is the total quantity of the pair constraints.
Besides, [11] also presents a online ITML algorithm, which
further improve the efficiency of metric learning. The LogDet
exact gradient online (LEGO) algorithm [12] improves online
ITML algorithm by exactly solving the updated parameters.
However, these three LogDet divergence based local distance
metric learning algorithms all use pairwise constraints in the
metric learning process. The pairwise constraints are strict,
which will lead to conservative results.

III. LOGDET DIVERGENCE BASED METRIC LEARNING

WITH TRIPLET CONSTRAINTS

In this section, we will describe the proposed LDMLT
algorithm at length. First of all, the LogDet divergence based
model with triplet constraints is presented. Then, we solve the
metric learning model and obtain the updating formulation.
After that, we get the regularization parameter which can
maintain good properties of LDMLT algorithm. Besides, to
speed up the LDMLT algorithm for high dimensional data,
a compressed representation method is used to reduce the
computation complexity in each iteration. Furthermore, we
present a triplets building strategy to further improve the
performance of metric learning.

A. Problem Formulation

As mentioned above, Mahalanobis distance function has
many advantages compared with other distance functions.
However, learning a Mahalanobis matrix is a complex proce-
dure. We should pay special attention to three points in metric
learning process. First, as much useful samples as possible
should be trained to avoid getting in a local extremum. Second,
the metric learning algorithm should be scalable with respect
to the size of the training samples. Third, considering the
practical application of algorithms, the labels of the training
samples should be given as the most natural form. In another
word, the labels should be the most easily available. The
offline distance metric learning algorithms can’t meet the first
and second requests at the same time because they deal with
all constraints at one time [12]. It often leads to a rapid growth
of execution time when increasing the size of the training
samples.

In this paper, we use an online metric learning model to
manage the computational efficiency. Online metric learning
models have two major advantages over traditional offline
methods. First, in some practical applications, the system can
only receive several instances or constraints at a time, and

the desired Mahalanobis distance should be updated gradually
over time. The offline methods can’t deal with these appli-
cations in this situation. Second, some offline applications
with numerous instances can be converted to online metric
learning problems. Compared with offline methods, online
metric learning reduces the running time dramatically since
the Mahalanobis distance is optimized step by step rather than
calculated at a time. Our metric learning framework is to solve
the following typical online metric learning problem [11]–[13],

Mt+1 = arg min
M�0

D (M, Mt) + ηt�
(
M, ŷt , yt

)
, (3)

where Mt represents the iterative Mahalanobis matrix at
iteration t . And ηt > 0 is a regularization parameter which
balances the regularization function D (M, Mt) and loss
function �

(
M, ŷt , yt

)
. ŷt and yt respectively stands for the

prediction function and the target function which will be
introduced in detail in the following paragraphes.

In this framework, the first item D (M, Mt) is a regulariza-
tion function which is used to guarantee the stability of metric
learning process. The function Dφ () represents Bregman
matrix divergence [14] between two matrices, defined as

Dφ (M, Mt) = φ (M) − φ (Mt)

−tr
(
(∇φ (Mt))

T (M − Mt)
)
, (4)

where the function tr () stands for the trace of a matrix.
The properties of Bregman matrix divergence Dφ (M, Mt) is
determined by the differentiable function φ (M). When the
differentiable function φ (M) = − ∑

i log λi= − log (det (M))
is chosen as the Burg entropy of the eigenvalues λi , the
corresponding Bregman matrix divergence is called LogDet
divergence [14],

Dld (M, Mt) = tr
(
M Mt

−1
)−log

(
det

(
M Mt

−1))−n. (5)

where n is the dimension of M .
The second item in the framework �

(
M, ŷt , yt

)
is the loss

function measuring the loss between prediction function ŷt and
target function yt at time step t . The prediction function means
that the Mahalanobis distance (or the Mahalanobis distance
relationship) using the Mahalanobis matrix M while the target
function is the desired distance (or the desired Mahalanobis
distance relationship). Obviously, when the total loss function
L M = ∑

t �
(
M, ŷt , yt

)
reaches its minimal, the obtained M is

the closest to the desired distance function. How to build
ŷt and yt is determined by the way that constructs training
constraints.

There are three common constraints in learning algorithms.
The first one is named as label constraint {xi , wi } [15] which
means the category label of instance xi is wi . The label
constraint is not widely used in metric learning algorithms.
The second one is pairwise constraint

{(
xi , x j

)
, wi j

}
. This

constraint provides the similarity relationship information
between instances xi and x j . wi j = 1 indicates that xi and x j

are similar while wi j = −1 shows that they are dissimilar.
Many famous metric learning algorithms including ITML
method and LEGO all use pairwise constraints to train the

Fig. 2. Comparison of pairwise constraints and triplet constraints in metric
learning. (a) The pairwise constraints require that the diameter of all hyper-
spheres should smaller than č while the distance between the outer boundaries
of the every two hyper-spheres should be larger than ĉ. (b) The triplet
constraints requires the distance between instances lying on the boundaries
should be enlarged while instances in the same class should be compact.

similarity metric. They require that the obtained Mahalanobis
distance M should satisfy

{
dM

(
xi , x j

)
< č i f wi j = 1

dM
(
xi , x j

) ≥ ĉ i f wi j = −1,

where č and ĉ are the desired superior limit of distance among
instances in the same category and the desired lower limit of
distance among instances in different categories respectively.
Thus, the prediction function is ŷt = dM

(
xi , x j

)
. The target

function is yt = č if wi j = 1; yt = ĉ if wi j = −1.
Although pairwise constraint is weaker than label constraint,
it still has some limitations in practical applications. When
using pairwise constraints as the labels of training samples, the
metric learning process is to bound instances with the same
class in a hyper-sphere. And the diameter of all hyper-spheres
should be smaller than č. At the same time, the distance
between the outer boundaries of every two hyper-spheres
should be larger than ĉ. The obtained Mahalanobis distance
functions using pairwise constraints are conservative because
some of constraints are needless. For example, as shown
in Fig. 2(a), these three classes have been well separated, but
they can hardly meet the request that the distances among the
outer boundaries of these three hyper-spheres are larger than ĉ.
In order to solve this problem, literatures [4], [10] introduced
a weaker representation into metric learning algorithms. This
representation is called triplet constraint

{
xi , x j , xk

}
, which

requires that the instance xi should be more similar to the
instance x j than instance xk using the metric M . That is
dM

(
xi , x j

) − dM (xi , xk) < −ρ, where ρ is a desired margin
between different categories. The work in [16] has demon-
strated that triplet constraints can be derived from pairwise
constraints, but not vice versa. Thus, triplet constraints are
weaker than pairwise constraints. From Fig. 2(b) we can
see, after applying the triplet constraints, metric learning is
able to enlarge the distance between instances lying on the
boundaries while making the instances in the same class
compact.

Therefore, in the proposed framework, we use triplet
constraints as the labels of the training samples. The prediction
distance is ŷt = dM (xi , xk) − dM

(
xi , x j

)
and the target

distance is chosen as yt = ρ. Thus, the corresponding
loss function is expressed as �

(
M, ŷt , yt

) =

max
(
0, ρ + dM

(
xi , x j

) − dM (xi , xk)
)
. When receiving

a new triplet
{
xi , x j , xk

}
at time step t , if

dMt (xi , xk) − dMt

(
xi , x j

) ≥ ρ, there is no loss using the
current Mt to represent the relationship among these three
instances; if dMt (xi , xk) − dMt

(
xi , x j

)
< ρ, the current Mt

should be updated to a better Mahalanobis distance to reduce
the loss. In the following section, we focus our attention on
dealing with the second case.

B. Updating Formulation

The function Dld (M, Mt) + ηt� (M) reaches its extremum
when its gradient to M is zero. The gradient of Dld (M, Mt)
is M−1

t − M−1 while the gradient of ηt� (M) is given as

d

d M
(ηt� (M))

=
{

0 i f
(
qT

t Mt qt − pT
t Mt pt

) ≥ ρ

ηt
(

pt pT
t − qt qT

t

)
i f

(
qT

t Mt qt − pT
t Mt pt

)
< ρ,

where pt = xi − x j and qt = xi − xk . The second order
derivative of Dld (M, Mt) + ηt� (M) is M−2 ≥ 0 (because
we require that M is a PSD in each iteration). Therefore,
the extreme value is a global minimum when the gradient of
Dld (M, Mt) + ηt� (M) to M is zero.

If
(
qT

t Mt qt − pT
t Mt pt

) ≥ ρ, we can get that the optimal
M is equal to Mt . And the Mahalanobis distance M doesn’t
update in this situation. Thus, we only consider the case that(
qT

t Mt qt − pT
t Mt pt

)
< ρ, and we can get the following

equation:

Mt+1 = (
Mt

−1 + ηt
(

pt pT
t − qt q

T
t

))−1
. (6)

Matrix inverse is computationally very expensive. In order to
avoid inverse, we apply the Sherman-Morrison inverse formula
to solve Eqn. 6. The standard Sherman-Morrison formula is

(
A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u
.

However, in our updating equation, there are two items which
are the outer product of vectors. To solve this problem, we
assume that γt = (

Mt
−1 + ηt pt pT

t

)−1
, and Eqn. 6 is split

into two standard Sherman-Morrison inverse questions,

{
γt = (

Mt
−1 + ηt pt pT

t

)−1

Mt+1 = (
γt

−1 − ηt qt qT
t

)−1
.

Applying the Sherman-Morrison formula, we arrive at an
analytical updating formula for Mt+1

⎧
⎪⎪⎨

⎪⎪⎩

γt = Mt − ηt Mt pt pT
t Mt

1 + ηt pT
t Mt pt

Mt+1 = γt + ηtγt qtqT
t γt

1 − ηt qT
t γt qt

.

(7)

The details of the LDMLT algorithm are illustrated in
Algorithm 1.

Algorithm 1 LogDet Divergence Based Metric Learning
Using Triplet Constraints

C. Selecting ηt

In this updating equations, the regularization parameter ηt is
used to control the balance of the regularization function and
the loss function. On one hand, if we choose a big ηt , the
Mt+1 will be mainly updated to minimize the loss function
and satisfy the target relationship among the three instances
in the current triplet, which makes the metric learning process
unstable. On the other hand, if ηt is too small, the Mt+1 will
have small divergence compared with the current Mahalanobis
matrix Mt and every iteration will have little influence on
the updating of the Mahalanobis matrix. Thus, the metric
learning process will be very slow and conservative. Therefore,
we should make a tradeoff between efficiency and stability
when selecting ηt . Meanwhile, considering the definition of
Mahalanobis metric, we also requires that the ηt should make
sure that Mt+1 is a PSD matrix in each iteration, i.e.

{
ηt

(
pt pT

t − qt qT
t

) + M−1
t ≥ 0

ηt ≥ 0.

These are standard linear matrix inequalities (LMIs). Lots of
tools can be utilized to solve the LMIs, such as LMI Solvers
in MATLAB. However, using LMIs tools occupies heavy
computation in each iteration. In this paper, we select a feasible
solution ηt = α

tr
(
(I−Mt)

−1 Mt qt qT
t

) in our algorithm, where α is

the learning rate parameter which is chosen between 0 and 1.
The following content is to demonstrate that the lower and
upper bound of Mt can be restricted between zero matrix 0
and unit matrix I if using the recommended ηt . The lower
bound zero matrix 0 is to guarantee that Mt is a PSD matrix
at each step t . Meanwhile, the upper bound unit matrix I is
to bound the total loss in the metric learning process.

Lemma 1: If 0 � Mt � I , then 0 � γt � I .
Proof: Firstly, let’s consider the updating equation

γt =
(
Mt

−1 + ηpt pT
t

)−1
. Since γt

−1 is the sum of two PSD
matrices, thus γt � 0.

Secondly, from Eqn. 7, we can get I − γt = I − Mt +
ηt Mt pt pT

t Mt

1+ηt pT
t Mt pt

. In this equation, since Mt is symmetric, thus
ηt Mt pt pT

t Mt

1+ηt pT
t Mt pt

= ηt Mt pt (Mt pt)
T

1+ηt pT
t Mt pt

� 0. Meanwhile, since Mt � I ,

we can get I − Mt � 0. Thus, we can deduce that I − γt � 0.
Hence proved.

Lemma 2: At each step t of the LDMLT algorithm,

ηt <
1

tr

((
I +

(
γ −1

t − I
)−1

)
γt qt qT

t

) <
1

qT
t γt qt

.

Proof: In the first place, we prove the first half of the
inequality ηt < 1

tr
((

I+
(
γ −1

t −I
)−1)

γt qt qT
t

) . The denominator can

be simplified to

tr

((
I +

(
γ −1

t − I
)−1

)
γt qt q

T
t

)

= tr
((

(I − γt) (I − γt)
−1+γt (I − γt)

−1
)

γt qt q
T
t

)

= tr
(
(I − γt)

−1γt qt q
T
t

)
.

Since I − γt � 0, (I − γt)
−1 � 0, and

tr
(
(I − γt)

−1γt qt q
T
t

)

= tr

(
(I − γt)

−1
(

Mt − ηMt pt pT
t Mt

1 + ηpT
t Mt pt

)
qtq

T
t

)

< tr
(
(I − γt)

−1 Mt qt q
T
t

)

= tr

((
I − Mt + ηMt pt pT

t Mt

1 + ηpT
t Mt pt

)−1

Mt qt q
T
t

)

< tr
(
(I − Mt)

−1 Mt qt q
T
t

)
,

thus ηt = α
tr((I−Mt)

−1 Mt qt qT
t)

< 1

tr
((

I+
(
γ −1

t −I
)−1)

γt qt qT
t

) .

In the second place, we consider the second half of
the inequality 1

tr
((

I+
(
γ −1

t −I
)−1)

γt qt qT
t

) < 1
qT

t γt qt
. Using

Sherman Morrison Woodbury formula,

(
γ −1

t − I
)−1 = γt + γt (I − γt)

−1γt � 0.

Since

tr

((
I +

(
γ −1

t − I
)−1

)
γt qt q

T
t

)

= tr
(
γt qt q

T
t

)
+ tr

((
γ −1

t − I
)−1

γt qt q
T
t

)

> tr
(
γt qt q

T
t

)
= qT

t γt qt ,

thus 1

tr
((

I+
(
γ −1

t −I
)−1)

γt qt qT
t

) < 1
qT

t γt qt
. Hence proved.

Theorem 1: If 0 � Mt � I , then 0 � Mt+1 � I .
Proof: At first, we consider the update equation

Mt+1 = γt + ηtγt qt qT
t γt

1−ηt qT
t γt qt

. Since γt � 0, ηtγt qt qT
t γt =

ηtγt qt (γt qt)
T > 0. At the same time, 1 − ηt qT

t γt qt > 0
because ηt < 1

qT
t γt qt

. Thus we can prove that Mt+1 � 0.

Then, from Eqn. 7, we get I − Mt+1 = I − γt − ηtγt qt qT
t γt

1−ηt qT
t γt qt

.
The literature [17] has demonstrated that the above equation
can deduce I − Mt+1 � 0 if ηt < 1

tr
((

I+
(
γ −1

t −I
)−1)

γt qt qT
t

) , as

proven in Lemma 2.
Hence proved.

D. Compressed Representations for High
Dimensional Datasets

In practical applications, the feature space is always with
high dimensionality. We can hardly determine which features
would be useful in the following classification or clustering
tasks. Thus, in the feature extraction process, as much features
as possible would be extracted to preserve details which might
be useful. For example, in scene categorization [3], more than
thousands of features are extracted. These thousands of
features will occupy enormous storage space and computation
time. The number of parameters involved in the Mahalanobis

distance is O
(
d2

)
while the computation complexity in each

iteration is more than quadratic to the dimensionality d.
As mentioned above, the Mahalanobis matrix has two main

functions: removing the couplings among features and assign-
ing weights to new features. In fact, not all original features
have couplings. Thus, only a few number of off-diagonal
elements in the Mahalanobis matrix make sense. We needn’t
to waste so much time and storage space to compute the
useless elements in the Mahalanobis matrix. Therefore, we
apply the compressed representations [18] method to learn,
store and evaluate the Mahalanobis matrix efficiently. We
constrain the objective Mahalanobis distance function M as the
sum of a high-dimensional identity Id plus a low-rank
symmetric matrix ML , expressed as

M = I d + ML = I d + U LU T , (8)

where U ∈ �d×l is orthogonal basis which satisfy U T U = I l ,
and L ∈ �l×l is a symmetric matrix with l � min (n, d).
Correspondingly, the Mahalanobis distance function at time
step t can be decomposed as Mt = I d+U Lt U T. Besides,
we introduce F to represent F = I l + L and Ft to stand
for Ft = I l + Lt. The relationship between M and F is
expressed as: M = I d + U

(
F − I l

)
U T . And learning a

low dimensional symmetric matrix F is equal to learning the
original Mahalanobis distance function M . The computational
complexity and storage space will decrease significantly if we
can obtain the updating formulation of Ft .

Theorem 2: Dld (M, Mt) = Dld (F, Ft).
Proof: First of all, we consider the first item in Eqn. 5.

tr
(
M M−1

t

)

= tr
((

I d+U LU T)(
I d+U LtU

T)−1)

= tr
((

I d+U LU T)(
I d − U

(
I l − (

Lt + I l)−1)
U T))

= tr
(
I d +U LU T)−tr

((
I d +U LU T)

U
(
I l −Ft

−1)U T)

= tr
(
F

) + d − l − tr
(
I l − Ft

−1) − tr
(
L
(
I l − Ft

−1))

= tr
(
F

) − tr
(
F

(
I l − Ft

−1)) + d − l

= tr
(
F Ft

−1) + d − l,

where the second equality follows from the fact of Woodbury
matrix identity

(A + EC F)−1 = A−1 − A−1 E
(
C−1 + F A−1 E

)
F A−1,

and the third equality follows from the fact that tr (AB) =
tr (B A).

Then, the second item in Eqn. 5 can be converted as

log
(
det

(
M M−1

t

))

= log
(

det
((

I d+U LU T)(
I d+U Lt U

T)−1
))

= log

(
det

(
I d+U LU T

)

det
(
I d+U Lt U T

)

)

= log

(
det

(
I l+L

)

det
(
I l+Lt

)

)

= log
(
det

(
F F−1

t

))
,

where the second equality follows from the fact that
det

(
AB−1

) = det(A)
det(B) , and the third equality follows from the

fact that det (I m + AB) = det (I n + B A) for all A ∈ �m×n

and B ∈ �n×m .
Thus, we can get the following equations

Dld
(
M, Mt

)

= tr
(
M M−1

t

) − log
(
det

(
M M−1

t

)) − d

= tr
(
F F−1

t

) + d − l + log
(
det

(
F F−1

t

)) − d

= tr
(
F F−1

t

) + log
(
det

(
F F−1

t

)) − l = Dld
(
F, Ft

)
.

Hence proved.
Assume that X̄ = U T X represents the reduced-dimensional

data under the orthogonal basis U , then we can get the
corresponding variables p̄t = U T

(
xt

i − xt
j

) = U T pt and
q̄t = U T

(
xt

i − xt
k

) = U T qt . Thus, the loss function can be
rewritten as � (F) = p̄T

t F p̄t − q̄T
t Fq̄t + ρ̄, where ρ̄ = pT

t pt −
p̄T

t p̄t −qT
t qt + q̄T

t q̄t +ρ. Therefore if
(
q̄T

t Ft q̄t − p̄T
t Ft p̄t

)≥ ρ̄,
the optimal F is equal to the current Ft . And the Maha-
lanobis distance F doesn’t update in this situation. If(
q̄T

t Ft q̄t − p̄T
t Ft p̄t

)
< ρ̄, the updating formulation of Ft is

expressed as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t = Ft − η̄t Ft p̄t p̄T
t Ft

1 + η̄t p̄T
t Ft p̄t

Ft+1 =
t + η̄t
t q̄t q̄T
t
t

1 − η̄t q̄T
t
t q̄t

,

(9)

where the parameter η̄t is set as η̄t = α

tr
((

I k−Ft

)−1
Ft q̄t q̄T

t

) .

Using the compressed representations technique, the computa-
tional complexity reduces from O

(
d2

)
to O

(
l2

)
per iteration.

At the same time, the storage space in the metric learning
process also reduces sharply. The corresponding algorithm
is named as LDMLT_CR, and the details are presented
in Algorithm 2.

How to build an appropriate orthogonal basis U is a key step
in this LDMLT_CR algorithm. In [19], the authors provide
several practical methods to build the basis. If the algorithm
is applied on offline applications, one efficient way is to
choose the first l left singular vector to build U after apply-
ing the singular value decomposition (SVD) to the original
training data X . However, one weak point of this method
is that it can not deal with online applications. The reason
is that the instances of online applications can’t be obtained
at the orthogonal basis building step, which is regarded as

Algorithm 2 LDMLT_CR for High Dimensional Datasets

a preprocess of the proposed method. At the same time,
the computational complexity of traditional SVD algorithm
is about O

(
n2d + nd2 + d3

)
when d � n. Therefore, a good

choice is to use the a truncated incremental SVD [20] to obtain
the orthogonal basis U when applying on online applications.
The computational complexity of truncated incremental SVD
is about O

(
nl3

)
when l � d . The truncated incremental SVD

can sharply reduce the computation time at the price of losing
a little precision.

E. Dynamic Triplets Building Strategy

When training a Mahalanobis matrix for practical appli-
cations, it is impossible to utilize all triplets because the
total quantity of triplets is cubic to the volume of training
data. We need to select the most useful triplets and remove
redundant ones. The traditional metric learning algorithms
including ITML choose the pairwise constraints randomly.
In [4], a practical way to build triplet constraints is proposed.
The triplets which are at the boundaries of different categories
are selected. In detail, for each xi , instances

{
x j

}
which

has the largest Euclidean distance in the same category and
instances {xk} which has the nearest Euclidean distance in
the different category are selected, and these {(i, j, k)} are
used to build the training triplets. However, these previous
works all regard building triplet (pairwise) constraints as a
preprocess step. Once built, these constraints are not updated
in the process of metric learning. In fact, these constraints
are selected randomly or based on the Euclidean distance.
With the updating of the Mahalanobis matrix, some triplets do
not play critical roles while some unselected triplets become
important.

We propose a novel triplets building strategy in this section.
The metric learning process is broken into several cycles.
First of all, the triplets at the boundaries of different cat-
egories are chosen in the initial cycle, which is the same
as that in [4]. Then, we obtain the Mahalanobis matrix
Mt using the proposed LDMLT (or LDMLT_CR) algorithm
after a metric learning cycle. We use this Mt to measure

Fig. 3. The framework of our proposed triplets building strategy.

the performance on the training data X . After that, new
triplets in the next cycle are selected based on the
measurement.

The key problem in this method is how to measure the
performance of Mt on the training dataset X . Two matrices
are defined in this section. The first one is Mahalanobis
distance matrix DMt = {

dMt

(
xi , x j

)}
, which represents the

Mahalanobis distance of all the sample pairs {(i, j)} in X .
The second one is the similar matrix S = {

s
(
xi , x j

)}
, which

gives the relationship information of sample pairs. If xi and
x j belongs to the same category, s

(
xi , x j

) = 1, otherwise,
s
(
xi , x j

) = 0.
For example, we have instances xi , i = 1, 2, · · · , n with

3 categories C1, C2 and C3. The instances in X have been
sorted according to their categories, and the DMt is shown
as the matrix in Fig. 3. The deep color means the value
of the element is small while light color represents a large
value. The ideal situation is that the Mahalanobis distances
among instances in the same categories should be all smaller
than that in different categories. In another word, the color
in the diagonal blocks (intra-blocks) should be deeper than
the color in other blocks (inter-blocks). However, the color
of blocks between Class C2 and Class C3 is deeper than
other inter-blocks, and similar to the intra-block of Class C2.
That means the obtained Mahalanobis distance Mt don’t have
good performance on distinguishing Class C2 and Class C3.

Algorithm 3 LDMLT (or LDMLT_CR) Algorithm With
Dynamic Triplets Building Strategy

More constraints should be selected from triplets which use
instances in these two categories.

We extract the i th row in DMt which is expressed as
Di

Mt
= {dM

(
xi , x j

)} and the corresponding Si = {s (
xi , x j

)},
j = 1, 2, · · · , n. If we sort the vector Di

Mt
in ascending order,

we can see the corresponding Si is also changed to S
i
. The

ideal case is that the S
i

should be in a descending order.
However, the fact is that some 0 in the S

i
is in front of 1,

which means that the Mahalanobis distance between some
dissimilar pairs is smaller than that of similar pairs using
the current Mt . If we want to reorder the elements in the S

i
,

we should exchange the disordered 0 and 1 elements 6 times.
And we named this exchange count as the disorder �i .
We use the normalized disorder θi = �i

/∑
i �i to determine

the proportion of triplets which contain xi . When building
triplets including xi , the method is similar to the method
in [4]. The main difference is that we use the current Mt

instead of Euclidean distance. It worth noting that we can
also use total disorder τ = ∑

i �i to judge if the algorithm is
converged. The details of the LDMLT (or LDMLT_CR) algo-
rithm with dynamic triplets building strategy are illustrated in
Algorithm 3.

The proposed dynamic triplets building strategy provides
a feedback from the current obtained Mahalanobis matrix to
triplet constraints. This is one main contribution of our paper.
Most traditional metric learning methods do nothing about the
constraints selection when the learning process begins. There-
fore, the Mahalanobis matrices obtained from these methods
are not stable because the randomly chosen constraints will
lead to different learning results. Our method chooses the most
useful triplets in each cycle, and the Mahalanobis matrix is
gradually updated to the ideal Mahalanobis matrix after several
cycles. However, one weak point of the proposed strategy is
the low computation efficient. The main time consumption
is the calculation of DMt , which is quadratic to the number
of instances. Meanwhile, this strategy can’t be used in online
applications by now.

IV. EXPERIMENTS AND RESULTS

In this section, we firstly conduct experiments to compare
the classification performance of the proposed method with the

Fig. 4. Classification error rates of different metric learning methods on 8
selected datasets in UCI repository.

state-of-the-art metric learning methods on the UCI machine
learning repository.1 Then, we apply the LDMLT algorithm
on facial expression recognition. The experiment is to validate
the dynamic triplets building strategy. After that, we evaluate
the LDMLT_CR method on object recognition and image
retrieval tasks on Caltech datasets [26]. The experiments are
to demonstrate the improved performance of the proposed
algorithms on real applications compared with the state-of-
the-art methods. All experiments are tested in MATLAB
2012a, and all tests are implemented on a computer with
Intel(R) Core(TM) i5-2400, 3.10GHz CPU, 4G RAM, and
Windows 7 64-bit operating system. The code of our LDMLT
and LDMLT_CR algorithms can be downloaded from the
website.2

A. Experiments on the UCI Database

In the first experiment, we’d like to compare our LDMLT
algorithm with some basic classification methods and the state-
of-the-art metric learning algorithms, including Euclidean
distance, BoostMetric, PGDM, ITML, LMNN and
MetricBoost. The test data are eight low dimensionality
datasets selected from the UCI machine learning repository,
including “Iris”, “WDBC”, “Seeds”, “Fish_order”, “Wine”,
“Ionosphere”, “Sonar”, and “Heart”. The performance is
evaluated according to the classification error rates using the
K-Nearest Neighbor (K-NN) classification, the variable K in
K-NN classification is chosen as 5. In this experiment, all
classification results are obtained using 5-fold cross validation
and final statistical results are evaluated after 5 runs. In our
LDMLT algorithm, the parameter ρ is set as the difference
between the 90th and 10th percentiles of the distribution
of distances between sample pairs in the training data. The
dynamic triplets building strategy is used to strengthen the
performance of LDMLT algorithm. And the cycle of dynamic
triplets building process is set as 10. In each cycle, the
quantity of triplets is N = 5n, where n is the number of
training instances. The parameter α is set as α = 2/N .
The results are summarized in Fig. 4. The error bars reveal
the average classification error rates. The maximum and
minimum error rates in 5 runs are also shown in Fig. 4.

1http://archive.ics.uci.edu/ml/
2http://www.mathworks.com/matlabcentral/fileexchange/46437-ldmlt-zip

Fig. 5. The comparison of classification precision of metric learning algorithms on 3 selected high dimensional datasets in UCI repository. (a) Experimental
results on dataset “Multiple Features”; (b) Experimental results on dataset “ISOLET”; (c) Experimental results on dataset “Semeion Handwritten Digit”.

From the experimental results we can see, the proposed
LDMLT algorithm achieves the best accuracy for all datasets
except “Ionosphere”. Besides, the distribution of error rates
of LDMLT algorithm is the most concentric, which indi-
cates that LDMLT is more robust than other methods. The
reasons for the good performance can be explained as
follows. On one hand, in LMNN, BoostMetric and
MetricBoost algorithms, a gradual loss of precision is
inevitable in eigenvalue computations and semi-definite pro-
gramming. However, the proposed objective function is
more intuitive, and the model is much simpler. Thus,
the performance of LDMLT is much better than LMNN,
BoostMetric and MetricBoost. On the other hand, the PDGM
and ITML methods train Mahalanobis matrix using pairwise
constraints while the proposed algorithm utilizes triplets as the
labels of the training samples. As mentioned above, pairwise
constraints are stronger than triplet constraints, so PDGM
and ITML would get conservative results in some situation
while the proposed method can achieve more accurate results.
Moreover, the dynamic triplets building strategy helps the
proposed method further improve the precision and robustness
of classification. Thus, the proposed method achieves the best
performance compared with these methods. It deserves noting
that our method can’t get good classification results on dataset
“Ionosphere”. This dataset provides the radar data collected by
a system in Goose Bay, Labrador. And instances in this dataset
are labelled as “Good” radar and “Bad” radar. The difference
among “Bad” instances is large than the difference between
“Good” instances and “Bad” instances. In this situation, the
proposed dynamic triplets building strategy can’t work well.
One of solutions is to combine the proposed method with
kernel methods.

Then, another experiment is to demonstrate the performance
of the proposed LDMLT_CR algorithm on high dimensional
datasets. In this experiment, we select three high dimen-
sional datasets from the UCI machine learning repository, i.e.
“Multiple Features”, “ISOLET” and “Semeion Handwritten
Digit”. These three datasets are with more than hundreds of
attributes. In our algorithm, we use a 30 dimension compressed
matrix to represent the Mahalanobis matrix. The parameter
ρ̄ is simply set as 0. In order to get a high classification
accuracy, the dynamic triplets building strategy is also applied
in the LDMLT_CR algorithm and the total cycle is 10 ∼ 20.

TABLE I

THE COMPARISON OF RUNNING TIME OF METRIC LEARNING METHODS

ON 3 SELECTED HIGH DIMENSIONAL DATASETS IN UCI REPOSITORY

In each cycle, the quantity of triplets N is set as N = 5n. The
parameter α is set as α = 2/N . We compare our method with
LDMLT algorithm as well as 3 other state-of-the-art fast metric
learning algorithms, including fast LMNN, LEGO and online
ITML. Fig. 5 shows the comparison of classification accuracy
on these three datasets. The results reveals that the proposed
method have similar accuracy to the LDMLT and fast LMNN
but outperforms online ITML and LEGO. Besides, our method
has a better computational efficiency than other four methods,
which is shown in Table I. In this comparison, the total
iterations of LDMLT, LEGO and online ITML is 5n, which
is the same as the iterations of LDMLT_CR in one cycle.
However, the computational efficiency of LDMLT, LEGO and
online ITML is very low when the dimensionality of data
d is high. The computational complexity of LEGO and online
ITML is about O

(
Nd2

)
. Although the fast LMNN algorithm

also reduces the dimensionality of data to 30 before metric
learning process, the algorithm also requires heavy running
time. The reason is that there are high dimensional semidefi-
nite program in the algorithm. In our algorithm, the main time
is spent on the dynamic triplet building process. Therefore,
our method has the best performance when the dataset is with
high dimension and small amount of instances, such as the
dataset “Multiple Features”. Compared with LDMLT method,
LDMLT_CR reduces lots of computation time but gets the
similar classification performance of high dimension data. One
of reasons is that the LDMLT_CR can run more iterations
in less running time than LDMLT method, which will help
improve the classification precision.

Fig. 6. The position of 68 landmarks change when facial expression starts
from neutral pose to peak formation. (a) landmarks on the beginning formation
of the expression; (b) landmarks on the peak formation of the expression.

TABLE II

CONFUSION MATRIX OF FACIAL EXPRESSION CLASSIFICATION

USING LDMLT WITH RANDOM TRIPLETS

B. Experiments on the Extended Cohn-Kanade Dataset

Next we apply our method on facial expression recognition.
The database of facial expression is selected as the Extended
Cohn-Kanade Dataset (CK+) [21]. This dataset contains
593 sequences from 123 subjects, 327 of which are labeled
as one of seven typical expressions. Each sequence consists
of 10 to 60 frames. The first frames of sequences are neutral
and the last ones are the peak formation of the expressions.
At the same time, 68 point landmarks for each image are also
provided along with the dataset, which makes it very suitable
for testing facial expression recognition algorithms. These
landmarks are located around the outlines of face, brows, nose,
eyes and mouse, as shown in Fig. 6.

In our experiment, we only use the last frame in each
facial expression sequence for facial expression recognition.
We extract 18 geometric features using 68 points landmarks
from these facial expression images. These features are similar
to the features of the frontal-view model in [25], recording
the relative position of facial components, such as the extent
that mouth opens. In the following experiment, leave one
subject out cross validation method was used in the whole
scenario.

Table. II gives the confusion matrix of facial expression
classification using LDMLT with random triplets. From the
results, we can see the obtained Mahalanobis matrix perform
well on happiness and surprise. The reason is that the features
extracted from these expressions are easy to discriminate
from other expressions. However, when it comes to other
five facial expressions, they are easy to be confused as their
distinguishable characteristics lies in different features. For
example, contempt is very easy to confused with anger,
because their main difference is the curvature of eyebrows.
However, this is not an important feature when compared with

TABLE III

CONFUSION MATRIX OF FACIAL EXPRESSION CLASSIFICATION USING

LDMLT WITH DYNAMIC TRIPLETS BUILDING STRATEGY

TABLE IV

CLASSIFICATION ACCURACY OF THE STATE-OF-THE-ART FACIAL

EXPRESSION RECOGNITION ALGORITHMS ON CK+

other features and it will not be emphasized in the obtained
Mahalanobis matrix. If the triplets are selected randomly, this
feature may not be focused on to make a distinction between
contempt and anger. When applying the dynamic triplets
building strategy, this problem can be well solved. Although
the Mahalanobis matrix obtained in the first cycle may not
distinguish contempt and anger very well, we will pay special
attention on the triplets relating to these two facial expressions
in next cycles. And the recognition accuracy between contempt
and anger will improve. Table. III shows the confusion matrix
of facial expression classification using LDMLT with dynamic
triplets building strategy. Happiness and surprise all keep good
performance while the recognition accuracy of other facial
expressions increase significantly.

Then, we compare the performance of our algorithm
with the some state-of-the-art facial expression recogni-
tion approaches, including active appearance models (AAM)
tracked similarity-normalized shape (SPTS) and canonical
appearance (CAPP) features with linear SVM [21], constrained
local models (CLM) tracked SPTS and SAPP features with
linear SVM [22], emotion avatar image (EAI) and local
phase quantization (LPQ) features with linear SVM [23] and
weighted component-based feature descriptor algorithm [24].
Table. IV gives the classification accuracy of the state-of-the-
art facial expression recognition algorithms and the proposed
method. Our method only use features extracted from a single
frame while other methods all use dynamic features. However,
the performance of the proposed method is better than methods
in [21]–[23], ranking the second among all methods. An
interesting phenomenon is that the classification accuracy of
each categories of the proposed method is more balanced than
other methods. The reason is that the dynamic triplets building
strategy can focus on the categorizes with bad classification
performance in each iteration, which will improve the whole
performance of facial expression recognition.

TABLE V

MEAN AVERAGE PRECISION, PRECISION AT TOP 1, 10, AND 50 AND

RUNNING TIME OF ALL COMPARED METHODS ON CALTECH 256

DATASET. VALUES ARE AVERAGES OVER 5 CROSS

VALIDATION FOLDS. ± VALUES ARE THE

STANDARD DEVIATION ACROSS

THE 5 FOLDS

C. Experiments on Caltech 256

In this part, the proposed metric learning algorithm is
applied on image retrieval tasks. The experiments are con-
ducted on Caltech-256 object category datasets [26], which
consist of pictures of objects from 256 categories. In our
experiments, we use VLFeat [27] to extract pyramid histogram
of visual words (PHOW) features [28] of the images in
Caltech datasets. We randomly select 20 images from each
category to construct a visual word dictionary with 300 words.
After several processes (please refer [27] and the caltech-101-
code3 for details), we obtain the PHOW features with 3600
dimensions.

Our experiment follows the process presented in litera-
tures [3] and [29]. 40 training images and 25 test images
are randomly selected from each category. The number
of categories respectively set as 10, 20 and 50 (please
refer [3] and [29] for the details of these 10 classes, 20 classes
and 50 classes subsets). The performance index is selected as
ranking precision measures, including top k (e.g. 1, 10 and 50)
precision and the average precision [3] which is based on near-
est neighbors. The total iteration is also set as 35K , as same
as that in [3] and [29]. The proposed method is compared with
some state-of-the-art methods, including online metric learning
via low rank (OMLLR) [3], online algorithm for scalable
image similarity learning (OASIS) [29], LEGO and LMNN.
In this experiment, we use 3600 dimensional PHOW features
in our method which is different with other four methods.
These four methods use edge and color histograms to represent
images. Statistical results after 5 cross validation folds are
presented in Table V. The results of other four methods are
reported by literatures [3] and [29]. Our method outperforms
all other four methods in terms of classification precision. One
possible reason is that the proposed LDMLT_CR method can

3http://www.vlfeat.org/applications/caltech-101-code.html

deal with high dimensional data, which allows more features
for classification. In fact, if using our 3600 dimensional PHOW
features, the LEGO and LMNN can’t even work. However,
compared with OASIS method, the computational efficiency
of the LDMLT_CR is very low, and it increases fast when
the number of category increases. The main reason is that the
running time of the dynamic triplets building is quadratic to
the quantity of training instances.

V. CONCLUSION

Feature selection and weighting have always been a difficult
problem in practical applications. This paper illustrates a novel
image processing and pattern recognition framework which is
based on LDMLT (or LDMLT_CR) algorithm. This framework
can solve the problem to a certain extent. In this framework,
the same instances with the same features can be applied in dif-
ferent applications with different Mahalanobis metrics. In this
paper, a LDMLT algorithm which is based on LogDet diver-
gence and triplet constraints is presented. With the designed
regularization parameter ηt , the LDMLT algorithm can learn
the Mahalanobis distance metric accurately and efficiently.
Besides, a compressed representation method applied in our
LDMLT algorithm, and the so called LDMLT_CR algorithm
can learn, store and evaluate high dimensional Mahalanobis
matrix efficiently. Furthermore, to further improve the clas-
sification precision of the learned Mahalanobis metrics, we
use a novel dynamic triplets building strategy to strengthen
LDMLT and LDMLT_CR algorithms. Experiments on various
benchmark datasets and comparisons with other state-of-the-
art methods demonstrate the robustness, high precision and
efficiency of our algorithm. One drawback of the proposed
framework is the relatively low efficiency of the dynamic
triplets building strategy. Therefore, in our further research,
we will focus on solving this problem.

REFERENCES

[1] P. Jain, B. Kulis, and K. Grauman, “Fast image search for learned
metrics,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008,
pp. 1–8.

[2] B. Geng, D. Tao, and C. Xu, “DAML: Domain adaptation metric
learning,” IEEE Trans. Image Process., vol. 20, no. 10, pp. 2980–2989,
Oct. 2011.

[3] Y. Cong, J. Liu, J. Yuan, and J. Luo, “Self-supervised online metric
learning with low rank constraint for scene categorization,” IEEE Trans.
Image Process., vol. 22, no. 8, pp. 3179–3191, Aug. 2013.

[4] M. Liu and B. C. Vemuri, “A robust and efficient doubly regularized
metric learning approach,” in Proc. 12th Eur. Conf. Comput. Vis., 2012,
pp. 646–659.

[5] J. Mei, M. Liu, H. R. Karimi, and H. Gao, “LogDet divergence
based metric learning using triplet labels,” in Proc. ICML Workshop
Divergences Divergence Learn., 2013, pp. 1–9.

[6] L. Yang and R. Jin, Distance Metric Learning: A Comprehensive Survey,
vol. 2. Lansing, MI, USA: Michigan State Univ., 2006.

[7] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learn-
ing for large margin nearest neighbor classification,” in Advances in
Neural Information Processing Systems, vol. 18. Cambridge, MA, USA:
MIT Press, 2006, p. 1473.

[8] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning with application to clustering with side-information,” Advances
in Neural Information Processing Systems, vol. 15. Cambridge, MA,
USA: MIT Press, 2002, pp. 505–512.

[9] C. Shen, J. Kim, L. Wang, and A. van den Hengel, “Positive semidefinite
metric learning with boosting,” in Advances in Neural Information
Processing Systems, vol. 22. Red Hook, NY, USA: Curran Associates,
2009, pp. 629–633.

[10] J. Bi, D. Wu, L. Lu, M. Liu, Y. Tao, and M. Wolf, “AdaBoost on low-
rank PSD matrices for metric learning,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2011, pp. 2617–2624.

[11] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proc. 24th Int. Conf. Mach. Learn., 2007,
pp. 209–216.

[12] P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman, “Online metric
learning and fast similarity search,” in Advances in Neural Information
Processing Systems 21. Red Hook, NY, USA: Curran Associates, 2008,
pp. 761–768.

[13] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, “Online and batch learn-
ing of pseudo-metrics,” in Proc. 21st Int. Conf. Mach. Learn., 2004,
p. 94.

[14] B. Kulis, M. Sustik, and I. Dhillon, “Learning low-rank kernel matrices,”
in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 505–512.

[15] M. Sugiyama, “Dimensionality reduction of multimodal labeled data
by local Fisher discriminant analysis,” J. Mach. Learn. Res., vol. 8,
pp. 1027–1061, May 2007.

[16] Q. Wang, P. C. Yuen, and G. Feng, “Semi-supervised metric learning
via topology preserving multiple semi-supervised assumptions,” Pattern
Recognit., vol. 46, no. 9, pp. 2576–2587, 2013.

[17] P. Jain, B. Kulis, and I. Dhillon, “Online linear regression using burg
entropy,” Dept. Comput. Sci., Univ. Texas at Austin, Austin, TX, USA,
Tech. Rep. TR-07-08, 2007.

[18] P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon, “Metric and kernel
learning using a linear transformation,” J. Mach. Learn. Res., vol. 13,
no. 1, pp. 519–547, 2012.

[19] J. V. Davis and I. S. Dhillon, “Structured metric learning for high
dimensional problems,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2008, pp. 195–203.

[20] H. Zhao, P. C. Yuen, and J. T. Kwok, “A novel incremental principal
component analysis and its application for face recognition,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 4, pp. 873–886,
Aug. 2006.

[21] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
“The extended Cohn–Kanade dataset (CK+): A complete dataset for
action unit and emotion-specified expression,” in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2010,
pp. 94–101.

[22] S. W. Chew, P. Lucey, S. Lucey, J. Saragih, J. F. Cohn, and S. Sridharan,
“Person-independent facial expression detection using constrained local
models,” in Proc. IEEE Int. Conf. Automat. Face Gesture Recognit.
Workshops, Mar. 2011, pp. 915–920.

[23] S. Yang and B. Bhanu, “Understanding discrete facial expressions
in video using an emotion avatar image,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 4, pp. 980–992,
Aug. 2012.

[24] X. Huang, G. Zhao, M. Pietikäinen, and W. Zheng, “Expres-
sion recognition in videos using a weighted component-based fea-
ture descriptor,” in Proc. 17th Scandin. Conf. Image Anal., 2011,
pp. 569–578.

[25] M. Pantic and L. J. M. Rothkrantz, “Expert system for automatic analysis
of facial expressions,” Image Vis. Comput., vol. 18, no. 11, pp. 881–905,
2000.

[26] G. Griffin, A. Holub, and P. Perona, Caltech-256 Object Cate-
gory Dataset. Pasadena, CA, USA: California Institute Technology,
2007.

[27] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library
of computer vision algorithms,” in Proc. Int. Conf. Multimedia, 2010,
pp. 1469–1472.

[28] A. Bosch, A. Zisserman, and X. Muñoz, “Image classification using
random forests and ferns,” in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2007, pp. 1–8.

[29] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” J. Mach. Learn. Res.,
vol. 11, pp. 1109–1135, Mar. 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

