
IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXXX 2017 1

A feature selection and classification algorithm

based on randomized extraction of model

populations
Aida Brankovic, Alessandro Falsone, Maria Prandini, Member, IEEE, and Luigi Piroddi, Member, IEEE

Abstract—We here introduce a novel classification approach
adopted from the nonlinear model identification framework,
which jointly addresses the feature selection and classifier design
tasks. The classifier is constructed as a polynomial expansion of
the original features and a selection process is applied to find the
relevant model terms. The selection method progressively refines
a probability distribution defined on the model structure space,
by extracting sample models from the current distribution and
using the aggregate information obtained from the evaluation
of the population of models to reinforce the probability of
extracting the most important terms. To reduce the initial search
space, distance correlation filtering is optionally applied as a
preprocessing technique. The proposed method is compared to
other well-known feature selection and classification methods on
standard benchmark problems. Besides the favorable properties
of the method regarding classification accuracy, the obtained
models have a simple structure, easily amenable to interpretation
and analysis.

Index Terms—Feature selection, Classification, Nonlinear iden-
tification, Model selection, Randomized methods.

I. INTRODUCTION

IN the supervised learning framework, classification is the

task of predicting the class labels of unseen observations

(each consisting of a set of measured attributes or features),

based on the experience gathered through a learning process

on a previously available set of observations whose classes

are known (training set). The classification task is generally

decomposed into two stages, namely a first preprocessing stage

denoted feature selection (FS), followed by the actual classifier

design. FS is a combinatorial optimization problem which

aims at extracting the relevant features from a given set. An

effective FS procedure greatly facilitates the classifier design

process, reducing its computational demand, simplifying the

classifier structure, and ultimately improving the classification

performance, which may be adversely affected by irrelevant

and redundant features [1]. FS is particularly crucial and hard

in problems with a large number of features, resulting in a

huge search space (curse of dimensionality).

FS methods are often classified according to how the

attribute selection and model construction processes interact.

In filter methods (see, e.g., [2]), FS is performed independently

of the classifier design, based only on intrinsic properties of

the features, whereas in wrapper methods a subset of the

A. Brankovic, A. Falsone, M. Prandini, and L. Piroddi are with the Dipar-
timento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Italy, e-mail: {aida.brankovic, alessandro.falsone,
maria.prandini, luigi.piroddi}@polimi.it.

features is evaluated based on the classification performance

it can achieve if it is used to build the classifier. The classifier

operates on the selected features processing them through a

linear or nonlinear model. In this process it may be useful to

derive additional more complex features as functions of the

original ones (feature extraction).

Filter methods can be used effectively to eliminate the

least important terms, but they cannot be fully relied upon

to eliminate all redundant terms since they do not take into

account the interaction between features. Such relationships

between regressors may indeed have an important impact on

the selection process. For example, individually important fea-

tures may become redundant when considered in combination

with others, and individually irrelevant or redundant features

may become relevant in combination with others [3].

Wrapper methods are typically more accurate, though they

are computationally intensive and may suffer from overfitting

problems [4]. Several wrapper algorithms based on sequential

search have been discussed in the literature, such as the

PTA(l, r) (Plus l and Take Away r), the SFFS (Sequential

Forward Floating Selection algorithm) and the SBFS (Se-

quential Backward Floating Selection algorithm) [5]. In these

schemes, the algorithm starts from either the empty or the

full set of features, and then features are iteratively added or

removed. Similar incremental model building schemes have

been developed in the context of nonlinear identification,

particularly with reference to polynomial NARX/NARMAX

models [6], [7], [8]. Besides sequential approaches, a signifi-

cant amount of work has been devoted to evolutionary methods

such as Genetic Algorithms (GA) [9], [10], Particle Swarm

Optimization (PSO) [3], [11], Ant Colony Optimization (ACO)

[12], [13], Harmony Search (HS) [14], Artificial Bee Colony

(ABC) [15].

Other randomized approaches not based on evolutionary

paradigms have been proposed in a few recent works. For

example, the approach described in [16] involves an initial

random selection of the feature subset, which is subsequently

updated according to a randomized scheme that may substitute

or remove a single feature with a given probability. Though

the update process is randomized, the feature selection process

is still incremental, with all the pros and cons of local search

methods. Furthermore, the method only considers the perfor-

mance of the current model as a whole, without distinguishing

the relevance of the individual features within the model, thus

making the update process blind with respect to the features.

The methods discussed in [17] aim at the reduction of the

2 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXXX 2017

original search space by random projections of the feature

space on a smaller space and random extractions of feature

subsets on which to perform the classification task. Again, the

strategy appears to be completely blind and does not exploit

the information resulting from each single subset, that has been

extracted and processed.

Regarding the classifier design problem, several algorithms

have been proposed in the literature, based on Artificial Neural

Networks (ANN) [18], Support Vector Machines (SVM), often

in combination with Radial Basis Functions (RBF) as kernel

functions [19], Twin Support Vector Machines (TSVM) [20],

instance based learning methods such as Nearest Neighbor

(NN) and Data Gravitational Classification (DGC) [21], evo-

lutionary methods as genetic programming (GP) [22] and

PSO [23], [24]. Instance based algorithms are particularly

appealing due to their simple classification logic and generally

satisfactory performance. In the NN (or 1-NN) algorithm, a

new sample is simply assigned to the class of the nearest

previously available sample. This is one of the most used

and well known classification algorithms due to its simplicity,

though it is reported to suffer from various drawbacks such as

high dimensionality, low efficiency, high storage requirements

and sensitivity to noise [25]. Cases where the classes are non-

separable or overlapping appear to be particularly critical [26].

The k-NN extension classifies a new instance based on the

majority of the k nearest neighbors. Several variants of the k-

NN method have been proposed in the literature, that typically

introduce weighted distances or similar concepts to improve

the performance, such as the Adaptive k-NN (KNN-A) [27],

the Distance Weighted k-NN (DW-KNN) [28], the Center NN

(CNN) [29], the Cam weighted distance NN (CamNN) [30].

DGC algorithms [31] have also been put forward as an attempt

to overcome the mentioned problems of the NN algorithm. In

this respect, it is worth mentioning the work of Peng et al.

[32], which employs feature weighting and a tentative random

feature selection algorithm to compute the feature weights.

An enhancement of the DCG algorithm, denoted DGC+ is

proposed in [31] to deal with imbalanced data. Peng [33]

also proposed a fast feature weighting algorithm for DGC that

evaluates features by using discrimination and redundancy.

We here propose a novel wrapper algorithm, denoted in the

following RFSC (Randomized Feature Selection and Classi-

fication), inspired by recent advancements in the context of

nonlinear model identification [34]. Here, the mapping from

features to classes – that is generally nonlinear – is constructed

by a polynomial expansion of the original set of features

and calculating the output as a linear combination of the

extended features. This has the advantage that the resulting

model configures a linear regression in the extended features

(accordingly referred to as regressors), the parameters of which

can be estimated by means of well-assessed techniques. In this

framework, the selection of the most appropriate regressors to

include in the model (denoted model structure selection or

briefly MSS) constitutes the main challenge. The easiest way

to address the MSS task is by incremental building proce-

dures, akin to the sequential wrapper approaches mentioned

previously. Such incremental approach is generally driven by

an importance rating of the regressors, that measures the

accuracy improvement that can be achieved by adding that

particular term to the current model. Unfortunately, this is

only a relative measure of the importance of a regressor, which

may vary considerably depending on the other terms included

in the model. Indeed, individually important regressors may

become redundant in combination with others, while terms of

scarce individual importance may become highly relevant in

combination with others. This fact alone may greatly affect

the correctness of the MSS process.

More reliable results can be obtained if the importance

of the regressors is assessed based on information gathered

from a population of models. In this perspective, along

the lines of [34], we define a probability distribution over

the model structure space, that describes the probability of

each possible extended feature subset to be the true model

structure. At each iteration, a population of sample model

structures is extracted from the current distribution and all

the corresponding models are estimated and evaluated. The

aggregate information obtained by processing this population

of models is used to update the probability distribution, by

reinforcing the probability to extract those terms that appear

in accurate models more often than not, and accordingly

reducing the probability to extract the remaining ones. The

method progressively refines the probability distribution until

it converges to a limit distribution associated to a single model.

Experimental results show that this method provides quite

compact and accurate models. The RFSC algorithm does not

suffer from error accumulation problems that may be observed

with sequential methods, and generally bases the selection of

features on more robust evidence than what may be gathered

from individual models. Also, the randomization inherent in

the approach yields sufficient exploration capabilities to allow

the algorithm to occasionally escape from local minima.

The search space rapidly increases with the number of fea-

tures and the order of the polynomial expansion. Large-sized

search spaces complicate the FS task and may adversely affect

the search process. To address this issue, a dependency test

based on the correlation of distances [35] has been carried out

for medium/large size problems. Distance correlation provides

a reliable dependency measure between random vectors, and

can be used to test the individual dependence of the output

vector on each feature vector. Only features with enough

statistical evidence to reject the independence hypothesis with

a given significance level are considered in the FS process,

thus reducing the search space.

The rest of the paper is organized as follows. Section II

presents the classification problem in a nonlinear regression

framework. The proposed method is introduced in Section

III. More in detail, a probabilistic formulation of the feature

selection problem is provided first, which constitutes the basis

for the development of the RFSC method, which is presented

next. Finally, the introduction of a prefiltering method to re-

duce the feature space based on Distance Correlation Filtering

concludes Section III. Several numerical studies on bench-

mark datasets are discussed in Section IV. Finally, Section V

presents some concluding remarks.

BRANKOVIC et al.: A FEATURE SELECTION AND CLASSIFICATION ALGORITHM BASED ON RANDOMIZED EXTRACTION OF MODEL POPULATIONS 3

II. PRELIMINARIES

A. The classification problem

In classification problems one is interested in constructing a

model that captures the relationship between features (inputs)

and classes (outputs) through a learning process operating

on available observations (input-output pairs). Classification

is akin to model identification, the main differences being

that the input-output relationship is typically non-dynamic and

that the outputs (and sometimes the inputs) take values in a

discrete set. This similarity makes it sometimes possible to

adapt algorithms developed in the identification domain to

solve classification tasks, as endeavored here.

Assume that a set of N observations is available, each

consisting of a pair (u(k), c(k)), k = 1, . . . , N , where the

components up, p = 1, . . . , Nf of vector u are the features

and c ∈ {1, . . . , Nc} is the corresponding class (assumed

known, according to the supervised learning framework). In

the following, we adopt a one-vs.-rest strategy to deal with

multi-class problems, and accordingly recode the output as an

Nc-dimensional vector y, with binary components, defined as:

yi(k) =

{

1, c(k) = i

−1, otherwise
(1)

where i = 1, . . . , Nc. Notice that if Nc = 2, a single output

is sufficient to discriminate between the two classes, the −1
value of y1 being directly associated to class 2.

The objective is to construct a classification model of the

type:

ŷ(k) = f(u(k)), (2)

where ŷ denotes the class estimate and f is a vector of

unknown functions, that is capable of predicting correctly the

class for observations unseen in the learning phase. Following

the one-vs.-rest strategy, a separate model is devoted to the

assessment of each class.

To avoid ambiguities in the class estimation, the actual class

estimate is conventionally assumed as the label corresponding

to the individual classifier returning the largest value:

ĉ(k) = arg max
i=1,...,Nc

ŷi(k). (3)

In view of this, the multi-class problem can be addressed by

training one binary classifier for each class, that discriminates

if a sample belongs to one class or not. Accordingly, in the

following we shall focus on the training and evaluation of the

binary classifiers ŷi(k), i = 1, . . . , Nc.

Regarding the unknown functions fi(·), i = 1, . . . , Nc,

a common approach is to represent them using parametric

functional expansions, so that:

ŷi(k) =





Nr
∑

j=1

ϑ
(i)
j ϕj(k)



 = Φ(k)Tϑ(i), (4)

i = 1, . . . , Nc, where ϑ(i) is a vector of unknown

parameters (associated to the ith output), and Φ(k) =
[ϕ1(k) . . . ϕNr

(k)]T , where ϕj(k) = ϕj(u(k)), j =
1, . . . , Nr, is a given nonlinear function of the features. In

view of the fact that equation (4) actually configures a linear

regression, these extended features are also called regressors.

Various types of basis functions have been used to construct

the functional expansions, such as Fourier series, piecewise

linear models, polynomial models, radial basis functions, and

sigmoidal neural networks, all having the universal approxi-

mation property. In this work, we will consider polynomial

expansions, so that the generic term ϕj(k) takes the form:

ϕj(k) =

{

up1
(k) · up2

(k) · . . . · upl
(k), l > 0

1, l = 0
(5)

where ps ∈ {1, . . . , Nf}, s = 1, . . . , l, with 0 ≤ l ≤ M ,

M being the maximum allowed degree of the polynomial

expansion.

This formulation has the advantage that the model is linear-

in-the-parameters, which greatly facilitates parameter estima-

tion. On the other hand, the number of terms in a polynomial

expansion increases rapidly with the maximum degree and the

number of arguments (curse of dimensionality). Conventional

practice has it that relatively small models of this category are

suitable for various applications. It is also well-known that

the smaller the size of the model, the more robust it will be

and the more capable of generalizing to new observations.

Therefore, a crucial problem consists in selecting the best

terms of type (5) for the model, a task which is equivalent

to feature selection, but applied to an extended set of features

(constructed as monomials of the original ones).

B. Parameter estimation of the ith component of the classifier

As already mentioned, the modeling task is addressed

separately for each class. In the following, we shall focus on

the modeling of classifier ŷi associated to class i. For ease of

notation we will drop the indexing on class i.
For a given structure, the parameter estimation for a model

of type (4) is typically formulated as a minimization problem

with reference to a loss function defined as L : {−1,+1} ×
R → R+. A standard loss function evaluates the model

performance as the percentage of misclassified observations

(with respect to class i). The resulting optimization problem

is given by

min
ϑ

1

N

N
∑

k=1

L0−1(y(k), ŷ(k)), (6)

where L0−1 is the 0-1 loss function, defined as L0−1(z1, z2) =
1{z1z2<0}(z1, z2). Due to the hard nonlinearity enforced by

this loss function, the latter is usually approximated with

functions with nicer properties regarding optimization (e.g.,

hinge, squared hinge, logistic, exponential). In the following,

the logistic loss will be employed for this purpose, resulting

in the following reformulation of the optimization problem:

min
ϑ

1

N

N
∑

k=1

log(1 + e−y(k)ŷ(k)). (7)

The reader should note that log(1 + e(·)) is a strictly convex

function, and ŷ(k) is linear in ϑ. Therefore, the resulting cost

4 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXXX 2017

function is strictly convex in ϑ, and the minimizer of (7) is

unique.

Although a closed-form solution to the above optimization

problem does not exist, the logistic loss is a continuous

differentiable function, which allows to apply gradient descent

methods in the optimization process. In this work, a standard

Newton’s iterative optimization scheme is applied to solve

problem (7).

C. Statistical test for regressor significance

The rejection of redundant terms is a crucial step in the

identification procedure. For this purpose, a statistical test

is carried out after the parameter estimation phase to rule

out terms whose parameters are statistically indistinguishable

from 0. According to [36], the update equation of the Newton

method is structurally equivalent to an Iteratively Reweighted

Least Squares algorithm, so that upon convergence one can

evaluate the parameter covariance as in standard Weighted

Least Squares. Therefore, the variance σ̂2
j of the estimated

parameters is given by:

σ̂2
j ≈ σ̂2

eG
−1
jj , (8)

where σ̂2
e is variance of the residuals and Gjj is the jth diag-

onal element of the Hessian G = ΨTRΨ upon convergence,

Ψ = [Φ(1) . . .Φ(N)]T being a matrix containing all samples

of the selected nonlinear regressors and R a diagonal N ×N
matrix with diagonal elements given by:

Rkk = ỹ(k)(1− ỹ(k)), (9)

k = 1, . . . , N , where ỹ(k) = 1/(1 + ey(k)ŷ(k)).
The variance (8) can be employed in a Student’s t-test to

determine the statistical relevance of each regressor [34]. More

precisely, the jth regressor is considered to be statistically

irrelevant (and therefore rejected) if the interval

[ϑ̂j − σ̂jtα,N−τ , ϑ̂j + σ̂jtα,N−τ] (10)

contains 0, tα,N−τ being the 100(1 − α) percentile of the

Student’s t distribution with N − τ degrees of freedom and

significance confidence interval α, where τ is the number of

components of ϑ.

III. THE PROPOSED METHOD

A. Probabilistic formulation of the Feature Selection problem

This section addresses the FS problem for the ith component

of the classifier. As done in the previous section, we drop the

indexing on class i, for simplicity.

FS can be envisaged as the problem of finding the subset

of regressors that maximizes the performance index J :

J(f) = 1−
1

N

N
∑

k=1

L0−1(y(k), ŷ(f ; k)) (11)

over all possible model structures f in the set F = 2R, R =
{ϕ1, · · · , ϕNr

} being the full set of Nr regressors. Notice that

the dependence of the classifier on the model structure f has

been explicitly stated in Equation (11).

This problem is combinatorial, in that in principle one

would need to explore all 2Nr model structures. A convenient

solution approach involves a reformulation in a probabilistic

framework [34] by introducing the random variable φ which

takes values in the set of all possible models F according to

a probability distribution Pφ. The performance of φ is also a

random variable, and its expectation is given by

E[J(φ)] =
∑

f∈F

J(f)Pφ(f). (12)

Index (12) is maximized when the probability mass concen-

trates on the model structure associated to the highest value of

J (or one of the possible best model structures, if the minimum

is not unique).

Therefore, the problem of finding the best f ∈ F can be

formulated as

P∗
φ = argmax

Pφ

E[J(φ)], (13)

where P∗
φ is such that P∗

φ(f
∗) = 1.

A convenient parametrization for Pφ is obtained by associ-

ating a Bernoulli random variable ρj to each regressor ϕj , that

models the probability that ϕj belongs to the target model:

ρj ∼ Be(µj), (14)

j = 1, . . . , Nr, where µj ∈ [0, 1]. According to this

representation, a model extraction from Pφ implies testing

each regressor for inclusion, by extracting a value from the

respective Bernoullian distribution. Regressor ϕj is included

if the outcome of the jth extraction is 1, and omitted in case of

0. The former event has probability µj , whereas the probability

of getting a 0 is given by 1−µj . Accordingly, in the rest of the

paper we will denote µj as the Regressor Inclusion Probability

(RIP) of the jth regressor, and define µ = [µ1 · · ·µNr
]T as

the vector of RIPs. For simplicity, we assume that all random

variables ρj , j = 1, . . . , Nr are independent. In summary, the

probability distribution Pφ over the models in F can be written

as:

Pφ(f) =
∏

j:ϕj∈f

µj

∏

j:ϕj /∈f

(1− µj) (15)

for any f ∈ F . If all RIPs have values in {0, 1} only, a limit

distribution is obtained with all probability mass concentrated

on a specific model f̃ (containing all the regressors whose

RIPs equal 1). In that case, it follows that Pφ(f̃) = 1. The

objective of the FS procedure will therefore be that of adapting

the RIPs until convergence to the target limit distribution

associated to an optimal model f∗.

To evaluate the importance of a given term we consider an

aggregate indicator Ij that compares the average performance

of the models including the jth regressor with that of the

remaining ones:

Ij = E[J(φ)|ϕj ∈ φ]− E[J(φ)|ϕj /∈ φ], (16)

where j = 1, . . . , Nr. The interested reader is referred to [34]

for all the mathematical details. Thanks to the averaging over

all models, indicator Ij can be interpreted as a global measure

of the regressor importance. In [34], the authors prove that if

Pφ(f
∗) is sufficiently high, then Ij takes positive values when

ϕj ∈ f∗ and negative otherwise.

BRANKOVIC et al.: A FEATURE SELECTION AND CLASSIFICATION ALGORITHM BASED ON RANDOMIZED EXTRACTION OF MODEL POPULATIONS 5

B. The Randomized Feature Selection and Classification al-

gorithm

In view of the probabilistic reformulation of the FS problem

discussed in the previous section, we here describe an iterative

optimization approach that operates on the model distribution

Pφ(f) with the aim of maximizing the average performance

given by (12). In detail, the RIPs are progressively updated

based on the assessment of the importance of each regressor

in terms of index Ij , j = 1, · · · , Nr. Notice that an exact

evaluation of Ij is not practically feasible, since it would

require an exhaustive approach on the model space. Therefore,

the expected values in (16) are approximated with averages

over a finite set of models extracted from the current model

distribution. The procedure is stopped upon reaching a limit

distribution.

Given the discrete nature of the 0 − 1 loss function in FS

problems, different models may result in the same classifier

or in different classifiers of equal performance, unlike what

happens in MSS in the nonlinear identification framework.

Therefore, it may happen that different runs of the algorithm

may provide different results.

At the beginning of each iteration, a set of models is

extracted from the space of all possible model structures

using the current Bernoullian distributions associated to the

regressors. More in detail, for each model a value is extracted

from all distributions, and only the regressors corresponding

to a successful extraction are included in the model. Then, the

parameters of each model are estimated and its performance

evaluated according to the procedure explained in II-B (if

any redundant terms are detected, they are eliminated and

the parameters re-estimated prior to evaluation). Then, the

following update law is applied to the Bernoullian distribution

of each regressor at the tth iteration:

µj(t+ 1) = sat(µj(t) + γĨj) (17)

for j = 1, · · · , Nr, where Ĩj is an approximation of

Ij calculated on the set of extracted models, sat(x) =
min(max(x, 0), 1) is a function that ensures that the calculated

µj values will not exceed the interval [0, 1], and γ is a step-

size parameter. The value of the latter parameter is adapted at

each iteration:

γ =
1

10(Jmax − J̄) + 0.1
, (18)

where Jmax is the performance index of the best model among

those extracted at the current iteration and J̄ is their average

performance. In practice, the larger the variance of the model

performances, the smaller the step-size, indicating a lower

level of reliability of the computed global measure of the

regressor importance Ij .

The procedure is iterated as long as the RIPs continue to

be modified.

A sketch of the basic loop of the proposed RFSC procedure

is presented below as Algorithm 1.

Algorithm 1 Main loop of the RFSC.

Input: {u(k),y(k)}, R = {ϕ1, . . . , ϕNr
}, Np, α, µ(0), ǫ,

Ni

Output: µ
1: for i = 1 to Ni do

2: for np = 1 to Np do

3: Generate random model structure ∈ F
4: Estimate parameter vector ϑ by solving (6)

5: Compute σ̂2
j according to (8)

6: Apply statistical test according to (10)

7: Remove redundant terms

8: Re-estimate parameter vector ϑ
9: Evaluate model performance according to (11)

10: end for

11: for j = 1 to Nr do

12: Evaluate importance of jth term using (16)

13: Update jth RIP according to (17)

14: end for

15: t← t+ 1
16: if max

j=1,...,Nr

|µj(t)− µj(t− 1)| ≤ ǫ then

17: Break

18: end if

19: end for

C. Prefiltering of the feature space using Distance Correlation

Filtering

A high-dimensional feature space can hamper FS algorithms

by slowing down the search process and by increasing the

chances of getting stuck in local minima. To tackle this issue

a common approach is to perform a prefiltering of the feature

space. Specifically, it would be desirable to identify those

features that are relevant in describing the output, and those

which are not. We address this problem by analyzing the

dependence of the output on each feature, according to the

rationale that if feature up is not important in the description

of the output yi, then we would expect yi and up to be

independent. The reader should note that at this point we are

just interested in characterizing the dependence/independence

of the output from a specific feature, not the strength nor the

“shape” of such dependence, tasks that are performed during

the FS process.

There exist various statistical tests designed to assess the

dependence between two random vectors. We here employ

the one described in [35], which is based on a statistic named

“distance correlation”. The statistical test in [35] is very

flexible and can handle both discrete and continuous random

vectors, without any assumption on their distributions, making

it particularly amenable for classification purposes. For the

sake of completeness, we here briefly report the main result

of [35].

Let X and Y be two random variables such that E[|X| +
|Y |] < ∞, where | · | denotes the absolute value. In our case

we have X = up and Y = yi for any i and p. We want to

test the null hypothesis H0 : X and Y independent. Let X =
[up(1) · · · up(N)]T be a vector of i.i.d. realizations of X , and

Y = [yi(1) · · · yi(N)]T the corresponding realizations of Y .

6 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXXX 2017

Now define the “empirical distance covariance” as

ν2N (X,Y) =
1

N2

n
∑

r,s=1

Ar,sBr,s, (19)

where Ars = ars − ār· − ā·s + ā··, Brs = brs − b̄r· − b̄·s +
b̄··, with ars = |up(r) − up(s)|, brs = |yi(r) − yi(s)|, and

ār· =
1
N

∑N
s=1 ars, ā·s =

1
N

∑N
r=1 ars, ā·· =

1
N2

∑N
r,s=1 ars,

b̄r· =
1
N

∑N
s=1 brs, b̄·s =

1
N

∑N
r=1 brs, b̄·· =

1
N2

∑N
r,s=1 brs.

The interested reader is referred to [35] for detailed infor-

mation on νN (X,Y) and its properties.

The statistical test proposed in [35] rejects H0 if

N ν2N (X,Y)

S
> N−1

(

1−
αd

2

)2

, (20)

where N (·) denotes the normal cumulative distribution func-

tion, αd is the significance level of the test, and

S = ā··b̄··. (21)

For each i, inequality (20) is tested for all p, and only

those features up for which there is enough statistical evidence

to reject the independence hypothesis are considered in the

FS process for determining the classifier ŷi. The prefiltering

procedure, denoted distance correlation filtering (DCF), is

summarized in Algorithm 2.

IV. EXPERIMENTAL STUDY

A. Experiment design and datasets

This section illustrates various experiments carried out to

assess the performance of the proposed algorithm. Eight

numerical datasets from the UCI machine learning repository

[37] have been analyzed. The main features of the selected

datasets are given in Table I.

All the input data in the original feature sets have been

normalized in the range [0, 1] range according to:

up(k) =
up,raw(k)− upmin

upmax
− upmin

, (22)

Algorithm 2 Feature set preprocessing for class i.

Input: {u(k), yi(k)}, Fs = {u1, . . . , uNf
}, αd

Output: F̃ i
s

1: F̃ i
s ← Fs

2: for j = 1 to Nf do

3: Hj
0 ← true

4: X ← [uj(1) · · · uj(N)]T

5: Y ← [yi(1) · · · yi(N)]T

6: Compute ν2N (X,Y) as in (19)

7: Compute S as in (21)

8: if Nν2N (X,Y)/S > N−1(1− αd/2)
2

then

9: Hj
0 ← false

10: end if

11: if Hj
0 then

12: F̃ i
s ← F̃

i
s \ {uj}

13: end if

14: end for

for k = 1, . . . , N , where up,raw(k) is the original numeric

value of the kth observation of feature p in a given dataset,

and upmax
and upmin

represent the maximum and minimum

value of the pth attribute in the dataset, respectively.

The classification performance of the proposed algorithm

on the selected datasets has been evaluated using the 10-fold

cross validation (10-FCV) approach. Briefly, the dataset is split

into ten (equal and non-overlapping) subsets (folds), possibly

uniformly representative of all classes. Nine folds are used

for training and the remaining one for testing, the procedure

being repeated 10 times so that all folds are tested once.

The algorithm performance is finally computed as the average

over the ten independent runs. Given the randomized nature

of the RFSC, different results may be obtained on each run,

especially on datasets with large feature sets, for which full

exploration may be too costly. For this reason, the application

of the RFSC on each fold is repeated 10 times and the best

model retained. A different criterion has been adopted for the

HillValley and Musk1 datasets, to obtain results more directly

comparable to the literature. Specifically, 70% samples are

employed for training and 30% for testing. The algorithm

performance is computed as the average of 10 independent

runs with a random data division of the training-testing pairs.

The classifier performance can be evaluated in terms of the

percentage of correct classifications. In addition, we provide

an alternative accuracy measure, namely the Cohen’s Kappa

rate [38], which is capable of dealing more effectively with

imbalanced data.

The Kappa statistic was originally designed to compare two

different classifiers to measure the degree of (dis)agreement,

compensating for chance (dis)agreements, but can be used to

evaluate the merit of a specific classifier by comparing it to

an “ideal” classifier producing the exact classifications. Let the

confusion matrix be an Nc×Nc matrix C such that Cij equals

the number of samples that are classified in class i by classifier

1 and j by classifier 2, and denote by Ci· =
∑Nc

k=1 Cik and

C·j =
∑Nc

k=1 Ckj the row and column counts (that represent

the individual classification counts). Then, the Kappa rate is

defined as follows:

K =
N

∑Nc

i=1 Cii −
∑Nc

i=1 Ci·C·i

N2 −
∑Nc

i=1 Ci·C·i

, (23)

and ranges from −1 (total disagreement) to 0 (random clas-

sification) to 1 (total agreement). The Kappa statistic is very

useful for multi-class problems, in that it measures the classi-

fier accuracy while compensating for random successes [31].

TABLE I
MAIN CHARACTERISTICS OF THE USED DATASETS, [37].

Dataset No. of No. of Feature types No. of
name samples features Real Integer classes

Bupa 345 6 1 5 2
HillValley 606 0 100 0 2
Ionosphere 351 34 32 1 2
Iris 150 4 4 0 3
Musk1 476 166 0 166 2
Sonar 208 60 60 0 2
WDBC 569 30 13 0 2
Wine 178 13 13 0 3

BRANKOVIC et al.: A FEATURE SELECTION AND CLASSIFICATION ALGORITHM BASED ON RANDOMIZED EXTRACTION OF MODEL POPULATIONS 7

Regarding the initial parameter setup for the RFSC, the

number of iterations was set to Ni = 300, the maximum

nonlinearity degree to Nd = 2, the number of generated

models to Np = 100, the significance confidence interval

to α = 0.99 and all initial RIPs to µ0 = 1/Nr. Parameter

α also influences the average model size, by acting on the

threshold for the rejection of redundant terms. The closer α
is to 1, the more regressors are rejected (and greater is the

confidence that only meaningful regressors are retained), and

the smaller is the average model size. Parameter ǫ in the

termination condition has been set to ǫ = 0.002. Finally, the

significance level αd for the prefiltering phase was set to 0.99
for the HillValley, Ionosphere, and Musk1 databases, to 0.87
for the Sonar database, and to 0.9999 for the WBCD database.

The proposed algorithm was implemented in Matlab (version

2012b) and executed on an Intel(R) Core i7-3630QM machine,

with 2.4GHz CPU, 8GB of RAM, and a 64-bit Operating

System.

B. An illustration example

To get a greater insight in the mechanisms of the selection

process, we here illustrate the RFSC behavior with reference

to the WDBC dataset, which has 30 attributes and 2 class

labels. Assuming a maximum nonlinearity degree of Nd = 2,

the total number of extended regressors is Nr = 496. We will

focus on two independent runs of the RFSC algorithm. Both

runs returned a 7-terms model (denoted Model 1 and Model

2) with no common regressors and only one common feature.

We refer to the regressors of the returned models as “final”

regressors. It is worth mentioning that despite their different

structure, Model 1 and Model 2 both exhibit 0 classification

errors on the validation dataset.

Figures 1-2 (top) show the evolution of the RIP values

for both runs. In both cases various regressors are initially

considered promising and their RIPs increased. In the first run

(Fig. 1, top) the RIPs of the final regressors keep increasing

from the very first iterations and the other regressors are

progressively discarded as the algorithm progresses. On the

other hand, in the second run (Fig. 2, top) most regressors

are selected or discarded in the first 25 iterations, but the

last regressor is selected at a later stage (around iteration 40),

essentially after two other terms have been rejected. Before

final convergence, other regressors are tested but ultimately

discarded. It is interesting to note that in both cases some

regressors are initially selected, to the point that their RIPs

rise to 1, but are subsequently rejected in favor of other terms.

If we compare (column-wise) this behavior of the RIPs with

the evolution of the average loss function (average value of the

loss function of the Np extracted models at a given iteration) in

Figures 1-2 (middle), it is clear that the algorithm is exploring

model structures with a higher average loss function in order

to ultimately escape from structures that represent only local

minima.

Figures 1-2 (bottom) show the average model size (AMS)

at each iteration for both runs. For Model 1, the AMS of

the generated models (measured before the application of

the statistical test) grows rapidly in the beginning and starts

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

R
IP

s

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

A
v
e

ra
g

e
 l
o

s
s
 f

u
n

c
ti
o

n

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Iteration

A
M

S
 o

f
g

e
n

e
ra

te
d

 f
a

m
ily

 o
f

m
o

d
e

ls

AMS before T−test

AMS after T−test

Fig. 1. Model 1: Evolution of the RIPs during the selection process (top,
thicker lines indicate the terms contained in the final model), average loss
function (middle), average model size (bottom) before (dashed) and after
(solid) the t-test.

decreasing significantly only after iteration 10. Later on, after

iteration 38, the model size does not change significantly. On

the other hand, the AMS measured after the statistical test is

very low from iterations 10 to 30, indicating that the algorithm

is systematically rejecting tentative regressors as redundant. It

is only between iterations 30 to 40 (i.e., when the final two

regressors have been added), that the model size converges to

its final value. Similarly, for Model 2 the AMS before the t-test

increases at the beginning, reaching a peak around iteration 15,

and then it stabilizes after iteration 20.

Notice that in both runs the AMS value is always reduced

after the test, indicating the effectiveness of the latter in

detecting redundant terms.

8 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXXX 2017

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

R
IP

s

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

A
v
e

ra
g

e
 l
o

s
s
 f

u
n

c
ti
o

n

0 10 20 30 40 50 60 70
0

5

10

15

20

25

Iteration

A
M

S
 o

f
g

e
n

e
ra

te
d

 f
a

m
ily

 o
f

m
o

d
e

ls

AMS before T−test

AMS after T−test

Fig. 2. Model 2: Evolution of the RIPs during the selection process (top,
thicker lines indicate the terms contained in the final model), average loss
function (middle), average model size (bottom) before (dashed) and after
(solid) the t-test.

C. Interpretation of the results

As previously stated, all input data points up(k), with p =
1, . . . , Nf and k = 1, . . . , N , have been normalized to be in

the [0, 1] interval. Since each regressor ϕj(k) is constructed

as a product of features, ϕj(k) takes values in [0, 1] as well,

for all j = 1, . . . , Nr and k = 1, . . . , N .

Now, the estimated model is of the form (4), where only

the selected regressors are associated to non-zero parameters.

The predicted class for the kth observation is given only by

the sign of ŷi, while the absolute value of ŷi is related to the

reliability of the prediction. Since ϕj(k) is non-negative, the

information about the sign is carried by the coefficients ϑ(i)

of the linear combination in (4). Therefore, the model can be

decomposed in two additive components based simply on the

sign of the parameters:

ŷi(k) = ŷ+i (k)− ŷ−i (k) = Φ(k)T+ϑ
(i)
+ −Φ(k)T−(−ϑ

(i)
−), (24)

where the first component ŷ+i (k) = Φ(k)T+ϑ
(i)
+ is associ-

ated to terms with positive coefficients and the second one

ŷ−i (k) = Φ(k)T−(−ϑ
(i)
−) to terms with negative coefficients.

This decomposition has the following very nice and clear in-

terpretation: features which appear in regressors inside ŷ+i (k)
are representative for class i, whereas features appearing in

ŷ−i (k) are against class i. The “strongest” group of (extended)

features in the ith model determines the sign of ŷi, and

therefore if the predicted class should be class i or not.

If multiple classes exhibit a positive ŷi, then the class is

determined by the most “confident” classifier, i.e the one with

the largest difference between ŷ+i (k) and ŷ−i (k).
In Figure 3, we report the values of the two quantities ŷ+i (k)

and ŷ−i (k) for 20 validation data points. The two plots in

Figure 3 (top and bottom) refer to the final models of the two

runs of the RFSC algorithm analyzed in the previous section.

Both models exhibit 0 classification errors on the validation

set (56 samples).

From Figure 3, it is also apparent that despite the fact

that both models exhibit 0 classification errors, they are not

equivalent in terms of reliability. In particular, the value

of δi(k) = (ŷ+i (k) − ŷ−i (k))/max(ŷ+i (k), ŷ
−
i (k)) can be

interpreted as the “confidence” the model has in attributing

class i to the kth sample. Apparently, Model 1 has generally

greater values of δi. This difference is not currently captured

by the performance index (11), and therefore the two models

are considered equivalent for the RFSC algorithm.

To conclude the analysis of the results, we report in Table II

the average size of the final model structures obtained by the

10-FCV procedure. Specifically, Table II displays the number

of original attributes Na, the number of attributes after the

DCF procedure N∗
a , the average number of attributes na used

by the classifier over the 10 folds, the number of regressors

Nr generated based on the original attributes, the number of

regressors N∗
r generated based on the filtered attributes, the

average number of regressors nr used by the classifier over

the 10 folds. In the non-binary classification problems (Iris

and Wine datasets), a separate modeling is carried out for each

class. In those cases, the classifier size (in terms of number of

used features and regressors) is calculated by performing the

union over the individual class models ŷi, i = 1, . . . , Nc.

By inspecting Table II, it is noticeable that while the RFSC

algorithm employs a considerable fraction of the available fea-

tures, it generally requires only a small number of regressors,

demonstrating its capability of compressing the information in

few terms.

D. Comparative analysis

To assess the performance of the RFSC algorithm, we

report in this section an extensive comparison with the results

documented in [3], [13], [15], [31], [33], [39], on the datasets

in Table I. The comparison is carried out in terms of the

average classification accuracy Ja, the average Kappa rate

Ka, and the average model size. The performance comparison

BRANKOVIC et al.: A FEATURE SELECTION AND CLASSIFICATION ALGORITHM BASED ON RANDOMIZED EXTRACTION OF MODEL POPULATIONS 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

Sample

ŷ+i

ŷ−i

Fig. 3. Values of ŷ+
i
(k) and ŷ−

i
(k) for 20 validation samples: Model 1 (top) and Model 2 (bottom).

is summarized in Tables III-IV and the size comparison in

Table V. The best result within a column is highlighted.

The RFSC outperformed all other documented results on

the Bupa, HillValley and WDBC datasets, both in terms of

average accuracy and average Kappa rate. This has been

achieved at the cost of using more attributes compared to

the other methods. On the other hand, the proposed algorithm

was only slightly outperformed by the best competitor (which

is different from case to case) on the remaining datasets,

providing overall a good tradeoff between model complexity

and accuracy. Considering more recent approaches such as

[13], [15], and [33], the proposed RFSC dominates on 4 out

of 8 tested benchmarks, and is only slightly outperformed in

the other cases.

E. Computational time

A comparative analysis in terms of computational time is

finally presented in Table VI. Though inherently time consum-

ing due to model exploration mechanism in the randomized

MSS process, the RFSC achieves convergence in comparable

time with competitor algorithms. Indeed, it outperforms the

PSO4-2 method for the Wine and WDBC datasets, but is

generally somewhat slower than PSO+LDA. In this respect, it

is important to note that non-optimized Matlab code has been

TABLE II
AVERAGE SIZE OF THE OBTAINED CLASSIFIERS OVER THE 10 FOLDS.

Dataset Na N∗

a na Nr N∗

r nr

Bupa 6 − 5.8 28 − 7.4
HillValley 100 100 8.3 5151 5151 3.7
Ionosphere 34 29 16.4 595 465 14.7
Iris 4 − 3.2 15 − 6.1
Musk1 166 165 46.2 14028 13860 23.2
Sonar 60 39 25.8 1891 820 18.7
WDBC 30 24 11.5 496 325 10.3
Wine 13 − 7.3 105 − 7.5

used to obtain the documented results, so that the reported

figures must be considered gross upper bounds. Still, the

computational time goes from a few seconds to a little more

than a minute for all analyzed datasets.

In order to analyze the algorithm’s computational effort as

a function of the problem size, we report in Fig. 4 the elapsed

time versus the number of extended features for the WDBC

dataset. More precisely, the curves in Fig. 4 show, for different

values of the maximum number of iterations Ni, the average

computational time associated to the algorithm calculated over

ten different subsets of extended features of a given size

(drawn at random). The four curves are characterized by an

initial increase of the computational time with the problem

size, followed by a saturation. The latter indicates that all

simulations exhaust the available number of iterations above a

certain problem size. Notice that the initial RIPs are defined so

as to result in the same initial AMS for any problem size, so

that it is expected that the computational load of the algorithm

is essentially independent of the model size for a given Ni. As

Ni increases, the saturation point shifts, indicating that early

convergence is sometimes achieved.

V. CONCLUSION

A novel method has been proposed to jointly address the

FS and classifier design problems, inspired by recent results

in the nonlinear model identification domain. The FS problem

is reformulated as a model structure selection problem where

suitable nonlinear functions of the original features are evalu-

ated for insertion in a linear regression model. Differently from

commonly adopted methods, the importance of each candidate

regressors is not evaluated with reference to a specific model,

but to an ensemble of models, which appears to provide a

more reliable information regarding the actual significance

of the term. A distribution of models is used to extract the

ensemble of models and is then updated based on the aggregate

10 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXXX 2017

TABLE III
COMPARATIVE PERFORMANCE ANALYSIS IN TERMS OF ACCURACY.

FS Method + Classifier Ref. Bupa HillValley Ionosphere Iris Musk1 Sonar WBCD Wine

ACO + PMC [13] 0.6725 - 0.9373 0.9600 - 0.9087 - 0.9755
Att. WV + DGC [31] 0.6744 - 0.9311 0.9533 - 0.8487 0.9619 0.9731
Att. WV + DGC [31] 0.6525 0.6724 0.9533 - 0.7694 - 0.9706
- + KNN [31] 0.6066 - 0.8519 0.9400 - 0.8307 - 0.9549
- + KNN-A [31] 0.6257 - 0.9372 0.9533 - 0.8798 - 0.9663
- + DW-KNN [31] 0.6376 - 0.8747 0.9400 - 0.8648 - 0.9438
- + Cam-NN [31] 0.5962 - 0.7379 0.9467 - 0.7743 - 0.9497
- + CNN [31] 0.6316 - 0.8917 0.9267 - 0.8940 - 0.9663
SSMA + SFLDS [31] 0.6426 - 0.9088 0.9533 - 0.8079 - 0.9438
forward FS + LDA [39] 0.6110 - 0.8530 0.9630 - 0.7610 - 0.9660
backward FS + LDA [39] 0.6430 - 0.9090 0.9370 - 0.8550 - 0.9990
PSO + LDA [39] 0.6520 - 0.9220 0.9700 - 0.9050 - 1.000
PSO(4-2) + 5NN [3] - 0.5777 0.8727 - 0.8494 0.7816 0.9398 0.9526
FFW-DGC [33] - - 0.9461 0.9667 - 0.9173 0.9525 0.9831
MDis ABC [15] - 0.5508 - - 0.8529 - - -

DCF + RFSC 0.7800 0.9277 0.9330 0.9666 0.8132 0.8806 0.9827 0.9944

TABLE IV
COMPARATIVE PERFORMANCE ANALYSIS IN TERMS OF KAPPA RATE.

FS Method + Classifier Ref. Bupa HillValley Ionosphere Iris Musk1 Sonar WBCD Wine

ACO + PMC [13] 0.3259 - 0.8604 0.9400 - 0.8164 - 0.9659
Att. WV + DGC [31] 0.3076 - 0.8487 0.9300 - 0.6943 - 0.9590
Att. WV + DGC [31] 0.2220 - 0.1142 0.9300 - 0.5187 0.9619 0.9552
- + KNN [31] 0.1944 - 0.6494 0.9100 - 0.6554 - 0.9318
- + KNN-A [31] 0.2021 - 0.8595 0.9300 - 0.7549 - 0.9491
- + DW-KNN [31] 0.2645 - 0.7083 0.9100 - 0.7248 - 0.9152
- + Cam-NN [31] 0.1024 - 0.5145 0.9200 - 0.5364 - 0.9228
- + CNN [31] 0.2571 - 0.7526 0.8900 - 0.7861 - 0.9491
SSMA + SFLDS [31] 0.2731 - 0.7986 0.9300 - 0.6100 - 0.9145
PSO(4-2) + 5NN [3] - - - - - - 0.9398 -
FFW-DGC [33] - - 0.8958 0.9500 - 0.6252 0.8984 0.9745
MDis ABC [15] - - - - - - -

DCF + RFSC 0.4950 0.8552 0.8541 0.9500 0.6201 0.8101 0.9621 0.9916

TABLE V
COMPARATIVE MODEL SIZE ANALYSIS.

FS Method + Classifier Ref. Bupa HillValley Ionosphere Iris Musk1 Sonar WDBC Wine

FW FS + LDA [39] 3.6 - 4.8 2.3 - 10.7 - 7.1
BW FS + LDA [39] 4.7 - 30.4 3.9 - 56.4 - 12.8
PSO + LDA [39] 4.6 - 21.7 3.6 - 38.1 - 12.3
PSO(4-2) + 5NN [3] - 12.22 3.26 - 76.54 11.24 3.46 6.84
MDis ABC [15] - 30.53 5.76 - 75.76 - 11.86 5.76

DCF + RFSC 5.8 8.3 16.4 3.1 46.2 25.8 11.5 3.3

information gathered from the extracted models, reinforcing

the probability to extract the most promising regressors. Upon

convergence a limit distribution is obtained which in practice

identifies a single model structure. A distance correlation

filtering (DCF) method has been occasionally found to be

useful in reducing the feature set by pruning features that are

independent from the model output.

The proposed method has been evaluated and compared to

other well-known FS and classification algorithms obtaining

quite promising and competitive results, especially in terms

of the tradeoff between model complexity and classification

accuracy. An important feature of the method is the easy

interpretability of the obtained models, which can be used to

gain more insight regarding the considered problem. Finally,

the computational efficiency of the proposed method has been

found to be comparable to that of competitor methods.

REFERENCES

[1] M. Dash and H. Liu, “Feature selection for classification,” Intelligent

data analysis, vol. 1, no. 1, pp. 131–156, 1997.

[2] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[3] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisation
for feature selection in classification: Novel initialisation and updating
mechanisms,” Applied Soft Computing, vol. 18, pp. 261–276, 2014.

[4] H. Liu and H. Motoda, Feature selection for knowledge discovery and

data mining, vol. 454. Springer Science & Business Media, 2012.

[5] F. Ferri, P. Pudil, M. Hatef, and J. Kittler, “Comparative study of
techniques for large-scale feature selection,” Pattern Recognition in

Practice IV, pp. 403–413, 1994.

[6] M. Korenberg, S. Billings, Y. Liu, and P. McIlroy, “Orthogonal parameter
estimation algorithm for non-linear stochastic systems,” International

Journal of Control, vol. 48, no. 1, pp. 193–210, 1988.

BRANKOVIC et al.: A FEATURE SELECTION AND CLASSIFICATION ALGORITHM BASED ON RANDOMIZED EXTRACTION OF MODEL POPULATIONS 11

TABLE VI
COMPUTATION TIME [s].

FS Method + Classifier Ref. Bupa HillValley Ionosphere Iris Musk1 Sonar WDBC Wine

PSO(4-2) + 5NN [3] - 1210.2 61.8 - 620.4 32.4 172.8 18.6
PSO + LDA [39] - - 27.6 - - 36.6 - 5.4

DCF + RFSC (Avrg.) 14.6 18.6 57 10.01 51.6 72 66 12

0 50 100 150 200 250 300 350 400 450 500

Number of extended features (N
r
)

10

20

30

40

50

60

70

80

90

100

E
la

p
s
e
d
 t
im

e
 [
s
]

N
i
 = 105

N
i
 = 80

N
i
 = 55

N
i
 = 30

Fig. 4. Computational time of the RFSC algorithm for the WDBC dataset
with Ni = [30 55 80 105].

[7] L. Piroddi and W. Spinelli, “An identification algorithm for polynomial
narx models based on simulation error minimization,” International

Journal of Control, vol. 76, no. 17, pp. 1767–1781, 2003.

[8] S. A. Billings, Nonlinear System Identification: NARMAX Methods in

the Time, Frequency, and Spatio-Temporal Domains. Wiley, 2013.

[9] M. G. Smith and L. Bull, “Genetic programming with a genetic
algorithm for feature construction and selection,” Genetic Programming

and Evolvable Machines, vol. 6, no. 3, pp. 265–281, 2005.

[10] J. Yang and V. Honavar, “Feature subset selection using a genetic
algorithm,” in Feature extraction, construction and selection, pp. 117–
136, Springer, 1998.

[11] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,” IEEE

Transactions on Cybernetics, vol. 43, no. 6, pp. 1656–1671, 2013.

[12] M. M. Kabir, M. Shahjahan, and K. Murase, “A new hybrid ant
colony optimization algorithm for feature selection,” Expert Systems with

Applications, vol. 39, no. 3, pp. 3747–3763, 2012.

[13] N. Sreeja and A. Sankar, “Pattern matching based classification using ant
colony optimization based feature selection,” Applied Soft Computing,
vol. 31, pp. 91–102, 2015.

[14] R. Diao and Q. Shen, “Feature selection with harmony search,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 42, no. 6, pp. 1509–1523, 2012.

[15] E. Hancer, B. Xue, D. Karaboga, and M. Zhang, “A binary abc algorithm
based on advanced similarity scheme for feature selection,” Applied Soft

Computing, vol. 36, pp. 334–348, 2015.

[16] S. Saha, S. Rajasekaran, and R. Ramprasad, “Novel randomized feature
selection algorithms,” International Journal of Foundations of Computer

Science, vol. 26, no. 03, pp. 321–341, 2015.

[17] S. Mylavarapu and A. Kaban, “Random projections versus random
selection of features for classification of high dimensional data,” in 2013

13th UK Workshop on Computational Intelligence (UKCI), pp. 305–312,
IEEE, 2013.

[18] M. Paliwal and U. A. Kumar, “Neural networks and statistical tech-
niques: A review of applications,” Expert systems with applications,
vol. 36, no. 1, pp. 2–17, 2009.

[19] S. R. Gunn et al., “Support vector machines for classification and
regression,” ISIS technical report, vol. 14, 1998.

[20] Y. Xu, “Maximum margin of twin spheres support vector machine for
imbalanced data classification,” 2016.

[21] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine learning, vol. 6, no. 1, pp. 37–66, 1991.

[22] P. G. Espejo, S. Ventura, and F. Herrera, “A survey on the application of
genetic programming to classification,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, vol. 40, no. 2,
pp. 121–144, 2010.

[23] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, “Particle swarm
optimization for parameter determination and feature selection of sup-
port vector machines,” Expert systems with applications, vol. 35, no. 4,
pp. 1817–1824, 2008.

[24] R. Sheikhpour, M. A. Sarram, and R. Sheikhpour, “Particle swarm
optimization for bandwidth determination and feature selection of kernel
density estimation based classifiers in diagnosis of breast cancer,”
Applied Soft Computing, vol. 40, pp. 113–131, 2016.

[25] I. Triguero, S. Garcı́a, and F. Herrera, “Differential evolution for opti-
mizing the positioning of prototypes in nearest neighbor classification,”
Pattern Recognition, vol. 44, no. 4, pp. 901–916, 2011.

[26] B. Li, Y. W. Chen, and Y. Q. Chen, “The nearest neighbor algorithm
of local probability centers,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 38, no. 1, pp. 141–154, 2008.
[27] J. Wang, P. Neskovic, and L. N. Cooper, “Improving nearest neighbor

rule with a simple adaptive distance measure,” Pattern Recognition

Letters, vol. 28, no. 2, pp. 207–213, 2007.
[28] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE

Transactions on Systems, Man and Cybernetics, no. 4, pp. 325–327,
1976.

[29] Q.-B. Gao and Z.-Z. Wang, “Center-based nearest neighbor classifier,”
Pattern Recognition, vol. 40, no. 1, pp. 346–349, 2007.

[30] C. Y. Zhou and Y. Q. Chen, “Improving nearest neighbor classification
with cam weighted distance,” Pattern Recognition, vol. 39, no. 4,
pp. 635–645, 2006.

[31] A. Cano, A. Zafra, and S. Ventura, “Weighted data gravitation clas-
sification for standard and imbalanced data,” IEEE Transactions on

Cybernetics, vol. 43, no. 6, pp. 1672–1687, 2013.
[32] L. Peng, B. Yang, Y. Chen, and A. Abraham, “Data gravitation based

classification,” Information Sciences, vol. 179, no. 6, pp. 809–819, 2009.
[33] L. Peng, H. Zhang, H. Zhang, and B. Yang, “A fast feature weighting

algorithm of data gravitation classification,” Information Sciences, 2016.
[34] A. Falsone, L. Piroddi, and M. Prandini, “A randomized algorithm for

nonlinear model structure selection,” Automatica, vol. 60, pp. 227–238,
2015.

[35] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing
dependence by correlation of distances,” Ann. Statist., vol. 35, pp. 2769–
2794, 12 2007.

[36] C. Bishop, Pattern Recognition and Machine Learning. Springer, New
York, 2006.

[37] D. Newman, S. Hettich, C. L. Blake, and C. J. Merz, “UCI repository
of machine learning databases,” 1998.

[38] A. Ben-David, “Comparison of classification accuracy using Cohen’s
weighted kappa,” Expert Systems with Applications, vol. 34, no. 2,
pp. 825–832, 2008.

[39] S.-W. Lin and S.-C. Chen, “PSOLDA: A particle swarm optimization
approach for enhancing classification accuracy rate of linear discriminant
analysis,” Applied Soft Computing, vol. 9, no. 3, pp. 1008–1015, 2009.

12 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXXXX 2017

Aida Brankovic was born in Sarajevo (Bosnia and
Herzegovina), in 1987. In 2009 she received her
bachelor degree and in 2011 her master degree,
both in Automation, Control and Electronics from
University of Sarajevo. From February to September
2013 she worked as a teaching assistant at the Elec-
trical Faculty of University of Sarajevo, and from
September to November 2013 as research assistant
in the MOVE research group of the Politecnico di
Milano. In November 2013 she started her PhD
at the Dipartimento di Elettronica, Informazione e

Bioingegneria of the Politecnico di Milano, Systems and Control section.
Her current interests include nonlinear model identification, randomized
algorithms and supervised machine learning.

Alessandro Falsone received the Bachelor of Sci-
ence in 2011 and the Master of Science cum laude in
2013, both in Automation and Control Engineering
from Politecnico di Milano. From November 2013
to October 2014 he worked as a research assistant
at the Dipartimento di Elettronica, Informazione
e Bioingegneria at Politecnico di Milano. Since
November 2014 he is a Ph.D. student in the System
and Control division of the same department. His
current research interests include distributed opti-
mization and control, optimal control of stochastic

hybrid systems, randomized algorithms, and nonlinear model identification.

Maria Prandini received her laurea degree in Elec-
trical Engineering (summa cum laude) from Po-
litecnico di Milano (1994) and her Ph.D. degree in
Information Technology from Universitá degli Studi
di Brescia, Italy (1998). From 1998 to 2000 she was
a postdoctoral researcher at the Dep. of Electrical
Engineering and Computer Sciences, Univ. Califor-
nia at Berkeley. She also held visiting positions at
Delft Univ. of Technology (1998), Cambridge Univ.
(2000), Univ. of California at Berkeley (2005), and
Swiss Federal Inst. of Technology Zurich (2006).

In 2002, she started as an Assistant Professor in Systems and Control at
Politecnico di Milano, where she is currently an Associate Professor. Her
research interests include stochastic hybrid systems, randomized algorithms,
constrained control, system abstraction and verification, nonlinear identifi-
cation, distributed optimization, and the application of control theory to air
traffic management and energy systems. She serves on the editorial board of
Cyber Physical Systems, and previously of European Journal of Control, IEEE
Trans. on Automatic Control, IEEE Trans. on Control Systems Technology
and Nonlinear Analysis: Hybrid Systems. From 2013 to 2105, she has been
editor for Electronic Publications of the IEEE CSS. She is member of the
IEEE CSS Board of Governors, and since January 2016 she is CSS Vice-
President for Conference Activities.

Luigi Piroddi (M’07) was born in London, U.K.,
in 1966. He received his laurea degree in Electri-
cal Engineering and the Ph.D. degree in Computer
Science and Control Theory from the Politecnico
di Milano, Milano, Italy, in 1990 and 1995, respec-
tively. Between 1994 and 1999, he was a Professor
of fundamentals of automation with the Universitá
degli Studi di Bergamo, Bergamo, Italy. From 1999
to 2004, he was an Assistant Professor with the
Politecnico di Milano. From 2004 to 2015 he has
been an Associate Professor, and from 2016 he is

Full Professor with the same institution, where he holds various courses in
the systems and control area. His research interests include nonlinear model
identification, Petri nets, modeling, and control of manufacturing processes.
He currently serves on the editorial board of the IEEE Transactions on
Automation Science and Engineering.

