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ABSTRACT
This study investigates the impact that uncertainty in phase contrast-MRI derived inlet boundary conditions has on patient-
specific computational hemodynamics models of the healthy human thoracic aorta. By means of Monte Carlo simulations, we 
provide advice on where, when and how, it is important to account for this source of uncertainty. The study shows that the 
uncertainty propagates not only to the intravascular flow, but also to the shear stress distribution at the vessel wall. More 
specifically, the results show an increase in the uncertainty of the predicted output variables, with respect to the input 
uncertainty, more marked for blood pressure and wall shear stress. The methodological approach proposed here can be easily 
extended to study uncertainty propagation in both healthy and pathological computational hemodynamic models.

1. Introduction

In the last decades, computational fluid dynamics (CFD) 
has been extensively used to study cardiovascular flows, 
proving to be an effective tool to gain insights into the 
complex relationships between hemodynamics and patho-
physiology. More recently, the coupling of computational 
hemodynamics and cardiovascular imaging has allowed 
to build up even more realistic and personalized CFD 
models in term of both anatomy and boundary conditions 
(Taylor & Steinman 2010). In particular, phase-contrast 
magnetic resonance imaging (PC-MRI) has been increas-
ingly used to provide patient-specific vessel geometries 
and flow data, useful for setting fully personalized condi-
tions at boundaries.

In general, the computation of hemodynamic quanti-
ties, enabled by the combination of in vivo imaging and 
CFD, requires some assumptions. As a result, the relia-
bility of patient-specific CFD results strongly depends 
on the level of uncertainty introduced in the modelling 
process. Many sources of uncertainty can affect the accu-
racy of image-based CFD results: image acquisition and 
processing, mathematical modelling assumptions, phys-
ical parameter values and boundary condition (BC) set-
tings. In particular, the latter are known to be relevant in 

the simulation of hemodynamic scenarios (Veneziani & 
Vergara 2005; Grinberg & Karniadakis 2008; Spilker & 
Taylor 2010; Gallo et al. 2012; D’Elia & Veneziani 2013; 
Morbiducci et al. 2013; Quarteroni et al. 2016).

To successfully translate CFD predictions into clinics, 
all the relevant uncertainty sources should be identified 
and propagated through the model equations to assess the 
level of uncertainty of the output variables of interest. This 
would allow to provide clinicians with model predictions 
together with the associated uncertainties, thus improving 
the added value of CFD tools in clinical practice.

Different numerical approaches have been used to 
quantify uncertainty propagation in blood flow simula-
tions, starting from sampling techniques like Monte Carlo 
method (Huberts et al. 2012; Tran et al. 2017) to more 
compact projection-based methods as the polynomial 
chaos expansions (Sankaran & Marsden 2011; Quicken 
et al. 2016; Eck et al. 2017). A comparison between the 
two approaches has been presented by Eck et al. (2016), 
who showed that polynomial chaos expansions perform 
better for low dimensional problems, while Monte Carlo 
method is more suitable for higher dimension problems.

A number of studies have investigated the following 
sources of uncertainty in computational hemodynamics 
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as inflow BCs to a personalized model of healthy human 
aorta propagates from the inlet section at the ascending 
aorta through the region of interest and results in specific 
uncertainty of blood flow predictions. By means of a set 
of Monte Carlo simulations, we attempt to provide advice 
on where, when and how, in personalized computational 
hemodynamic models of the human aorta, it is important 
to account for inlet BCs uncertainty affecting velocity pro-
files. The results are analyzed in terms of some blood flow 
descriptors at different locations along the ascending aorta 
and the aortic arch. The final goal is  to obtain accurate 
and reliable information useful to diagnostic/prognostic 
purposes.

2. Methods

2.1. PC-MRI data

4D PC-MRI images were used to obtain the anatomic 
model of a healthy human thoracic aorta (Figure 1). The 
healthy volunteer object of the study is male, age 42 years, 
weight 60 kg. The subject is part of the data-set analyzed 
in Morbiducci et al. (2011a).

models: reconstructed vessel geometry (Sankaran & 
Marsden 2011; Sankaran et al. 2015, 2016), input and 
output BCs (Sankaran & Marsden 2011; Morbiducci  
et al. 2013; Tiago et al. 2014; Valen-Sendstad et al. 2015; 
Schiavazzi et al. 2016; Tran et al. 2017), vessel distensi-
bility and motion (Jin et al. 2003; Zhao et al. 2000; Eck 
et al. 2016; Javadzadegan et al. 2016) and rheological 
properties of blood (Lee & Steinman 2007; Morbiducci 
et al. 2011b). In a recent study, the Authors reported a 
numerical experiment in which different possible strat-
egies of applying PC-MRI measured flow data as BCs in 
computational hemodynamic models of healthy human 
aorta were implemented (Morbiducci et al. 2013). The 
reported findings highlighted that the assumption of ide-
alized velocity profiles as inlet BCs in personalized com-
putational models can lead to misleading representations 
of aortic hemodynamics.

In this study, we make a further step in investigating 
the effect of one of the causes of uncertainty in image-
based cardiovascular simulations, the PC-MRI derived 
Dirichlet condition, when applied at the inflow boundary. 
More in detail, the study shows how uncertainty affecting 
PC-MRI measurements of blood velocity profiles, applied 

Figure 1. panel a: 3d pC-mri images of the thoracic aorta acquired at mid systole on a plane aligned with the aortic arch. From left to 
right, maximum intensity projection image, and the three-directional instantaneous phase velocity map frames (phase i, ii, iii), 
corresponding to the three components of the velocity vector field. image brightness is proportional to signal intensity (a more 
contrasted gray scale was used for phase iii, in order to better appreciate phase velocity distribution also for the smallest measured 
phase velocity). panel B: measured volume flow rate waveform at the ascending aorta. time instants t1, t2 and t3 are selected for 
steady-state simulations. panel C: aortic geometry, as reconstructed from pC-mri images. the time-averaged (along the cardiac cycle) 
three-dimensional velocity profile at the aao inlet section is presented. planes 1:7 used for post-processing are also shown. aao: 
ascending aorta, BCa: brachiocephalic artery, lCCa: left common carotid artery, lsa: left subclavian artery, dao: descending aorta.



The MRI data sequence was extensively detailed in sev-
eral previous studies (Morbiducci et al. 2009; Morbiducci 
et al. 2011a; Tresoldi et al. 2014; Volonghi et al. 2016), and 
reported in other computational hemodynamics studies 
(Gallo et al. 2012; Morbiducci et al. 2013, 2015). Briefly, 
4D MRI images of an ostensibly healthy human aorta 
were acquired using a 1.5 T scanner (Achieva, Philips 
Healthcare, The Netherlands). Blood phase velocity and 
anatomical data were acquired in 22 oblique sagittal slices 
(field of view 280 × 280 mm2) aligned with the aortic arch 
and the entire aorta was covered with an isotropic spa-
tial sampling (voxel size equal to 2 × 2 mm2; slice thick-
ness 4 mm, 2 mm slice spacing). A gradient echo spin 
sequence was used with velocity encoding (VENC) in 
all three directions (scan parameters: TR/TE = 5.4/3 ms; 
VENC = 150 cm s−1). Motion artifacts were minimized 
using a navigator echo approach. The PC pulse sequence 
was arranged to allow synchronization of the data to the 
cardiac cycle. This allowed to reconstruct a cine series of 
3D data sets from multiple phases of the cardiac cycle. The 
resulting cine pulse sequence was retrospectively gated to 
the electrocardiographic cycle to obtain 22 cardiac phases.

The geometry (Figure 1) is characterized by an inlet 
section at the ascending aorta (AAo) and multiple outlets 
at the descending aorta (DAo) and at the supra-aortic ves-
sels: brachiocephalic artery (BCA), left common carotid 
artery (LCCA) and left subclavian artery (LSA). The sur-
face area of the inlet section is equal to 9.61 · 10−4 m2. 
As for the outflow boundaries, the surface areas of the 
outlet sections of the model are: DAo = 3.66 · 10−4 m2, 
BCA = 9.18 · 10−5 m2, LCCA = 1.63 · 10−5 m2, LSA = 5.30 ·  
10−5  m2. To investigate uncertainty propagation, seven 
cross-sections – perpendicular to local vessel’s axis - were 
selected along the thoracic aorta, at relevant anatomical 
landmarks (Figure 1).

PC-MRI phase flow measured data were used to pre-
scribe blood flow velocity profiles at the AAo inflow sec-
tion, at multiple phases of the cardiac cycle (Morbiducci 
et al. 2013), as explained in the following section. The 
flow rate waveform in the ascending aorta, as extracted 
from measured phase data, is presented in Figure 1. It was 
already observed that the measured velocity profiles at the 
AAo inflow section are characterized by fully 3D velocity 
profiles, since the mean value of the measured in-plane 
velocity component over the inlet section is about 30% of 
the mean value of the through-plane velocity component, 
when considering the whole duration of the cardiac cycle 
(Morbiducci et al. 2013).

2.2. Fluid dynamic model

Blood was assumed a homogeneous, incompressible 
Newtonian fluid. The finite volume method was applied to 
solve the fluid motion equations in steady-state conditions:

where V is the velocity vector, p is the pressure, ρ is the 
density (ρ = 1060 kg/m3) and μ is the dynamic viscosity 
(μ = 0.0035 Pa∙s). The general purpose CFD code Fluent 
(ANSYS Inc., USA) was used on a computational mesh-
grid made of two unstructured meshes created with 
prismatic and tetrahedral volume elements. Higher cell 
density was generated near the vessel wall to resolve local 
velocity gradients.

Steady flow analysis was adopted here to limit the 
overall computational cost of the Monte Carlo proce-
dure. Three different flo w reg imes, cor responding to 
three different phases of the cardiac cycle (Figure 1) were 
considered: flow regime corresponding to the beginning 
of the systole (T1), peak systole (T2) and halfway of the 
systolic deceleration phase (T3). The three flow regimes 
are characterized by a Reynolds number, at the AAo inlet 
section, equal to 608, 5138 and 2497, respectively. For each 
cardiac phase, 3D continuity and Navier–Stokes equations 
(Equation 1) were solved without turbulence closure, 
using second-order accuracy and double numerical pre-
cision. The simulations were performed on a 5 million 
mesh for flow regimes T1 and T3 and on a finer 18 million 
mesh for T2. In both cases, a mesh convergence study was 
performed to ensure a grid independent solution.

Arterial walls were assumed to be rigid, with no-slip 
condition on them. Straight flow extensions were added 
to the four outlet sections (DAo, BCA, LCCA and LSA) 
to reduce the effect of outflow BCs on the solution. At the 
end of the flow extensions a stress-free Neumann bound-
ary condition was imposed.

PC-MRI velocity measurements were used to obtain 
the inlet boundary conditions in terms of velocity profiles 
at the AAo as detailed elsewhere (Morbiducci et al. 2013, 
2015). For each simulated cardiac phase, two different BCs 
were generated at the AAo inflow section: a 1D (axial) 
velocity profile, neglecting in-plane velocity components 
and a fully 3D profile, retaining all the three components 
of the measured velocity field.

2.3. Stochastic model

The Monte Carlo method was used to propagate the 
uncertainty in measured PC-MRI velocity profiles applied 
as inflow BCs, through the CFD model of the aorta. This 
technique requires random generation of a large ensemble 
of inputs from their probability distributions and succes-
sive deterministic model simulations to generate many 
realizations of the outputs. In this work, at each cell cen-
troid j (j = 1, 2, … N, being N the number of cells on the 
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A major concern in Monte Carlo simulations is that the 
accuracy of the results depends on the number of random 
samples extracted from the input distribution. As a conse-
quence, it is necessary to determine the number of repli-
cations required to achieve a desired level of accuracy. In 
this work, the number of Monte Carlo runs was set equal 
to 100, which was the minimum value ensuring the con-
vergence of the probability density functions of the output 
variables. Hence, for each simulated flow regime and each 
inlet BC scenario, 100 CFD experiments were performed 
for a total of 600 numerical simulations. Using a Server 
Rack FUJITSU PRIMERGY RX300S7 equipped with an 
Intel Xeon E5-2665 processor with 16 computational cores 
(clock frequency of 2.40 GHz, shared RAM of 96 GB), the 
wall-clock time of each set of 100 numerical simulations 
was about 8 and 56 h for the 5 and 18 million mesh car-
dinality, respectively. Overall, the computational cost of 
the numerical experiments was about 2400 core hours.

The results of the Monte Carlo simulations were used 
to estimate the empirical probability density functions of 
hemodynamic quantities of interest at relevant anatomi-
cal landmarks. Namely, the uncertainty in the prediction 
of vessel cross-section averaged flow quantities was esti-
mated at seven planes perpendicular to local vessel’s axis 

inflow section) of the AAo inlet section, each PC-MRI 
velocity component Vij (i = 1, 2, 3) was assumed to be 
normally distributed:

where mean �ij is equal to the measured value and σij 
is the standard deviation. The latter was set by assum-
ing a signal to noise ratio (SNR = μij/σij) of the PC-MRI 
data equal to 16 (Tresoldi et al. 2014), corresponding to 
a coefficient of variation (CV = σij/μij) equal to 6.25%. 
Hence, for a given phase measurement μij the standard 
deviation was set equal to σij = μij/16. The latter would 
imply a maximum deviation of inlet BC velocity data 
from the mean value of ±18%, when truncating the nor-
mal distribution at ±3σ. An explanatory example of con-
tour maps of the measured PC-MRI velocity data ±3σ is 
presented in Figure 2, where the upper and lower limits 
of variation of all the velocity random samples extracted 
from the input distribution for the Monte Carlo runs 
are displayed.
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Figure 2. Contour maps of through-plane and in-plane velocity components at the AAo inlet section. Peak systole flow regime (T2) 
is displayed. Maximum positive (+3σ, upper panel) and negative (-3σ, lower panel) deviation of input velocity data from the PC-MRI 
measured values. Velocities are normalized with respect to the measured average velocity magnitude over the inlet section (VREF). The 
contour maps represent the upper and lower limits of variation of all the velocity random samples extracted from the input distribution 
for the Monte Carlo runs.



the magnitude of the output uncertainty depends on the 
flow variable of interest. Uncertainty in pressure is the 
highest followed by velocity and vorticity magnitude. This 
is generally true for all the flow regimes investigated.

Table 1 reports the signal to noise ratio, averaged over 
the seven analysis planes, of the bulk flow variables, for the 
three phases of the cardiac cycle T1, T2 and T3 and, for 
each phase, for the two inlet BC strategies (1D and 3D).

It can be noticed that in the 3D case, for flow regimes 
T1, T2 and T3 the SNR was respectively equal to 14, 15 
and 14 for velocity magnitude; 9, 9 and 11 for pressure 
and 15, 13 and 16 for vorticity magnitude. These data 
indicate that the predicted uncertainty is always higher 
than the prescribed input uncertainty (SNR = 16), with 
the exception of one single case (vorticity magnitude for 
phase T3). It is noteworthy to observe that the SNR of 
blood pressure can be up to 40% lower than the one of the 
uncertainty source. Regarding uncertainty variability with 
respect to the cardiac phase, no common trends can be 
identified for the three flow variables. The SNR of velocity 
magnitude is almost constant for the three cardiac phases, 
while the SNR of vorticity magnitude exhibits the highest 
intra-phase variability, with T2 (flow regime correspond-
ing to peak systole) being the most affected by uncertainty. 

(Figure 1), from plane 1 (located just downstream of the 
AAo section) to plane 7 (in the descending aorta). An 
example of the resulting empirical cumulative distribution 
functions (ECDFs) is reported in Figure 3, for five off the 
seven planes and for velocity magnitude (a), pressure (b) 
and vorticity magnitude (c).

Finally, for each plane, mean and standard deviation 
of the ECDFs of the predicted flow quantities were esti-
mated in order to obtain the signal to noise ratio, which 
is a measure of the prediction uncertainty.

3. Results and discussion

Figure 4 shows the SNR as estimated from the ECDFs of 
velocity magnitude (a), pressure (b), and vorticity mag-
nitude (c), for the three flow regimes here investigated. 
The results were obtained prescribing a fully 3D velocity 
profile at the inlet section of the AAo, but the same find-
ings were obtained for the 1D velocity profile-based inlet 
BC strategy.

It can be noticed that the uncertainty affecting the flow 
quantities is poorly dependent on the location. This means 
that no specific locations are more affected by the inlet 
BC uncertainty than others. The results also show that 

Figure 3.  Empirical cumulative distribution functions of cross-section averaged blood velocity magnitude [m/s] (a), pressure [Pa] (b) and 
vorticity magnitude [1/s] (c) at different positions along the aorta (d), for time instant T2 and 3D velocity inlet profile.



T3, and about 30% at T2. Marked differences can also be 
observed in the spatial distribution of WSS uncertainty. In 
detail, regions at the luminal surface affected by the high-
est WSS uncertainty characterize the flow regime T2, with 
focal maxima at the descending aorta, particularly when 
using a 1D inlet velocity profile, while at T1 and T3 uncer-
tainty is fairly uniform over all the luminal surface of the 
vessel. In all the cases investigated here, the uncertainty 
propagation in WSS calculation resulted to be higher than 
the input uncertainty (CV = 6.25%).

Regarding the role of the inlet BC strategy, it is some-
what relevant only for flow regime corresponding to peak 
systole. In this case, both the mean and the CV of the 
WSS are affected by the inflow condition imposed at the 
AAo inlet section. It can be observed, by visual inspection, 
that imposing a 1D velocity profile leads to higher spatial 
variability of the WSS first and second order statistics.

4. Conclusions

The w ork p resented a n u ncertainty propagation s tudy 
aimed at investigating the impact that uncertainty 
in PC-MRI measurements of velocity profiles has on 
patient-specific CFD modelling of aortic hemodynamics, 
when they are prescribed as Dirichlet BCs at the inflow 
section in the AAo. The uncertainty of blood velocity, 

Finally, pressure uncertainty is higher in flow regimes T1 
and T2, characterized by the same SNR, than in T3.

An additional analysis was performed to investigate the 
effect of the uncertainty in inlet BCs on wall shear stress 
(WSS) distribution. Figure 5 shows mean and coefficient 
of variation of the ECDFs of the WSS distribution at the 
aortic luminal surface. The results are presented for each 
investigated flow regime and for the two inlet BC strate-
gies applied here.

It can be noticed that the uncertainty affecting WSS 
predictions strongly differs between the flow regime cor-
responding to peak systole and flow regimes T1 and T3. 
The value of the coefficient of variation averaged over the 
whole luminal surface is about 10% at flow regimes T1 and 

Figure 4.  Signal to noise ratio (SNR) of cross-section averaged blood velocity magnitude (a), pressure (b) and vorticity magnitude (c) at 
different positions along the aorta (d), for three phases of the cardiac cycle. Results are obtained with the 3D velocity inlet profile.

Table 1. Signal to noise ratio (SNR), averaged over the seven anal-
ysis planes, of the bulk flow variables, for the three phases of the 
cardiac cycle T1, T2 and T3 and, for each phase, for the two inlet 
BC strategies (1D and 3D).

Cardiac 
phase BC strategy

Mean SNR 
velocity 

magnitude
Mean SNR 
pressure

Mean SNR 
vorticity 

magnitude
T1 1D 14.5 11.1 14.3
T1 3D 14.4 8.8 14.6
T2 1D 14.8 8.8 13.0
T2 3D 15.0 8.7 12.6
T3 1D 14.4 10.9 15.4
T3 3D 14.4 10.9 15.8



(2)  �Uncertainty affecting intravascular flow quan-
tities does not depend neither on the anatomi-
cal location nor on the flow regime. Differently,
WSS uncertainty at peak systole is much higher
than WSS uncertainty at decelerating/accelerat-
ing phases of the systole. Moreover, regions at
the luminal surface where high WSS uncertainty 
(and low WSS mean values) is localized are
evident at peak systole, while at the other flow
regimes the predictive uncertainty is almost
constant over the luminal surface of the vessel.

(3)  �The effect of the inflow BC strategy (i.e. 1D or
3D velocity profile) on the resulting probability
density functions is far from being negligible
only for WSS at flow regime corresponding to
peak systole.

One major limit of this work is the steady flow assump-
tion. However, it should be noticed that: (1) in the Navier–
Stokes equations, uncertainty is mainly propagated by 
the acceleration operator 

(
��

�t
+ (� ⋅ ∇)�

)
, where the 

non-linear advective contribution (� ⋅ ∇)�, is expected to 
be predominant, compared to the local linear term ��

�t
; (2)  

pressure and vorticity along the aorta, and of wall shear 
stress distribution at its luminal surface, was quantified 
by Monte Carlo simulations with a steady-state Navier–
Stokes solver, for three distinct flow regimes, correspond-
ing to three different phases of the cardiac cycle, and for 
two different inlet BC strategies, i.e. 1D velocity profile 
(neglecting the measured in-plane velocity and consid-
ering only the through-plane velocity component) and 
fully 3D velocity profile. The main findings of the study 
are the following:

(1)  �Propagating the inflow BC uncertainty through
the Navier–Stokes equations leads to a decrease
in the SNR of CFD predictions with respect to
the SNR of the uncertainty source. This result
holds for both intravascular flow quantities and
WSS distribution, but uncertainty in wall shear
stress predictions (particularly at peak systole) is 
much higher than uncertainty in bulk flow vari-
ables. Among the flow variables, blood pressure
has the highest predictive uncertainty, followed
by velocity and vorticity magnitude: the SNR of
blood pressure can be up to 40% lower than the
one of the uncertainty source.

Figure 5. mean (upper panel) and coefficient of variation (lower panel) of wall shear stress on inner surface of thoracic aorta, at phases 
t1, t2 and t3 of the cardiac cycle, for 1d and 3d inlet BCs.



adopted emphasizes that the PC-MRI flow m easure-
ments-derived uncertainty is an important source of 
uncertainty. This is of utmost importance considering 
that it is non-linearly related with other uncertainties 
intrinsic in modeling assumptions such as aortic wall 
distensibility (Lantz et al. 2011; Brown et al. 2012), 
outflow boundary conditions (Gallo et al. 2012), blood 
rheological properties (Liu et al. 2011), etc. As a con-
sequence, the global effect c annot b e n eglected w hen 
looking at model reliability.
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