
Abstract
The exponential growth of mobile traffic is 

forcing operators to quickly increase the capacity 
of their networks by means of new technologies 
and advanced architectures. This capacity expan-
sion not only brings increasing fixed costs for 
additional network infrastructures, but also inflates 
operational costs, which are becoming critical, 
mainly in terms of energy bills. In this perspective, 
monitoring the energy consumption of network 
devices and defining their energy profile models 
are valuable approaches for estimating energy 
costs and identifying the most efficient configura-
tions. In this article, we propose an energy profil-
ing approach that simplifies the characterization 
of different base station components and allows 
the estimation of the network energy efficiency 
relying only on traffic statistics. We have validated 
the approach over the extensive dataset of real 
measurements provided by a probe network for 
monitoring live energy consumption of Vodafone 
sites in three different countries.

Introduction
The explosive growth of mobile data traffic in the 
last few years is pushing operator networks to their 
limits. Predictions are that over the next 10 years 
the traffic volume will skyrocket, increasing doz-
ens of times. In addition, the number of connected 
devices will reach many billions, including a large 
number of smart objects [1]. This has strongly stim-
ulated operators’ interest in significantly expanding 
the capacity provided to their users.

Generally speaking, the capacity expansion 
requires the improvement and the deployment 
of additional devices. Therefore, facing this traf-
fic growth, mobile operators are challenged by 
higher costs, both in terms of capital and oper-
ational expenditures, and by a constrained car-
bon footprint caused by the power request of 
the whole network. This calls for mobile networks 
that are even more cost-efficient and resource-ef-
ficient. Among operational costs, energy costs 
are becoming a big share, and the reduction of 
this share is certainly a main concern for mobile 
operators. In this perspective, cost reduction and 
environmental sustainability can be seen as two 
convergent objectives.

Even if information and communication tech-
nologies (ICTs), and networks in particular, are 

generally considered a fundamental instrument to 
improve the energy efficiency of other economy 
sectors, their own impact on global warming is no 
longer negligible. ICTs contribute to 2 percent of 
global annual greenhouse gas (GHG) emissions 
[2], which is a value that exceeds the GHG emis-
sion of the aviation sector [3]. In particular, tele-
com infrastructures and devices contribute alone 
to at least one third of this value. Since ICTs are 
becoming more and more widely available, their 
carbon footprint is expected not to fall below 1 
GtCO2e1 until at least 2030 (about 2 percent of 
the global emission), even if current green solu-
tions are taken into account [4]. Furthermore, the 
worldwide use of electricity for only communi-
cation networks has increased from 200 TWh in 
2007 to 334 TWh in 2012, representing more 
than 1.5 percent of the total worldwide electricity 
use [5].

Among network equipment, radio access 
nodes are particularly energy-hungry; their energy 
consumption can reach more than 80 percent of 
the total energy consumption of the entire access 
network [6]. This has motivated a large number 
of studies in the field of green wireless network-
ing, with the aim of developing devices, designing 
protocols, and proposing network planning and 
optimization strategies that include energy effi-
ciency aspects in the daily network operation [6]. 
As a result of this big effort, energy saving mecha-
nisms are now becoming available in several com-
mercial products.

In addition to these studies showing how ener-
gy efficiency can be improved, a recent work [1] 
sets what energy efficiency (measured as the 
energy spent to serve a traffic unit) can be poten-
tially achieved by mobile networks. It shows that 
the energy efficiency of mobile networks can be 
improved with respect to that of the current tech-
nology (i.e., first deployment of 4G networks ) by 
more than a factor of 1000, combining together 
solutions at different levels: hardware, architec-
tures, protocols, and infrastructures. This outcome 
has been obtained by considering a completely 
new network infrastructure, mainly based on a 
large number of small cells. Although deployment 
costs may limit the feasibility of such high efficien-
cy, it has emerged that large savings require oper-
ators to carefully select their equipment and to 
properly configure the network portions they are 
expanding or renewing.
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A rather big fraction of the energy-efficiency 
improvement is expected from advanced hard-
ware technologies, which can significantly lower 
the power required by different components, 
including both power amplifiers for radio trans-
missions and processing units for baseband sig-
nals. Advanced hardware platforms also enable 
deep-sleep modes with very low energy con-
sumption, which can be exploited in new network 
architectures to dynamically activate only the 
network elements necessary to serve the actual 
traffic demand [7]. Moreover, new transmission 
technologies and antenna systems characterized 
by a large number of elements [8] can greatly 
contribute to the reduction of the energy con-
sumption.

While these advanced solutions start being 
incorporated in commercial products by man-
ufacturers, it is crucial for operators to identify 
their potential impact on the network. Indeed, 
the actual saving achievable by green approaches 
highly depends on the specific network scenario, 
in terms of network deployment, configuration, 
and traffic statistics. Therefore, an accurate study 
to select the most appropriate solutions is import-
ant for successful energy saving. In this perspec-
tive, it is fundamental to define simple tools that 
allow monitoring the energy consumption of the 
live network and estimating the effects of intro-
ducing “green features.”

In this article, we present an energy-profiling 
analysis performed via an energy-consumption 
monitoring system that has been designed and 
implemented by Vodafone in 60 sites in three dif-
ferent countries. It uses separate sensors for radio 
and baseband components, and it is applied to 
systems of different generations. Sites have been 
selected to represent a wide range of network 
scenarios in terms of mix of technologies and 
devices. Based on a measurement campaign car-
ried out on this monitoring system, we provide 
the following contributions:
• We have designed a profiling approach that

simplifies the energy characterization of radio
access equipment and allows us to estimate
the network energy-consumption relying
on traffic statistics. Different from common
approaches based on emitted power, this
greatly simplifies operators’ activities as it
focuses only on network traffic counters,
which are already well monitored in network
operations.

• We have performed a time and space analysis
of the data collected from a real network that
shows a fundamental property of the proposed
approach, which is that the profiling accuracy is
preserved when the model is applied to other
sites with similar characteristics or in different
days.
The remainder of the article is organized

as follows. In the next section, we discuss sev-
eral approaches for characterizing the energy 
performance of mobile networks and summa-
rize the radio-access power-profile models 
proposed in the literature. Following that, we 
describe the Vodafone energy-consumption 
monitoring network before introducing the 
proposed profiling approach together with 
some representative results. We conclude with 
some final remarks.

Overview on the Energy Performance 
Characterization of Mobile Networks
Characterizing the energy performance of mobile 
networks is not an easy task. Not only does it 
depend on the performance of individual network 
devices, but also several other aspects influence 
energy efficiency [6]: the traffic distribution over 
time and space determines a different work-
ing load-point of each cell; the type of network 
deployment sets the cell density required in the 
area; the propagation scenario impacts on achiev-
able rates, and thus on traffic volumes, and so on.

Several performance metrics have been pro-
posed for this purpose. They can be grouped into 
energy-efficiency metrics at the component level, 
at the equipment level, and at the network level. 
Component-level metrics express the individual 
energy performance of antennas, power amplifiers, 
power supplies, and so on. Equipment-level met-
rics assess the energy efficiency of a whole device, 
like an end-user terminal or a base station. Final-
ly, network-level metrics describe both the energy 
consumed by the entire network and the corre-
sponding performance measured at the network 
level (such as coverage, capacity, and delay).

Although operators may be interested in 
understanding the energy performance of every 
single component, the final energy figure they 
can measure, which plays the main role in deter-
mining the energy bill, is the overall network-level 
energy efficiency. However, this high-level per-
formance metric makes the final result depend 
on several aspects of the network operations, so 
much so that even deciding what to measure may 
be an issue. Indeed, although one of the most 
popular metrics is the energy efficiency (Joule/bit) 
at nominal network capacity, the metric is appro-
priate only in the case of networks working close 
to their capacity (full load), which is rarely the 
case. Mobile networks undergo strong traffic vari-
ations during day hours, and during days of the 
week. Moreover, they are designed to work far 
below the full-load level even during peak hours, 
allowing networks to be robust to both sudden 
traffic changes and future traffic growth. Finally, 
the energy efficiency at nominal network capacity 
does not consider the coverage constraint that 
forces networks to provide connectivity also in 
low-load areas, where a metric considering the 
power consumption over the unit area (like W/
m2) would be more appropriate.

Coverage is not the only driver to establish cell 
density; we must always take into account the 
type of area where the network is deployed. In 
rural areas, where large cells typically cover rel-
atively low traffic densities, coverage constraints 
drive the deployment, while in urban areas the 
number of required cells per unit area is much 
higher, as operators must provide sufficient capac-
ity for serving much higher user densities. A met-
ric based only on the spatial density of the power 
consumption cannot capture the huge difference 
in urban and rural areas in terms of exchanged 
traffic volume. In addition, the spatial traffic distri-
bution in urban areas is much less homogeneous 
than in rural areas. In urban areas we have several 
traffic hotspots, which force operators to install 
additional ad-hoc small/femto-cells to boost the 
network capacity around the hotspot.

This high-level perfor-
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We need a sophisticated approach to properly 
assess the energy efficiency of a mobile network; 
it must carefully take into account the following 
aspects:
• Different network layouts across the operator

service area.
• Configuration settings in different deployment

areas.
• Propagation conditions in considered areas.
• Traffic models and their time and space varia-

tions, which may vary in different deployment
areas.

• Power consumption profiles of involved devices.
• Operator’s targets for user quality of experience.
Ideally, this would require investigating the
energy consumption of the whole network at
the same time, which cannot be consider a via-
ble solution. A simplified approach consists in
splitting the whole network into representative
spatial snapshots characterized by a homoge-
neous traffic profile and network features (e.g.,
urban, suburban, and rural areas). This makes
it possible to perform an energy performance
analysis in separate snapshots, which can then
be averaged according to the weight of each
snapshot in the operator network [9]. Unfortu-
nately, this approach requires additional effort
for the characterization of each snapshot and for
the estimation of the most efficient configuration
of network components and energy saving algo-
rithms in each snapshot.

A fundamental step to evaluate the effect of 
novel mechanisms and architectures for energy 
saving is the modeling of the impact of base sta-
tion (BS) internal components on the aggregate 
BS energy consumption. The energy efficien-
cy evaluation framework (E3F) proposed in the 
EARTH project (http://www.ict-earth.eu) investi-
gates the relationship between the BS load and 
its power consumption: it maps the emitted radio 
frequency (RF) power (Pout) to the power supply 
of a BS site (Pin) [9]. Such a study is based on the 
analysis of the power consumption of various 4G 
BS types as of 2010, the effect of the various com-
ponents of BS transceivers is considered: antenna 
interface, power amplifier, small-signal RF trans-
ceiver, baseband interface, DC-DC power supply, 
cooling, and AC-DC supply. According to project 

outcomes, E3F approximates the dependence of 
the BS power consumption on the cell load with a 
linear power consumption model:

Pin =
NTRXP0 + Δ pPout     0 < Pout ≤ Pmax

NTRXPsleep   Pout = 0

⎧
⎨
⎪

⎩⎪

where Dp is the slope of the load-dependent power 
consumption, NTRX is the number of transceiver 
chains, and Pmax is the RF output power at max-
imum load. Moreover, P0 and Psleep indicate the 
power consumption at minimum non-zero load, 
and in sleep mode, respectively. More recently, 
the model has been extended by the GreenTouch 
consortium (http://www.greentouch.org) on the 
basis of more detailed hardware profiles [10], so 
that it can reflect the evolution of hardware char-
acteristics in the next few years (until 2020). As a 
final remark, the different value between P0 and 
Psleep has motivated the research effort toward 
advanced energy-efficient network architectures 
[7, 11], which, by separating the control plane 
and the user plane, allow large parts of the data 
network to be switched off while maintaining user 
coverage.

The future trend of energy-aware wireless net-
work development is characterized by small cells 
and femto cells becoming more widely adopt-
ed because of their high energy efficiency. Their 
energy profiles will be more load-dependent than 
those of legacy technologies, as shown in [10]: 
new hardware designs will reduce the power 
consumption step at minimum non-zero load. 
Moreover, from a network-level perspective, high-
ly-dynamic networks can be envisioned [7]. In 
these anticipatory networks, predictive tools will 
allow the switch-off of redundant resources for 
the current traffic scenario and reactivate them 
just in time to cope with the anticipated traffic 
change, thus providing a further energy saving.

In addition to those in [9] and [10], several 
other models have been developed for 2G, 3G, 
and 4G BSs relying on analytical expressions that 
combine the power consumption of every BS 
component (e.g., in [12]). However, they result in 
complex models that are not suitable for the use of 
mobile operators. In addition, their fine detail level 
requires a recalibration when the model is applied 
to a different BS. Alternative approaches based on 
high-level measurements propose easy-to-use mod-
els, which could provide a reasonable accuracy 
even when applied to a broad set of similar BSs. 
These works in the literature analyze how the ener-
gy consumption of a certain type of BS (indoor 
femtocell [13], HSPA [14], or GSM/UMTS [15]) 
depends on some load indicators, like Erlang or bit 
rate. However, despite their interesting results, all 
the works consider isolated BSs, trying to provide 
a customized energy profile for each of them. In 
this article, instead, we aim at investigating profile 
robustness to spatial and temporal shifts.

Energy-Consumption 
Monitoring Network

The system for monitoring and profiling the con-
sumption of the radio access infrastructure is 
based on a network of remote monitoring probes 
installed by Vodafone in a subset of radio base 
station sites.

Figure 1. Architecture of the network of energy probes.
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Vodafone has a wide network of smart meters 
installed in several thousand radio base station 
sites, providing detailed information on energy 
use, helping to identify and target opportuni-
ties to reduce consumption and improving the 
accuracy of the energy billing. However, these 
traditional smart meters can measure the overall 
consumption of a radio base station site, while for 
a detailed measurement of the energy consump-
tion of a base station, and for its correlation with 
network counters, a more detailed measurement 
is needed in order to:
• Monitor the energy consumption of each radio

technology installed in the site.
• Separate the contribution of radio and base-

band units.
• Track the evolution over time.
• Correlate measures with specific configuration

settings.
For such reason, in 2014, Vodafone select-

ed 60 sites in different countries to implement 
a more sophisticated solution, shown in Fig. 1, 
aimed at measuring not only the overall energy 
consumption of the site, but also the energy con-
sumption of each component of the radio base 
station. In line with ETSI Recommendation 102 
706 1, sensors were installed to measure the 
instantaneous energy absorption of each base 
station component.

The system implemented in each of the 60 
base station sites is based on integrated current 
sensors (up to 16 per site), having a size of a few 
millimeters, and its own signal microprocessor, 
with measured data being transmitted digitally 
to a single control unit. The control unit of each 
site is configured to process the sensor data, 
supply the sensors with power, get access to the 
measurement data locally, and transmit the data 
remotely. Data are collected and made available 
to a single repository, with a time granularity that 
can be defined in accordance with the granularity 
available for network counters and key perfor-
mance indicators (KPI).

A Model for 
Base Station Energy Consumption

In addition to a detailed energy consumption 
analysis of monitored sites, the probe network 
implemented by Vodafone can be used to profile 
the energy performance of base station compo-
nents in different configuration settings and traffic 
load conditions. This not only provides a useful 
instrument for selecting the most efficient tech-
nologies and configurations in monitored sites, 
but also can support an energy-consumption pre-
diction tool, which, by extending collected results 
to other sites with similar characteristics, allows 
the estimation of the impact of new solutions on 
a much larger network part. However, in order 
to be effective, the profiling approach must be 
simple enough to be quickly applied to thousands 
of sites with limited effort and, as a key feature, it 
must be robust to time and place shifts. Indeed, 
once calibrated with monitored sites during a 
time interval, the model must preserve a good 
accuracy when applied to other similar sites and/
or in different days.

The overall energy consumption of a base sta-
tion consists of two components: base-band unit 

(BBU) and the remote radio unit (RRU) energy 
consumption. BBU performs digital signal process-
ing of received and transmitted data, while RRU 
implements RF frontend functionalities. We first 
analyzed the energy profile of BBUs. As shown 
in Fig. 2, a typical BBU energy profile is almost 
constant and independent from traffic variations 
during the day. This suggests that BBU hardware 
does not implement power-saving strategies and, 
most important, its energy consumption does 
not depend on the data traffic load. In addition, 
the BBU energy consumption of 4G sites is typi-
cally much smaller than in 3G systems, because 
the more recent 4G equipment has been devel-
oped with more efficient hardware and software 
solutions than those adopted for 3G. Moreover, 
4G systems have a simplified management that 
reduces computational complexity. Since BBUs 
have flat and constant energy profiles, we can 
focus on modeling RRU power consumption.

Our goal is to derive an alternative model to 
that presented in the previous section based on 
RF emitted power. Indeed, counters on RF emit-
ted power are not always available in devices of 
different vendors, and in some cases they have 
limitations on measured values. In addition, in 
order to practically assess the potential impact 
of new energy-saving techniques for RRUs, it is 
necessary to define energy consumption models 
based on variables that can be easily obtained 
from common network counters. Therefore, we 
propose a model that replaces the emitted power 
with the total downlink user traffic volume mea-
sured by network counters over the energy-con-
sumption sampling period. Even if it is rather 
intuitive that the downlink user is directly correlat-
ed with the RF power emitted by a base station, it 
is also clear that other elements may impact mea-
sured energy values, like uplink traffic, cell prop-
agation conditions, traffic distribution, and so on.

In order to assess the impact of these ele-
ments, we have validated the linear model com-
paring it with other higher-order approaches and 
verifying the achieved accuracy. We carried out 
an extensive analysis over monitored sites, using 
traffic volume and emitted power data collect-
ed from network databases and correlating them 
with energy consumption data coming from mon-

Figure 2. Example of energy consumption of 3G and 4G BBUs in different days 
and at different time.
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itoring probes. In the following we show a set of 
representative examples of the energy profiles we 
derived, focusing on three-sector sites equipped 
with either 3G or 4G technologies in different 
European countries. Each dataset consists of a 
week of measurements with hourly granularity.

As shown in Fig. 3, a strong correlation exists 
between energy consumption and both traffic vol-
ume and emitted power. We have computed fit-
ting polynomial curves with order from 1 to 6 and 
proceeded in the following way. We first calibrat-
ed fitting curves of different orders on a weekly 
training set at a single site and measured the train-
ing error, that is, the accuracy of the fitting. Then, 
we applied calibrated curves both to the same 
site in different weeks, and to a different site. In 
these tests we evaluated the generalization error 

between predicted energy values and those mea-
sured by monitoring probes, and we compared it 
against the training error.

Figure 4 shows results for training and gener-
alization errors for models based both on traffic 
volume and on RF emitted power, considering the 
case of calibration and application of the model 
at the same site in different weeks (different-time), 
and the case of model calibration in one site and 
its application to another site with similar configu-
ration settings (different-place).

As shown by the red lines, the training error 
decreases by increasing the polynomial order. 
This is somehow expected, as higher-order poly-
nomials better approximate the dataset. Note 
that the error is below 5 percent and high-or-
der models have only a slightly better accura-
cy than the linear model. In addition, models 
based on emitted power have a smaller training 
error than those based on traffic volume. This is 
expected as the emitted power is a more direct 
measure of the energy consumption than the 
traffic volume.

When models are applied to datasets at dif-
ferent times (dashed lines), we measure the gen-
eralization error, which is clearly higher than the 
training error. Nevertheless, the generalization 
error is below 10 percent, even when the model 
based on traffic volume is applied. Interesting-
ly enough, the model based on emitted power, 
which predicts energy values closer to ground-
truth values when the polynomial order is up to 
four, exhibits a large deviation beyond the fourth 
order. This behavior is typical of high-order fitting 
models. Indeed, the increased complexity better 
follows training dataset results in high stiffness, 
thus the model badly fits working regions outside 
those of the training.

Figure 4 shows similar curves (dotted lines) 
when model calibration and application have 
been performed at different sites. The two sites 
have similar hardware features, but they are locat-

Figure 3. Energy consumption plotted against traffic volume and emitted power. 
Polynomial fitting curves of order n = 1 and n = 6 have been applied as 
well.
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ed in different environments, that is, urban vs. rural 
areas. Although the effect of high orders is still 
evident, we cannot conclude that the generaliza-
tion error is always larger than in the different-time 
case. Indeed, there is a strong dependence on the 
chosen dataset. Vice versa, a true fact is that the 
linear model produces a generalization error of 
about 10 percent.

A general conclusion can be drawn: model-
ing a linear dependence between the emitted 
power and the energy consumption, as well as 
between the traffic volume and the energy con-
sumption, is a very good approximation, and it is 
strongly confirmed by real data. In addition, the 
linear model based on traffic volume is robust to 
time and place shifts, therefore it can be applied 
by mobile operators to the whole network. This 
allows the placement of the energy measurement 
probes only in a limited set of sites (to have the 
model calibrated over representative site types) 
and straightforwardly have a complete picture of 
the network energy consumption by using widely 
available traffic volume counters.

The linear model based on traffic volume, 
although based on simpler network counters 
than those related to the emitted power, shows 
a very accurate prediction quality. Considering 
its low-complexity and its good accuracy, it is 
the perfect trade-off for being implemented in 
deployed networks. Indeed, resorting to more 
involved modeling approaches not only does not 
bring significant improvement on the calibration 
accuracy, but also provides worse results when 
the model is applied in different places at different 
times. This has been revealed by the analysis of 
live data in a real network.

Clearly, the slope and the offset of the linear 
model depend on the device manufacturer and 
the type of technology. In Fig. 5 shows an exam-
ple of 3G sites equipped with devices of different 
manufacturers. Their curves have different offsets 
and a different energy consumption slope with 
respect to the traffic volume. The figure shows 
the application of the linear model to a 4G site 
as well. It exhibits a much flatter profile by sup-
porting much higher traffic volumes (one order of 
magnitude greater) with lower energy consump-
tion than a 3G site.

The linear model can be extended to include 
base stations operating at different power modes. 
Several device manufacturers allow operators to 
run their devices in a low-power mode when the 
traffic volume is expected to be small, typically 
during the night. Operators can switch base sta-
tions to operational modes where some of the 
hardware is deactivated and/or the computation-
al power is reduced so as to decrease the ener-
gy consumption. An example of this behavior is 
given in Fig. 6, where the two groups of samples 
identify a full-power and a low-power mode. The 
energy profile of the site is equivalent to those 
of two independent sites, each described by a 
linear model, operating at different hours of the 
day according to the activation of the low-power 
mode. Note that the low-power mode has sam-
ples only in the small-volume region, as hardware 
deactivation usually reduces available capacity. In 
addition, the low-power mode consumes much 
less energy than the full-power mode at the same 
traffic load. Clearly, this behavior can be easily 

extended to consider multi-mode devices that can 
finely tune their operational mode in response to 
the actual traffic load.

Conclusion
Operational costs are becoming a critical issue 
for the energy bill of mobile network operators. 
For this reason, monitoring the energy consump-
tion of network components and defining energy 
profile models are valuable instruments to identify 
the most efficient network configurations and esti-
mate energy costs.

We have presented an energy-consumption 
monitoring network designed by Vodafone and 
implemented in three different countries to collect 
live data from real sites. We have analyzed data 
coming from this system and compared them 
with those collected by network counters. This 
allowed us to derive an energy profiling approach 
that allows the simplification of the modeling of 
the different base-station components and the 
estimation of the energy efficiency on the basis of 
traffic statistics.

The probes’ field data confirm the validity of 
an energy profile that models a linear depen-
dence between the download traffic volume and 

Figure 5. Comparison of different-vendor 3G sites and a site with 4G technology.
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the site energy consumption. The slope and the 
offset of the model depends on the device man-
ufacturer and the technology generation. The 
model exhibits a good robustness to time and 
place shifts, proving, once trained on a small set 
of sites, its applicability to the whole network to 
predict the energy consumption by relying only 
on network counters.
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Operational costs are 
becoming a critical 
issue for the energy 
bill of mobile network 
operators. For these 
reasons, monitoring the 
energy consumption of 
network components 
and defining energy pro-
file models are valuable 
instruments to identify 
the most efficient net-
work configurations and 
estimate energy costs.
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