
Acta Numerica (2017), pp. 001– c© Cambridge University Press, 2017

doi:10.1017/S09624929 Printed in the United Kingdom

The Cardiovascular System: Mathematical

Modeling, Numerical Algorithms, Clinical

Applications

A. Quarteroni

SB MATHICSE, Chair of Modelling and Scientific Computing (CMCS)

Ecole Polytechnique Fédérale de Lausanne

Av. Piccard, Station 8, CH-1015 Lausanne (Switzerland)

E-mail: alfio.quarteroni@epfl.ch

A. Manzoni

SB MATHICSE, Chair of Modelling and Scientific Computing (CMCS)

Ecole Polytechnique Fédérale de Lausanne

Av. Piccard, Station 8, CH-1015 Lausanne (Switzerland)

E-mail: andrea.manzoni@epfl.ch

C. Vergara

MOX, Dipartimento di Matematica, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133, Milan (Italy)

E-mail: christian.vergara@polimi.it

Mathematical and numerical modeling of the cardiovascular system is a research topic that
has attracted a remarkable interest from the mathematical community because of the intrinsic
mathematical difficulty and due to the increasing impact of cardiovascular diseases world-
wide. In this review article, we will address the two principle components of the cardiovascular
system, the arterial circulation and the heart function. We systematically go through the
complete pipeline from data imaging acquisition, setting the basic physical principles, analyz-
ing the associated mathematical models that comprise PDEs and ODEs systems, proposing
sound and efficient numerical methods for their approximation, simulating both benchmark
problems and clinically inspired (driven) problems. Mathematical modeling itself features
tremendous challenges, due to the amazing complexity of the cardiocirculatory system, the
multiscale nature of the involved physiological processes, and the need of devising compu-
tational methods that are stable, reliable, and efficient. A critical issue is about filtering
the data, identifying the parameters of mathematical models, devising optimal treatments,
accounting for uncertainties. For this reason, we will devote the last part of the paper to
control and inverse problems, including parameter estimation, uncertainty quantification and
the development of reduced order models that are of paramount importance when solving
problems with high complexity, that would be out of reach otherwise.
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1. Introduction

This is a review paper on the mathematical and numerical modeling of the cardiovascular
system (CS), a research topic that has attracted remarkable interest from both the math-
ematical and bioengineering communities over the past 25 years. The driving motivation
for such interest is the increasing impact of cardiovascular diseases (CVD) in our lives.
According to (Mozaffarian, Benjamin, Go, Arnett, Blaha, Cushman, Das, de Ferranti,
Després, Fullerton, Howard, Huffman, Isasi, Jiménez, Judd, Kissela, Lichtman, Lisabeth,
Liu, Mackey, Magid, McGuire, Mohler, Moy, Muntner, Mussolino, Nasir, Neumar, Nichol,
Palaniappan, Pandey, Reeves, Rodriguez, Rosamond, Sorlie, Stein, Towfighi, Turan, Vi-
rani, Woo, Yeh and Turner 2015), CVD are the major cause of death worldwide, leading
to more than 17.3 million deaths per year, a number that is expected to grow to more than
23.6 million by 2030. In Europe, nowadays they correspond to nearly half of all deaths
(47%).

In this paper we focus on the two principal components of the CS, the arterial circulation
and the heart function with its electrical and mechanical activities. Geometric complexity,
lack of data to feed the mathematical models, multiphysics and multiscale nature of the
processes at hand, represent major challenges when trying to reproduce both function and
malfunction.
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Due to its composite nature, the CS is first modeled by means of stand-alone core
components describing a single functionality, like e.g. the artery fluid-dynamics, the heart
electrical activity, the fluid dynamics in the left ventricle, etc. Each core model needs
to be properly analyzed mathematically and efficiently approximated numerically, often
by specifically devised methods. The next step is the integration of the core models into
global, coupled integrated models apt at describing a meaningful and coherent part of the
(or even the entire) CS system. This step requires the introduction of suitable coupling
conditions and of (novel) numerical strategies for a stable, reliable, and computationally
effective solution of the global problem.

Clinical data play a decisive role for CS models and, at the same time, they represent
a formidable challenge. Clinical radiological images (such as Computer Tomography and
Magnetic Resonance Imaging) are necessary to construct the computational domains. The
procedure of geometric reconstruction is difficult and, especially for the heart, requires ad-
vanced mathematical and numerical tools. Standard radiological images can sometimes
be useless: some cardiovascular components may have a size smaller than the spatial res-
olution featured by the imaging device (this is e.g. the case of the Purkinje network); in
other cases the elevated brightness gap between fluid and vessel wall, makes the detection
of the latter very hard. Boundary data are also difficult to obtain. When the computa-
tional domain results from an artificial truncation, specific physical quantities (e.g. fluid
velocity or pressure) should be provided at those locations of the arterial tree correspond-
ing to the artificial boundaries. However, this would require invasive measurements that
cannot be easily carried out. Finally, the huge inter- and intra-patient data variability and
uncertainty represent further sources of concern toward model calibration and validation.

In spite of all these difficulties, a wealth of models has already been successfully applied
to address both physiological and pathological instances. The aim is from one side a
better understanding of the physical and quantitative processes governing the CS, and
on the other side the opening of new frontiers in therapeutic planning and the design of
implantable devices (such as e.g. medical stents and cardiac defibrillators).

The literature about the mathematical and numerical modeling of CS is huge (as the
reader would realize by browsing this paper’s references, a tiny subset of the overall ex-
isting ones). In the forthcoming sections we will try to provide an outlook to the main
contributions in this field. Here, among the several books, monographes, and review pa-
pers published so far, we mention (Formaggia, Quarteroni and (Eds.) 2009a, Taylor and
Figueroa 2009, Quarteroni, Veneziani and Vergara 2016c) for the circulatory system and
(Peskin 2002, Smith, Nickerson, Crampin and Hunter 2004, Colli Franzone, Pavarino and
Scacchi 2014, Quarteroni 2015, Quarteroni, Lassila, Rossi and Ruiz-Baier 2016a) for the
heart.

This review paper consists of three main parts, i.e. i) modeling the arterial circulation
(Sects. 2, 3 and 4), ii) modeling the heart function (Sects. 5, 6 and 7), and iii) solving
inverse problems and including uncertainty (Sects. 8, 9, 10 and 11). Both parts 1 and 2 are
composed by an introductory section on physiology (Sects. 2 and 5), a section describing
the available data and their use (Sects. 3 and 6), and a final section on the mathematical
and numerical modeling (Sects. 4 and 7). Regarding the third part, in an introductory
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section we underline the need of going beyond a single (forward) simulation in some
applications (Sect. 8). This represents the common denominator of three topics recently
applied to cardiovascular mathematics: control and optimization (Sect. 9), parameter
estimation (Sect. 10), and uncertainty quantification (Sect. 11).

When appropriate (in particular in Sects. 4, 7, 9, 10 and 11), we report some numerical
results to highlight the effectiveness of the numerical strategies here presented. Unless
otherwise specified, all our numerical results have been obtained using the Finite Element
library LifeV, see www.lifev.org for more details.

PART ONE

THE ARTERIAL CIRCULATION

2. Basic facts on quantitative physiology

The cardiovascular system is a close circuit that carries oxygenated blood to all the tissues
and organs of the body. Functionally, it can be regarded as made by three compartments:
the heart, the systemic and pulmonary circulations, and the microvasculature. In this
section we will recall the most important features about the physiology of the systemic
circulation characterizing the mathematical models that will be introduced later on. We
will also highlight the main peculiarities of the pulmonary circulation. Heart physiology
will be addressed in Section 5.

The systemic circulation is composed by the arteries, that carry the oxygenated blood
ejected by the left heart to the living tissues, and the veins that allow the non-oxygenated
blood to returning to the right heart. The exchange of oxygen between blood and the body
tissues occurs in the microvasculature, which in fact separates the systemic arterial tree
from the venous systems. In the pulmonary circulation, non-oxygenated blood ejected
by the right heart flows in the pulmonary arteries towards the lungs where it becomes
oxygenated and goes back to the left heart through the pulmonary veins.

Blood is composed by plasma (about 55% of its total volume) which consists of water
(about 92% of plasma volume), proteins and ions. The remaining part of blood corresponds
to the blood cells, whose 97% of volume is occupied by erythrocytes (red blood cells) that
carry the oxygen in oxygenated blood. The other cells are leukocytes (white blood cells)
and platelets. The diameter of blood cells is approximately 10−3 cm, whereas that of the
smallest arteries/veins is about 10−1 cm. This is the reason why blood in the systemic and
pulmonary circulations is often considered as Newtonian, i.e. characterized by a linear
relationship between internal forces and velocity gradients (Perktold and Hilbert 1986,
Formaggia et al. 2009a) However, in the smallest arteries, such as coronaries (the arteries
perfusing the heart and the corresponding veins, see Figure 2.1, right), or in presence
of a vessel narrowing (stenosis), a non-Newtonian blood rheology is more appropriately
assumed, see, e.g., (Chen, Lu and Wang 2006) and references therein.

Thanks to the heart contraction, the blood flow is pulsatile and blood is pumped into
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the two circulations by means of discrete pulses with a pressure usually varying during an
heartbeat in the ranges 70−130 mmHg and 20−30 mmHg for the systemic and pulmonary
networks, respectively (1 mmHg ≃ 133.3 Pa = 1333 g/(cms2)).

In the systemic circulation, blood first enters the aorta (the largest artery with diameter
equal to about 2.5 cm in adults, see Figure 2.1, left) and then flows through a network
of hundreds of branching arteries of decreasing size, reaching all the regions of the body.
Dimensions and numbers of veins are comparable with those of arteries. The waveform
of the flow rate as a function of time is characterized by different peak values when
moving downstream towards the smallest arteries. In particular, the flow rate peak value is
about 200 cm3/s in aorta, 80 cm3/s in the abdominal aorta, 15 cm3/s in the carotids (the
arteries supplying blood to the brain, see Figure 2.1, middle), and 1 cm3/s in coronaries
(corresponding to a maximum blood velocity of about 150 cm/s in aorta, 100 cm/s in the
abdominal aorta, 80 cm/s in the carotids, and 40 cm/s in coronaries). Also the shape of
the waveforms changes while moving downstream, see Figure 2.2, left. In particular, in
the ascending aorta, after the systolic peak the flow rate decelerates assuming null or even
negative values, whereas in the abdominal aorta and in carotids is more spread out and
always positive. In any case, we can distinguish the systolic phase, i.e. the interval of
acceleration and deceleration of blood flow, and the diastolic phase, i.e. the interval of
almost constant or negative flow 1. A different situation occurs in coronaries, where the
peak flow rate is reached during diastole, see Figure 2.2, right. Coronaries are not directly
fed by the heart; indeed, blood in the proximal part of the aorta (the sinuses of Valsalva
from which coronaries originate) during diastole is allowed to enter the coronaries thanks
to the elastic response of the aorta (see below for more details).

In the pulmonary circulation blood first enters the pulmonary artery (diameter equal
to about 3.0 cm in adults) and then flows into another network of branching arteries of
decreasing size reaching the lungs. The waveforms and peak intensities are similar to those
of systemic arteries.

The different characteristics of blood flow in the arteries of the systemic circulation

result in different values of the Reynolds number Re =
ρf D U

µ (ρf being the blood density,
D and U characteristic vessel dimension and blood velocity, respectively, and µ the fluid
viscosity), a dimensionless quantity which quantifies the importance of the inertial terms
over the viscous ones. In particular, Re ≃ 4000 in the aorta and Re ≃ 400 in coronaries,
with intermediate values when moving downstream the aorta. Thus, blood covers a range
of Reynolds numbers where both the inertial and the viscous components of the flow are
relevant. Although in the aorta Re is higher than the critical value of 2000 above which
the flow would not be laminar any longer in a straight pipe, the pulsatile nature of blood
flow does not allow fully transition to turbulence to develop. It is debated whether in
aorta at least transitional-to-turbulence effects may occur. In this respect, some authors
speculate that the helicoidal velocity pattern in aorta induced by the torsion of the heart
contraction inhibits any transition to turbulence, thus supporting the thesis that in healthy

1 The previous definition of systole and diastole is formulated from the point of view of the arteries. An
almost equivalent definition could be given from the point of view of the heart, see Section 5.
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Figure 2.1. Visualization of the aorta (left), carotids (middle), and coronaries (right)

Figure 2.2. Typical flow rate waveforms in ascending aorta, abdominal aorta and carotids (left),
and in coronaries (right)

conditions turbulence is never observed in the cardiovascular system (Morbiducci, Ponzini,
Rizzo, Cadioli, Esposito, Cobelli, Maschio, Montevecchi and Redaelli 2009). This is not
necessary the case for some pathological conditions, such as carotid stenosis, yielding
a narrowing of the vessel lumen and an increased complexity of the geometry together
with higher Reynolds numbers, see, e.g., (Ahmed and Giddens 1984, Lee, Lee, Fischer,
Bassiouny and Loth 2008, Kefayati, Holdsworth and Poepping 2014, Lancellotti, Vergara,

Valdettaro, Bose and Quarteroni 2015). As for the Womersley number W =
√

2 A f
µ (A

and f being characteristic cross-section vessel area and time frequency of the flow rate
signal, respectively), a dimensionless number quantifying the pulsatility of flow, we have
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decreasing values in the systemic circulation moving downstream (W ≃ 10 in aorta, W ≃ 3
in carotids). Similar values of Re and W are found in the pulmonary arteries.

As for the veins of the systemic circulation, comparable values with respect to arteries
of flow rate, Reynolds and Womersley numbers are found, the only difference being that
the blood flow waveform is more spread out with respect to the corresponding arteries.
Another major difference is given by blood pressure values. In the arteries the range of
pressure is almost the same, independently of the location in the tree (70 − 130 mmHg),
whereas in the veins it falls down assuming a mean value of about 10mmHg. This is due
to the big resistances that blood flow experiences at the microvasculature. The latter is
composed by thousands of arterioles and venules and billions of capillaries. The blood
velocity and vessel dimensions are here greatly reduced (about 10−1 cm/s the first one
and 10−2 cm the second ones). This means that Re is very small in comparison with the
systemic circulation so that viscous forces completely dominate the inertial ones. As a
result, the highest resistance to flow is found in microvasculature, thus provoking a big
decrease in the blood pressure. Since the typical dimension of capillaries is comparable
to that of erythrocites, a multiphase model looks appropriate for their mathematical de-
scriptions (Enden and Popel 1992). Finally, we observe that, unlike arteries, veins can be
supplied by valves that prevent backflow of blood and venous flow highly depends on the
muscle contraction and respiratory effects.

As observed, blood pressure assumes the same range of values (70 − 130 mmHg) along
the entire systemic arterial tree. More precisely, a negligible dissipation is experienced by
the pressure signal in large and medium sized vessels before reaching small vessels and
microvasculature. Of course, at a given instant the pressure is not constant-in-space along
the tree. Indeed, a time shift characterizes the pressure waveforms at different locations
which generate gradient pressures between proximal and distal regions facilitating the
blood movement. These spatial gradients are due to the propagating nature of the pres-
sure which is in fact a wave traveling along the arterial network. The wave speed ranges
from about 500 cm/s in the aorta to 1200 cm/s in coronaries. The presence of bifurca-
tions or high resistance regions (such as the microvasculature) produces wave reflections
propagating backward to the heart.

The propagation of a pressure wave along the vascular tree is due to the vessels compli-
ance, i.e. the ability of the vessel to distend under the forces exerted by the blood pressure.
Vessel wall displacements are quite large, reaching up the value of 10% of the lumen di-
ameter. This is possible thanks to the structure of the vessel walls: their total thickness
is about 10% of the lumen diameter and are composed by three layers, the intima, the
media, and the adventitia. The inner part of the intima is the endothelium (facing the
blood), whereas the remaining part is composed by connective tissue. The media and the
adventitia mainly have a major role in characterizing the mechanical response of the vessel
wall from the mechanical point of view. Their main structural components are elastin and
collagen. The media is also formed by smooth muscle cells which provide the tone to
the vessel wall. Elastin forms complex networks that are very distensible, providing the
elasticity of the vessel wall at small strain. Instead, collagen forms stiff fibers oriented
in a helical form that provide tensile strenght at large strain. Thus, the artery vessel
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wall is characterized by highly non-linear elastic properties. The quantity of elastin and
collagen decreases going downstream along the arterial network, whereas the quantity of
smooth muscle cells increases. This allows the arteries more proximal to the heart, in
particular the aorta, to be very extendible and, thanks to the high peripheral resistances
due to the elevated tone of the distal arteries and to the microvasculature, to store during
systole about 50% of the entering blood. This blood reserve is then discharged during
diastole owing to the vessel wall elastic response (windkessel effect). This is responsible
for the smoothing of the blood flow waveform discussed above going downstream along
the arterial network, which guarantees a nearly continuous peripheral blood flow and thus
an almost continuous exchange of oxygen with the tissues. Also pulmonary arteries walls
are extendible (with muscular tone increasing going downstream), their thickness being
however only about 1% of the lumen diameter.

As already observed, there is mutual exchange of energy between blood and extendible
vessel walls: the latter accumulate elastic potential energy under the forces exerted by
the blood pressure, which is then transfered to the blood as kinetic energy. From the
mechanical point of view, this gives rise to a fluid-structure interaction problem. This
process occurs at short time scales, proportional to the duration of a heartbeat (∼ 1 s).
Other interaction mechanisms may take place at larger time scales yielding a wall mod-
ification of vessel properties. This occurs in the case of several arterial diseases, such as
atherosclerosis and aneurysm formation. In the first case, an increased permeability of
vessel wall to lipoprotein provokes a cascade of events at the cellular level which leads to
the accumulation of fatty material in the intima, just below the endothelium, and then to
plaque formation in the media. Preferential sites of atherosclerotic plaque formation are
the carotids and the coronaries. The main complications are the partial occlusion of the
lumen with consequent (cerebral or heart) ischemia, or even the total occlusion resulting
in (cerebral or cardiac) infarction. An aneurysm consists in the dilatation of the vessel
wall with formation of a (possibly huge) bulge, mainly in aorta and cerebral arteries, due
to a loss of elastin and to the consequent remodeling of collagen, resulting in a weakening
of the arterial wall. 80-90% of ruptured abdominal aortic aneurysms and 45% of ruptured
cerebral aneurysms result in death. The role of blood fluid-dynamics has been recognized
to be crucial for the development of both these diseases (Glagov, Zarins, Giddens and
Ku 1988, Bagci, Vodovotz, Billiar, Ermentrout and Bahar 2008). In particular, wall shear
stresses, i.e. the viscous/friction forces exerted by the blood on the endothelium, although
about 100 times smaller in magnitude than pressure, regulate the permeability of the wall
to lipopotrein and the loss of elastin, thus playing an important role in atherosclerosis and
aneurysm development. For both these arterial diseases, this supplementary interaction
between fluid and structure occurs at time scales of several years.

More on the physiology of the systemic and pulmonary circulations and microvasculature
in view of mathematical modeling is available in, e.g., (Nichols and O’Rourke 2005, Quar-
teroni, Tuveri and Veneziani 2000c, Formaggia et al. 2009a).
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3. Landscape on data

The ultimate and ambitious goal of mathematical models in medicine is to provide quan-
titative results for enhancing the understanding of biophysical processes and provide clin-
icians with useful indications in support of their diagnostic and therapeutic procedures.
To these aims, it is mandatory to consider data that are patient-specific (according to
the bioengineering jargon), i.e. related to real patients. Obtaining and processing patient-
specific data is a major issue which alone deserves specific review papers. Here, we provide
a brief overview of the most common techniques for acquisition and analysis of “clinical”
data. This data preprocessing is essential prior to the set up of a numerical simulation.

In this section, we address the case of data related to the arterial (or venous) circulation,
whereas in Section 6 we will discuss cardiac data. In arteries we have two processes
interplaying with one another, the blood flow in the vessel lumen (the region occupied by
the blood, which is referred to as the fluid domain) and the displacement of the vessel wall
(referred to as structure). We need geometric, boundary, and biological data, which are
discussed in what follows.

3.1. Geometric vascular data

Geometric data are necessary to build the geometry of the computational domains wherein
the differential problems are numerically solved. At the end of the geometric preprocessing
step, we should obtain the fluid computational domain for the blood fluid-dynamics prob-
lem, and the structure computational domain, for the vessel wall displacement problem.

The processing of geometric data for blood flow simulations is a major task since vessels
exhibit high morphological variability due, e.g., to the noticeable vessel tortuosity and the
presence of several bifurcations. Moreover, in unhealthy cases, this variability is further
emphasized, because of the possible presence of calcifications, stenoses, aneurysms, or even
prostheses (such as stents).

The geometric preprocessing consists of the following steps, which are usually performed
in sequence (Antiga, Piccinelli, Botti, Ene-Iordache, Remuzzi and Steinman 2008, Antiga,
Peiró and Steinman 2009): acquisition of clinical images, image enhancement, image seg-
mentation, and generation of the computational mesh. These items are addressed below.

3.1.1. Acquisition of clinical images

Angiography is an imaging technique successfully used to “identify” the vessel lumen.
It exploits the property that a liquid inside the vessel appears brighter than the vessel
wall and the surrounding tissue. Angiographies are usually acquired as two dimensional
(2D) images, corresponding to different slices of the domain of interest, but also three
dimensional (3D) acquisitions of volumes are possible.

One of the most common techniques to obtain an angiography is X-ray imaging, based
on the projection of X-ray beams through the body onto suitable screens, and on the
contrast produced on the 2D image by the different absorption properties of the body
structures. To highlight the vessel lumen, a radio-opaque dye is inserted into the blood
stream through the arterial system. To reconstruct tortuous geometries, a rotational
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angiography (RA) is performed, where X-ray sources and detectors are rapidly rotated
around the patient, allowing one to acquire many projections within few seconds. The
excellent spatial resolution of projection angiography (about 0.2 mm, 0.4 mm for RA)
makes this technique the gold standard for most vascular imaging applications. Another X-
ray angiography technique, widely used for blood flow simulation, is based on the computed
tomography (CT) technology, where multiple X-ray sources and detectors are rotated
rapidly around the patient, allowing one to acquire 3D images with an excellent spatial
resolution (less than 1mm, computed tomography angiography, CTA). Unlike projection
angiography, another advantage of CTA is the possibility of using intravenous instead of
arterial injections. Recently, temporally-resolved CTA imaging (4D-CTA) became feasible.
This allows one to obtain several (15-20) 3D images during an heartbeat.

Difficulties may arise for the presence of metal artifacts due to metallic prostheses such
as peacemakers, which results in streaks on the images obscuring anatomical details, see
e.g. (Robertson, Yuan, Wang and Vannier 1997, Faggiano, Lorenzi and Quarteroni 2014)
for possible mathematical treatments.

Another, widely used technique to obtain angiographies is Magnetic Resonance (MR),
based on the different decay rate featured by body structures after the application of a
radiofrequency (RF) energy. This is called Magnetic Resonance Angiography (MRA). The
generated contrast in the images could be tuned by selecting different RF stimuli. This
allows MRA to be suitably indicated to detect soft tissues. Another advantage of MRA is
that angiography could be generated without using exogenous agents. However, usually
an intravenous injection of a paramagnetic contrast agent is used to improve the blood
signal and reduce the acquisition time (Contrast-Enhanced (CE)-MRA).

Finally, we mention Ultrasound (US) imaging, based on the reflections of high frequency
sound waves (few MHz) transmitted into the body. US is the least expensive and invasive
among the techniques here discussed, and allows one for real-time acquisition of 2D images.
In contrast, the spatial resolution is the poorest one. Recently, also 3D images could be
acquired by means of 3D US, by reconstructing a 3D volume from 2D slices.

On the other side, only a few techniques allow one to obtain vessel wall images nowadays.
Among them, we cite Black Blood (BB)-MRI, by which the vessel wall and the surrounding
tissue can be viewed as well, and Intravascular Ultrasound (IVUS), which is however very
invasive since the transducer is placed directly in the artery (typically a coronary) via a
catheter.

No matter which technique is being used, from a mathematical standpoint we can
assume that at the end of the acquisition step we obtain a vector Iclin, whose j − th
component, Iclin

j , corresponds to the intensity of the image at the point xj in a gray-
scale representing the contrast generated by the imaging technique. The collection of the
points xj , j = 1, . . . , N clin, assembles the lattice Lclin, N clin being the total numbers of
acquisition points (in practice, either pixels or voxels) where the image contrast has been
evaluated. Here and in what follows, a lattice is a simple collection of points determined by
the points coordinates. It may be useful to associate to the image intensity vector Iclin a
corresponding image intensity (scalar) function, that is typically obtained by interpolation.
We will denote it by Iclin(x).
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3.1.2. Image enhancement
Medical images are often affected by noise and artifacts that may interfere with the quality
of the final results of the preprocessing step. Thus, prior to the reconstruction of the 3D
geometry, an imaging enhancement is usually performed.

A popular enhancement technique is resampling, consisting in suitably changing the
resolution of the images in one or more directions. In practice, an interpolation of im-
age intensity values Iclin onto a different (more refined) lattice is performed. The most
commonly used methods are constant interpolation, first order composite Lagrangian in-
terpolation, B-spline (Unser 1999), and windowed sinc interpolation.

The noise in the medical images may be due to thermal effects in the signal processing
electronics or to other undesired sources. Reduction of noise could be obtained by means
of a smoothing filter which does not require any prior information about the nature of the
noise and has a regularizing effect on the image. This technique is the most commonly
used both for CT and MR images. A very popular filter is the Gaussian one, consisting
in performing a discrete convolution with a Gaussian kernel over the lattice Lclin of the
image intensity Iclin. Unfortunately, together with the noise, smoothing could filter also
significant high frequency image contents. Moreover, since the image is separated by the
background by sharp boundaries, characterized by high frequency content, the smoothing
filtering could blur and move the boundaries. To prevent this, anisotropic diffusion filtering
has been introduced (Perona and Malik 1990): the heat equation is solved for a new image
intensity function, with diffusion coefficient decreasing for increasing values of the gradient
magnitude of intensity. By so doing, the filtering is not performed at the boundaries where
the gradient is large.

Another technique, called multiscale vessel enhancement (Frangi, Niessen, Hoogeveen,
Van Walsum and Viergever 1999), exploits the specific tubular shape of vascular geometries
and, accordingly, assumes that the smallest modulus of the eigenvalues of the Hessian
matrix of the image intensity function Iclin is small, while the other two are large and of
equal sign.

At the end of this substep, we obtain a new image intensity vector Ien whose j − th
component, Ien

j , represents the intensity of the enhanced image in a gray-scale at the point
xj , 1, . . . , N en, belonging to the lattice Len (and, correspondingly an associated enhanced
image intensity function Ien(x) through interpolation). Here, N en is the total number of
points where the enhanced image intensity vector is available. Usually, N en > N clin.

3.1.3. Image segmentation
Image segmentation is the cornerstone of the preprocessing step. It consists in the con-
struction of the shape of a vascular district from the image obtained after the enhancement
substep. In particular, the segmentation allows one to detect those points of the lattice
Len which are supposed to belong to the boundary of the vessel lumen. The precise def-
inition of the boundary of the lumen is a challenging task which requires, in general, a
great user’s experience.

The first technique we describe is thresholding, consisting in selecting a threshold k to
identify the points xj ∈ Len such that Ien

j > k. This is motivated by the assumption that
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k separates different anatomical structures, in our case the vessel lumen (characterized by
intensity values larger than k) and the background, obtained by the collection of points for
which Ien

j ≤ k. The value of k is determined either manually or through a suitable algo-
rithm. In the latter case, one commonly used strategy is the full width at half maximum
(FWHM) consisting in setting the threshold halfway between the peak intensity within
the lumen and the intensity of the background. For the segmentation of special structures,
such as calcifications or stents, higher-bound thresholds are used (Boldak, Rolland and
Toumoulin 2003).

A more sophisticated class of segmentation methods than thresholding is given by front
propagation methods, where the propagation of a suitable wavefront is tracked. The speed
of the wave is small in regions where Ien changes rapidly and high for the other regions, so
that the wavefront is supposed to slow down when approaching the boundary. The most
popular front propagation method is the fast marching method which provides an efficient
solution to the Eikonal problem

‖∇T (x)‖ =
1

V (Ien(x))
, x ∈ Den,

where Den ⊂ R
3 is a region that contains all xj ∈ Len, and where suitable boundary

conditions on a selected boundary where the propagation starts are prescribed (Zhu and
Tian 2003). In the previous equation, V is the speed of the wavefront and T (x) the first
arrival time at point x. In fact, T are iso-contours, representing a collection of surfaces
describing the shape of the waveform. The vessel boundary is then represented by the
points xj ∈ Len such that T (xj) = T b (up to a given tolerance), where T b is a suitable
value selected by the user.

Another class of segmentation methods is given by deformable models, where a suitable
energy is minimized, allowing the deformation of the body (in our case the boundary of
the vessel lumen) to reach a final state with smallest energy, accounting for external terms
derived from the image and internal terms constraining the boundary to be regular. The
most used class of deformable models is the level set method, where a deformable surface
is represented implicitly as the zero-level of a higher dimensional embedding function
(Sethian 1999). Deformable models, e.g. based on cylindrically parametrized surface
meshes, incorporate anatomical knowledge of the vessel shape (Frangi et al. 1999, Yim,
Cebral, Mullick, Marcos and Choyke 2001).

As for the segmentation of the vessel wall, in (Steinman, Thomas, Ladak, Milner, Rutt
and Spence 2001), starting from BB-MRI images, the vessel wall outer boundary was
segmented using the same deformable model used for the vessel lumen segmentation.
Usually, BB-MRI or other images detecting the vessel wall are not routinely acquired
in the clinical practice. In this case, a reasonable approach to obtain the vessel wall is
to extrude the reconstructed boundary lumen along the outward unit vector by using a
suitable function specifying the vessel wall thickness in the different regions of the district
of interest.

In those cases where the image intensity vectors Iclin and Ien refer to 2D slices, the
application of the previous segmentation strategies leads to identify several vessel bound-
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aries (contours), one for each slice, which now needs to be connected to obtain the 3D
boundary surface. This operation is called surface reconstruction. A simple procedure
consists in connecting successive contours by straight lines defining surface triangle edges.
This strategy is not suited in presence of changes of shape such as in bifurcations. A
better surface reconstruction is provided by least-square fitting of polynomial surfaces to
the contour set (Wang, Dutton and Taylor 1999). This strategy is suitable to manage bi-
furcations whose branches are fitted separately with a successive extension into the parent
vessel. A variant of this approach has been proposed in (Geiger 1993), where contours are
first filled with triangles which are then connected to the triangles of the adjacent contours
by means of tethraedra. The final lumen surface is then represented by the boundary of
this tetrahedral mesh (formed by triangles). We mention also shape based interpolation
where, for each contour, a characteristic function with positive (respectively, negative) val-
ues for points located inside (respectively, outside) the contour is built. The final lumen
boundary surface is then represented by the zero level-set of the interpolation of all these
characteristic functions (Raya and Udupa 1990). Finally, we briefly describe interpolation
by means of radial basis functions (RBF), that provide a flexible way of interpolating
data in multi-dimensional spaces, even for unstructured data where interpolation nodes
are scattered and/or do not form a regular grid, and for which it is often impossible to
apply polynomial or spline interpolation (Carr, Fright and Beatson 1997, Fornefett, Rohr
and Stiehl 2001). The coefficients in the linear combination with respect to the RBF basis
are determined by solving a suitable linear system, which is invertible under very mild
conditions (Peiró, Formaggia, Gazzola, Radaelli and Rigamonti 2007).

A special mention is deserved by centerline reconstruction. The centerline is a one-
dimensional curve centered inside the vessel lumen. Many segmentation tools use the
centerline as starting point making the assumption that the shape of the section is known
around each centerline location (O’Donnell, Jolly and Gupta 1998). Centerline recon-
struction allows a complete reconstruction of the computational domain when using one-
dimensional modeling of blood flow, see Section 4.5.1.

In any case, at the end of the segmentation step we obtain the lattice Lsurf which
collects the points xj , 1, . . . , N surf , classified as belonging to the lumen vessel surface or
to the outer wall, N surf being the total numbers of points of the surface lattice.

3.1.4. Building the computational mesh

Once the final boundary lattice Lsurf (made of points standing on the lumen boundary) is
made available, we are ready to build the volumetric mesh T vol in the lumen. This mesh
usually consists of unstructured tetrahedra, because of their flexibility to fill volumes of
complex shape.

Unstructured volumetric meshes are constructed starting from an analytical expression,
say S(x), representing the surface associated to the boundary lattice Lsurf . This ex-
pression can derive from an explicit representation, for instance a bivariate parametric
function built as a collection of adjacent polygons. The latter are typically triangles, gen-
erated by Lagrangian shape functions, or patches, generated by high degree polynomial
such as NURBS (Sun, Starly, Nam and Darling 2005). Alternatively, the surface is rep-
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resented implicitly as the iso-surface of an embedding function. Notice that some of the
segmentation strategies described above, such as deformable models and those used for
the surface reconstruction, provide directly an analytical expression S(x) of the lumen
boundary surface.

For the construction of unstructured volumetric meshes T vol, we mention here two
possible approaches. In the first one, a boundary surface mesh T surf is first generated.
To this aim, we start from a lattice L̃surf (in principle different than Lsurf ) composed

by points of S. Then, the Voronoi diagram for L̃surf is constructed. This is a partition
of S into non-overlapping regions, each one containing exactly one point (node) of L̃surf

and being composed by all the points of S that are closer to that node than to any
other node. Starting from the Voronoi diagram, it is possible to obtain a mesh T surf by
joining with straight lines nodes in regions sharing an edge (Delaunay mesh generation).
We underline that the vertices of the mesh T surf do not necessarily coincide with the
points of the lattice L̃surf . Popular algorithms to generate a Delaunay mesh have been
proposed, e.g., in (Watson 1981, Weatherill and Hassan 1994). Once a surface mesh T surf

is made available, the volumetric mesh T vol is generated. The latter could be obtained
by, e.g., advancing front methods, where, starting from the triangles of the surface mesh,
a front composed by internal nodes is generated. These new nodes allow one to identify
tetrahedra, whose validity is verified by checking that they do not intersect the front
(Bentley and Friedman 1979).

The second approach relies on directly generating the volumetric mesh T vol, e.g., by
means of a Delaunay 3D mesh generation, where a starting volumetric lattice L̃vol is ob-
tained by locating the nodes in the volume V(x) contained in S(x). One of the main
problems related to this approach is that boundary meshing is often difficult, since the
related surface triangulation could not be of Delaunay type. An alternative approach is
given by octree mesh generation, where V(x) is embedded in a box and successive subdi-
visions are performed until the smallest cells permit to accurately describe the boundary.
Although being faster, this strategy generates meshes with poor quality near the boundary.

When a volumetric mesh T vol is obtained, a further step (mesh optimization) prior to
the generation of the final mesh could be introduced, so as to improve its quality. This
prevents mesh distortion, e.g. the presence of very small angles, which could deteriorate the
convergence of algorithms for the solution of the PDE of interest and thus their accuracy.
Mesh optimization leads to an optimal mesh, which produces the best accuracy for a
given number of nodes. This is obtained by selecting (a priori or a posteriori through
error estimates) a lower bound for the mesh size (in case assuming different values in
different regions of V(x)). Mesh optimization is incorporated in the strategies described
above. For example, in octree mesh generation, this is obtained by splitting a cell only if
its children have a size larger than the lower bound.

A mesh is deemed valid for blood flow simulations if it allows to recover outputs of
physical interest. In arteries, the mesh should be fine enough to capture Wall Shear
Stresses (WSS) (Celik, Ghia, Roache, Freitas and Raad 2008), and, to this aim, the
construction of a boundary layer mesh is essential, even at low Reynolds numbers (Bevan,
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Nithiarasu, Loon, Sazonov, Luckraz and Garnham 2010). WSS expresses the magnitude
of tangential viscous forces exerted by the fluid on the lumen boundary Σt, defined by

WSS = µ

√√√√
2∑

j=1

(
∇v n) · τ (j)

)2
on Σt,

where v is the fluid velocity, n the outward unit vector, and τ (j) the tangential unit vectors,
j = 1, 2. Note that WSS is a scalar function of x ∈ Σt and t > 0. In componentwise
notation,

WSS = µ




2∑

j=1




3∑

i,k=1

(
∂vi

∂xk
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)
τ

(j)
i




2


1/2

on Σt.

As for the structure domain, hexahedral meshing is preferable so as to prevent the lock-
ing phenomenon, whereas tetrahedral meshes are used when conforming meshes at the
boundary lumen interface are needed in view of fluid-structure interaction problems (see
Section 4.3). Usually, three or four layers of elements are enough to obtain an accurate
result (Younis, Kaazempur-Mofrad, Chan, Isasi, Hinton, Chau, Kim and Kamm 2004).

For recent reviews on geometric reconstruction for blood flow simulation, see (Antiga
et al. 2009, Sazonov, Yeo, Bevan, Xie, van Loon and Nithiarasu 2011, Lesagea, Angelini,
Blochb and Funka-Lea 2009).

3.2. Boundary vascular data

The differential problems we will treat in the next sections need appropriate boundary
conditions. For our problems (incompressible Navier-Stokes equations for the fluid and
finite elasticity for the structure), we anticipate the kind of boundary conditions that
should ideally be prescribed:

v = gf on ΓD,t
f , −pn + µ

(
∇v + (∇v)T

)
n = hf on ΓN,t

f ,

for the fluid problem and

d = gs on ΓD,t
s , T sn = hs on ΓN,t

s ,

for the structure problem. In the previous equations, the Dirichlet and Neumann bound-
aries, ΓD,t

j and ΓN,t
j , respectively, are such that ΓD,t

j ∩ΓN,t
j = ∅, ΓD,t

j ∪ΓN,t
j = ∂Ωt

j , j = f, s,

Ωt
f and Ωt

s being the fluid and structure domains at time t, see Figure 3.3. Moreover, p

denotes the fluid pressure, −pn + µ
(
∇v + (∇v)T

)
n is the fluid normal Cauchy stress,

d the structure displacement, T s the Cauchy stress tensor of the wall material, and
gf , gs, hf , hs given data, see Section 4. In the previous definitions of domains and bound-

aries, the superscript t means that they possibly change in time.
As we will see in the following, the boundary of the computational domain (either the

fluid or the structure one) will be composed of two parts, namely the physical boundary and
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the artificial boundary. On the physical boundary, often suitable conditions are suggested
by physical principles. For example, for the fluid problem, no-slip Dirichlet conditions
should be prescribed at the lumen boundary, since it is assumed that the fluid particles
perfectly adhere to the vessel wall. This leads to a homogeneous Dirichlet condition (v = 0)
in the case of rigid walls, and to a kinematic interface condition (v = ḋ) for fluid-structure
interaction problems (see Section 4.3). As for the structure problem, at the internal
physical boundary (that is at the lumen boundary) often the fluid pressure is prescribed.
This leads to a Neumann boundary condition (T sn = −Pn, P being a measurement of
the fluid pressure) for a pure structure problem, and to a dynamic interface condition
(T sn = −pn + µ

(
∇v + (∇v)T

)
n) for fluid-structure interaction. On the outer wall

boundary Γext, the interaction with the surrounding tissue should be considered. This is
often modeled by means of a Robin boundary condition of type

αST d + T sn = Pextn on Γext, (3.1)

which assimilates the surrounding tissue to a sequence of elastic springs with rigidity αST

and where Pext is the external pressure (Moireau, Xiao, Astorino, Figueroa, Chapelle,
Taylor and Gerbeau 2012).

On a different side, the artificial sections are those introduced by the truncation of the
computational domains, see Figure 3.3. Truncation is done in order to focus on a specific
domain of interest. Ideally, the boundary conditions to be used on artificial sections should
derive from clinical measurements.

Figure 3.3. Possible choices of the Dirichlet and Neumann boundaries (left) and physical and
artificial boundaries (right) for a carotid domain in the fluid stand-alone problem (reconstructed

from MRA images)

The technique mainly used to obtain boundary data on artificial boundaries is US. This
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is because of its non-invasiveness and the fact that it is daily used in the clinical practice.
If the US beam is swept (unlike in geometric acquisitions where it is kept fixed) through
a plane or sector, it is possible to measure the blood velocity in a single point of a cross-
section Γt in the direction of the US beam by exploiting the Doppler effect. The velocity
is then converted into a flow rate measure Q across Γt for each time (this is the principle
of the so-called Echo-Color-Doppler technique (Savader, Lund and Osterman 1997)) and
can then be used to prescribe at each time a flow rate condition

ρf

∫

Γt

v · n dγ = Q. (3.2)

The previous condition is defective since it is not enough to ensure well-posedness of
the fluid problem. The treatment of defective conditions will be addressed in Section
4.4. Another technique which allows one to measure cross-sectional flow rates is based
on the acquisition of thermal images (Mahmoud, El-Barkouky, Farag, Graham and Farag
2013). Another quantity easily measurable by means of US is the lumen area

∫
Γt dγ. This

information could be used to prescribe a defective condition for the vessel wall.
More sophisticated techniques could acquire velocity measures in several points on the

same cross-section, thus in principle leading to a Dirichlet boundary condition (possibly
after a suitable regularization). This is the case of Phase Contrast (PC)-MRA, where the
blood velocities are encoded into images for several instants of the heartbeat (Morbiducci
et al. 2009). The spatial resolution of modern PC-MRA are of the order of 1 − 2 mm
on each cross section and 4 mm along the longitudinal axis. The required mesh size is
often less than 1mm so that interpolation is however needed to obtain a usable Dirichlet
condition. The temporal resolution is of about 0.03 s.

If the lumen artificial cross section is orthogonal to the axial direction, then the vis-
cous terms in the fluid normal Cauchy stress are very small (Heywood, Rannacher and
Turek 1996). In this case, a measure of the pressure P (t) could be used to prescribe a Neu-
mann boundary condition. This could be obtained for the arterial system non-invasively
by means of a sphygmomanometer, which usually measures the pressure at the level of
the radial aorta (remember that the pressure peak could be considered constant along
the arterial tree, at least until the capillary net, see Section 2). To have a continuous
monitoring of the pressure (for example during hospital recovery) or to have a measure in
the venous system (where the pressure falls down) a catheter with a transducer could be
placed in the district of interest. In any case, the average pressure over the cross section
is measured. This leads at each time to the following defective boundary condition for the
normal component of the normal Cauchy stress of the fluid

1

|Γt|

∫

Γt

(
pn − µ

(
∇v + (∇v)T

)
n

)
· n dγ = P. (3.3)

Unfortunately, no measurement is available at the artificial sections of the structure, so
that “empirical” and “practical” choices are made (see Section 4.4).

Finally, we observe that measurements acquired at several instants during an heartbeat
could be used in principle also for physical boundaries. For example, from 4D-CTA the
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boundary lumen displacement could be used as Dirichlet condition for the structure prob-
lem, whereas from PC-MRA the blood velocity at the boundary lumen could be used to
prescribe a Dirichlet condition for the fluid problem. Since at the physical boundaries the
physical principles are used to prescribe boundary conditions, these “extra” data could be
used in view of a validation of the numerical results or in a parameter estimation fashion,
as described in Section 10. PC-MRA allows one to acquire also internal measures of blood
velocity. This could be used again for a validation or in a parameter estimation context.

3.3. Biological vascular data

Finally, we need to know the values of physical parameters appearing in the differential
problems. For the fluid, two parameters characterize the problem, namely blood density
and blood viscosity. Although density is in principle easily measurable, no patient-specific
acquisition is in general made because its value does never significantly depart from an
average value of 1.06 g/cm3. The range of variability of viscosity is instead larger. Indeed,
its value depends on the shear rate (non-Newtonian behavior) and on the physical state
of the patient. When the assumption of Newtonian fluid (holding for medium and large
healthy vessels) is made, typical values of the viscosity ranges in the interval (0.03 −
0.04 Poise(= 1 g/(cms))). Again, no patient-specific viscosity measures are usually made
and, unless for pathological situations, a value in the previous range is selected.

The parameters characterizing the vessel wall depend (also in number) by the constitu-
tive law used to represent its behavior. More typically, they are the density, the elasticity
(or compliance) and the degree of incompressibility. For linear elasticity models, the latter
two are quantified by the Young modulus and Poisson modulus, respectively. The density
value is very similar to that of blood, the range most commonly used reaching values up
to 1.2 g/cm3. The compliance of the vessel could be qualitatively seen as the ratio be-
tween the volume and pressure variations (Nichols and O’Rourke 2005). Patient-specific
measures could be obtained by the simultaneous (invasive) measures of pressure and cross-
sectional area at different locations, by measuring the rate of propagation of flow waves
(Boese, Bock, Schoenberg and Schad 2000), or by elastography where the elasticity prop-
erties are analyzed by images before and after the application of a deformation (Oberai,
Gokhale and Feijoo 2003). The range of variability of vessel compliance is quite wide
(200 − 800 kPa in normal conditions), with a great dependence on the location and on
possible presence of aneurysms or calcifications. As for the Poisson modulus, only ex-vivo
measurements are possible. An acceptable value used by the community is 0.49, meaning
that vessels could be considered as quasi-incompressible. Finally, let us mention that the
coefficient αST in (3.1) can be regarded as representative of the Young modulus of the
surrounding tissue. As such, it thus could be measured, even though this is a difficult
endeavor. Estimates have been provided, e.g., in (Liu, Charles, Gracia, Gregersen and
Kassab 2007).

When not available from measurements, patient-specific values of biological data could
be alternatively obtained by means of parameter estimation mathematical techniques.
This will be the topic of Section 10.
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4. Modeling blood flow

4.1. The fluid problem

In large and medium sized arteries, those more typically affected by vascular diseases,
blood can be modeled by means of the Navier-Stokes (NS) equations for incompressible
homogeneous Newtonian fluids (Perktold, Thurner and Kenner 1994, Taylor, Hughes and
Zarins 1996, Taylor, Hughes and Zarins 1998, Formaggia et al. 2009a). For non-Newtonian
rheological models necessary to describe some specific flow processes, such as clotting or
sickle cell diseases, or more generally flow in capillaries, we refer e.g. to (Robertson,
Sequeira and Owens 2009, Fasano, Santos and Sequeira 2012).

For the mathematical formulation of the problem, we write the fluid equations with
respect to an Eulerian frame of reference, and we denote by Ωt

f = Ωf (t) ⊂ R
3 the time-

varying arterial lumen, at time t > 0 (see Figure 4.4, left).

Figure 4.4. Representation of the fluid domain on the left and structure domain on the right. The
fluid domain here illustrated is that of an abdominal aorta in presence of aneurysm, reconstructed

from CTA images. The structure domain has been obtained by extrusion of the fluid one

Then, at each time t > 0, we look for fluid velocity v and fluid pressure p such that

ρf

(
∂v

∂t
+ ρf (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

f , (4.1a)

∇ · v = 0 in Ωt
f . (4.1b)

Notice that volumetric forces acting in the fluid domain (e.g. due to gravity) were set to
zero since they are quite often neglected. Moreover,

T f (v, p) = −pI + µ
(
∇v + (∇v)T

)
(4.2)
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is the fluid Cauchy stress tensor, µ being the blood viscosity. As we consider only Newto-
nian rheology here, µ is assumed to be constant.

Finally, problem (4.1) is completed by the initial condition

v|t=0 = v0 in Ωf ,

where Ωf = Ω0
f , and boundary conditions. The latter typically prescribe no-slip conditions

on the physical boundary Σt,

v = φ on Σt, (4.3)

the upstream velocity on the proximal boundaries, say Γt
in,

v = vup on Γt
in, (4.4)

and traction conditions on the distal boundaries, say Γt
out,

T f n = hf on Γt
out. (4.5)

Here, v0, vup, φ and hf are suitable functions with the required regularity (Quarteroni
and Valli 1994). Notice that the lumen boundary displacement φ at this level is a known
function of space and time. For rigid boundaries, we have φ = 0.

When patient-specific measures are available, other conditions might be prescribed.
However, measures seldom provide a complete data set to be used in the computation, see
our previous discussion in Section 3.2; this prompts the issue of solvability of Navier-Stokes
equations, that we address in Section 4.4.

For each t > 0 (a.e. t > 0), the weak form of (4.1) together with the boundary conditions
(4.3)-(4.4)-(4.5) reads: Find v = v(t) ∈ [H1(Ωt

f )]3, v = vup on Γt
in, v = φ on Σt, v = v0

for t = 0 in Ωf , and p = p(t) ∈ L2(Ωt
f ) such that

ρf

∫

Ωt
f

∂v

∂t
· w dω + At

f (v, v, w) + Bt(p, w) =

∫

Γt
out

hf · n dγ, (4.6a)

Bt(q, v) = 0, (4.6b)

for all w ∈ V t = {[H1(Ωt
f )]3 : w = 0 on ∂Ω \ Γt

out} and q ∈ L2(Ωt
f ), and where we have

set

At
f (z, v, w) = ρf

∫

Ωt
f

(z · ∇)v · w dω + µ

∫

Ωt
f

(
∇v + (∇v)T

)
: ∇w dω,

and

Bt(q, w) = −
∫

Ωt
f

q∇ · w dω.

Existence of a global in time weak solution of the previous problem has been proven in
(Leray 1934) for the case Ωf = R

3 and in (Hopf 1951) for the case of bounded domain.
The uniqueness has been proven only for the two-dimensional case (Lions and Prodi 1959);
for the three-dimensional case, only locally in time uniqueness results are available (Prodi
1962).
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4.2. Mechanical wall models

The problem that models the deformation of vessel walls is given by the elasto-dynamics
equation that is usually written in a reference domain Ωs = Ωs(0) ⊂ R

3 using a Lagrangian
framework. For any t > 0, the material domain Ωt

s = Ωs(t) (depicted in Fig. 4.4, right) is
the image of Ωs by a proper Lagrangian map L : Ωs → Ωt

s. We use the abridged notation
ĝ = g ◦ L to denote in Ωs any function g defined in the current solid configuration Ωt

s.
For the sake of simplicity, we assume the arterial wall to obey a (possibly nonlinear)

finite elastic law relating stress to strain in the arterial tissue; for more complex behaviors
of arterial walls see, e.g., (Holzapfel, Gasser and Ogden 2000, Holzapfel and Ogden 2010).
In more realistic settings, stress is a function of the strain but also of the past loading
history (Fung, Fronek and Patitucci 1979).

The problem we consider reads: Find, at each time t > 0, the structure displacement d

such that

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (4.7)

where ρs is the structure density. Notice that volumetric forces acting in the solid domain
(e.g. due to muscle forces) were set to zero since they are quite often neglected.

The previous equation has been written in terms of the first Piola-Kirchhoff tensor T̂ s(d̂)

which is related to the Cauchy tensor T s(d) thanks to the relation T̂ s = JT sF
−T . Here,

F = ∇x is the deformation tensor, the gradient being taken with respect to the reference
space coordinates and x being the coordinates of points in the current configuration.
Correspondingly, J = det(F ) represents the change of volume between the reference and
the current configurations; notice that F (and thus J) depends on the current configuration
Ωt

s.
For a hyperelastic material, the first Piola-Kirchhoff stress tensor is obtained by differ-

entiating a suitable Strain Energy Density Function Θ,

T̂ s =
∂Θ

∂F
. (4.8)

Several non-linear elastic energy functions have been proposed for arteries. For the Saint
Venant-Kirchhoff material,

Θ(C) =
Eν

2(1 + ν)(1 − 2ν)

(
tr

(
1

2
(CT − I)

))2

+
E

2(1 + ν)
tr

((
1

2
(CT − I)

)2
)

, (4.9)

where C = F T F , E is the Young modulus and ν the Poisson modulus of the vessel wall.
More complex and accurate functions widely used for arteries are based on separating the
isotropic and elastic behaviour due to the elastin and the anisotropic one accounting for
the stiffening increment at large displacements due to the collagen,

Θ = Θiso + Θaniso. (4.10)
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A common choice for the isotropic part is the Neo-Hookean law

Θiso(C) =
G

2
(tr(C) − 3) , (4.11)

whereas for the anisotropic part, an exponential law is often considered:

Θaniso(C) =
k1

2k2

(
e(k2(a·(Ca)−1)2) − 1

)
, (4.12)

where a is the unit vector identifying the preferred direction of the collagen fibers, G the
shear modulus, k1, k2 material parameters where k2 characterizes the stiffness of the ma-
terial for large displacements (Fung 1993, Holzapfel et al. 2000, Raghavan and Vorp 2000).
More complete laws also account for the symmetrical helical arrangement of the collagen
fibers, introducing a second predominant direction of fibers (Holzapfel and Ogden 2010).
When not available from medical images, the fibers directions are computed by means
of suitable algorithms under the assumption that their orientation is mainly governed by
the principal stresses, see, e.g., (Hariton, de Botton, Gasser and Holzapfel 2006, Kuhl and
Holzapfel 2006). For distal arteries of muscular type, viscoelastic and pseudoelastic terms
are also considered (Holzapfel and Gasser 2001).

Sometimes, the arterial tissue is considered as incompressible by enforcing to the strain
energy function the incompressibility constraint J = 1 by means of a Lagrange multipliers
approach (Holzapfel 2000)

Θinc = Θ + ps(J − 1). (4.13)

Here ps is the hydrostatic pressure related to the vessel wall displacement, which plays
the role of Lagrange multiplier for the incompressibility constraint. Correspondingly, the
Cauchy stress tensor is augmented as follows

T inc
s (d, ps) = T s(d) + psI,

where T s is the component arising from the energy Θ. However, experimental studies
showed that the arterial tissue has in fact a nearly incompressible behavior (Carew, Vaish-
nav and Patel 1968). This means that the strain energy function could be decomposed
into two terms

Θ(C) = Θvol(J) + Θisoc(C̄),

where C̄ = J−2/3C, detC̄ = 1. The isochoric part Θisoc is given by the general function
(4.10) provided that C is substituted by C̄ and characterizes the mechanical response of
the material to incompressible deformations. The volumetric part is usually given by

Θvol(J) =
κ

2
(J − 1)2 ,

where κ (bulk modulus) is a penalty parameter to enforce the incompressibility constraint
J = 1 (Li and Robertson 2013). In this case, the related Cauchy stress tensor is the same
of the compressible case. For a review of arterial vessel wall models we refer the reader to
(Holzapfel and Ogden 2010).
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Problem (4.7) has to be completed by the initial conditions

d|t=0 = d0,
∂d

∂t

∣∣∣
t=0

= d1 in Ωs,

and boundary conditions. The latter typically prescribe on the artificial sections Γt
artif

either

d = 0 on Γt
artif (4.14)

(fixed boundary) or d · n = 0 together with (T s n) · τ (j) = 0, j = 1, 2, τ (j) being the
unit tangential directions (displacement allowed in the tangential direction), whereas at
the internal physical boundary Σt they prescribe the solid traction

T sn = hs on Σt. (4.15)

In the previous conditions, d0, d1 and hs are suitable given functions. When considering
the Fluid-Structure (FS) coupling, hs is of course provided by the normal Cauchy stress
from the fluid side, see Section 4.3. To account for the effect of the tissues surrounding
the artery, the algebraic law (3.1) is often prescribed at the external lateral surface Γext

of Ωs, to mimic the elastic behavior of this tissue (Moireau et al. 2012).
For each time t > 0, the weak form of (4.7) together with the boundary conditions

(3.1)-(4.14)-(4.15), in the case of fixed boundaries, reads: Find d̂ = d̂(t) ∈ D, d̂ = 0 on

Γartif , d̂ = d0 and ∂bd
∂t = d1 for t = 0 in Ωs, such that

ρs

∫

Ωs

∂2d̂

∂t2
· ê dω+

∫

Ωs

T̂ s

(
d̂
)

: ∇ê dω+

∫

Γext

αST d̂ · ê dσ =

∫

Γext

Pextn̂ · ê dσ+

∫

Σ
ĥs · ê dσ,

(4.16)
for all ê ∈ D = D0, where Dt = {e ∈ [H1(Ωt

s)]
3 : e = 0 on Γt

artif}.
The existence of strong (steady) solutions of the previous problems could be proven

using the theory developed in (Ball 1976). For example, this is the case of the Saint
Venant-Kirchhoff constitutive law given in (4.9) (Ciarlet and Necas 1985). The existence
and uniqueness of weak solutions are guaranteed by the coercivity and convexity of the
energy Θ (Ciarlet 1988, Dacorogna 2000). However, a convex strain energy function is not
able in general to describe instabilities such as buckling (Ball 1997). Thus, to avoid the
use of convex functions, the property of polyconvexity has been introduced (Ball 1976).
Its fulfillment guarantees physically admissible solutions (Dacorogna 2000). Both the neo-
Hookean law (4.11) and the exponential one (4.12) satisfy the polyconvexity property
(Balzani, Neff, Schroder and Holzapfel 2006).

4.2.1. Modeling the structure as a 2D membrane

In some circumstances, because of the small thickness of the vessel wall, a non-linear
shell model has been proposed, see, e.g., (Leuprecht, Perktold, Prosi, Berk, Trubel and
Schima 2002, Zhao, Xu, Hughes, Thom, Stanton, Ariff and Long 2000). In this case, the
structure problem is described by two-dimensional equations defined with respect to the
middle surface, consisting of the computation of the deformation of this surface.
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A simpler equation may be obtained if the structure is modeled as a 2D membrane
whose position in space at any time exactly coincides with internal boundary Σt, yielding
the so-called generalized string model (Quarteroni et al. 2000c)

ρsHs
∂2d̂r

∂t2
−∇ · (P∇d̂r) + χHsd̂r = f̂s in Σ. (4.17)

Here Σ represents the reference membrane configuration, dr is the radial displacement, Hs

the structure thickness; the tensor P accounts for shear deformations and, possibly, for
prestress, χ = E

1−ν2 (4ρ2
1 − 2(1− ν)ρ2), where ρ1(x) and ρ2(x) are the mean and Gaussian

curvatures of Σ, respectively, (Nobile and Vergara 2008), and fs the forcing term, given by
a measure of the fluid pressure. Equation (4.17) is derived from the Hooke law for linear
elasticity under the assumptions of small thickness, plane stresses, and negligible elastic
bending terms (Zienkiewicz and Taylor 2005). To account for the effect of the surrounding
tissue, the term χ in (4.17) needs to be augmented by the elastic coefficient of the tissue
αST (Formaggia, Quarteroni and Vergara 2013).

A further simplification arises when Σ represents the lateral surface of a cylinder. By
discarding any dependence on the circumferential coordinate, model (4.17) reduces to

ρsHs
∂2d̂r

∂t2
− kGHs

∂2d̂r

∂z2
+

EHs

(1 − ν2)R2
0

Hsd̂r = f̂s in Σ, (4.18)

k being the Timoshenko correction factor, G the shear modulus, R0 the initial cylinder
radius, and z the axial coordinate. Often, in the latter case, also a visco-elastic term of the

form γv
∂3dr

∂2z∂t
is added, with γv representing a suitable visco-elastic parameter (Quarteroni

et al. 2000c).

4.3. The coupled fluid-structure interaction problem

Blood flow in the vessel lumen and deformation of the vessel wall are intimately connected
through a fluid-solid interaction (FSI). In particular, fluid and structure interact through
the fluid-solid (FS) interface Σt which coincides with the physical fluid boundary and the
internal vessel wall boundary introduced in the previous sections. The coupled problem
is obtained by combining at each t > 0 (4.1) and (4.7) as follows:

ρf

(
∂v

∂t
+ (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

f , (4.19a)

∇ · v = 0 in Ωt
f , (4.19b)

v =
∂d

∂t
at Σt, (4.19c)

T s(d)n = T f (v, p)n at Σt, (4.19d)

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (4.19e)

df = d at Σt, (4.19f)
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together with the boundary conditions (3.1),(4.4),(4.5),(4.14), and where df is the dis-
placement of the fluid domain Ωt

f at the FS interface and we have used the convenction

that n is the structure outward unit normal. The matching conditions (4.19c)-(4.19d)
enforced at the fluid-solid interface express the continuity of velocities (kinematic con-
dition) and the continuity of normal stresses (dynamic condition), respectively, whereas
condition (4.19f) guarantees the geometry adherence between the fluid and structure do-
mains (geometric condition). The well-posedness analysis of the coupled problem (4.19)
(supplemented with the relevant boundary conditions) has been carried out under several
regularity assumptions. We refer to, e.g., (Beirao da Veiga 2004, Grandmont 1998, Bodnár,
Galdi and Nečasová 2014, Maday 2009), for a comprehensive description of this topic.

For each time t > 0, the weak formulation of the FSI problem (4.19) together with
its boundary conditions (for the sake of simplicity, we set vup = 0 in (4.4)) reads:

Find (v(t), d̂(t)) ∈ W t = {(w, ê) ∈ [H1(Ωt
f )]3 × [H1(Ωs)]

3 : (w, ê) = (0,0) on Γt
in ×

Γartif and w = e on Σt}, v = v0 for t = 0 in Ωf , d̂ = d0 and ∂bd
∂t = d1 for t = 0 in Ωs,

and p(t) ∈ L2(Ωt
f ), such that

ρf

∫

Ωt
f

∂v

∂t
· w dω + At

f (v, v, w) + Bt(p, w) + ρs

∫

Ωs

∂2d̂

∂t2
· ê dω +

∫

Ωs

T̂ s

(
d̂
)

: ∇ê dω

+

∫

Γext

αST d̂ · ê dσ =

∫

Γt
out

hf · n dγ +

∫

Γext

Pextn̂ · ê dσ,

Bt(q, v) = 0,
df = d at Σt,

(4.20)
for all (w, ê) ∈ W t and q ∈ L2(Ωt

f ). Notice that in the previous weak formulation, the
two terms arising after integration by parts and involving the normal Cauchy stresses T fn

and T sn at the interface Σt cancel out, thanks to (4.19d) and to the special choice of the
test functions in W t.

After introducing the following total energy for the FSI problem

E3D(t) =
ρf

2

∫

Ωt
f

|v|2 dω +

∫

Ωs

ρs

2

∣∣∣ ˙̂d
∣∣∣
2

dω +

∫

Ωs

Θ(d̂) dω +

∫

Γext

αST

∣∣∣d̂
∣∣∣
2
dγ, (4.21)

the following conservation property holds true for the case of homogeneous boundary
conditions (Formaggia, Gerbeau, Nobile and Quarteroni 2001, Formaggia et al. 2013):

d

dt
E3D(t) +

µ

2

∫

Ωt
f

(
∇v + (∇v)t

)2
dω = 0.

When the membrane model (4.17) is used instead of (4.19e), the matching conditions
(4.19c)-(4.19d) are replaced by:

v · n =
∂dr

∂t
at Σt,

T f (v, p)n · n = −fs at Σt,
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where dr is the membrane displacement written in the current configuration and fs is the
forcing term of the membrane equation, see (4.17), acting only at the FS interface; in this
case it also plays the role of structure stress exerted at the FS interface. Owing to (4.17)
itself, we can rewrite the previous interface conditions as follows:

v · n =
∂dr

∂t
at Σt, (4.23a)

T f (v, p)n · n = −
(

ρsHs
∂2dr

∂t2
−∇ · (P∇dr) + χHsdr

)
at Σt. (4.23b)

Since the coupling only occurs in the radial direction, we have to complete the conditions
at Σt for the fluid problem in the tangential directions by prescribing further equations
on the fluid variables, e.g., homogeneous Dirichlet or Neumann conditions (Nobile 2001).

In (Figueroa, Vignon-Clementel, Jansen, Hughes and Taylor 2006) an effective formula-
tion to solve the FSI problem with a membrane structure is proposed, whereas in (Colciago,
Deparis and Quarteroni 2014) the accuracy of the FSI-membrane problem is discussed in
comparison to a full 3D/3D simulation. In particular, for the Hooke law, the wall shear
stresses computed with these two FSI models are in good agreement for a distal arterial
tract such as a femoropopliteal bypass. Instead, when larger displacements are considered
such as in the ascending aorta, the discrepancies between the two FSI models increase.

4.4. The boundary issue

According to the mathematical theory of the incompressible Navier-Stokes equations, three
scalar conditions need to be prescribed at each point of the boundary. This however is
seldom realistic in clinical practice. For instance, PC-MRI provides velocity data, but this
technique is not routinely used and ad-hoc studies are mandatory (Morbiducci et al. 2009).
Alternatively, the flow rate Q = Q(t) can be obtained across a boundary cross section Γt,
by proper post-processing of data retrieved by Echo-Cholor-Doppler or by thermal images,
see Section 3.2. This yields the flow rate condition (3.2). In other situations, at both the
inlet and outlet cross sections, pressure measurements P = P (t) may be considered as
representative of an average estimate, leading to condition (3.3).

From a mathematical perspective, (3.2) and (3.3) are defective conditions as they pre-
scribe only one scalar function over the entire section Γt (Formaggia, Gerbeau, Nobile and
Quarteroni 2002). Several strategies have been proposed so far to supplement (3.2) or
(3.3) with other conditions that allow to “close” the system. For the sake of clarity, we
can classify them according to three different strategies, which are reported hereafter.

4.4.1. Conjecturing velocity and pressure profiles

A common trick to effectively prescribe the flow rate condition (3.2) consists in prescribing
a velocity profile

v(t) = g(t) on Γt, (4.24)
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where g = g(t, x) is chosen in such a way to satisfy (3.2), that is

ρf

∫

Γt

g(t) · n dγ = Q(t). (4.25)

The flow rate condition (3.2) is therefore replaced by the standard (vectorial) Dirichlet
condition (4.24). A classical choice for g is a parabolic profile (for example for flow
simulations in the carotids (Campbell, Ries, Dhawan, Quyyumi, Taylor and Oshinski
2012)), a constant profile (often used for the ascending aorta (Moireau et al. 2012)), or
that obtained from the Womersley solution (He, Ku and Jr 1993). Both the parabolic
and Womersley profiles require a circular section to be prescribed on, while non-circular
sections require an appropriate morphing (He et al. 1993).

In spite of its straightforward implementation, this choice has a major impact on the
solution, in particular in the neighborhood of the section Γt and for elevated values of the
Reynolds number (Veneziani and Vergara 2007). To reduce the sensitivity of the results on
the arbitrary choice of the profile, the computational domain can be artificially elongated
by operating what is called a flow extension (Moore, Steinman and Ethier 1997).

A similar approach could be applied to the mean normal Cauchy stress condition (3.3)
as well. In the case at hand, we can postulate that the pressure on Γt is constant and that
the viscous stress can be neglected, that is we can prescribe

pn − µ
(
∇v + (∇v)T

)
n = Pn on Γt. (4.26)

Notice that the previous condition in particular satisfies the defective condition (3.3).
Condition (4.26) is generally acceptable because the pressure changes in arteries mainly
occur along the axial direction and the viscous stresses are negligible on orthogonal cross-
sections.

Since Pn plays the role of boundary normal Cauchy stress when implemented in the
framework of finite element approximations, no further action than just assembling the
matrix for Neumann conditions is required. For this reason, this treatment has been
given the name of “do-nothing” approach (Heywood et al. 1996). As pointed out in
(Veneziani 1998b, Veneziani 1998a), this procedure in fact is not completely “innocent”.
The do-nothing approach corresponds to the following weak formulation (for the sake of
simplicity we assume homogeneous Dirichlet conditions, vup = 0): Find for each t > 0,

v ∈ Ṽ
t
, v = v0 for t = 0 in Ωf , and p ∈ L2(Ωt

f ) such that

ρf

∫

Ωt
f

∂v

∂t
· w dω + At

f (v, v, w) + Bt(p, w) =

∫

Γt
out

hf · n dγ − P

∫

Γt

w · n dγ,

Bt(q, v) = 0,

for all w ∈ Ṽ
t
= {[H1(Ωt

f )]3 : w = 0 on ∂Ω \
(
Γt

out ∪ Γt
)
} and q ∈ L2(Ωt

f ).

A do-nothing formulation for the flow rate conditions is possible too, see (Heywood et
al. 1996, Veneziani 1998b).

Notice that, alternatively to (3.3), other defective conditions involving the fluid pressure
could be considered as well. This is the case, for example, of mean pressure conditions
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(Heywood et al. 1996) or conditions involving the total pressure (Formaggia et al. 2013),

defined by ptot = p +
ρf

2
|v|2. For comprehensive review of these conditions, we refer the

interested reader to (Quarteroni et al. 2016c).

4.4.2. Augmented formulation

An alternative approach consists in regarding the flow rate boundary condition (3.2) as
a constraint for the solution of the fluid problem and then enforcing it by a Lagrange
multiplier approach. Being a scalar constraint, we need a scalar multiplier λ = λ(t) at
each time, resulting in the following weak formulation (we consider again the case of

homogeneous Dirichlet conditions): Find for each t > 0, v ∈ Ṽ
t
, v = v0 for t = 0 in

Ωf , p ∈ L2(Ωt
f ), and λ ∈ R such that

ρf

∫
Ωt

f

∂v

∂t
· w dω + At

f (v, v, w) + Bt(p, w) + Ct(λ, w) =

∫

Γt
out

hf · w dγ,

Bt(q, v) = 0,

Ct(ψ, v) = ψ
Q

ρf
,

(4.27)

for all w ∈ Ṽ
t
, q ∈ L2(Ωt

f ), and ψ ∈ R, and where we have set

Ct(ψ, w) = ψ

∫

Γt

w · n dγ,

see (Formaggia et al. 2002, Veneziani and Vergara 2005), where the well-posedness of this
problem is also analyzed.

Besides prescribing the flow rate condition (3.2), the previous augmented formulation
enforces at each time a constant-in-space normal Cauchy stress on Γt aligned with its
normal direction, which precisely coincides with the Lagrange multiplier λ, that is

−pn + µ
(
∇u + (∇v)T

)
n = λn on Γt.

This method is particularly suited when the artificial cross section is orthogonal to the
longitudinal axis, so that vector n is truly aligned along the axial direction.

Since the velocity spatial profile is not prescribed a priori, this technique has been
used to improve the parabolic-based law implemented in the Doppler technology for the
estimation of the flow rate starting from the peak velocity (Ponzini, Vergara, Redaelli and
Veneziani 2006, Vergara, Ponzini, Veneziani, Redaelli, Neglia and Parodi 2010, Ponzini,
Vergara, Rizzo, Veneziani, Roghi, Vanzulli, Parodi and Redaelli 2010).

The extension of the augmented formulation to the case of compliant walls is addressed
in (Formaggia, Veneziani and Vergara 2009b) and to the quasi-Newtonian case in (Ervin
and Lee 2007).

An augmented formulation has been proposed in (Formaggia et al. 2002) to prescribe
condition (3.3) as well. However, as noticed in (Formaggia et al. 2002), in this case it
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yields at each time the condition

v = λn at Γt,

where λ = λ(t) is again the constant-in-space Lagrange multiplier. This is a non-homogeneous
Dirichlet boundary condition for the fluid velocity, which is in general incompatible with
the no-slip condition v = φ prescribed at the physical boundary Σt. For this reason, this
approach is not followed any longer.

4.4.3. A control-based approach

A different strategy for the fulfillment of condition (3.2) is based on the minimization of
the mismatch functional

J(v) =
1

2

(∫

Γt

v · n dγ − Q

)2

, (4.28)

constrained by the fact that v satisfies the incompressible Navier-Stokes equations (Formaggia,
Veneziani and Vergara 2008). This PDE-constrained optimization – which can be regarded
as the dual of the previous augmented strategy – yields a system of optimality conditions
(also referred to as Karush-Kuhn-Tucker (KKT) system) to be fulfilled, see Sect. 9.1.2 for
further details. In particular, in (Formaggia et al. 2008) the normal component of the nor-
mal Cauchy stress on Γt is used as control variable for the minimization of the mismatch
functional. This approach has been considered for the compliant case in (Formaggia et
al. 2009b), whereas in (Lee 2011, Galvin and Lee 2013, Galvin, Lee and Rebholz 2012) the
non-Newtonian, quasi-Newtonian, and visco-elastic cases are addressed.

The same approach can also be used to fulfill the defective condition (3.3) provided that
a suitable functional to be minimized is introduced (Formaggia et al. 2008). This allows to
prescribe (3.3) on a section oblique with respect to the longitudinal axis too. In this case
the control variable is the complete normal Cauchy stress vector, that is also the direction
of the normal Cauchy stress is a priori unknown.
Boundary data may be lacking for the cross sectional of the vessel wall as well. In this case
we end up with defective BC issues for the vessel wall, see, e.g. (Quarteroni et al. 2016c).

4.5. Geometric reduced models and multiscale approach

4.5.1. The 1D and 0D models

Numerical modeling of the entire cardiovascular system by means of 3D models is currently
not affordable because of the complexity of the computational domain, which is composed
by thousands of arteries and veins and billions of arterioles, capillaries, and venules (Nichols
and O’Rourke 2005). In many applications, reduced dimensional models are used instead,
either as stand-alone models or coupled with the 3D ones.

The first one-dimensional (1D) model was introduced almost 250 years ago by L. Eu-
ler (Euler 1775). More recently, this approach has been brought into the engineering
environment by (Barnard, Hunt, Timlake and Varley 1966, Hughes 1974, Hughes and
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Lubliner 1973). These models allow the description of blood flow in a compliant vessel
where the only space coordinate is that of the vessel axis.

1D models may be derived from 3D models by making simplifying assumptions on
the behavior of the flow, the structure, and their interaction (Quarteroni and Formaggia
2004, Peiró and Veneziani 2009). The starting fluid domain is represented by a truncated
cone, see Figure 4.5. Referring to cylindrical coordinates (r, ϕ, z), we make the following
simplifying assumptions: (i) the axis of the cylinder is fixed; (ii) for any z, the cross section
S(t, z) is a circle with radius R(t, z); (iii) the solution of both fluid and structure problems
does not depend on ϕ; (iv) the pressure is constant over each section S(t, z); (v) the axial
fluid velocity vz dominates the other velocity components; (vi) only radial displacements
are allowed, so that the structure deformation takes the form d = der, er being the unit
vector in the radial direction and d(t, z) = R(t, z) − R0(z), where R0(z) is the reference
radius at the equilibrium; (vii) the fluid is supposed to obey the Poiseuille law, so that the
viscous effects are modeled by a linear term proportional to the flow rate; (viii) the vessel
structure is modeled as a membrane with constant thickness.

Figure 4.5. Fluid domain for the derivation of the 1D model

We introduce the following quantities: A(t, z) = |S(t, z)| = πR(t, z)2 (lumen sec-
tion area), v̄(t, z) = A−1

∫
S(t,z) vz(t, z)dS (mean velocity), s(r/R) such that vz(t, r, z) =

v̄(t, z)s (r/R(t, z)) (velocity profile), Q(t, z) = ρf

∫
S(t,z) vz dS = ρfA(t, z)v̄(t, z) (flow rate),

P (t, z) = A−1
∫
S(t,z) p(t, z) dS (mean pressure).

As for the structure and its interaction with the fluid, we need to introduce a membrane
law, which in fact prescribes a relation between the pressure and the lumen area (which
is determined by dr) of the following form

P (t, z) = Pext + ψ(A(t, z), A0(z), β(z)), (4.29)

where ψ is a given function satisfying ∂ψ
∂A > 0, ψ(A0) = 0. Here β is a vector of parameters

describing the mechanical properties of the membrane.
By integrating over the sections S the momentum fluid equation (4.19a) in the z−

direction and the mass conservation law (4.19b), we obtain the following system

∂U

∂t
+ H(U)

∂U

∂z
+ B(U) = 0 z ∈ (0, L), t > 0, (4.30)
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where U = [A Q]T is the vector of the unknowns, α =

∫
S u2

z

Av̄2
=

1

A

∫ 1

0
s2(y)dy is the

Coriolis coefficient, Kr = −2πµs′(1) is the friction parameter, c1 =
√

A
ρf

∂ψ
∂A , while

H(U) =

[
0 1

c2
1 − α

(
Q
A

)2
2αQ

A

]
, (4.31a)

B(U) =

[
0

Kr
Q
A + A

ρf

∂ψ
∂A0

∂A0
∂z + A

ρf

∂ψ
∂β

∂β
∂z

]
(4.31b)

represent the flux matrix and the dissipation vector term, respectively. A complete
derivation of the model can be found e.g. in (Pedley 1980, Hughes 1974, Peiró and
Veneziani 2009). Classical choices of the velocity profile s are the flat one (α = 1) and the
parabolic one (α = 4/3).

The term ∂A0
∂z in B is typically non-positive, accounting for the vessel “tapering”, i.e.

the reduction of the area of the lumen when proceeding from proximal to distal arteries.
The term ∂β

∂z originates from possibly different mechanical properties along the vessel, to
describe, for example, the presence of atherosclerotic plaques or vascular prostheses.

If A > 0, system (4.30) has two real distinct eigenvalues (see, e.g., (Quarteroni and
Formaggia 2004))

λ1,2 = αv̄ ±
√

c2
1 + v̄2α(α − 1), (4.32)

hence it is strictly hyperbolic (see e.g. (LeVeque 1992)). Under physiological conditions,
c1 ≫ αv̄, yielding λ1 > 0 and λ2 < 0, thus we have two waves traveling in opposite direc-
tions, that are associated to corresponding characteristic variables. An explicit expression
of these variables as a function of the physical variables could be in general derived

Wi = ζi(A, Q), i = 1, 2. (4.33)

A simple membrane law (4.29) can be obtained by the following algebraic relation
(Formaggia, Lamponi and Quarteroni 2003, Formaggia et al. 2013),

ψ(A, A0, η) = η

√
A −√

A0

A0
, with η =

√
πHsE

1 − ν2
, (4.34)

where ν is the Poisson modulus of the membrane, E its Young modulus , and Hs its

thickness, yielding c1 =

√
η
√

A
2ρf A0

. This simple law, stating that the membrane radial

displacement dr is linearly proportional to the fluid pressure, is successfully considered
in many applications, see, e.g., (Steele, Wan, Ku, Hughes and Taylor 2003, Matthys,
Alastruey, Peiró, Khir, Segers, Verdonck, Parker and Sherwin 2007, Grinberg, Cheever,
Anor, Madsen and Karniadakis 2010). Other laws have been proposed to account for
additional features of arterial walls, such as visco-elasticity, wall-inertia, and longitudinal
pre-stress (Quarteroni et al. 2000c, Formaggia et al. 2003).
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Remark 1. 1D models do not allow one to describe secondary flows, such as vortices or
recirculation regions. However, they provide average quantities about the axial component
of the velocity, the radial vessel wall displacements, and the pressure of a complex network
at computational costs that are orders of magnitude lower than those of the correspond-
ing 3D FSI models (Kufahl and Clark 1985, Hillen, Hoogstraten and Post 1986, Blanco,
Watanabe, Passos, P., R.A. et al. 2015, Boileau, Nithiarasu, Blanco, Muller, Fossan, Helle-
vik, Donders, Huberts, Willemet and Alastruey 2015, Malossi, Blanco, Crosetto, Deparis
and Quarteroni 2013).

The accuracy of the solution provided by 1D models is addressed, e.g., in (Avolio 1980,
Steele et al. 2003, Reymond, Merenda, F.Perren, Rufenacht and Stergiopulos 2009), where
the numerical results of different networks are successfully compared with clinical mea-
surements, and in (Matthys et al. 2007, Muller and Toro 2013), where a comparison with
in vitro measurements is performed for a complete network of the cardiovascular system.

A further geometrical reduction is represented by the so-called lumped parameters models,
which are zero-dimensional (0D) models obtained by integrating the 1D problem over the
axial direction. These are typically used to describe the peripheral part of the arterial and
venous tree, such as the capillaries and the arterioles.

In this case, only dependence on time is allowed and nominal values of the unknowns are
used as representative of the entire compartment. To this aim, we introduce the average
flow rate and pressure in the district at hand, defined respectively as

Q̂(t) =
1

l

zd∫

zp

Q(t, z) dz =
ρf

l

zd∫

zp

∫

S(t,z)

vz(t, z) dSdz,

P̂ (t) =
1

l

zd∫

zp

P (t, z)dz =
1

V

zd∫

zp

∫

S(t,z)

p(t, z) dSdz,

where zp and zd are the proximal and longitudinal abscissas of the segment, respectively, l
its length and V the volume. The convective term is dropped since in the peripheral sites
the velocity is small.

If we take the longitudinal average of the momentum equation given by the first of
(4.30) and we combine it with (4.34), we obtain the following ordinary differential equation
(ODE) (Peiró and Veneziani 2009)

ρf l

A0

dQ̂

dt
+

ρfKRl

A2
0

Q̂ + P̂d − P̂p = 0, (4.35)

where P̂d and P̂p are the distal and proximal pressure, respectively. When taking the
longitudinal average of the mass conservation law given by the second of (4.30) and using
(4.34), we obtain (Peiró and Veneziani 2009):

√
A0l

η

dP̂

dt
+ Q̂d − Q̂p = 0, (4.36)
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Figure 4.6. Example of lumped parameter scheme for an arterial tract

where Q̂d and Q̂p are the distal and proximal flow rate, respectively.
The two ODE’s (4.35)-(4.36) can be regarded as the starting point toward a 0D descrip-

tion of a compartment model of an arterial tract. In fact, the term L
dQ̂

dt
, with L =

ρf l

A0
,

corresponds to the blood acceleration, RQ̂, with R =
ρfKRl

A2
0

, stems from the blood re-

sistance due to the viscosity, while C
dP̂

dt
, with C =

√
A0l

η
, is due to the compliance of

the vessel wall. Usually, an electric analogy is used to easily interpret 0D models. In par-
ticular, the flow rate plays the role of the current, whereas the pressure is the potential.
Accordingly, the acceleration term is represented by an inductance, the viscosity term by
a resistance, and the compliance term by a capacitance.

To close the system (4.35)-(4.36) (featuring 4 unknowns) we need to include also the
boundary conditions originally prescribed to the 1D model. For instance, we can assume
a Dirichlet condition at the inlet and a Neumann condition at the outlet. Thus, we may
localize the unknown pressure P̂ at the proximal section, (P̂ ≈ P̂p), assuming that the

distal pressure P̂d is given. Similarly we assume that the flow rate Q̂ is approximated by
Q̂d and that the proximal flow rate Q̂p is given. Then, from (4.35)-(4.36), we obtain

P̂ − L
dQ̂

dt
− RQ̂ = P̂d,

C
dP̂

dt
+ Q̂ = Q̂p,

(4.37)

corresponding to the electrical circuit drawn in Fig. 4.6. Other sequences corresponding
to different boundary conditions and then to different state variables are possible too, see,
e.g. (Quarteroni et al. 2016c). Even though these schemes are equivalent in terms of
functionality, they play a different role when coupled with higher dimensional models, see,
e.g., (Quarteroni et al. 2016c).

For a description of more complex vascular districts, we may combine several 0D el-
ementary tracts, by gluing them owing to classical continuity arguments. However, the
lumped parameters models have been mainly used to provide suitable boundary conditions
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at the distal artificial sections of 3D and 1D models. In this case, one simple compartment
is enough to describe the entire arterial system downstream the region of interest. Ex-
amples are provided by the windkessel model (Westerhof, Lankhaar and Westerhof 2009),
featuring an average resistance and capacitance, the 3-element windkessel (Westerhof et
al. 2009), where a second resistance is added before the windkessel compartment, and the
4-element windkessel model (Stergiopulos, Westerhof, Meister and Westerhof 1996, Ster-
giopulos, Westerhof and Westerhof 1999), where an inductance element is added to the
3-element windkessel model. A 0D model given simply by a resistance is used to provide
absorbing boundary conditions at the outlets of the fluid domain in FSI simulations, see,
e.g., (Nobile and Vergara 2008). Instead, more sophisticated approaches account for the
propagative dynamics associated with the peripheral circulation, such as the structured
tree model (Olufsen, Peskin, Kim, Pedersen, Nadim and Larsen 2000), which assumes an
asymmetric self-similar structure for the peripheral network.

4.5.2. The geometric multiscale coupling
The geometrical multiscale approach, first introduced in (Quarteroni and Veneziani 1997),
consists in the coupling among 3D, 1D, and 0D models. The idea is to use higher dimen-
sional models in those regions where a description with a great detail is required, and
lower dimensional models in the remaining part of the region of interest. This allows one
to describe a wide portion of the circulatory system.

As discussed earlier, 0D models are typically used to provide boundary conditions for
3D and 1D models. For this reason, the coupling between 3D or 1D models with an
extended 0D network has been rarely considered in applications. Instead, the 3D-1D
coupling has received a great deal of attention. For this reason, we detail here only
the latter case, while referring to, e.g., (Quarteroni, Ragni and Veneziani 2001, Quar-
teroni and Veneziani 2003, Vignon-Clementel, Figueroa, Jansen and Taylor 2006, Kim,
Vignon-Clementel, Figueroa, Ladisa, Jansen, Feinstein and Taylor 2009, Migliavacca,
Balossino, Pennati, Dubini, Hsia, de Leval and Bove 2006, Haggerty, Mirabella, Restrepo,
de Zélicourt, Rossignac, Sotiropoulos, Spray, Kanter, Fogel and Yoganathan 2013) for
the 3D-0D coupling, and (Formaggia, Nobile, Quarteroni and Veneziani 1999, Fernàndez,
Milisic and Quarteroni 2005) for the 1D-0D coupling.

As reported in Figure 4.7, we consider a 3D/FSI problem (4.19) in a 3D cylindrical do-
main together with initial conditions and boundary conditions at the proximal boundaries
and at the external structure.

At the distal boundaries, the 3D problem is coupled with the 1D model (4.30) written
in the domain z ∈ [0, L], together with initial conditions and a boundary condition at the
distal boundary. We name Γt = Γt

f ∪ Γt
s the coupling interface from the 3D side, which

corresponds to the point z = 0 from the 1D side (see Fig. 4.7).
A major mathematical issue is how to couple 3D and 1D models at the common inter-

face. Several strategies can be pursued, yielding to many (alternative) sets of interface
conditions. For a rigorous derivation of the 3D-1D problem and a detailed discussion of the
interface conditions, we refer the interested reader to the recent review article (Quarteroni
et al. 2016c).
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Figure 4.7. Schematic representation of the reference 3D-1D coupled model

Instead, here we follow the guiding principle described in (Formaggia et al. 2013), where
suitable interface conditions are derived from a global energy estimate. In particular, we
introduce, together with the 3D energy (4.21), the 1D energy (Formaggia et al. 2001)

E1D(t) =
ρf

2

∫ L

0
A v̄2 dx +

∫ L

0
χ(A) dx,

where χ(A) =

∫ A

A0

ψ(τ) dτ , ψ being the vessel law (see (4.29)), Notice that the stand-alone

1D problem satisfies bounds for this energy functional as proved in (Formaggia et al. 2001).

Let Ptot = ψ(A) +
ρf

2
v̄2 be the total pressure for the 1D model, and ptot = p +

ρf

2
|v|2

that of the 3D model. Then, we have the following result (Formaggia et al. 2013).

Proposition 1. For the interface coupling conditions holding at Γt let us assume that
the following inequality holds

∫

Γt
f

T f (v, ptot)n · v dγ +

∫

Γt
s

T s(d)n · ḋ dγ + Q|z=0 Ptot|z=0 ≤ 0. (4.38)

Then, for all t > 0, the coupled 3D-1D problem (4.19)-(4.30) with homogeneous boundary
conditions satisfies the energy decay property

d

dt

(
E3D(t) + E1D(t)

)
≤ 0.

The previous result provides an indication on how to find suitable interface conditions
for the 3D-1D coupled problem. In particular, for inequality (4.38) to be fulfilled it is
sufficient that the following interface conditions

ρf

∫

Γt
f

v · n dγ = Q|z=0, (4.39a)

(T f (v, ptot)n) |Γt
f

= −Ptot|z=0n (4.39b)

hold for the fluid, together with

T s(d)n = 0 on Γt
s (4.40)
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for the structure (Formaggia, Moura and Nobile 2007, Formaggia et al. 2013). Similarly,
inequality (4.38) holds if relation (4.40) is replaced by

d · n = 0 on Γt
s,

(T s(d)n) × n = 0 on Γt
s.

(4.41)

The interface conditions (4.39) prescribe the continuity of the flow rate (kinematic condi-
tion) and a dynamic condition involving the total pressures. Note that (4.40) and (4.41)
are in fact independent of the 1D model, resulting in boundary conditions for the 3D struc-
ture problems only. This allows a discontinuity to manifest in the displacement between
the 3D and the 1D model.

Usually, dynamic interface conditions involving the pressure (instead of the total pres-
sure) are considered in place of (4.39b), such as

1

|Γt
f |

∫

Γt
f

T f (v, p)n dγ = −ψ(A|z=0)n. (4.42)

However, the previous condition does not satisfy the compatibility condition (4.38). More
precisely, in this case we have

d

dt

(
E3D(t) + E1D(t)

)
=

ρf

2

(
(Q(t)|z=0)

3

(A(t)|z=0)
2 −

∫

Γt
f

|v(t)|2v(t) · n dγ

)
.

Even though the right hand side is not necessarily (always) negative, numerical evidence
indicates that condition (4.42) leads to stable results for hemodynamic applications, see
(Malossi et al. 2013). This interface condition is indeed the most commonly used among
the dynamic ones.

4.6. Numerical strategies

In this section, we comment on the numerical solution of the problems presented in the
previous subsections. We do not have the ambition to be exhaustive, due to the problem
complexity. Rather, we review some of the methods which are among the most suited
in hemodynamics. In particular, for the space discretization, we will focus on Galerkin-
type methods, such as Finite Elements, Spectral Elements, and Discontinuous Galerkin
methods.

We will use the following notation. Let ∆t and h be the time and space discretization
parameters. In our examples ∆t is assumed to be fixed, but adaptive strategies could be
considered as well, see, e.g., (Veneziani and Villa 2013). Correspondingly, the discrete
time instants are tn = n∆t. h is instead defined as usual as a representative value of the
mesh size, for example h = minK hK , where K are the tetrahedra of the mesh and hK the
radius of the sphere inscribed in K. Given the functions w(t) and z(x), we denote by wn

the approximation of w(tn) and by zh(x) the Galerkin approximation of z(x).
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4.6.1. Numerical methods for the fluid problem

We start to review some numerical methods for the fluid problem (4.1) together with its
initial and boundary conditions.

As for the time discretization, usually implicit methods with a semi-implicit treatment
of the convective term and (in case of moving domain) of the fluid domain are considered.
The problem is solved at the discrete time tn+1 in the domain Ω∗

f and with convective term

ρf (v∗ ·∇)vn+1, where Ω∗
f and v∗ are suitable extrapolations of Ωn+1

f and vn+1 of the same
order of the time discretization. This choice introduces a CFL-like restriction on the time
step to preserve absolute stability (Quarteroni and Valli 1994). However, this condition
is very mild in hemodynamic applications, since, for accuracy purposes, the pulsatility of
the blood signal and the quick dynamics around systole can only be accommodated by
choosing a small ∆t. Usually, a second order approximation is considered a good choice in
hemodynamics; in this respect, BDF2 and Crank-Nicolson are the mostly used methods
(Quarteroni, Sacco and Saleri 2000a).

The first class of methods we present is based on a decomposition of the semi-discrete
problem at the spatial continuous level (differential splitting or projection methods). The
basic idea underlying these methods is to split the computation of velocity and pres-
sure, with a final step aiming at recovering the incompressibility constraint. We detail in
what follows the Chorin-Teman method (Chorin 1968, Temam 1969), originally proposed
for homogeneous Dirichlet conditions and fixed domain, which is the progenitor of these
methods. We only detail the case of the Backward Euler discretization.

Chorin Temam method. For n ≥ 0, at time tn+1

1 solve in Ωf the advection-reaction-diffusion problem with homogeneous Dirichlet con-

dition for the intermediate unknown velocity ṽn+1

ρf
ṽn+1 − vn

∆t
− µ

(
∇ṽn+1 +

(
∇ṽn+1

)T
)

+ ρf (vn · ∇)ṽn+1 = 0;

2 solve in Ωf the pressure problem with homogeneous Neumann conditions

△pn+1 =
ρf

∆t
∇ · ṽn+1;

3 correct the velocity

vn+1 = ṽn+1 − ∆t

ρf
∇pn+1.

This splitting method is based on the Ladhyzhenskaja theorem (Girault and Raviart 1986),
stating that a vector function belonging to [L2(Ωf )]3 can be always decomposed as the
sum of a solenoidal part and of a gradient term. In fact, the correction step corresponds
to project the intermediate velocity onto H = {w ∈ [L2(Ωf )]3 : ∇·w = 0, w ·n|∂Ωf

= 0}.
Thus, it is possible to show that vn+1 and pn+1 are in fact solution of the original semi-
discrete problem. The Chorin-Temam method is very effective since it overcomes the
saddle-point nature of the problem and solve two standard uncoupled elliptic problems.
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However, it suffers from inaccuracies at the boundary. In particular, the tangential velocity
cannot be controlled (see the definition of H) and spurious pressure values appear as a
consequence of the artificial Neumann condition for the pressure problem (Rannacher
1992). This has an effect on the accuracy of the semi-discrete solution, in particular the
following error estimate holds true (Rannacher 1992):

‖v(tn, x) − vn(x)‖[H1]3 + ‖p(tn, x) − pn(x)‖L2 .
√

∆t.

The use of higher order time approximations leads to the same accuracy.
An improvement of the previous method is given by the rotational incremental variant

of the Chorin-Temam scheme (Timmermans, Minev and de Vosse 1996). We detail in
what follows the case of BDF2 and second order extrapolation of the convective term,
since the first order approximation does not lead to any improvement.

Rotational-incremental Chorin-Temam method. For n ≥ 0, at time tn+1

1 solve in Ωf the advection-reaction-diffusion problem with homogeneous Dirichlet con-

dition in the intermediate unknown velocity ṽn+1:

ρf
3ṽn+1 − 4vn + vn−1

2∆t
−µ

(
∇ṽn+1 +

(
∇ṽn+1

)T
)

+ρf ((2vn−vn−1)·∇)ṽn+1+∇pn = 0;

2 solve the pressure problem

△pn+1 = △pn +

(
3ρf

2∆t
− µ

)
∇ · ṽn+1 x ∈ Ωf ,

∂pn+1

∂n
= µ

(
∇×∇× ṽn+1

)
· n x ∈ ∂Ωf ,

3 correct the velocity

vn+1 = ṽn+1 − 2

3

∆t

ρf
∇

(
pn+1 − pn + µ∇ · ṽn+1

)
.

Unlike the classical Chorin-Temam scheme, in the previous method the boundary con-
ditions for the pressure problem are consistent and no numerical boundary layer for the
pressure is observed. This is confirmed by the improved error estimate (Guermond and
Shen 2006)

‖v(tn, x) − vn(x)‖[H1]3 + ‖p(tn, x) − pn(x)‖L2 . ∆t3/2.

The previous two methods belong to the general class of pressure-correction methods,
see also, e.g., (Codina and Badia 2006, Guermond, Minev and Shen 2006, Guermond and
Quartapelle 1998). A different class is obtained by switching the role of velocity and
pressure in the splitting, i.e. the viscous term is now ignored or treated explicitly in
the first step and the velocity is then corrected accordingly (velocity-correction schemes,
(Orszag, Israeli and Deville 1986, Karniadakis, Israeli and Orszag 1991)). These schemes
feature the same non-optimal error estimates of the pressure-correction schemes due to
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artificial Neumann conditions for the pressure problem. Again, an improvement could be
obtained by considering a rotational-incremental variant (Guermond and Shen 2003).

In hemodynamics it is often the case that Neumann boundary conditions are prescribed
at some artificial section. The extension of the differential splitting methods to this case
is addressed in (Guermond, Minev and Shen 2005): on the Neumann boundary we have
an artificial Dirichlet condition for the pressure, which again deteriorates the optimal rate
of convergence with respect to ∆t.

In view of the next methods we are going to review, it is convenient to introduce the
algebraic problem arising from the application of a Galerkin-like method to the semi-
discrete-in-time problem. First of all we notice that the solvability of the discretized-in-
space problem is guaranteed by a suitable compatible choice of the approximation spaces
for the velocity and the pressure in order to satisfy the discrete inf-sup stability condition
(Quarteroni and Valli 1994). As it is well known, an example for Finite Elements (FE)
for a tetrahedral mesh is provided by piecewise polynomials of order 2 for the velocity
approximation and of order 1 for the pressure approximation. This choice guarantees
the existence and uniqueness of the solution to the linearized fully discrete problem and
are often used to provide a stable solution in hemodynamics. In this case, we have the
following optimal error estimate

‖vn(x) − vn
h(x)‖[H1]3 + ‖pn(x) − pn

h(x)‖L2 . h2,

provided that vn and pn are regular enough. (For other stable choices see (Quarteroni
and Valli 1994, Boffi, Brezzi and Fortin 2013)). Alternatively, suitable stabilization terms
could be added to the problem, circumventing the inf-sup condition and allowing the
use of polynomials of equal order. In this case, additional terms are added to the mass
conservation equation and, in case, to the momentum conservation equation. Usually,
these techniques allow one to stabilize also convected-dominated problems arising when
the Reynolds number is high, for example in aorta or in stenotic carotids. One technique
is Streamline Upwind-Petrov Galerkin (SUPG) (Muller, Sahni, Lia, Jansen, Shephard
and Taylor 2005). A generalization of SUPG is the variational multiscale (VMS) method
(Hughes 1995, Hughes, Mazzei and Jansen 2000), which is based on the decomposition of
the unknown into two terms, one accounting for the large scales and another one for the
small scales. The same decomposition is used for the test functions, so that a system of
two coupled problems is obtained. VMS is also useful since it allows one to model the
transitional to turbulence effects which may occur in some pathological conditions such
as stenoses (Akkerman, Bazilevs, Calo, Hughes and Hulshoff 2008). For an application to
hemodynamics, see (Forti and Dedé 2015).

We introduce in what follows the algebraic problem related to the fully discretized
linearized problem. For the sake of exposition, we limit ourselves to the cases without
stabilization terms. We refer the interested reader to, e.g., (Elman, Silvester and Wathen
2005, Benzi, Golub and Liesen 2005b) for the more general case. At each time step we
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have [
A BT

B 0

] [
V

P

]
=

[
F f

0

]
,

where V and P are the vectors collecting the velocity and pressure unknowns, A =
ρf

α
∆tMf +ρfN(V ∗)+µK (with Mf the mass matrix, N the matrix related to the linearized

convective term, K the stiffness matrix), F f accounts for non-homogeneous Dirichlet and
Neumann conditions and the terms coming from time discretization, α depends on the
time discretization scheme, and where we have omitted the current temporal index n+1.

The previous non-symmetric linear system can be solved by a Krylov method, e.g. by
the GMRES method. Suitable preconditioners are mandatory. A classical choice is given
by block-preconditioners which again split in fact the solution of the velocity and of the
pressure, e.g.

P =

[
PA BT

0 −PΣ

]
.

If PA = A and PΣ = Σ = BA−1BT (Schur complement), then the solution is achieved
in three GMRES iterations (Elman et al. 2005). In fact, this choice is equivalent to
formally solve the momentum equation for the velocity and to substitute its expression
in the mass equation. However, in practice this preconditioner is not efficient, since the
linear system involving the Schur complement is too onerous, Σ being a full matrix whose
explicit construction requires the knowledge of A−1. Efficient preconditioners can be
obtained by approximating Σ (and, in case, A). For low Reynolds numbers (say, less
than 10), an effective choice is given by PΣ = 1

µMP , where MP is the pressure mass

matrix (or even its diagonal) (Elman and Silvester 1996). Thus, this is a good choice
in hemodynamics for small vessels. For increasing Reynolds numbers, the convergence
properties of this preconditioner deteriorates since it does not account for the convective
term. A better choice for medium and large vessels is given by PΣ = AP F−1

P MP , where
AP is the pressure stiffness matrix and FP = µAP + ρfNP (V ∗), NP being the matrix
related to the convective term defined on the pressure space (pressure convection-diffusion
preconditioner, (Elman et al. 2005, Benzi et al. 2005b)). As for the solution of the velocity
problem, suitable preconditioners for the advection-reaction-diffusion problem could be
introduced. Alternatively, fast solutions such as V-cycle multigrid can be considered as
well (Turek 1999).

Another class of preconditioners is obtained by an inexact block LU factorization of the
fluid matrix. The starting point is the exact factorization

[
A BT

B 0

]
=

[
A 0
B −Σ

] [
I A−1BT

0 I

]
.

Again, different preconditioners are obtained by suitable approximations Â1 and Â2 of A
and Σ̂ of Σ, leading to

P =

[
Â1 0

B −Σ̂

] [
I Â−1

2 BT

0 I

]
.
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A convenient choice is Â1 = Â2 = DA and Σ̂ = BD−1
A BT , where DA is the diagonal

of A (SIMPLE preconditioner, (Patankar and Spalding 1972, Li and Vuik 2004)). No-

tice that in this case Σ̂ is sparse and could be explicitly assembled. This is an effective
choice when the fluid matrix is diagonally dominant, i.e. when small values of ∆t are
used. Another choice is Yosida preconditioner, where Σ̂ = ∆t

ρf αBM−1
f BT , Â1 = A and

Â2 =
ρf α
∆t Mf (Veneziani 2003). Again, the efficiency deteriorates for increasing ∆t. The

Yosida preconditioner had been originally introduced as a solver in (Quarteroni, Saleri and
Veneziani 2000b, Quarteroni, Saleri and Veneziani 1999). This lead to a splitting of the
velocity and of the pressure computation, which could be seen as the algebraic counterpart
of the Chorin-Temam method (algebraic pressure-correction methods). In particular, we
have the following steps:

1 AṼ = F f (computation of the velocity);

2 ∆tBM−1
f BT P = BṼ (computation of the pressure);

3 V = Ṽ − ∆t
ρf αM−1

f BT P (correction of the velocity).

Again, an incremental version of the algebraic pressure-correction methods could be con-
sidered as well (Quarteroni et al. 2000b). An extension to spectral methods is provided in
(Gervasio, Saleri and Veneziani 2006).

For a recent comparison of the performance of different preconditioners (all described
above) used for hemodynamic applications, see (Deparis, Grandperrin and Quarteroni
2014).

In healthy conditions, blood flow is mainly laminar. Transitional flow may develop in
some pathological instances, or under the assistance of devices. In these circumstances,
suitable mesh refinement, possibly accompanied by the use of turbulence models, are
often employed. We mention the case of stenotic carotids, where Reynolds-average Navier
Stokes (RANS) models are used in (Stroud, Berger and Saloner 2002, Grinberg, Yakhot and
Karniadakis 2009), Direct Numerical Simulations (DNS) in (Lee et al. 2008, Fischer, Loth,
Lee, Lee, Smith and Bassiouny 2007, Cheung, Wong, Yeoh, Yang, Tu, Beare and Phan
2010), and Large Eddy Simulations (LES) in (Rayz, Berger and Saloner 2007, Lancellotti
et al. 2015). In (Bazilevs, Gohean, Hughes, Moser and Zhang 2009) the VMS formulation
is used to describe transitional effect in the ascending aorta under the effect of the Left
Ventricular Assist Device (LVAD).

In Figure 4.8 we report some examples of numerical results obtained in four real geome-
tries reconstructed from radiological images (see the caption for details). These results
highlight the complex pattern of blood flow induced by the geometry and by the heart
pulsatility. To highlight the transitional effects in stenotic carotids, we plotted in one of
the figures the Q criterion, defined as

Q = −1

2

∑

i,j

S2
ij − Ω2

ij ,
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where S = ∇u + (∇u)T and Ω = ∇u − (∇u)T (Lee et al. 2008). Positive values of Q
indicate locations where rotations dominates strain and shear.

Figure 4.8. Top left: velocity vectors in the aneurysm of an abdominal aorta (CT images from
the Vascular-surgery and Radiology Divisions at Fondazione IRCSS Cà Granda, Ospedale

Maggiore Policlinico, Milan, Italy). Top right: velocity streamlines in a stenotic carotid (MRI
images from the Vascular-surgery and Radiology Divisions at Ospedale Maggiore Policlinico,

Milan). Bottom left: coherent vortical structures by Q criterion in a stenotic carotid (we report
only the regions with Q > 50000 painted by the velocity magnitude, CT images from the

Vascular-surgery and Radiology Divisions at Ospedale Maggiore Policlinico, Milan). Bottom
right: wall shear stress in an ascending aorta (MRI images from the Cardio-surgery and

Radiology Divisions at Ospedale Borgo Trento, Verona, Italy). These numerical results are
obtained using the finite element library LifeV, P2/P1 Finite Elements , the backward Euler

scheme for the time discretization with a semi-implicit treatment of the nonlinear term, and the
Yosida preconditioner. For the stenotic carotids a LES model has been used
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4.6.2. Numerical methods for the vessel wall problem

In this section we review some of the most commonly used numerical approaches for the
solution of problem (4.7), endowed with its initial and boundary conditions.

As for the time discretization, a popular family of schemes is Newmark’s, which is
characterized by two parameters θ and ζ (Newmark 1959). The special combination
θ = 1/2 and ζ = 1/4 yields the following semi-discrete form of (4.16) (set Pext = 0 and
hs = 0 for the sake of simplicity):

ρs

∫

Ωs

4d̂
n+1 − 4d̂

n

∆t2
· ê dω +

∫

Ωs

T̂ s

(
d̂

n+1
)

: ∇ê dω +

∫

Γext

αST d̂
n+1 · ê dσ

= ρs

∫

Ωs

(
4ŵn

∆t
+ ân

)
· ê dω,

ŵn+1 =
2

∆t

(
d̂

n+1 − d̂
n
)
− ŵn, ân+1 =

4

∆t2

(
d̂

n+1 − d̂
n
)
− 4

∆t
ŵn − ân,

(4.43)

where ŵn+1 and ân+1 represent approximations of vessel wall velocity and acceleration,
respectively. This method is unconditionally absolutely stable and second order accurate
with respect to ∆t. An extension of Newmark schemes is provided by the generalized-
alpha method (Chung and Hulbert 1993), see, e.g., (Isaksen, Bazilevs, Kvamsdal, Zhang,
Kaspersen, Waterloo, Romner and Ingebrigtsen 2008) for an application to hemodynamics.

Space discretization is typically based on Finite Elements. Whatever the implicit tem-
poral scheme chosen, a system of non-linear algebraic equations is obtained after space
and time discretization, reading

ρsβ

∆t2
MsD + Γ(D) + αST M ext

s D = Gs,

where β depends on the time discretization (e.g., β = 4 for the Newmark method (4.43)),
D is the vector collecting the vessel wall displacement unknowns, Ms is the mass matrix,
M ext

s the boundary mass matrix related to Σext, Γ is the non-linear operator defined by

Γi =
∫
Ωs

T̂ s

(
d̂
)

: ∇êi dω, êi being the i− th basis function, and Gs the vector related to

the right hand side of the discretized-in-time equation. Notice that we have suppressed
the temporal index that is understood. The previous system is linearized by means of the
Newton method, obtaining at each time step a sequence of linear systems of the form

(
ρsβ

∆t2
Ms + T

(
D(k−1)

)
+ αST M ext

s

)
δD(k) =

Gs −
ρsβ

∆t2
MsD(k−1) − Γ

(
D(k−1)

)
− αST M ext

s D(k−1),

with k ≥ 1 the Newton iterations index, to be solved until convergence. Here δD(k) =(
D(k) − D(k−1)

)
, T is the matrix related to the linearization of the first Piola-Kirchhoff

tensor, i.e. (T )ij =
∫
Ωs

(
DF T̂ s

(
d̂(k−1)

)
: ∇êj

)
: ∇êi, DF being the Gâteaux derivative

with respect to F .
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For the solution of the previous linear system, Domain Decomposition (DD) methods
are often used as efficient preconditioners for iterative Krylov methods. Since matrix T is
symmetric, the Coniugate Gradient method is usually considered for iterations. Among
DD preconditioners, FETI methods (Farhat and Roux 1991) are very often used in struc-
tural mechanics. In particular, all floating FETI methods have been considered for vessel
wall problems, e.g., in (Augustin, Holzapfel and Steinbach 2014). Like in classical FETI
methods, Lagrange multipliers are introduced to glue the solution at the subdomain in-
terfaces. In addition, Lagrange multipliers are also used to prescribe Dirichlet boundary
conditions. This simplifies the implementation of FETI method since all the subdomains
are treated in the same way. A variant successfully used for arterial vessel walls is the
so-called Dual-Primal FETI method, see, e.g., (Balzani, Brands, Klawonn, Rheinbach and
Schroder 2010). Finally, we mention as yet another class of DD methods considered for
this problem: a two-level overlapping Schwarz method with an energy minimization coarse
space, see (Dohrmann and Widlund 2009).

In Figure 4.9 we report a coupled of examples of numerical results obtained in real
geometries reconstructed from radiological images (see the caption for details). These
results highlight the anisotropic internal stresses characterizing vascular vessel walls.

Figure 4.9. Left: von Mises internal stresses in a carotid (MRI images from the Vascular-surgery
and Radiology Divisions at Ospedale Maggiore Policlinico, Milan, Italy). Right: von Mises

stresses in an abdominal aortic aneurysm (right, mesh from
http://www.vascularmodel.com/sandbox/doku.php?id=start). These numerical results are

obtained using LifeV (carotid) and the Finite Element library redbKIT v2.1
(github.com/redbKIT/redbKIT/releases) (AAA), P2 Finite Elements, a Newmark

unconditionally stable scheme for the time discretization and an exponential vessel wall law
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4.6.3. Numerical methods for the fluid-structure interaction problem

The numerical solution of the coupled FSI problem (4.19) requires to manage three sources
of non-linearities, i.e.:

i) the fluid domain is unknown (geometric non-linearity);
ii) the fluid subproblem is non-linear (fluid constitutive non-linearity);
iii) the vessel displacement subproblem is non-linear (structure constitutive non-linearity),

together with two different kinds of coupling, i.e.:
iv) the displacement of the fluid domain at the FS interface needs to match the vessel

wall one (geometric adherence, see condition (4.19f));
v) the fluid and vessel displacement subproblems are coupled by means of the kinematic

and dynamic conditions (4.19c)-(4.19d) (physical coupling).

Arbitrary-Lagrangian formulation. As for points i) and iv), a classical numerical strategy
relies on extending the FS interface displacement df = d|Σt in the whole fluid domain,
thus associating a displacement also to its internal points. This is obtained by solving an
extra problem for the fluid mesh displacement, usually an harmonic extension of the FS
interface datum df , with homogeneous Dirichlet conditions at ∂Ωt

f \Σt. The fluid domain
displacement is then used to move the points of the fluid mesh accordingly, obtaining
the new computational fluid domain. With this aim, the Navier-Stokes equations are
reformulated on a frame of reference which moves with the fluid mesh. This is neither a
Lagrangian description (where the frame moves with the fluid particles) nor an Eulerian
description (where a fixed frame would be used). For this reason, it is called Arbitrary
Lagrangian-Eulerian (ALE) approach (Hirt, Amsden and Cook 1974, Donea 1982). To
write the Navier-Stokes equations in ALE configuration, the Reynolds transport formula
to express the ALE material time derivative δ

δt of a function z with respect to the Eulerian
one is used, i.e.

δz

δt
=

∂z

∂t
+ (vf · ∇)z,

vf = ḋf being the velocity of the points of the fluid mesh. Thus, the FSI problem together
with its initial and boundary conditions becomes:

ρf

(
δv

δt
+ ((v − vf ) · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

f , (4.44a)

∇ · v = 0 in Ωt
f , (4.44b)

v =
∂d

∂t
on Σt, (4.44c)

T s(d)n = T f (v, p)n on Σt, (4.44d)

ρs
∂2d̂

∂t2
−∇ · T̂ s

(
d̂
)

= 0 in Ωs, (4.44e)

d̂f = d̂ on Σ, (4.44f)

−△d̂f = 0 in Ωf . (4.44g)
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This choice is particularly suited when Finite Elements are considered for the space dis-
cretization. Indeed, the terms involving spatial derivatives are as usual expressed with
respect to the current configuration, whereas the (material) time derivative term is writ-
ten in the reference configuration. In particular, given the nodal basis functions φj , we
have

δ(vh(t, x))

δt
=

δ

δt


∑

j

vj
h(t)φj(x(t))


 =

∑

j

dvj
h(t)

dt
φj(x(t)),

since the time variations of the basis functions with respect to the reference domain vanish.
This makes the computation of the fluid velocity on the nodes of the fluid mesh easy, see
e.g. (Nobile 2001).

For time discretization of (4.44), a common choice is to discretize the fluid and the
vessel wall problems with two schemes of equal order (let us say of order p), e.g., BDF2
or Crank-Nicolson for the fluid and the Newmark scheme (4.43) for the vessel problem.

Treatment of geometric coupling, geometric adherence, and fluid non-linearity. As for is-
sue ii) above (constitutive fluid non-linearity), following the approach commonly used
for a stand-alone fluid problem, the convective field is usually treated explicitly, by us-
ing a suitable extrapolation v∗ − v∗

f of order p from previous time steps. This choice
introduces a CFL-like condition for ∆t to preserve absolute stability, which however is
always satisfied for the values of ∆t usually considered in hemodynamics. Another com-
mon choice in hemodynamics is the explicit treatment of the geometric coupling and
adherence (issues i) and iv) above). In particular, the fluid problem coupled with the
structure one is solved in a domain Ω∗

f obtained by a suitable extrapolation from pre-
vious time steps of order p and the fluid geometry problem is then solved in sequence
(Swim and Seshaiyer 2006, Fernández, Gerbeau and Grandmont 2007, Badia, Quaini and
Quarteroni 2008c, Nobile and Vergara 2008). Again, a limitation on ∆t is required to
ensure absolute stability. In particular, in (Fernández et al. 2007) it is proven for a model
problem that stability is guaranteed under a CFL-like condition. Numerical evidence in
real scenarios highlighted that also this is a mild condition in the hemodynamics regime,
see, e.g. (Moireau et al. 2012, Nobile, Pozzoli and Vergara 2014). Based on the consid-
erations above, the following temporal discretization of the FSI problem (4.44) can be
considered:

Explicit scheme for the geometric coupling and adherence. For n ≥ 1, at time step tn:
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1 solve the FSI problem:
ρfα

∆t
vn + ρf ((v∗ − v∗

f ) · ∇)vn −∇ · T f (vn, pn) = gn
f in Ω∗

f , (4.45a)

∇ · vn = 0 in Ω∗
f , (4.45b)

vn =
α

∆t
dn + gn

fs on Σ∗, (4.45c)

T s (dn)n∗ = T f (vn, pn)n∗ on Σ∗, (4.45d)

ρsβ

∆t2
d̂

n −∇ · T̂ s

(
d̂

n
)

= ĝn
s in Ωs, (4.45e)

where α still depends on the time discretization scheme and gn
f = gn

f (vn−1, vn−2, ...),

gn
s = gn

s (dn−1, dn−2, ...), and gn
fs = gn

fs(d
n−1, dn−2, ...) account for the terms at

previous time steps coming from time discretizations of order p of the corresponding
equations (4.44a),(4.44e), and (4.44c), respectively;

2 then, solve the fluid geometry problem:

−△d̂
n

f = 0 in Ωf , (4.46a)

d̂
n

f = d̂
n

on Σ, (4.46b)

and then build Ω∗
f accordingly.

In the previous substeps, the FSI problem (4.45) is still coupled by means of the phys-
ical coupling given by the interface conditions (4.45c)-(4.45d), see issue v) above. For
the solution of this problem, both partitioned and monolithic procedures have been suc-
cessfully considered so far in hemodynamics. In partitioned schemes, the fluid and vessel
wall subproblems are solved separately, one or more times per time step. Each of the two
problems is equipped with a suitable boundary condition at the FS interface Σ∗ derived
by splitting the physical interface conditions (4.45c)-(4.45d).

Partitioned algorithms of explicit type. From the computational point of view, an attrac-
tive class of partitioned schemes is that of the loosely-coupled algorithms where the two
subproblems are solved only once per time step. The most classic loosely-coupled algo-
rithm, widely used in aerodynamics (Piperno and Farhat 2001), is the explicit Dirichlet-
Neumann scheme, where condition (4.45c) is prescribed explicitly as a Dirichlet condition
to the fluid subproblem, whereas condition (4.45d) is prescribed as a Neumann condition
to the vessel wall subproblem, leading to the following

Explicit Dirichlet-Neumann scheme. For n ≥ 1, at time step tn:

1 solve the fluid Oseen problem with a Dirichlet condition at the FS interface:
ρfα

∆t
vn + ρf ((v∗ − v∗

f ) · ∇)vn −∇ · T f (vn, pn) = gn
f in Ω∗

f , (4.47a)

∇ · vn = 0 in Ω∗
f , (4.47b)

vn =
α

∆t
dn−1 + gn−1

fs on Σ∗; (4.47c)
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2 then, solve the non-linear vessel wall problem with a Neumann condition at the FS
interface:

ρsβ

∆t2
d̂

n −∇ · T̂ s

(
d̂

n
)

= ĝn
s in Ωs, (4.48a)

T̂ s

(
d̂

n
)

n̂ = T̂ f (v̂n, p̂n) n̂ on Σ. (4.48b)

Notice that the discretized-in-time kinematic condition (4.47c) differs from (4.45c) since
now we are considering an explicit Dirichlet condition for the fluid subproblem, so that
the right hand side is computed at the previous time step.

A ”parallel” version of the previous scheme is obtained by substituting T̂ f (v̂n, p̂n) n̂

with T̂ f

(
v̂n−1, p̂n−1

)
n̂ in (4.48b). Notice that in the monolithic FSI problem (4.45), the

dynamic continuity condition (4.45d) is written in the current configuration Σ∗, whereas
for the structure subproblem alone (4.48) is written in the reference configuration Σ.
Accordingly, in what follows the structure interface quantities will be written in the current
configuration in monolithic FSI problems and in the reference configuration when the
structure problem is uncoupled in view of a partitioned scheme.

Unfortunately, the explicit Dirichlet-Neumann scheme can be unconditionally absolutely
unstable. In particular, in (Causin, Gerbeau and Nobile 2005) it is proven that this
happens if the fluid and structure densities are comparable, which is precisely the case
of hemodynamics (high added mass effect, see also (Forster, Wall and Ramm 2007) for a
discrete analysis and (Nobile and Vergara 2012) for an analysis of the added mass effect
arising from a temporal discretization of order p ≥ 2).

Stable loosely-coupled algorithms have been recently introduced. To this aim, replace in
the FSI problem (4.45) the interface conditions (4.45c)-(4.45d) with two linear independent
combinations

σfvn + T f (vn, pn)n∗ = σf

( α

∆t
dn + gn

fs

)
+ T s (dn) n∗ on Σ∗, (4.49a)

σs

( α

∆t
dn + gn

fs

)
+ T s (dn)n∗ = σsv

n + T f (vn, pn) n∗ on Σ∗, (4.49b)

where σf 6= σs are, in general, two functions of space and time. This naturally leads to
the following

Explicit Robin-Robin scheme. For n ≥ 1, at time step tn:

1 solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn + ρf ((v∗ − v∗

f ) · ∇)vn −∇ · T f (vn, pn) = gn
f in Ω∗

f , (4.50a)

∇ · vn = 0 in Ω∗
f , (4.50b)

σfvn + T f (vn, pn) n∗ = σf

( α

∆t
dn−1 + gn−1

fs

)
+ T s

(
dn−1

)
n∗ on Σ∗; (4.50c)

2 then, solve the non-linear vessel wall problem with a Robin condition at the FS
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interface:

ρsβ

∆t2
d̂

n −∇ · T̂ s

(
d̂

n
)

= ĝn
s in Ωs, (4.51a)

σsα

∆t
d̂

n
+ T̂ s

(
d̂

n
)

n̂ = σsv̂
n + T̂ f (v̂n, p̂n) n̂ − σsĝ

n
fs on Σ. (4.51b)

In (Burman and Fernández 2009), a Discontinuous Galerkin (DG)-like mortaring of the
interface coupling conditions (4.45c)-(4.45d) is proposed. The corresponding block Gauss-
Seidel explicit algorithm could be reinterpreted as an explicit Dirichlet-Robin scheme,
where in (4.50c)-(4.51b) we have σf = +∞, σs = −γµ

h , γ being the DG penalty parameter.
It is shown that the DG interface penalty and the viscous dissipation are not able to control
the pressure fluctuations at the FS interface appearing in the discrete energy estimate.
For this reason, it is proposed to add to the fluid problem a consistent stabilization term
penalizing the pressure fluctuations, that is proven to be absolutely stable under a CFL-like
condition. A stable explicit Robin-Robin scheme has been introduced in (Banks, Henshaw
and Schwendeman 2014), where the parameters in the Robin interface conditions (4.50c)-
(4.51b) were set after analyzing the incoming and outcoming characteristic variables of the
vessel wall problem. In particular, they are defined in terms of the outgoing characteristic
variable for the fluid subproblem and in terms of the incoming characteristic variable
for the vessel wall subproblem. For linear elasticity, the following values are obtained:
σf,norm =

√
ρs(µ1 + 2µ2) and σf,tang =

√
ρsµ2 in the normal and tangential direction,

respectively (µ1 and µ2 being the Lamé constants), and σs = −σf . This choice allows
the traveling information brought by the characteristic variables to provide a more tightly
coupling of the fluid and structure problems than the one enforced by (4.45c)-(4.45d).

Partitioned algorithms of semi-implicit type. In (Fernández et al. 2007), it is proven that
to achieve stability without stabilization terms for the Dirichlet-Neumann scheme, at
least an implicit coupling between the fluid pressure and the vessel wall displacement
is mandatory. In particular, a projection scheme is used where the fluid ALE-advection-
diffusion step is solved explicitly, whereas the fluid pressure and vessel wall subproblems
are coupled and solved in an iterative framework until convergence (see also (Astorino and
Grandmont 2009) for a convergence analysis):

Semi-implicit pressure-vessel wall coupled scheme. For n ≥ 1, at time step tn:

1 solve the ALE-advection-diffusion problem with a Dirichlet condition at the FS in-
terface:

ρfα

∆t
ṽn + ρf ((v∗ − v∗

f ) · ∇)ṽn −∇ · µ
(
∇ṽn + (∇ṽn)T

)
= gn

f in Ω∗
f , (4.52a)

ṽn =
α

∆t
dn−1 + gn−1

fs on Σ∗; (4.52b)

2 then, solve the coupled pressure-vessel wall problem. To this aim, introduce the
following iterations on index k ≥ 1:
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a) solve the pressure problem with a Neumann condition at the FS interface:

△pn
(k) =

ρfα

∆t
∇ · ṽn

(k) in Ω∗
f ,

∂pn
(k)

∂n∗ =
α

∆t
dn

(k−1) + gn
fs on Σ∗;

b) then, solve the non-linear vessel wall problem with a Neumann condition at the
FS interface:

ρsβ

∆t2
d̂

n

(k) −∇ · T̂ s

(
d̂

n

(k)

)
= ĝn

s in Ωs,

T̂ s

(
d̂

n

(k)

)
n̂ = T̂ f

(
̂̃vn

, p̂n
(k)

)
n̂ on Σ.

In (Astorino, Chouly and Fernández 2009), the DG-mortaring approach is applied to
this projection scheme, leading to a Robin-Robin-like scheme. An algebraic version of the
projection scheme proposed in (Fernández et al. 2007) is introduced in (Badia et al. 2008c).

Partitioned algorithms of implicit type. More in general, a fully implicit treatment of
(4.45c)-(4.45d) (or more in general of (4.49)) by means of partitioned algorithms is often
considered. In this case, the fluid and vessel wall subproblems are solved iteratively un-
til the whole interface conditions are satisfied within a prescribed tolerance. A general
scheme is given by the following

Implicit Robin-Robin scheme. For n ≥ 1, k ≥ 1, at time step tn/iteration k:

1 solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn

(k) + ρf ((v∗ − v∗
f ) · ∇)vn

(k) −∇ · T f (vn
(k), p

n
(k)) = gn

f in Ω∗
f ,

(4.55a)

∇ · vn
(k) = 0 in Ω∗

f ,

(4.55b)

σfvn
(k) + T f

(
vn

(k), p
n
(k)

)
n∗ = σf

( α

∆t
dn

(k−1) + gn
fs

)
+ T s

(
dn

(k−1)

)
n∗ on Σ∗;

(4.55c)

2 then, solve the non-linear vessel wall problem with a Robin condition at the FS
interface:

ρsβ

∆t2
d̂

n

(k) −∇ · T̂ s

(
d̂

n

(k)

)
= ĝn

s in Ωs, (4.56a)

σsα

∆t
d̂

n

(k) + T̂ s

(
d̂

n

(k)

)
n̂ = σsv̂

n
(k) + T̂ f

(
v̂n

(k), p̂
n
(k)

)
n̂ − σsĝ

n
fs on Σ. (4.56b)

As proven in (Causin et al. 2005), a small relaxation parameter is needed to achieve
convergence in the implicit Dirichlet-Neumann scheme (corresponding to setting σf =
+∞, σs = 0 in (4.55c)-(4.56b)). In practice, often an Aitken relaxation procedure is used
to dynamically estimate an efficient relaxation parameter (Deparis 2004, Kuttler and Wall
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2008). A better situation is obtained by properly selecting the parameters in the Robin

interface conditions (4.55c)-(4.56b). In particular, the choice σf = ρsHs

∆t + EHs∆t
(1−ν2)R2 , σs = 0

(where, as usual, E and ν are the Young modulus and the Poisson ratio for the vessel
material at small deformations, Hs and R representative thickness and radius of the vessel)
yields fast convergence without any relaxation (Robin-Neumann scheme, (Badia, Nobile
and Vergara 2008a, Nobile, Pozzoli and Vergara 2013)). An optimization of σs is performed
in (Gerardo Giorda, Nobile and Vergara 2010, Gigante and Vergara 2015), leading to a
further improvement in the convergence history. A Dirichlet-Robin scheme is derived in
(Yu, Baek and Karniadakis 2013) by means of a generalized fictitious method, where
the coefficients of the fluid pressure and vessel wall acceleration are changed to account
for the added mass effect. This allows one to obtain again good convergence properties
for hemodynamic parameters without any relaxation. Another class of implicit methods
with good convergence properties for high added mass effect is based on adding a suitable
interface artificial compressibility (IAC) consistent term to the fluid problem, proportional
to the jump of pressure between two successive iterations (Degroote, Swillens, Bruggeman,
Haelterman, Segers and Vierendeels 2010). In (Degroote 2011), it is showed that for a finite
volume approximation, IAC method based on Dirichlet-Neumann iterations is equivalent
to a Robin-Neumann scheme for a suitable choice of the parameter σf .

Partitioned algorithms for the FSI problem with a membrane structure. Recently, several
papers have analyzed algorithms for FSI problems featuring a reduced membrane model
for the vessel wall. In this case, the FSI problem is given by the fluid problem (4.19a), by
the kinematic continuity condition (4.23a) and by the membrane equation (4.23b), which
in this case plays also the role of dynamic continuity condition. Moreover, homogeneous
Dirichlet or Neumann conditions in the tangential direction need to be prescribed for
the fluid problem at the interface Σ. By considering an implicit time discretization of
(4.23b) and an explicit treatment of the geometry coupling, we obtain at each time step
the following linearized FSI problem:

ρfα

∆t
vn + ρf ((v∗ − v∗

f ) · ∇)vn −∇ · T f (vn, pn) = gn
f in Ω∗

f , (4.57a)

∇ · vn = 0 in Ω∗
f , (4.57b)

vn · n∗ =
α

∆t
dr

n + gn
fs on Σ∗, (4.57c)

vn − (vn · n∗)n∗ = 0 on Σ∗, (4.57d)

ρsHsβ

∆t2
dn

r −∇ · (P∇dn
r ) + χHsd

n
r = −T f (vn, pn)n∗ · n∗ + gn

s on Σ∗, (4.57e)

where, as usual, gn
f , gn

s and gn
fs account for the terms at previous time steps coming from

time discretization.
The explicit Dirichlet-Neumann scheme applied to the previous monolithic problem

reads:
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Explicit Dirichlet-Neumann scheme for the FSI problem with membrane structure. Given
the quantities at previous time steps, at time step tn:

1 solve the Oseen problem with a Dirichlet condition at the FS interface:

ρfα

∆t
vn + ρf ((v∗ − v∗

f ) · ∇)vn −∇ · T f (vn, pn) = gn
f in Ω∗

f ,

∇ · vn = 0 in Ω∗
f ,

vn · n∗ =
α

∆t
dn−1

r + gn−1
fs on Σ∗,

vn − (vn · n∗)n∗ = 0 on Σ∗;

2 then, solve the membrane problem:

ρsHsβ

∆t2
d̂n

r −∇ · (P∇d̂n
r ) + χHsd̂

n
r = −T̂ f (v̂n, p̂n) n̂ · n̂ + ĝn

s on Σ.

As in the case of scheme (4.47)-(4.48), unfortunately this scheme is unconditionally abso-
lutely unstable in the hemodynamic regime (Causin et al. 2005).

Different algorithms are obtained by linearly combining the interface conditions (4.57c)
and (4.57e) and by substituting the new condition to (4.57c). In this case, we have to
solve a coupled problem consisting of:

Robin-Neumann coupling for the FSI problem with membrane structure. Given the quan-
tities at previous time steps, at time step tn:

1 solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn + ρf ((v∗ − v∗

f ) · ∇)vn −∇ · T f (vn, pn) = gn
f in Ω∗

f , (4.59a)

∇ · vn = 0 in Ω∗
f , (4.59b)

(σfvn + T f (vn, pn) n∗) · n∗ =

σf

( α

∆t
dn

r + gn
fs

)
−

(
ρsHsβ

∆t2
dn

r −∇ · (P∇dn
r ) + χHsd

n
r

)
on Σ∗, (4.59c)

vn − (vn · n∗)n∗ = 0 on Σ∗; (4.59d)

2 solve the membrane problem:

ρsHsβ

∆t2
d̂n

r −∇ · (P∇d̂n
r ) + χHsd̂

n
r = −T̂ f (v̂n, p̂n) n̂ · n̂ + ĝn

s on Σ. (4.60)

The previous problem could be solved either monolithically or by means of a block Gauss-
Seidel method that in fact introduces subiterations splitting the solution of (4.59) and
(4.60). When P = 0, the special choice

σf = σ̃f =
ρsHsβ

α∆t
+

χHs∆t

α
, (4.61)

introduced in (4.59c), yields to

(σ̃fvn + T f (vn, pn)n∗) · n∗ = σ̃fgn
fs on Σ∗. (4.62)
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At this stage, this is a Robin condition for the fluid problem without any explicit de-
pendence on dn

r . Thus, the monolithic problem given by (4.59)-(4.60)-(4.61) is equiv-
alent to the stand-alone fluid problem (4.59a)-(4.59b)-(4.59d)-(4.62), see (Nobile and
Vergara 2008). The solution of this fluid problem can then be used to feed the right

hand side of (4.60) and to get the structure displacement d̂n
r . In this way, the fluid and

structure problems are in fact decoupled, even if the coupling conditions are treated im-
plicitly. This provides a smart and efficient way to solve the monolithic problem (4.57)
exactly, at the expense of a single fluid problem solve (note that the membrane problem
(4.60) is solved very cheaply).

Starting from this result, a stable Robin-Neumann scheme based on an operator-splitting
has been proposed in (Guidoboni, Glowinski, Cavallini and Canic 2009) for a general
membrane law (P 6= 0). The inertial vessel wall term is treated implicitly as in the

previous case leading to a Robin boundary condition for the fluid with σf = ρsHsβ
α∆t , whereas

the elastic and algebraic contributions are treated explicitly. In (Fernández 2013), an
incremental version of this scheme is proposed, where the elastic and algebraic parts of
the membrane law are included in the Robin condition for the fluid problem by means
of a suitable extrapolation from previous time steps. Finally, we mention (Colciago et
al. 2014), where the whole membrane law is treated implicitly, leading to a generalized
Robin condition, which however requires an ad-hoc implementation.

Partitioned algorithms based on the Schur complement. We discuss here partitioned schemes
arising from an interface equation written for the FSI problem and introduced in (Deparis,
Discacciati, Fourestey and Quarteroni 2006). For the sake of exposition, we introduce the
algebraic counterpart of (4.45) related to a Finite Element discretization for the case of
linear elasticity for the vessel wall problem:




Cff CfΣ 0 0

0 MΣ −MΣ 0

CΣf CΣΣ GΣΣ GΣs

0 0 GsΣ Gss







V f

V Σ

UΣ

Ds




=




bf

0

bΣ

bs




, (4.63)

where the subscript f refers to internal degrees of freedom (d.o.f.) for the fluid, s to internal
d.o.f. for the vessel wall, Σ to the FS interface d.o.f.; the notation C (with subscripts)
refers to fluid matrices, G to vessel wall matrices, MΣ is the FS interface mass matrix; V

collects the fluid d.o.f. (in this case also the pressure ones), Ds the vessel wall displacement
internal d.o.f., and UΣ the vessel wall velocity interface d.o.f.; vectors b represent the right
hand sides. The first row corresponds to the momentum and mass conservation for the
fluid, the second and third rows to the interface kinematic and dynamic conditions, and
the last row to the vessel wall problem. By eliminating V f , V Σ and Ds from (4.63), we
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obtain the following interface equation

(C̃Σ + G̃Σ)UΣ = b̃Σ, (4.64)

where C̃Σ = CΣΣ − CΣf (Cff )−1CfΣ and G̃Σ = GΣΣ − GΣs(Gss)−1GsΣ are the fluid and

vessel wall Schur complement matrices and b̃Σ = bΣ − CΣf (Cff )−1bf − GΣs(Gss)−1bs

the corresponding right hand side.
The Robin-Robin method (4.55)-(4.56) could be obtained by applying the Richardson

method to the interface equation (4.64) preconditioned by the matrix

P =
1

σf + σs

(
C̃Σ + σfMΣ

)
(MΣ)−1

(
G̃Σ + σsM

Σ
)

. (4.65)

This leads to a new family of partitioned schemes obtained by applying other Krylov
methods to (4.64) with the same preconditioner. For example, GMRES preconditioned

by the Dirichlet-Neumann preconditioner P = G̃Σ is considered in (Badia, Quaini and
Quarteroni 2008b), whereas GMRES preconditioned with the RR preconditioner (4.65) is
introduced in (Badia, Nobile and Vergara 2009). The first of these two schemes highlighted
better convergence properties with respect to the classical Dirichlet-Neumann method,
whereas the second one is more robust with respect to the choice of the interface parameters
σf , σs than the classical Robin-Robin method.

In some works, a non-linear interface equation is written directly for the non-linear
problem (4.44) and a Newton method is then applied to this equation (Fernández and
Moubachir 2005, Degroote and Vierendeels 2011).

Remark 2. In the partitioned schemes introduced above, the vessel wall subproblem
appearing at each iteration is still non-linear, i.e. we did not discuss how to tackle point
iii) in the list of issues reported at the begin of the paragraph. The simplest way to treat the
vessel wall non-linearity, very appropriate when a non-linear structural solver is available,
is to introduce inner Newton subiterations at each Robin-Robin iteration. Alternatively, a
scheme based on managing together the five sources of non-linearities/coupling (geometric
coupling and adherence, fluid and structure constitutive non-linearities, physical coupling)
in a single inexact-Newton loop is proposed in (Kuttler, Gee, Forster, Comerford and
Wall 2010). Other possible combinations will be discussed later on as specific monolithic
procedures. For a detailed overview with numerical comparisons we refer to (Nobile et
al. 2014).

Monolithic solvers. As an alternative to partitioned schemes, monolithic procedures have
been successfully considered in hemodynamics for the solution of the FSI problem (4.45).
These methods consist in applying an exact or inexact Newton method to the whole non-
linear FSI problem. Referring to the notation introduced above, by considering a Finite
Element space discretization and the inexact Newton method, we obtain from (4.45) (we
suppress for the sake simplicity the temporal index n)

J̃(x(k−1))δx(k) = G − A(x(k−1)), (4.66)
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where J̃ is the Jacobian matrix or a suitable approximation of it, x = [V f V Σ UΣ Ds]T ,
and A(x) = G is the non-linear system related to (4.45). The exact Jacobian matrix is
given by

J(x(k−1)) =




Cff CfΣ 0 0

0 MΣ −MΣ 0

CΣf CΣΣ JΣΣ
G (UΣ

(k−1)) JΣs
G (Ds

(k−1))

0 0 JsΣ
G (UΣ

(k−1)) Jss
G (Ds

(k−1))




, (4.67)

where the submatrices JG are the exact Jacobians of A related to the structure d.o.f.
For the solution of the linear systems (4.66) with the exact Jacobian, classical strategies
used so far for hemodynamics are, e.g., GMRES preconditioned by a one-level additive
Schwarz method (Barker and Cai 2010a) and global algebraic multigrid (Gee, Kuttler and
Wall 2011). In (Barker and Cai 2010b), a two-level Newton method is used in combination
with a two-level hybrid Schwarz preconditioner, where the solution on a coarse grid is
used to provide a good initial guess to the Newton method. Alternatively, inexact Newton
methods have been considered, e.g. by means of block approximations J̃ of J splitting the
fluid velocity, pressure and vessel wall unknowns (Heil 2004, Crosetto, Deparis, Fourestey
and Quarteroni 2011).

A particular class of inexact Newton methods is obtained by neglecting the term −MΣ

appearing in the upper-right block of the exact Jacobian (4.67). This yields in fact a
class of partitioned schemes of Dirichlet-Neumann type where issues iii) and v) (vessel
wall non-linearity and physical coupling) are treated within the same iterations. An ex-
ample is given by the preconditioner proposed in (Crosetto et al. 2011), where the fluid
and structure blocks in (4.67) are approximated by the corresponding algebraic additive
Schwarz preconditioners. This method is strongly scalable for hemodynamic applications.
Recently, a variant of the previous preconditioner has been introduced in (Deparis, Forti,
Grandperrin and Quarteroni 2016). This new preconditioner, named FaCSI, is based on
operating a static condensation of the fluid interface d.o.f. and using a SIMPLE precon-
ditioner for the fluid block.

For the sake of exposition, we have discussed numerical strategies for the FSI problem
based on Finite Elements for the space discretization and Finite Differences for the time
discretization. Other strategies considered so far in hemodynamics are space-time Finite
Elements, see, e.g., (Tezduyar, Sathe, Cragin, Nanna, Conklin, Pausewang and Schwaab
2007, Bazilevs, Takizawa and Tezduyar 2012), and the methods based on the iso-geometric
analysis, see (Bazilevs, Calo, Zhang and Hughes 2006, Bazilevs et al. 2009).

In Figure 4.10 we report a couple of examples of numerical results obtained in real
geometries reconstructed from radiological images (see the caption for details).
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Figure 4.10. a) Blood velocity streamlines and vessel wall displacement vectors in a stenotic
carotid artery (MRI images from the Vascular-surgery and Radiology Divisions at Ospedale
Maggiore Policlinico, Milan, Italy); b-c-d) Results of a FSI simulation in the ascending and
thoracic aorta (MRI images from http://www.vascularmodel.com/sandbox/doku.php?id

=repository). Blood velocity magnitude in the whole domain (b) and on a selected longitudinal
section (c), vessel wall displacements (d). All cases refer to the systolic peak. These numerical

results are obtained using LifeV, P1 − Bubble/P1 Finite Elements for the fluid problem and P1
Finite Elements for the vessel wall problem; the backward Euler scheme and the midpoint
method have been used for the time discretization of the fluid and vessel wall problems,

respectively. The implicit Robin-Robin partitioned scheme has been used in case a) and the
FaCSI preconditioner in cases b-c-d)

4.6.4. Numerical methods for defective boundary problems

For the numerical solution of the augmented formulation (4.27), one could rely either
on a monolithic strategy where the full augmented matrix is built and solved, or on
splitting techniques. As for the latter choice, in (Formaggia et al. 2002, Veneziani and
Vergara 2005) it is proposed to write the Schur complement equation with respect to
the Lagrange multiplier of the linearized and discretized (in time and space) augmented
formulation. This is a linear system whose dimension is equal to the number of flow rate
conditions, say m ≥ 1. By applying the GMRES method to iteratively solve this system,
the exact solution is reached after exactly m iterations (in exact arithmetics). At each
iteration, the solution of a standard fluid problem with Neumann conditions is needed
(exact splitting technique). The solution of a further standard fluid problem is required to
compute the initial residual in the GMRES algorithm. This approach is quite expensive,
even in the case m = 1, which requires the solution of two fluid problems per time step.
However, it preserves modularity, indeed it can be implemented using available standard
fluid solvers in a black box mode. This is an interesting property when applications to
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cases of real interest are addressed, see (Viscardi, Vergara, Antiga, Merelli, Veneziani,
Puppini, Faggian, Mazzucco and Luciani 2010, Vergara, Viscardi, Antiga and Luciani
2012, Piccinelli, Vergara, Antiga, Forzenigo, Biondetti and Domanin 2013, Guerciotti,
Vergara, Azzimonti, Forzenigo, Buora, Biondetti and Domanin 2015, Guerciotti, Vergara,
Ippolito, Quarteroni, Antona and Scrofani 2016).

To reduce the computational time required by the exact splitting approach, in (Veneziani
and Vergara 2007) a different (inexact) splitting procedure is proposed, requiring the
solution of m steady problems out of the temporal loop and of one unsteady null flow rate
problem at each time step. This strategy introduces an error near the section which is
smaller than the one based on conjecturing the velocity profile in the original (non-null)
flow rate problem, see Sect. 4.4.1.

As for the numerical solution of the control-based approach described in Sect. 4.4.3,
classical iterative methods have been considered in (Formaggia et al. 2008, Formaggia et
al. 2009b) for the solution of the resulting KKT system.

Recently, a numerical approach based on the Nitsche method has been considered to
prescribe a flow rate condition. In particular, the original idea of prescribing Dirichlet
conditions with a consistent penalization approach (Nitsche 1970/71) is extended to the
case of flow rate boundary conditions in (Zunino 2009). This strategy does not introduce
further variables, other than those of the original problem, however it requires to properly
tune a penalization parameter. In addition, it deals with non-standard bilinear forms that
need ad hoc implementation. However, it should be very effective if flow rate conditions
are implemented in a DG code. A similar approach has been considered to fulfill the mean
pressure condition (3.3) and the FSI case in (Vergara 2011), see also (Porpora, Zunino,
Vergara and Piccinelli 2012).

For a more comprehensive overview of numerical strategies for defective boundary prob-
lems, we refer the reader to (Formaggia and Vergara 2012).

4.6.5. Numerical methods for the geometric reduced models and multiscale approach

For the numerical solution of the 1D reduced model (4.30), in principle any convenient
approximation method for non-linear hyperbolic equations can be used. The peculiar
feature of this model, however, is the lack of discontinuous solutions. A common approach
relies on the Finite Element version of the Lax-Wendroff scheme, thanks to its excellent
dispersion properties (Formaggia et al. 2001). Being this scheme explicit, a CFL-like
condition is required to ensure absolute stability. In presence of a visco-elastic term, the
1D model is usually discretized by means of a splitting procedure where the solution is split
into two components, one satisfying the pure elastic problem and the second one the visco-
elastic correction (Formaggia et al. 2003, Malossi, Blanco and Deparis 2012). High order
method are suitable to capture the (physical) reflections at bifurcations induced by the
vessel tapering, see e.g. (Sherwin, Franke, Peiró and Parker 2003b, Sherwin, Formaggia,
Peiró and Franke 2003a) for a Discontinuous Galerkin discretization and (Muller and
Toro 2014) for a finite volume scheme.

Regarding 0D models, they are in general described by systems of DAE (differential
and algebraic equations), possibly non-linear due to the presence of diodes to represent
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the valves (Formaggia et al. 2009a). Usually, for hemodynamic applications, these systems
can be reduced to classical Cauchy problems and solved by classical Runge-Kutta methods.

As for the solution of the 3D-1D coupled problems described in Sect. 4.5.2, we can
in principle identify three different strategies, namely partitioned schemes, monolithic
approaches, and methods based on the solution of an interface equation. In partitioned
schemes, the 3D and 1D problems are solved separately in an iterative framework. The
coupling interface conditions can be enforced in many different ways: for example, we can
prescribe the flow rate condition (4.39a) to the 3D problem and the pressure condition
(4.42) to the 1D problem. Different algorithms are obtained by switching the role of the
interface conditions in the iterative algorithm or by considering other interface conditions
(e.g. (4.39b)). This is also the case when one of the two interface conditions is replaced
by a condition expressing the continuity of the characteristic variable W1 entering the 1D
domain (Formaggia et al. 2001, Papadakis 2009), i.e., according to (4.33),

W1(t)|z=0 = ζ1

(
∣∣Γt

f

∣∣ ,

∫

Γt
f

v · n dγ

)
.

In any case, each of these approaches yields a 3D problem with a defective boundary
condition, which could be dealt with one of the strategies described in Sect. 4.4. Explicit
algorithms based on the solution of the 3D and 1D problems only once per time step
have been successfully considered in (Formaggia et al. 2007, Papadakis 2009). These
algorithms enforce a limitation on ∆t, which, however, is milder with respect to the one
imposed by the numerical scheme adopted for the 1D model. Alternatively, iterative
methods applied directly to the monolithic linearized system have been introduced in
(Blanco, Feijòo and Urquiza 2007, Blanco, Pivello, Urquiza and Feijòo 2009). A different
approach to solve the 3D-1D coupled problem relies on writing an interface equation
involving only the 3D-1D interface unknowns. We can interpret this equation as the
geometric heterogeneous counterpart of the Schur complement equation. For its numerical
solution, either the Broyden or the Newton method have been used in (Leiva, Blanco and
Buscaglia 2011, Malossi et al. 2013, Blanco, Deparis and Malossi 2013), in combination
with GMRES. Methods relying on the numerical solution of the interface equation are
simple to implement in the case of multiple interfaces, such as those that arise in complex
arterial networks.

In Figure 4.11 we report a numerical result obtained by the coupling between the 3D
model of an ascending aorta and a 1D model of the systemic circulation. This result
highlights the suitability of the 1D model in providing absorbing conditions to the 3D
model and in propagating the pressure wave along the whole network (Malossi 2012).
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Figure 4.11. Pressure wave propagation in an ascending aorta (3D model) and in the 1D model
of the systemic circulation. These numerical results are obtained using LifeV; the Newton

method has been used for the interface equation. Courtesy of C. Malossi

PART TWO

THE HEART FUNCTION

5. Basic facts on quantitative physiology

5.1. Basic anatomy

The heart is a hollow organ that pumps the blood into the arteries of the systemic and
pulmonary circulations and collects it after its return through the veins. It is formed by
the left and the right heart, each of them being composed by two chambers, an atrium and
a ventricle. The left and right hearts are separated by the interatrial and interventricular
septa, which do not allow the transfer of blood, whereas the atria and the ventricles are
connected by the atrio-ventricular valves (tricuspid valve in the right heart, mitral valve
in the left heart) that either allow or prevent the blood transfer from the atria to the
ventricles depending on the their position (open or closed, respectively), see Figure 5.12.
In particular, they open when the atrial pressure is higher than the ventricular one and
close as soon as the blood flow rate, normally going from the atrium to the ventricle,
becomes negative, i.e. coming back in the atrium. The papillary muscles, located in the
ventricles, attach to the cusps of these valves via the chordae tendineae preventing their
inversion (prolapse) during the closure.

All the four chambers are connected with the circulatory system: the left ventricle
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Figure 5.12. Schematic representation of the heart

through the aorta, the right ventricle through the pulmonary artery, the left atrium
through the pulmonary veins, and the right atrium through the superior and inferior
venae cavae. The ventricles are separated by the circulatory system by two further valves,
the aortic valve on the left side and the pulmonary valve on the right side, whose open-
ing/closure mechanism is similar to the one of the atrio-ventricular valves, i.e. they open
when the pressure is higher in the ventricle with respect to the corresponding connected
artery, whereas they close when the flow rate becomes negative (i.e. going from the artery
to the ventricle). No valves are located between the atria and the corresponding terminal
veins.

The heart wall is composed by three layers: the internal thin endocardium, the thick
muscular myocardium, and the external thin epicardium. The myocardium of the left
ventricle is almost two times thicker than the one of the right ventricle. The epicardium
is surrounded by the pericardium, a serous membrane that isolates the heart from the
closest organs, facilitating its movements.

5.2. The cardiac cycle

The main purpose of the heart is to pump the blood in the circulatory system through
the aorta and the pulmonary artery. To do this, it needs to win the resistances in the
arteries where blood has a non-null pressure (about 70mmHg in the aorta, 10mmHg in
the pulmonary artery) due to the reaction of the elastic vessel wall to the deformation
induced by blood inside. Moreover, the heart supplies to blood the energy needed to reach
the microvasculature or the lungs. The total work made by the heart per heartbeat is

W = QP +
1

2
mv2,
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Q and m being the blood flow rate and mass ejected, P the arterial blood pressure, and
v the blood velocity in the aorta or pulmonary artery. The kinetic component of the
work is quite negligible with respect to the potential one (about 2% for the left heart and
about 5% for the right heart), although it could become more relevant (up to 25%) under
physical effort. The flow rate Q in normal conditions is about 5 · 103 cm3/min, so that,
assuming 60− 90 heartbeats per minute, we have about 55.5− 83.3 cm3 of blood expelled
at each heartbeat. The energetic requirements to pump blood are obtained, as it happens
in all the organs, by the consumption of oxygen that is provided to the heart by blood in
the coronary arteries. The efficiency of the heart, i.e. the ratio between the energy W and
the total energy consumption, is in physiological cases about 25%.

The cardiac cycle comprises different phases. For its description, we consider the left
heart and we start from the situation where the left atrium is filled by oxygenated blood
coming from the pulmonary veins, the mitral valve is closed, and the left ventricle has
reached its maximum contraction.

1 Ventricular filling. Due to the continuous inflation of blood, when the pressure in the
atrium exceeds the ventricular one (about 10mmHg) the mitral valve opens. Blood
starts filling the left ventricle which relaxes. In a first stage (∼ 0.15 s), there is a fast
inflation of blood due to the pressure gradient between the atrium and the ventricle,
where probably the ventricle exerts also a suction due to its expansion (phase 1a in
Figure 5.13). In any case, this is a passive phase. In a second stage (∼ 0.25 s, phase
1b in Figure 5.13), the atrium actively contracts (atrial systole) producing a slow
ventricular inflation of the remaining blood;

2 Isovolumic contraction. After the atrial systole, the ventricular active contraction
starts. This produces an increase of the ventricular pressure causing retrograde flow
that accordingly closes the mitral valve. However, the ventricular pressure is still
lower than the aortic one, so that also the aortic valve is closed. Thus, during this
phase, there is a continuous and fast increase of the ventricular pressure without any
change of blood volume due to blood incompressibility (∼ 0.05 s, phase 2 in Figure
5.13);

3 Ventricular ejection. As soon as the ventricular pressure reaches the aortic pressure
(about 70mmHg), the aortic valve opens and blood is ejected in the systemic cir-
culation. Since the ventricular contraction carries on also after the valve opening,
the ventricular pressure continues to increase. Accordingly, also the aortic pressure
increases due to the elastic adaption of the vessel wall. However, at each time, there
is a pressure difference between ventricle and aorta that allows blood to accelerate
(∼ 0.05 s, phase 3a in Figure 5.13). When the ventricle stops its active contraction,
this pressure difference reduces and, after a short period (but not immediately due to
inertial effects), becomes zero, allowing the flow rate to reach its maximum (∼ 0.05 s,
phase 3b in Figure 5.13). Then, the pressure difference starts to become negative
(higher in the aorta) provoking a deceleration of blood that however continues to
enter the aorta. When, due to this deceleration, the flow rate becomes negative, the
aortic valve closes and the blood ejection stops (∼ 0.15 s, phase 3c in Figure 5.13).
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Notice that, once the active contraction stops, the ventricle starts to relax releasing
the elastic energy accumulated during the contraction. However, this energetic re-
laxation is not immediately followed by a mechanical relaxation which should result
in an increase of the ventricular volume. Indeed, due to inertial effects, there is a
“passive” mechanical contraction which allows to eject all the blood.

4 Isovolumic relaxation. When the aortic valve closes, the release of energy of the
ventricle continues with both valves closed, so that no changes of ventricular volume
are produced resulting in a fast decrease of the ventricular pressure (∼ 0.10 s, phase 4
in Figure 5.13). After the valve closure, the aortic pressure keeps (slightly) increasing,
due to the elastic recoil of the closing valve (dicrotic wave, see Figure 5.13).

All these mechanisms apply to the right heart as well, the only difference being the
pressure values, smaller in this case. This justifies the thicker myocardium of the left
heart since higher values of resistances need to be won.

Figure 5.13. Aortic pressure, ventricular pressure, atrial pressure, and ventricular volume during
an heartbeat

5.3. Electric propagation

As seen in the previous paragraph, the main responsible for blood ejection in the circula-
tory system is the active ventricular contraction. The heart is able to produce itself the
electric impulse that determines this contraction, triggered by an electric potential that
propagates along all the myocardium. This is possible owing to the excitability of the heart
cells, the cardiomyocites, that, when suitably stimulated, are able to produce a variation of
the membrane voltage. At rest, the membrane potential is negative (∼ −90 mV ), whereas
when stimulated it reaches a positive value (∼ 20 mV ) in a very short period (about
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2 ms). After this depolarization, a plateau around 0mV is observed that corresponds to
the refractory period (see below). Then, the repolarization phase starts that brings the
potential back to the rest value allowing for a new excitation (see Figure 5.14, left). This
action potential is generated by several ion channels that open and close and by the result-
ing currents passing through the membrane. The most important channels are those of
calcium, sodium, and potassium. In particular, a fast inward sodium current is the main
responsible for the rapid depolarization, a slow inward flux of extra-cellular calcium ions
is the main responsible for the characteristic plateau appearing after the depolarization,
whereas the outward potassium currents are responsible for the repolarization.

Figure 5.14. Characteristic action potential of cardiomyocites (left) and anatomy of the cardiac
conduction system (http://medical-dictionary.thefreedictionary.com, right)

Unlike other cells in the human body, the cardiomyocites obey to the “all-or-none” law,
meaning that if the stimulus is above a suitable threshold, a complete action potential with
peak value independent of the stimulus is generated, otherwise no response is provided by
the cell. Another characteristic of the heart cells is the presence of a refractary period after
the generation of an action potential, which inhibits any further stimulus independently of
its intensity. Thus, during this period the cell is non-excitable at all (absolute refractary
period, infinite threshold). Afterwards, the cardiomyocites recover their excitability with
a value of the threshold needed to generate the action potential which decreases in time
(relative refractory period). Finally, once the threshold value reaches its minimum, the
cells returns to its complete excitable state and the threshold remains constant.

The cardiomyocites act as a syncytium, i.e. the stimulation of an individual cell produces
the action potential and the corresponding current that result in the excitation of the
neighbor cells, and thus of the whole myocardium. This is allowed by the gap junctions,
intercellular channels characterized by a low resistance and located between cardiomyocites
that permit the electric potential to travel on the cellular membranes from cell to cell.

In normal conditions, the signal spontaneously originates at the sinoatrial node, located
in the right atrium at the junction with the superior vena cava. It represents the natural
pacemaker of the heart and imposes its rhythm to all the myocardium (sinusal rhythm,
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∼ 60 − 90 heartbeats per minute). The impulse generated by the sinoatrial node propa-
gates through all the cardiomyocites of the atria, activating all their regions and allowing
their contraction. The propagation is faster in the direction of the ventricles (∼ 200 cm/s)
allowing to reach the atrioventricular node, located between the atria and the ventricles.
When the signal arrives at this node, it is subjected to a delay (∼ 0.12 s) that allows the
complete contraction of the atria before the propagation in the ventricles starts. More-
over, this node provides a filter to possible high frequencies of the atrial signal, induced
e.g. by atrial fibrillation, protecting the ventricles. This node, when the sinoatrial node
looses its automatism, becomes the leading pacemaker and takes on the role of giving the
pace to all the ventricle stimulation. Then, the electric signal enters the bundle of His,
propagating in the ventricles through the two (left and right) bundle branches and then
through the Purkinje fibers (see Figure 5.14, right). The bundle of His, bundle branches
and Purkinje fibers form the cardiac conduction system (CCS), a subendocardic special-
ized network responsible for the fast and coordinated propagation of the electric impulse
in the ventricle. The propagation in the CCS is very fast (∼ 350 cm/s) and its role is
to reach the entire endocardium through the dense network of Purkinje fibers, activating
it almost simultaneously. Notice that the cells of the CCS are specialized in the electric
propagation so that they are not involved in the muscular contraction. Then, the electric
signal enters the myocardium through the Purkinje muscle junctions (PMJ) which are the
terminal points of the Purkinje network. At the PMJ, the signal is subjected to a delay
(∼ 0.01 s) and then propagates into the ventricular muscle towards the epicardium with a
reduced velocity (∼ 80 cm/s).

To better understand how the propagation of the electric potential spreads into the
ventricles, we observe that cardiomyocites are of cylindrical type. This allows us to define
the fiber direction of the cell, resulting in a macroscopic fiber direction intended as the
average cell orientation in a sufficiently small control volume. A transmural variation of
the fiber direction is measured between the epicardium and the endocardium (∼ −70o and
∼ 80o with respect to the normal direction to the surface, respectively). The fibers are in
turn organized in sheets of collagen. The velocity of propagation of the electric potential
is about two times faster along the fiber direction than in the directions tangential to the
fibers.

5.4. Mechanisms of contraction and cardiac blood fluid-dynamics

The propagation of the electric signal through the cardiomyocites is responsible of their
contraction (electro-mechanical coupling), resulting in the atrial and, more importantly,
ventricular contractions. The characteristic connections between the cardiomyocites re-
sulting in a syncytium allows for a coordinated contraction of the heart.

At the cellular level, as discussed in the previous paragraph, there is an inward flux of
extra-cellular calcium ions just after the depolarization of the cell. Once in the intracellular
space, calcium ions bind to troponin, which allows myosin to bind to actin and contraction
of the cell to occur.

At the macroscopic level, the ventricles contraction results in a longitudinal (apex-
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to-base) shortening of about 15% from the diastolic configuration, in a ventricular wall
thickening of about 30%, and in a torsion around the longitudinal axis of about 15o. This
is due to the particular fiber orientation of the cardiomyocites which highly influences also
the mechanical response of the heart.

The heart obeys to the Frank-Starling law, stating that an increase (for any reason) of
the end diastolic volume (i.e. the maximum ventricular expansion) results in an increase
of the stroke volume, i.e. the volume of blood pumped by the left ventricle per heartbeat.
This is due to an increase of load experienced by the cardiomyocites as a result of the
increased volume of blood filling the ventricle. This extra-stretching of the cells produces
a greater number of actin-myosin bridges resulting in an augmented muscle contraction
power. It should be noticed however that the Frank-Starling law holds true only up to a
certain level of increased stretch: for higher values, the contractility power of the heart,
and thus the stroke volume, decreases.

Besides the influence of electric processes on the mechanical behavior, cardiomyocites
experience also a mechano-electric feedback. This is due to the formation of stretch-
activated ion channels and to changes of cells conductivity by means of the stretch of
the cell that changes the membrane shape and distance between gap junctions. This
mechanism seems to be of utmost importance to describe evolution of spiral waves and thus
arrhythmias (Trayanova, li, Eason and Kohl 2004, Keldermann, Nash and Panfilov 2009).

Blood flow in the cardiac chambers features different characteristics with respect to the
vascular one. In particular, peculiar challenges are the large-scale motion and complex
deformation of the myocardium, the complex interaction with valves leading to specific
flow patterns, and the higher Reynolds number (about 4000). For some authors, all
these aspects are responsible for transition to turbulence effects, especially in pathological
conditions, even if not all the authors agree with the fact that also in normal conditions
turbulence could occur. Another important aspect of cardiac blood flow is given by the
formation of a large vortex ring in the long axis plane of the left ventricle due to the
asymmetry of the mitral valve leaflets that forces the blood flow jet to impinge on the
posterior wall (Charonko, Kumar, Stewart, Little and Vlachos 2013). The interaction of
this ring with the wall gives rise to a complex flow pattern. Also in the left atrium, complex
vortex rings ejected by the pulmonary veins can be observed (Mittal, Seo, Vedula, Choi,
Liu, Huang, Jain, Younes, Abraham and George 2016).

5.5. A brief summary of heart diseases

The principal heart diseases (cardiopaties) are the ischemic cardiopathy, the cardiomy-
opaties, the hypertensive cardiopathy, and the valvular pathologies.

The ischemic cardiopathy is the most important, for frequency and clinical impact,
among cardiopathies. It is caused by a reduced coronary flow rate (due to the atheroslero-
sis of coronaries) with consequent malnutrition of the myocardium. When, due to the
coronary occlusion, the decrease of the oxygen supply is abrupt, long-lasting, and total,
the infarct of the myocardium occurs. This is the most classical event of the ischemic
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cardiopathy resulting in the necrosis of cardiomyocytes and leading, at the end of the
process, to the formation of a scar.

In the dilated cardiomyopathy the ventricle wall becomes thinner due to the partial
substitution of cardiomyocites by fibrosis and small scars, leading to the dilation of the
ventricle. In the hyperthrophic cardiomyopathy the ventricular wall becomes thicker, with
a consequent increase of the ventricular blood pressure resulting in a decreased filling of
the ventricle. As in all the cases of ventricular hyperthropy, this produces a malnutrition of
the myocardium, since the amount of blood supplied by the coronaries remains unchanged.
Moreover, in this specific hypertrofic cardiomiopathy, the orientation of the fibers is not
coordinated as in normal conditions (this is called electric disarray).

In the hypertensive cardiopathy, there is an increase of blood pressure resulting in a
increased work needed by the heart to pump blood, leading again to the thickening of the
myocardial wall and to a malnutrition of the myocardium.

Valvular main pathologies are stenosis and insufficiency. In the aortic valve stenosis,
the narrowing of the maximum opening of the aortic valve causes the heart to require an
increased work to properly pump blood into the aorta, resulting again in the thickening of
the myocardial wall and malnutrition. In the mitral valve stenosis, there is an increase in
the pressure of the left atrium and in the pulmonary circulation, with consequences on the
right heart. Aortic and mitral valve insufficiency is due to the partial reversal flow (going
from the aorta to the left ventricle in case of aortic insufficiency, from the left ventricle to
the left atrium in mitral insufficiency), that occurs as a consequence of the non adequate
closure of the valve. In this case, the heart dilates in order to supply this retrograde
flow resulting in an increase of its contraction power owing to the Frank-Starling law.
However, sooner or later, the diastolic cell stretching overcomes the threshold of validity
of the Frank-Starling law, resulting in a decreased contractility power.

The two main events, possibly fatal, that heart may encounter as a consequence of these
cardiopaties are the cardiac arrest, due to ventricular fibrillation, and the heart failure.

In the ventricular fibrillation, the cardiomyocites are not excited in a coordinate way and
thus do not contract homogeneously, but, continuously, groups of cells contract whereas
other groups relax. This chaotic excitation, if the fibrillation perpetuates, inhibits the
normal functioning of the heart pump that is no longer able to regularly pump the blood in
the circulatory system, finally leading to death. All the cardiopaties described above could
yield altered electric properties (i.e. velocity of conduction and refractariness) which could
lead to ventricular fibrillation. For example, in the myocardial infarct, the arrhythmogenic
substrate is given by the vicinity of healthy cardiomyocites, necrotic cardiomyocites, and
scars, whereas in the hypertrofic cardiomiopathy it is provided by the electric disarray.

When the blood pumped by the heart at each heartbeat is below the required amount
needed by the body (but not absent as in ventricular fibrillation), the heart on the one
hand increases its frequency so as to guarantee that the blood ejected per minute (cardiac
output) is almost normal, and on the other hand it increases its diastolic filling to increase
the stroke volume. However, the increase of the frequency (tachycardia) is energetically
disadvantageous for the heart, and a possible excessive diastolic cell stretching leads to
the loss of validity of the Frank-Starling law. When these two compensating mechanisms
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become no longer effective, the cardiac output dramatically decreases leading to heart fail-
ure. In absence of other causes of death (cardiac arrest or death for non-cardiac reasons),
all the cardiopaties described above, sooner or later, leads to heart failure.

6. Landscape on data

As discussed in Section 3, the use of patient-specific data is mandatory in view of numerical
modeling aiming at understanding biophysical processes and supporting clinicians. This
holds true also for the heart modeling. The latter accounts for three processes that are
intimately coupled: the electrical propagation, the mechanical contraction and relaxation,
and the blood fluid-dynamics. The first two processes occur in the cardiac tissue (here
called muscle region), whereas the latter occurs in the four hollow regions (chambers)
delimited by the endocardium. As done in Section 3 for the circulatory system, in what
follows we briefly discuss how to obtain geometric, boundary, and biological cardiac data.

6.1. Cardiac geometric data

Referring to Figure 6.15, we need to build two computational domains, the muscle region
Ωmus, delimited by the external surface of the epicardium Σepi and by the internal surface
of the endocardium Σendo, and the cavities Ωcav, referred in what follows to as heart
cavities or chambers, delimited by the endocardium. The cavities are easily obtained once
the endocardium has been reconstructed, so that in fact the cardiac image reconstruction
process relies on identifying the endocardium and the epicardium surfaces.

Figure 6.15. Longitudinal section of a complete heart domain

This problem features several challenging issues. First of all, unlike the vascular case
where the external wall surface is usually obtained by extruding the internal one under
the assumption of constant (or in any case known) wall thickness, for the heart it is
crucial to identify and reconstruct the epicardium. This is mandatory because of the high
variability of the myocardial thickness (both in terms of latitude and of patient variability)
that makes the extrusion of the endocardium not meaningful. Second, the motion of the
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heart produces large displacements. This means that if one is interested in obtaining
a reconstruction of the heart not only at the end-diastolic phase, a dynamic acquisition
procedure (allowing for the acquisition of several frames per heartbeat) is required. Third,
the presence of the papillary muscle and wall irregularities given by trabeculations makes
the reconstruction of the endocardium very problematic.

As in the vascular case, the two most common radiological techniques used for acqui-
sition of cardiac images are MRI and CT. Often, due to the heart motion, temporally
resolved acquisitions are performed allowing to obtain 20-30 frames per heartbeat.

The main interest is for the left ventricle, due to its vital importance and to its pro-
nounced thickness, ranging between 6 and 16mm. The shape of its cavity is often approx-
imated by an ellipsoid. Instead, the right ventricle and the atria are characterized by a
thickness that usually does not reach the spatial resolution of the acquisition technologies,
thus their reconstruction is hard and for this reason less studied.

The standard cardiac acquisition plane is orthogonal to the long (apex-base) axis (short
axis plane). Blood appears brighter whereas the myocardium and the surrounding tissue
darker, see Figure 6.16. Not all the slices on the short axis plane share the same degree of

Figure 6.16. Left: Longitudinal CT slice of the heart. Right atrium (top left), right ventricle
(bottom left), left atrium (top right), left ventricle (bottom right). Right: CT slice in the short

axis plane. In both figures, on the right the thick left ventricle myocardium is detectable in
darker grey. Radiological images from Ospedale Sacco, Milan, Italy

complexity in their reconstruction. In particular, apical and basal slices images are more
difficult to segment than mid-ventricular ones.

Before the ventricle segmentation starts, a preliminary localization procedure is per-
formed, in order to identify a region of interest and reduce the computational effort.
This step is usually performed automatically, taking advantage of the movement of the
heart on a fixed background, see, e.g., (Cocosco, Netsch, Sénǵas, Bystrov, Niessen and
Viergever 2004). Another automatic heart location is based on extracting rectangular
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subwindows from the image and to compute for them specific features. Then, based on a
priori chosen class, the subwindows satisfying specific features are recognized as belonging
to the heart.

A first class of ventricle segmentation methods makes use of few (or even none) a priori
information. Usually in these methods the endocardium is first segmented by means of
thresholding (see Section 3 and refer, e.g., to (Goshtasby and Turner 1995)). Alternatively,
dynamic programming methods have been considered, where the optimal path in a cost
matrix, assigning a low cost to frontiers, is searched. Taking advantage of the circular
shape of the ventricle, polar coordinates are used and one-dimensional search is performed
(Gupta, von Kurowski, Singh, Geiger, Liang, Chiu, Adler, Haacke and Wilson 1993). In
order to exclude papillary muscles in the segmentation, possible strategies are the compu-
tation of the convex hull of the contour (van der Geest, Jansen, Buller and Reiber 1994) or
a smoothing of the latter by means of the fitting of a parametric curve (Waiter, McKiddie,
Redpath, Semple and Trent 1999). As for the vascular case, deformable models are used
for cardiac segmentation (see Section 3). In particular, the functional to be minimized
often includes a regularization term to control the smoothness of the reconstructed curves
(Pham, Xu and Prince 2000).

Specific automatic methods that have been developed for cardiac image segmentation
are based on a strong a priori information on the shape of the ventricles that is included
in the segmentation algorithm by means of statistical models. These strategies are suited
for cardiac segmentation since the variability among patients of the heart shape is, unlike
the arteries, very small in normal conditions. These statistical model-based segmentation
strategies rely on identifying an average shape of available geometries forming a training
set and on modeling the variability within the latter. This is usually done by means of
the principal component analysis of positions and, in case, displacements, that allows to
compute the eigenvalues and eigenvectors of the covariance matrix related to the training
set. These strategies allow an automatic segmentation that does not need any interaction
of the user, at the expense of having at disposal a training set. For example, deformable
models have been extended to this framework by adding to the functional to be minimized
a term that penalizes the distance to a reference model (for example the mean shape of the
training set). Another very common statistical model-based strategy is the atlas-guided
segmentation. Given an atlas, i.e. an integrated image from multiple segmentations, a
registration procedure is performed based on mapping the coordinates of the image under
investigation to those of the atlas (Lorenzo-Valdés, Sanchez-Ortiz, Elkington, Mohiaddin
and Rueckert 2004). This transformation is then applied to the atlas obtaining the final
segmentation. The registration process could be based on non-rigid transformations that
account for elastic deformations. For a recent review of cardiac segmentation methods we
refer to (Petitjean and Dacher 2011).

Finally, we observe the importance of including the fibers orientation in the recon-
structed geometries in view of modeling the electrical propagation and mechanical con-
traction in the muscle region. Indeed, as discussed in Section 5, the conduction velocity of
the action potential propagation assumes different values along the fibers than in the tan-
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gential direction. Moreover, the stretching ability of the myocardium is facilitated along
the fibers direction.

Diffusion-tensor-MRI is a MRI technology able to identify the fibers orientation, how-
ever, not yet daily used in the clinical practice, and hardly applicable because of the
heart movement. Since the fibers direction is unfortunately hardly detectable by the com-
mon radiological acquisition technologies, analytical representations of the fibers suitably
mapped onto the geometry under investigation have been proposed so far to supply the
lack of information provided by the imaging. For example, in (Peskin 1989) fibers are
described as geodesics, whereas in (Pravdin, Berdyshev, Panfilov, Katsnelson, Solovyova
and Markhasin 1989) they are represented by means of spiral surfaces. Other strategies
are based on a computational generation of the fibers orientation to provide a plausible
configuration, e.g. by means of the solution of a Poisson equation (Bayer, Blake, Plank
and Trayanova 2012, Rossi, Lassila, Ruiz-Baier, Sequeira and Quarteroni 2014, Wong
and Kuhl 2014), or by using the unscented Kalman filter (Nagler, Bertoglio, Gee and
Wall 2013).

As for the Purkinje fibers, they are not detectable from classical radiological acquisitions
since their thickness falls below the spatial resolution. For this reason, in (Abboud, Beren-
feld and Sadeh 1991, Sebastian, Zimmerman, Romero and Frangi 2011, Ijiri, Ashihara,
Yamaguchi, Takayama, Igarashi, Shimada, Namba, Haraguchi and Nakazawa 2008) it has
been proposed to exploit the fractal nature of these fibers to generate a realistic Purk-
inje network, whereas in (Vergara, Palamara, Catanzariti, Nobile, Faggiano, Pangrazzi,
Centonze, Maines, Quarteroni and Vergara 2014, Palamara, Vergara, Catanzariti, Fag-
giano, Centonze, Pangrazzi, Maines and Quarteroni 2014, Palamara, Vergara, Faggiano
and Nobile 2015) such a fractal network has been personalized to the patient at hand by
including patient-specific measures of the activation times (see Section 6.2 for a description
of the latter).

For the muscle region mesh generation, the strategies described in Section 3 could
be applied as well as to cardiac geometries. For ideal ellipsoid geometries, usually con-
sidered in numerical experiments to test the performance of the numerical algorithms,
structured mesh of hexahedra are often used exploiting the symmetry of the ventricles
around the long axis, see e.g. (Pavarino, Scacchi and Zampini 2015). However, also
unstructured meshes composed by tetrahedra have been considered so far (Goktepe and
Kuhl 2010), in particular for real geometries reconstructed by MRI or CT, see e.g. (Rossi
et al. 2014, Wong, Goktepe and Kuhl 2013, Vergara, Lange, Palamara, Lassila, Frangi
and Quarteroni 2016), or for the atria (Virag, Jacquemet, Henriquez, Zozor, Blanc, Vesin,
Pruvot and Kappenberger 2002). Hybrid unstructured meshes composed by tetrahedra
and hexahedra have also been successfully considered (Gurev, Pathmanathan, Fattebert,
Wen, Magerlein, Gray, Richards and Rice 2015). We notice that for the solution of the me-
chanical problem in the muscle region, no particular requirements are needed for the mesh
generation, whereas for the electrical propagation problem, due to the very steep front
(about 200µm), the required mesh resolution should be at least of the order of 100µm in
order to spatially resolve this front (Clayton and Panfilov 2008). For the mesh generation
of the heart chambers in view of the numerical solution of the fluid-dynamic problem,
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often unstructured tetrahedral elements are considered, see e.g. (Mittal et al. 2016). In
this case the mesh resolution needs to be very fine, even smaller than the one of CT or
MRI technologies (≃ 0.5 mm), in order to capture the complex flow structures arising in
particular in the left atrium and left ventricle.

6.2. Cardiac boundary data

The acquisition of boundary data on the electrical activation in the muscle region is nowa-
days possible owing to specific therapeutic techniques. For example, the NavX system, is
able to accurately locate any electrode catheter inserted in the heart chambers, providing
accurate, real-time recording of the local endocardial electrical activity in a point in con-
tact with the catheter (Eitel, Hindricks, Dagres, Sommer and Piorkowski 2010, Vergara
et al. 2014). In particular, this allows one to acquire endocardial maps of the activation
times, defined as the time at which the action potential in a point reaches an intermediate
value between the rest and the plateau ones. However, this acquisition is performed only
for specific therapeutic purposes, such as the ablation of anomalous electrical pathways.

For the mechanical problem involving the muscle region, commonly data that could be
available are the stresses exerted by the blood on the endocardium of the left ventricle
and the endocardial and/or epicardial vessel wall displacements. As for the first type of
data, they are usually extracted from a measure of the aortic pressure (see Section 3.2).
This represents a good approximation; as a matter of fact the ventricular and circulatory
pressures are not the same (thus allowing the acceleration and decelaration of blood) but
they are very similar, see Figure 5.13. As for the vessel wall displacements, they can be
obtained from dynamic MRI or CT images, which allows one to have 20/30 frames per
heartbeat, providing the position of the endocardium and epicardium at several instants.
After suitable post-processing, these techniques can provide an estimate of the vessel wall
displacement (and thus velocity) by comparing two consecutive frames. The endocardial
vessel wall velocity, thanks to a continuity argument, could also be interpreted as the blood
velocity at the interface with the endocardium (Khalafvand, Zhong and Ng 2014, Mittal
et al. 2016).

Another useful measure that could be provided quite easily by means of Doppler echocar-
diographic methods or PC-MRI (see Section 3.2) is the flow rate at the mitral and aortic
valve orifices. With PC-MRI technology the measure of blood velocity is possible in prin-
ciple in any point of the ventricles and atria chambers.

In Section 7 we will see how these data can be used to provide boundary conditions for
the different cardiac models that we are about to introduce.

6.3. Cardiac biological data

The classical monodomain and bidomain models, widely used to describe the electrical
propagation in the muscle region and Purkinje network (see Section 7.1), would require
the following data: the membrane capacitance per unit area C, the membrane surface-
to-volume ratio χ, and the conductivities σ (see next Section). Their subject-specific
acquisition is in general out of reach. An acceptable range of values for the capacitance
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Cm in the myocardium is (0.8−1.0)µF/cm2 (Roth 1991, Huiskamp 1998); the capacitance
Cp in the Purkinje network features a higher value (∼ 1.3 µF/cm2 (Legato 1973)). The
value of membrane surface-to-volume ratio in the muscle region χm varies in the range
(200, 3000)cm−1 (Niederer, Kerfoot, Benson, Bernabeu, Bernus, Bradley, Cherry, Clayton,
Fenton, Garny et al. 2011, Potse, Dubé, Richer, Vinet and Gulrajani 2006), whereas for
the Purkinje network, a measure in a porcine heart lead to χp = 1467 cm−1 (Stankovičová,
Bito, Heinzel, Mubagwa and Sipido 2003). In the myocardium, we need to distinguish be-
tween the conductivities along the fibers direction (index f) and that in the direction of
sheets (index s). Sometimes, also a third direction (orthogonal to sheets) is considered
(if this is the case, we will use the index n). Moreover, in view of the bidomain model,
we also distinguish between the intra-cellular (index i) and extra-cellular (index e) con-
ductivities. Following (Roth 1997), acceptable ranges used in the numerical experiments
are: σi

f ∈ (0.17, 0.34) (Ω m)−1, σi
s ∈ (0.02, 0.06) (Ω m)−1, σe

f ∈ (0.12, 0.62) (Ω m)−1, σe
s ∈

(0.08, 0.24) (Ω m)−1.

Another classical model used so far to describe the activation of Purkinje and muscle
cells is provided by the Eikonal equation (see Section 7.1). In this case, one needs to
prescribe explicitly the conduction velocity V , unlike in the monodomain and bidomain
models where this is determined by the conductivity and the membrane capacitance.
Acceptable ranges of values of the conduction velocity are Vf ∈ (0.6, 1.0)m/s (Kerckoffs,
Faris, Boveenderd, Prinzen, Smits and Arts 2003), Vs ≃ Vf/2 (Frazier, Krassowska, Chen,
Wolf, Danieley, Smith and Ideker 1988), Vn ≃ Vf/4 (Clayton, Bernus, Cherry, Dierckx,
Fenton, Mirabella, Panfilov, Sachse, Seemann and Zhang 2011), and Vp ∈ (3.0 − 4.0)m/s
(Iaizzo 2009), where again index f refers to the direction along the fibers in the muscle
region, s to the direction along sheets, and p to the Purkinje network.

All these electrical data are hardly measurable in vivo so that no patient specific mea-
sures are usually available. Nevertheless, the use of extra data such as the activation
time at the endocardium provided by the NavX system could be used to estimate some of
these parameters by solving a suitable inverse problem, see e.g. (Sermesant, Chabiniok,
Chinchapatnam, Mansi, Billet, Moireau, Peyrat, Wong, Relan, Rhode, Ginks, Lambiase,
Delingette, Sorine, Rinaldi, Chapelle, Razavi and Ayache 2012, Vergara et al. 2014) for
the case of the Purkinje network.

Regarding the parameters involved in the cardiac mechanic model, they depend on the
chosen constitutive law. In general, the linearization of the stress-strain curves gives the
following values for the corresponding varying-in-time Young modulus E (Rossi 2014):
during a traction/compression test along the fibers direction, we have E ≃ 20 kPa during
traction at small deformation and during compression, and E ≃ 1500 kPa during trac-
tion for deformation of about 15%; during traction the material behaves as transversally
isotropic so that the stiffness in the two tangential directions (along sheets and orthogonal
to fibers and sheets) is the same, whereas during compression the stiffness in the sheets
direction is higher than that in the direction orthogonal to fibers and sheets. As for the
Poisson modulus, usually a value of 0.45 is considered.

Regarding the aortic valve leaflets, measures in dogs featured a low stiffness during
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systole (≃ 240 kPa) and an increased stiffness during diastole (≃ 5000 kPa). For the
mitral valve, a different stiffness behavior is observed for the two leaflets (the anterior and
the posterior ones). In particular, in (Kunzelman, Cochran, Chuong, Ring, Verrier and
Eberhart 1993) the following values of the Young modulus are proposed: for the anterior
leaflet E = 6200 kPa and E = 2100 kPa in the directions parallel and perpendicular to the
annulus, respectively, whereas for the posterior leaflet E = 2300 kPa and E = 1900 kPa,
respectively.

Blood in the heart features the same behavior than in the circulatory systems so that
its parameters (density and viscosity) are taken in the ranges reported in Section 3.3.

7. Modeling the heart

In this section we discuss the main mathematical models introduced so far to describe
the heart function and the related numerical strategies developed for their solution. In
particular, Section 7.1 is devoted to the electrical propagation, Section 7.2 to the cardiac
mechanics and electro-mechanical coupling, Section 7.3 to the ventricular fluid-dynamics,
Section 7.4 to the valve modeling and its interaction with blood fluid-dynamics, and finally
Section 7.5 to their integration.

7.1. Cardiac electric activity

7.1.1. The bidomain model

As observed in Section 5.3, the electric activation of the heart is the result of two processes:
at the microscopic scales, the generation of ionic currents through the cellular membrane
producing a local action potential, and at the macroscopic scales, the travelling of the
action potential from cell to cell allowed by the presence of the gap junctions. The former
is a discrete process, in the sense that there is a delay between the depolarization of
a cardiomyocyte and its neighbours, whereas the latter can be assimilated to a smooth
process (Durrer, van Dam, Freud, Janse, Meijler and Arzbaecher 1970).

At the macroscopic level, the propagation of the potentials is described by means of par-
tial differential equations, suitably coupled with ordinary differential equations modeling
the ionic currents in the cells. In particular, the single membrane cell can be modeled as a
capacitor separating charges that accumulate at its intracellular and extracellular surfaces.
Moreover, as observed in Section 5, ionic currents cross the membrane through suitable
channels which open and close during the excitation. A suitable model can therefore be
expressed by the simple electric circuit depicted in Figure 7.17, for which

Im = χm

(
Cm

∂Vm

∂t
+ Iion

)
,

where Im is the membrane current per unit volume, Cm the membrane capacitance, χm the
surface area-to-volume ratio (see Section 6.3 for a quantification of the latter two), Vm(t, x)
the transmembrane potential, and Iion(t, x) the ionic currents. Due to the conservation of
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current and charge, this current should equal the divergence of both the intracellular and
extracellular current fluxes ji and je

∇ · ji = −Im, ∇ · je = Im. (7.1)

The Ohm’s law in the intracellular and extracellular regions give

ji = −Σi∇φi, je = −Σe∇φe, (7.2)

Σi, Σe being the conductivity tensors and φi(t, x), φe(t, x) the intracellular and extracel-
lular potentials, so that

Vm = φi − φe. (7.3)

Figure 7.17. Electric circuit for the sequence of two cardiac cells. Each of them is composed by a
capacitor and a series of resistances, one for each ionic current (here only sodium and potassium
ionic channels are depicted). In the intracellular region, two adjacent cells are connected by a
resistance representing a gap junction. However, the latter is not explicitly modeled at the

macroscopic scales, rather its effect is hidden in the conductivity tensor, see the text

Notice that, due to the anisotropy of the cardiac tissue induced by the presence of
fibers and sheets, each conductivity tensor is in general expressed in terms of three scalar
quantities representing the conductivities along the fiber direction af (x), the direction
as(x) orthogonal to af and tangential to sheets, and the direction an(x) orthogonal to
sheets, i.e.

Σβ = σβ
f afaT

f + σβ
s asa

T
s + σβ

nanaT
n , β = i, e. (7.4)

Putting together all the previous equations and using a homogenization procedure (see
e.g. (Colli Franzone et al. 2014) for a rigorous derivation), we obtain for each t > 0
the following system of two partial differential equations called parabolic-parabolic (PP)
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formulation of the bidomain equations:

χmCm
∂Vm

∂t
−∇ · (Σi∇φi) + χmIion = Iext

i in Ωmus, (7.5a)

− χmCm
∂Vm

∂t
−∇ · (Σe∇φe) − χmIion = −Iext

e in Ωmus, (7.5b)

where Iext
i (t, x), Iext

e (t, x) are applied currents per unit volume.
Thanks to (7.1), ∇ · (ji + je) = 0; thus, using (7.2) and (7.3), we obtain the following

parabolic-elliptic (PE) formulation of the bidomain equations:

χmCm
∂Vm

∂t
−∇ · (Σi (∇φe + ∇Vm)) + χmIion = Iext

i in Ωmus, (7.6a)

−∇ · (Σi∇Vm) −∇ · ((Σi + Σe)∇φe) = Iext
i − Iext

e in Ωmus. (7.6b)

Due to the homogenization procedure, the effect of the gap junctions, which at the
cellular level contributes in determining the current flux ji, is hidden in the conductivity
tensor Σi. We also notice that both bidomain problems (7.5) and (7.6) hold in the whole
computational domain Ωmus given by the union of the myocardium with endocardium and
epicardium, see Figure 6.15. Indeed, again because of the homogenization procedure, no

Figure 7.18. Left ventricular myocardial domain obtained by the cut at the basis (left), and
corresponding fluid cavity domain (right)

geometrical distinction is made between the intracellular and extracellular regions, even if
their different functionality is maintained in the bidomain models.
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7.1.2. Cardiac cell models

In order to close equations (7.5) and (7.6) we need to provide a model for the ionic current
Iion. In what follows we briefly describe three families of models, featuring different levels
of complexity and accuracy.

The first family, the so-called reduced ionic models only provide a description of the
action potential and disregard sub-cellular processes:

Iion = f(Vm, w), (7.7a)

∂w

∂t
= gw(Vm, w), (7.7b)

where f, gw are suitable functions, while w : [0, T ] × Ωmus → R
M collects the so-called

gating variables which represent the percentage of open channels per unit area of the
membrane. The most celebrated reduced model for ventricular cells is FitzHugh-Nagumo’s
(FitzHugh 1961) where f(Vm, w) = −kVm(Vm−a)(Vm−1)−w and gw(Vm, w) = ǫ(Vm−γw),
for suitable constant parameters k, a, γ. In this case the gating variable w plays in fact
the role of a recovery function that allows to model the refractariness of cells. Other, more
sophisticated ventricular cell models of this family are, e.g., the Roger-McCulloch (Rogers
and McCulloch 1994), the Aliev-Panfilov (Aliev and Panfilov 1996), the Fenton-Karma
(Fenton and Karma 1998), and the Bueno-Orovio (Bueno-Orovio, Cherry and Fenton 2008)
models. Like FitzHugh-Nagumo’s, the first two models are characterized by the dynamics
of one gating variable and by a cubic non-linear expression of the ionic current. Instead, the
Fenton-Karma model and its Bueno-Orovio variant specifically addressed for the human
ventricular cells, feature two and three gating variables, respectively, and a more complex
non-linearity in the ionic current expression. These simple models are very appealing,
especially because their parameters have a direct physical interpretation, such as the action
potential duration, allowing for an easy setting of the model properties. For example, the
Aliev-Panfilov model has been used successfully in the first simulations of ventricular
fibrillation in a real geometry (Panfilov 1999). However, they are not able to describe
any process occurring at the level of the ionic channels and of the cell, so that they are
recommended when one is only interested in the heart electric activity.

The second family of ventricular cell models we consider is that of the so-called first-
generation models. Unlike reduced models that surrogate the ionic current by means of
the sole function f , they allow for an explicit description of the kinetics of different ionic
currents by using several gating variables. They read

Iion =
N∑

k=1

Ik(Vm, w), Ik = Gk




M∏

j=1

w
pjk

j


 (Vm − Vk) ,

∂w

∂t
= gw(Vm, w),

where N is the total number of ionic currents and M the total number of gating vari-
ables, Vk is the Nernst potential of the k − th ion (a constant value corresponding to
the thermodynamical equilibrium of the ion at hand), Ik is the current related to the
k − th ion, pjk

accounts for the influence of the j − th gating variable on the k − th ionic
current (possibly vanishing), Gk is the maximal conductance of the k − th ion. The M
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components of g usually have the expression gw,j = (w∞
j (Vm)−wj)/τj(Vm), where w∞

j is
the equilibrium state and τj the characteristic time constant. The most famous model of
this family, Hodgkin-Hukley’s (HH) (Hodgkin and Hukley 1952), depends on three ionic
currents, namely the sodium, potassium and leakage ones, and three gating variables

INa = GNaw
3
1w2(Vm − VNa), IK = GKw4

3(Vm − VK), IL = GL(VM − VL).

Although introduced to describe the action potentials in nerves, the HH model inspired
all the following models introduced specifically for the ventricle. Among these, we cite
the Beeler-Reuter (Beeler and Reuter 1977), the Luo-Rudy I (Luo and Rudy 1991), and
the TenTusscher-Panfilov (Tusscher and Panfilov 2006) models. These models were widely
used to study specific features of the ventricular electric activation, such as re-entry and
fibrillation (Xie, Qu, Yang, Baher, Weiss and Garfinkel 2004).

Finally, we mention the family of the second-generation ventricular cell models, like the
Luo-Rudy dynamic model (Luo and Rudy 1994a, Luo and Rudy 1994b), where, unlike
in first-generation models, a detailed description of some ion concentration variables c is
provided. They provide a detailed description of many processes allowing for the study,
e.g., of channelopathies and of drug action. However, due to their increased complexity,
the required computational time is very huge for a complete heart model and often the
tuning of the parameters is very demanding. We refer to (Clayton and Panfilov 2008) for a
discussion of second-generation models and to (Rudy and Silva 2006) for a general review
of cardiac cell models.

Although most of research studies focused on ventricular cell models as those mentioned
above, specific models have been introduced also for the atrial cells, see e.g. (Hilgemann
and Noble 1987), and for the sinoatrial node cells, see e.g. (Yanagihara, Noma and Irisawa
1980).

All the cardiac cell models belonging to the three families described above, used in
combination with the bidomain problem (7.5) or (7.6), leads to a system of two PDEs
coupled with two systems of ODEs, i.e. the equations for the gating variables and ion
concentrations written for each point x (the latter, in case, vanishing). The general
expression of such coupled problem reads (we only detail the PP case): Find at each time
t > 0 the potentials VM , φi and φe, the gating variable w and the ion concentrations c
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such that

χmCm
∂Vm

∂t
−∇ · (Σi∇φi) + χmIion(Vm, w, c) = Iext

i in Ωmus, (7.9a)

− χmCm
∂Vm

∂t
−∇ · (Σe∇φe) − χmIion(Vm, w, c) = −Iext

e in Ωmus, (7.9b)

Iion =
N∑

k=1

Ik(Vm, w, c) in Ωmus, (7.9c)

Ik = Gk




M∏

j=1

w
pjk

j


 (Vm − Vk(c)) in Ωmus, (7.9d)

∂w

∂t
= gw(Vm, w) in Ωmus, (7.9e)

∂c

∂t
= gc(Vm, w, c) in Ωmus, (7.9f)

where, together with the notation introduced above for the reduced and first-generation
models, c : [0, T ] × Ωmus → R

S collects the S ionic concentration variables and gc is
a suitable function, see e.g. (Colli Franzone et al. 2014). We observe, in general, the
dependence of the Nernst potential Vk on the variable c. Well-posedness results of the
previous coupled problem are provided, e.g., in (Colli Franzone and Savaré 2002), where
the existence and uniqueness of the solution of the PP formulation coupled with the
FitzHugh-Nagumo model is proved, and in (Bourgault, Coudière and Pierre 2006), where
a Faedo-Galerkin technique is applied to the PE formulation coupled with a general first-
generation cell model.

The ODE systems modeling the gating variables and the ionic concentrations variables
are in general stiff since the Jacobians ∂gw/∂w and ∂gc/∂c feature a wide range of eigen-
values.

For each t > 0, the weak formulation of the bidomain model (7.9) together with ho-
mogeneous Neumann conditions and initial conditions (see Section 7.1.4) reads: Given
Iext
i (t), Iext

e (t) ∈ L2(Ωmus), find Vm(t), φe(t), φi(t) ∈ H1(Ωmus), w ∈ [L2(Ωmus)]
M and
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c ∈ [L2(Ωmus)]
S such that

χmCm

∫

Ωmus

∂Vm

∂t
z dω +

∫

Ωmus

Σi∇φi · ∇z dω + χm

∫

Ωmus

Iion(Vm, w, c)z dω =
∫

Ωmus

Iext
i z dω,

(7.10a)

−χmCm

∫

Ωmus

∂Vm

∂t
z dω +

∫

Ωmus

Σe∇φe · ∇z dω − χm

∫

Ωmus

Iion(Vm, w, c)zdω =

−
∫

Ωmus

Iext
e zdω,

(7.10b)∫

Ωmus

∂w

∂t
· y dω =

∫

Ωmus

g(Vm, w) · y dω, (7.10c)

∫

Ωmus

∂c

∂t
· ζ dω =

∫

Ωmus

gc(Vm, w, c) · ζ dω, (7.10d)

for all z ∈ H1(Ωmus), y ∈ [L2(Ωmus)]
M and ζ ∈ [L2(Ωmus)]

S , together with (7.9c)-(7.9d).

7.1.3. Reduced continuous models: the monodomain and Eikonal equations

To reduce the complexity of the bidomain models (7.5) and (7.6), an assumption of pro-
portionality between the intracellular and extracellular conductivities, i.e. Σe = λΣi for
a suitable constant λ, is introduced. Substituting this relation in (7.6b), eliminating Σe

and substituting the corresponding relation for Σi in (7.6a), we obtain the monodomain
equation: Find for each t > 0 the transmembrane potential Vm such that

χmCm
∂Vm

∂t
−∇ · (Σ∇Vm) + χmIion = Iext in Ωmus, (7.11)

where

Σ =
λ

1 + λ
Σi (7.12)

is the effective conductivity and Iext =
λIext

i +Iext
e

1+λ . Again, a ventricular cell model is needed
to provide the ionic current Iion. The same models discussed above for the coupling with
the bidomian problem are used in combination with the monodomain problem as well.
Once the transmembrane potential Vm has been computed, the extracellular potential φe

could be computed as a post-processing by solving the elliptic problem (7.6b).
For each t > 0, the weak formulation of the monodomain problem (7.11) together with

homogeneous Neumann conditions and initial conditions (see Section 7.1.4) reads: Given
Iext(t) ∈ L2(Ωmus), find Vm(t) ∈ H1(Ωmus), w ∈ [L2(Ωmus)]

M and c ∈ [L2(Ωmus)]
S such
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that

χmCm

∫

Ωmus

∂Vm

∂t
z dω +

∫

Ωmus

Σ∇Vm · ∇z dω + χm

∫

Ωmus

Iion(Vm, w, c)z dω =
∫

Ωmus

Iextz dω,

(7.13a)∫

Ωmus

∂w

∂t
· y dω =

∫

Ωmus

g(Vm, w) · y dω, (7.13b)

∫

Ωmus

∂c

∂t
· ζ dω =

∫

Ωmus

gc(Vm, w, c) · ζ dω, (7.13c)

for all z ∈ H1(Ωmus), y ∈ [L2(Ωmus)]
M and ζ ∈ [L2(Ωmus)]

S , together with (7.9c)-(7.9d).
Although the hypothesis underlying the monodomain model, i.e. the proportionality

between the internal and external conductivities, is not physiological as shown by some
experiments, in some cases this model provides a very accurate solution in comparison with
the bidomain one. In particular, this is true when there is no injection of current in the
extracellular region (Colli Franzone, Pavarino and Taccardi 2005, Potse et al. 2006). On
the contrary, when an external current is injected such as in defibrillation, the monodomain
solution is not anymore accurate and the bidomain model is mandatory since the unequal
anisotropy is fundamental to successfully describe these scenarios (Trayanova 2006).

A further simplification is provided by the eikonal equation. Starting from the bidomain
model coupled with a simplified representation of the ionic current which does not consider
any gating variable and allows for the description only of the depolarization phase, in (Colli
Franzone, Guerri and Rovida 1990) the following eikonal-diffusion equation is derived:

co

√
∇ψ · M∇ψ −∇ · (M∇ψ) = 1, (7.14)

where ψ(x) is the unknown activation time (see Section 6.2), co represents the velocity
of the depolarization wave along the fiber direction for a planar wavefront and M =
Σ/(χCm). A different derivation has been provided in (Keener 1991), leading to the
following eikonal-curvature equation

co

√
∇ψ · M∇ψ −

√
∇ψ · M∇ψ∇ ·

(
M∇ψ√∇ψ · M∇ψ

)
= 1. (7.15)

They are both steady equations providing an information on the activation of each cell.
The contours of ψ(x) give the position of the wavefront at time t = ψ. The eikonal-
diffusive model (7.14) is an elliptic equation, where the propagation speed is influenced by
the tissue surrounding the wavefront. Once the activation time ψ has been computed, it
is possible to obtain an approximate value of the extracellular potential φe by solving at
each time step a suitable elliptic problem, see (Colli Franzone and Guerri 1993).

Instead, the eikonal-curvature model (7.15) is of parabolic type since the “diffusive” term
lacks the second drivative in the direction of propagation. This term is also proportional to
an anisotropic generalization of the mean curvature (Tomlinson, Hunter and Pullan 2002).



Modeling the cardiovascular system 81

This implies that the propagation is faster when the wavefront is concave. This is in
accordance with the diffusion of charge which allows for a faster depolarization in regions
close to already depolarized tissues.

The eikonal equations are unsuitable for recovering the action potential and the ionic
currents. However, they provide accurate results about the activation of cells even in
complex scenarios such as front-front collision, see e.g. (Colli Franzone and Guerri 1993)
for the eikonal-diffusive model.

The eikonal models are however very appealing from the computational point of view.
First of all, they consist in a single steady PDE. Although being non-linear, it does not
require to manage the coupling with the ODE systems. More importantly, the activation
time, unlike the transmembrane potential, does not feature any internal or boundary layer,
so that no special restriction on the mesh is needed in this case (see Section 6.1).

7.1.4. Boundary conditions and Purkinje network models

We discuss here the initial and boundary conditions of the problems introduced above.
The bidomain and monodomain equations and the ODE systems for the gating variables
and ionic concentrations need to be equipped with suitable initial conditions, i.e.

Vm|t=0 = Vm,0, w|t=0 = w0, c|t=0 = c0 in Ωmus,

for given functions Vm,0(x), w0(x), c0(x).
Regarding boundary conditions for the bidomain, monodomain and eikonal-diffusion

problems, a homogeneous Neumann condition is commonly prescribed at the external
surface Σepi of the epicardium and, in case of a ventricular domain solely, at the basis Σb

(see Figures 6.15 and 7.18, left) to prescribe null outgoing current fluxes. In particular,
the following conditions have to be prescribed on Σepi ∪ Σb:

(Σβ∇φβ) · n = 0 β = i, e for the PP formulation (7.5),

(Σi∇(Vm + φe)) · n = 0
((Σi + Σe)∇φe) · n + (Σi∇Vm) · n = 0

}
for the PE formulation (7.6),

(Σ∇Vm) · n = 0 for the monodomain problem (7.11),

(M∇ψ) · n = 0 for the eikonal-diffusion problem (7.14).

Moreover, for the bidomain problems (7.5) and (7.6), they force the following compatibility
conditions on the applied external currents:

∫

Ωmus

Iext
i =

∫

Ωmus

Iext
e .

On the internal surface Σendo of the endocardium, again Neumann conditions are pre-
scribed. In this case, however, they could be non-homogeneous at specific stimulation
points (e.g. the atrio-ventricular node and the points of the His bundle). For the eikonal
problem, Dirichlet data on the activation time could be prescribed at some specific loca-
tions in case they are available thanks to e.g. the NavX system (see Section 6.2) (Sermesant
et al. 2012). When redundant (e.g. in presence of the Purkinje network, see below) these
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data have been used to solve inverse problems, for example to estimate the conduction
velocity in the myocardium (Sermesant et al. 2012) or to obtain personalized Purkinje
networks (Vergara et al. 2014, Palamara et al. 2014, Palamara et al. 2015).

If the mathematical model accounts for the presence of the Purkinje network, interface
conditions on Σendo describing the continuity of the current and of the potential at the PMJ
are implicitly provided for the bidomain and monodomain problems by the solution of the
coupled muscle region/Purkinje network problem (Vigmond and Clements 2007, Vergara
et al. 2016). For the sake of exposition, we do not detail here the bidomain and mon-
odomain models for the Purkinje network, referring the interested readers to (Vigmond and
Clements 2007, Bordas, Gillow, Gavaghan, Rodŕıguez and Kay 2012, Vergara et al. 2016).
We only notice that, unlike the muscular case, in the network the gap junctions connect-
ing two consecutive Purkinje cells are often explicitly modeled by means of resistances.
Specific Purkinje cell models, with the same structure of those developed for the muscular
cells, have also been developed, see e.g. (Di Francesco and Noble 1985). However, we
describe here the mechanisms of coupling, in particular, we refer to the coupled problem
obtained by considering the monodomain problem both in the muscle region and in the
Purkinje network (Vergara et al. 2016). We consider N PMJ located at x = sj and we
assume that each of them could be modeled by means of a resistance RPMJ . Then, the
monodomain/monodomain coupled problem reads: Find for each t > 0, Vp, Vm, wp, w

and γj , j = 1, . . . , N , such that:

Pm


Vm, w,

N∑

j=1

1

Ar
IBr(sj)γj + Iext


 = 0, (7.16a)

Pp (Vp, wp, γ) = 0, (7.16b)

γj =
Vp(sj) − 1

Ar

∫
Br(sj)

Vm dx

RPMJ
j = 1, . . . , N, (7.16c)

where Pm (Vm, w, F ) = 0 represents the monodomain problem in the myocardium with
source term F , Pp (Vp, wp, η) = 0 the monodomain problem in the Purkinje network
with Neumann conditions with data ηj at the PMJ, Vp and wp are the transmembrane
potential and the gating variables in the Purkinje network, γj are the PMJ currents which
are determined by the Ohm’s laws (7.16c), IY is the characteristic function related to the
region Y ⊂ Ωmus, Br(sj) is the ball of radius r centered at the point sj and Ar the volume
of this ball. We observe that the two monodomain problems are coupled by means of the
PMJ currents γj : for the 3D problem the latter act as source terms distributed in balls of
radius r, whereas for the network they act as Neumann conditions (Bordas et al. 2012).
A similar approach could be considered for the bidomain problems as well.

The coupling between eikonal muscular and Purkinje network problems has been ad-
dressed in (Vergara et al. 2014) for normal propagation and in (Palamara et al. 2014) for
pathological propagations.
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7.1.5. Computing the surface electrocardiogram signals

The computation of the potentials related to the electric propagation in the heart could be
used to numerically compute the surface electrocardiogram (ECG) signals, i.e. the electric
potential on the surface of the body, thus simulating what happens in the common clinical
practice. This could be obtained by coupling the bidomain or monodomain problem with
the propagation in the torso, modeled by a simple diffusion problem for the extracellular
potential at each t > 0:

∇ · (ΣT∇φT ) = 0 in ΩT ,

where ΩT is the torso domain that surrounds the heart domain Ωmus (i.e. all the heart
boundary surface Σepi ∪ Σb represents the interface with the torso), ΩT ∩ Ωmus = ∅,
with φT representing the extracellular potential in the torso. Homogeneous Neumann
conditions have to be applied on the external torso surface ΣT , whereas the following
interface conditions, that replace the boundary conditions for the heart problem, need to
be prescribed at the torso/heart interface:

φe = φT on Σepi ∪ Σb,

(Σe∇φe) · n = (ΣT∇φT ) · n on Σepi ∪ Σb,

(Σi∇(Vm + φe)) · n = 0 on Σepi ∪ Σb.

7.1.6. Numerical discretization

The numerical solution of the bidomain and monodomain problems is very demanding.
Together with the strict constraint on the spatial mesh size due to the propagation of a
very steep front (see Section 6.1), a time step of the order of dozens or even hundredths
of milliseconds has to be used in order to capture the fast dynamics characterizing the
propagation, with time constants of the order of 0.1 ms. Moreover, as discussed below,
the algebraic solution of the linear systems arising at each time step using e.g. Finite
Elements requires a careful treatment due to the coupled nature of the problem, to the
singularity of some of the matrices involved, and to the presence of the non-linear term
due to the ionic currents.

Several time discretizations strategies have been considered so far. We can gather them
into four main categories, i.e. explicit, semi-implicit, implicit and operator splitting-based
methods, which are now briefly presented. We start by introducing the Finite Element
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matrices and vectors:

(M)jk =

∫

Ωmus

ψkψj dω,

(Aβ)jk =

∫

Ωmus

Σβ∇ψk · ∇ψj dω, β = i, e

(Iion(V n
m, W r, Cs))j =

∫

Ωmus

Iion(V n
m, wr, cs)ψj dω,

(G(V n
m, W r))j =

∫

Ωmus

g(V n
m, wr) · yj dω,

(S(V n
m, W r, Cs))j =

∫

Ωmus

gc(V
n
m, wr, cs) · ζj dω,

with ψi, yj and ζj denoting the basis functions of the Finite Element spaces, and n, r, s
integers representing the time discrete instants. Vectors V m, Φe, Φi, W and C denote
the unknown coefficients of the Finite Elements solutions associated to the unknowns
Vm, φe, φi, w, c. Notice that the dimension of W and C is MK and SK, respectively,
where K is the number of degrees of freedom associated with the mesh and the choice of
Finite Elements (e.g. the number of vertices for linear FE). In all the cases, in order to
simplify the notation, we will set Iext

e = Iext
i = 0 and we assume that the running temporal

index n+1 is understood.

Explicit methods. In explicit methods, all the problems in (7.10) are discretized by
means of an explicit scheme, e.g. forward Euler both for the PDEs and for the ODE
systems, (Puwal and Roth 2007, Ethier and Bourgault 2008). This choice allows to de-
couple the 4 blocks of the bidomain system (the two PDEs and the two ODEs system),
involving in the PP formulation only the mass matrix, thus in principle avoiding the need
to solve any linear system provided that the mass-lumping is performed. Instead, for the
PE formulation, the absence of time derivative in the second PDE implies that a linear
system in the unknown Φe needs in any case to be solved (we detail the forward Euler
method):

χmCmM
V m − V n

m

∆t
= −Ai(V

n
m + Φn

e ) − χmIion(V n
m, W n, Cn),

AiV m + (Ai + Ae)Φe = 0,

M
W − W n

∆t
= G(V n

m, W n), M
C − Cn

∆t
= S(V n

m, W n, Cn).

Explicit methods lead to a severe constraint on the time discretization of the type ∆t <
h2/Σ, Σ being a representative value of the conductivity (Puwal and Roth 2007). In
(Santos, Plank, Bauer and Vigmond 2004), it has been shown for a model problem that
an explicit method is not absolutely stable for a value of ∆t much smaller than the one
required to capture the front propagation. For this reason and due to the increased CPU
availability, nowadays explicit methods are not so much used.
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Semi-implicit methods. ODE systems are usually solved at each time step by means of
explicit or semi-implicit methods (in the latter case the dependence on Vm is treated ex-
plicitly). This suggests to use semi-implicit methods (Keener and Bogar 1998, Pennacchio
and Simoncini 2002, Colli Franzone and Pavarino 2004) for the whole coupled PDEs/ODEs
problem. These methods are the most used together with operator splitting-based ones
(see below). They are based on treating implicitly the diffusive term and explicitly the
non-linear term. A possible semi-implicit (first order) scheme for the PP formulation
(7.10) reads as follows (see e.g. (Colli Franzone and Pavarino 2004)):

M
W − W n

∆t
− G(V n

m, W ) = 0, M
C − Cn

∆t
− S(V n

m, W , C) = 0,

χmCmM
V m − V n

m

∆t
+ AiΦi + χmIion(V n

m, W , C) = 0,

− χmCmM
V m − V n

m

∆t
+ AeΦe − χmIion(V n

m, W , C) = 0.

A semi-implicit method like the one reported here features two nice properties. First of
all, the two PDEs are decoupled by the ODE systems, highly simplifying the numerical
solution of the entire problem. This decoupling strategy is justified by noticing that the
Jacobian entries of a fully implicit discretization feature dominant values on the diagonal
suggesting a weak coupling between potentials and gating/ionic concentrations variables
(Munteanu, Pavarino and Scacchi 2009). Secondly, it allows for a linearization of the non-
linear reaction term given by the ionic currents, thus requiring the solution of a (2 × 2
block) linear system.

A special attention has been paid to the evaluation of the ionic current in a Finite
Element context. In particular, two strategies have been mainly considered, i.e. ionic
current interpolation (ICI) and state variable interpolation (SVI). In the first case, only
the nodal values are used to build an interpolation of the ionic current, whereas in the
second case the transmembrane potential and the gating/ionic concentration variables are
interpolated within each element and the ionic current is then evaluated by using these
interpolated variables (Pathmanathan, Mirams, Southern and Whiteley 2011). The ICI
approach is of course more efficient from the computational point of view and allows one
to express the reaction term by means of a mass matrix. However, it features a lower
accuracy with respect to SVI, in particular, the computed conduction velocity is generally
larger than the true one, see (Pathmanathan et al. 2011).

From the algebraic point of view, the solution of a semi-implicit discretized problem is
very demanding, since the matrix of the linear system associated to the PDEs written in
terms of the unknowns Φi and Φe is given by

B =
χmCm

∆t

[
M −M
−M M

]
+

[
Ai 0
0 Ae

]
.

Both terms of this matrix are singular, the first one due to the degenerate parabolic
nature of the PP bidomain formulation, the second one being each block Aβ related to
a pure Neumann diffusive problem. However, matrix B is positive semidefinite, hence
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the preconditioned conjugate gradient method is often used for its numerical solution
(Pennacchio and Simoncini 2002, Colli Franzone and Pavarino 2004). Preconditioning is
mandatory since matrix B is highly ill-conditioned due to the block 2×2 mass matrix that,
unlike usually happens for the classical mass matrix, worsen the spectrum of the stiffness
matrix. Efficient preconditioners are, e.g., block Jacobi and Gauss-Seidel (Mardal, Nielsen,
Cai and Tveito 2007), block SSOR (Pennacchio and Simoncini 2002), multilevel additive
Schwarz (Pavarino and Scacchi 2008), multigrid (Plank, Liebmann, dos Santos, Vigmond
and Haase 2007, Vigmond, dos Santos, Prassl, Deo and Plank 2008), and a functional block
preconditioner obtained by the monodomain solver (Gerardo Giorda, Mirabella, Nobile,
Perego and Veneziani 2009).

Semi-implicit methods have been proposed also for the PE formulation, see, e.g., (Fernandez
and Zemzemi 2010). For example, with respect to the unknowns V m and Φe, we have

B =
χmCm

∆t

[
M 0
0 0

]
+

[
Ai Ai

Ai Ai + Ae

]
.

Again the matrix is singular, ill-conditioned, and semidefinite positive. In this context, we
cite (Pierre 2012) for an incomplete block LU factorization precontitioner and (Vigmond,
Aguel and Trayanova 2002) where the two PDEs are decoupled by treating explicitly Vm

in (7.6a) and φe in (7.6b).
In any case, semi-implicit methods are conditionally stable with a bound on ∆t which

is however independent of the mesh size (Fernandez and Zemzemi 2010, Colli Franzone et
al. 2014).

A variant of the semi-implicit method reported above arises from treating implicitly
the reaction term Iion. In this case, Newton-Krylov-Schwarz methods are very efficient
(Munteanu et al. 2009). Second order semi-implicit schemes have been successfully con-
sidered as well, see e.g. (Ethier and Bourgault 2008).

Operator splitting-based methods. These methods separate the reaction operator
from the diffusive operator, in a way similar to what is done in fractional step methods
for fluid problems. They were first introduced for the monodomain problem in (Qu and
Garfinkel 1998). We present here an operator splitting-based method for the PP for-
mulation of the bidomain problem (Sundnes, Lines and Tveito 2005, Colli Franzone et
al. 2014):

Step 1. Given the quantities at time step tn, solve the reaction problem and the ODE systems
in (tn, tn + θ∆t]:

χmCmM
Ṽ

n+θ

m − V n
m

∆t
+ χmIion(V ∗

m, W ∗, C∗) = 0,

M
W̃

n+θ − W n

∆t
− G(V ∗

m, W ∗) = 0, M
C̃

n+θ − Cn

∆t
− S(V ∗

m, W ∗, C∗) = 0;
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Step 2. Given Ṽ
n+θ

m , solve the diffusion problems in (tn, tn+1]:

χmCmM
V̂

n+1

m − Ṽ
n+θ

m

∆t
+ AiΦ

∗
i = 0,

− χmCmM
V̂

n+1

m − Ṽ
n+θ

m

∆t
+ AeΦ

∗
e = 0;

Step 3. Given V̂
n+1

m , W̃
n+θ

, C̃
n+θ

, solve the reaction problem and the ODE systems in (tn+
θ∆t, tn+1]:

χmCmM
V n+1

m − V̂
n+1

m

∆t
+ χmIion(V ∗

m, W ∗, C∗) = 0,

M
W n+1 − W̃

n+θ

∆t
− G(V ∗

m, W ∗) = 0, M
Cn+1 − C̃

n+θ

∆t
− S(V ∗

m, W ∗, C∗) = 0.

The superscript ∗ means that the quantity at hand could be treated either explicitly or
implicitly. The variable θ could assume value 1/2 or 1. In the latter case, step 3 is unnec-

essary, we set V n+1
m = V̂

n+1

m , W n+1 = W̃
n+1

, Cn+1 = C̃
n+1

, and a first order method
is obtained (Godunov splitting). For θ = 1/2, we have a second order method provided
that all the subproblems are solved with a second order strategy (Strang splitting). Notice
that if step 2 is solved implicitly, then the same preconditioners introduced below for the
semi-implicit schemes could be applied as well since it applies to the same operator.

Implicit methods. Some authors considered a fully implicit discretization of the full
bidomain problem (7.5) or (7.6), see e.g. (Bourgault, Ethier and LeBlanc 2003, Murillo
and Cai 2004). In this case the whole Jacobian is built and the Newton method is applied.
Due to the small time step required in bidomain simulations to capture the propagating
front and due to the excellent stability properties of semi-implicit and operator splitting-
based methods, fully implicit method are nowadays not so much considered.

In Figures 7.19 and 7.20 we report some examples of numerical results related to the
solution of the electrical propagation in the myocardium.

7.2. Cardiac mechanics and electro-mechanics coupling

7.2.1. The continuous mechanics problems

During a physiological contraction, the cardiac cells change their length up to 20%-30%,
so that finite elasticity models are mandatory to describe heart contraction and relaxation.
In particular, the first Piola-Kirchhoff tensor is written as the sum of two terms (Nash and

Panfilov 2004, Niederer and Smith 2008), a passive component, T̂
P

s , describing the stress
required to obtain a given deformation of the passive myocardium (similarly to arteries),

and an active component, T̂
A

s , representing the tension generated by the depolarization of
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Figure 7.19. Left: Purkinje network generated by the algorithm proposed in (Palamara et
al. 2015) in the case of a real left ventricle. Right: Map of the activation times computed by
means of the Eikonal equation. The time marching scheme and P1 finite elements have been

used. The source term (dark blue) is located within the myocardium as typically happens in the
Wolff-Parkinson-White syndrome. Results obtained by means of a code implemented in the

VMTK envoirment (www.vmtk.org). CT images from the Cardiology Division at Ospedale S.
Maria del Carmine, Rovereto (TN), Italy, and from the Radiology Division of Borgo-Trento

(TN), Italy

Figure 7.20. Propagation of the transmembrane potential in the two ventricles at eight different
instants during an heartbeat. Monodomain simulation, semi-implicit method, P1 Finite Elements.
These results have been obtained using LifeV; the computational mesh has been obtained by an

open source biventricular geometry segmented from CT images, see (Rousseau 2010)
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the propagating electric signal that provides the internal active forces responsible of the
contraction (see Section 5.4):

T̂ s = T̂
P

s + T̂
A

s , (7.23)

where according to the notation of Part 1,̂ refers to quantities computed in the reference
domain.

The passive component of the stress is obtained as the derivative of a suitable strain en-
ergy function, see (4.8). The heart mechanics response (just like the electric propagation,
see Section 7.1) highly depends on the presence of fibers and sheets. For this reason, the
passive myocardium is modeled as an orthotropic material, characterized by two princi-
pal directions and with different material responses on three mutually orthogonal planes,
identified by these directions. This is in accordance with the shear tests performed on
pig hearts, that highlighted an elevated resistance to shear deformations producing an
extension along the fiber direction, an intermediate resistance in the direction orthogonal
to fibers and tangential to sheets, and the least resistance in the third orthogonal direction
(Dokos, Smaill, Young and LeGrice 2002). By denoting with âf , âs, ân the unit vectors
along these directions (see Section 7.1) in the reference configuration, the following strain
energy function has been proposed in (Holzapfel and Ogden 2009):

Θ(I1, I4,f , I4,s, I8,fs) =
a

2b
eb(I1−3) +

∑

i=f,s

ai

2bi

[
ebi(I4,i−1)2 − 1

]
+

afs

2bfs

[
ebfsI2

8,fs − 1
]
, (7.24)

where, referring to the notation introduced in Section 4.2, I1 = tr C, I4,i = âi · (Câi) , i =
f, s, I8,fs = âf · (Câs) are invariants of C, and a, b, af , bf , as, bs, afs, bfs are material
parameters. I1 is the first isotropic invariant and the related term in Θ accounts for
the isotropic response of the myocardium at small deformations; I4,f and I4,s are the
squares of the stretch of âf and âs in the deformed configuration and the related terms
in the energy are associated with the increased stiffness of the material along the two
principal directions af and as for large deformations; finally, I8,fs represents the angle
spanned by the two principal directions in the deformed configuration and the related
term in the energy describes the coupling between the two principal directions. Convexity
of this energy is guaranteed for positive parameter values (Holzapfel and Ogden 2009).
Other orthotropic models have been proposed, e.g., in (Hunter, Nash and Sands 1997,
Costa, Holmes and Mcculloch 2001), whereas transversally isotropic models with only
one principal direction (that along the fibers) had been previously introduced, e.g., in
(Humphrey and Yin 1987, Guccione, McCulloch and Waldman 1991). Some authors
model the myocardium as incompressible (Holzapfel and Ogden 2009), in accordance with
the experiments reported in (Vossoughi, Vaishnav and Patel 1980). In this case the term
ps(J − 1) is added to the strain energy functions, as done in (4.13).

On the basis of experimental evidences, reported e.g. in (Dokos et al. 2002), highlighting
hysteresis under shear deformations, viscoelastic orthotropic models have recently been
proposed for the passive myocardium, see (Gultekin, Sommer and Holzapfel 2016). The
viscoelastic behavior is probably due to the extracellular fluid that filtrates through the
solid part.
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Regarding the active contribution of the cardiac cells to the contraction, this is regulated
by the opening of calcium channels as a response to the depolarization, with a consequent
entry of calcium ions in the cells. As detailed in Section 5.4, this process is responsible
for the cardiac contraction. Since the latter occurs along the axial direction of the cardiac
cells, i.e. along the fiber direction, the active part of the stress tensor has usually the
following form (Nash and Panfilov 2004)

T̂
A

s = PAaf ⊗ âf , (7.25)

where the scalar function of time and space PA represents the pointwise active stress and
should be properly modeled.

In the classical model for the active stress function proposed in (Nash and Panfilov 2004),
PA depends on the transmembrane potential Vm solely. In particular, for each spatial
point, the following ODE equation is introduced

dPA(t)

dt
= ε(Vm(t))

[
kP (Vm(t) − Vr) − PA(t)

]
, (7.26)

where Vr is the resting potential, kP is a suitable parameter controlling the amplitude of
PA, and ε controls the delay of the contraction with respect to the action potential. For
example, in (Goktepe and Kuhl 2010) the following expression has been proposed

ε(Vm) = ε0 + (ε∞ − ε0)e
−e−ξ(Vm−V̄m)

,

where ε0, ε∞, ξ, V̄m are suitable parameters.
Since the cardiac cell contraction is regulated by the calcium ions concentrations, the

active stress function PA can be assumed to directly depend on this specific concentration,
say cca, rather than on the more general variable Vm. For example, in (Wong et al. 2013)
a system of ODEs of the same structure of (7.26) has been proposed, however using cca

instead of Vm on the right hand side.
In more sophisticated models, the active stress function also depends on the stretch

in the fiber direction λ =
√

âT
f Câf and on the fiber stretch rate

dλ

dt
(Niederer, Hunter

and Smith 2006, Land, Niederer, Aronsen, Espe, Zhang, Louch, I.Sjaastad, Sejersted and
Smith 2012). In compact form, these models are written as follows:

dy

dt
= gy

(
PA, λ,

dλ

dt
, c, y

)
,

PA = gP A (λ, y) ,
(7.27)

for suitable functions gy and gP A and where c, as in Section 7.1, is the ionic concentra-
tion variables (in particular the calcium one), whereas y collects other myofilament and
electrophysiology state variables.

Alternatively to the decomposition (7.23) where the stress tensor is split into a passive
and an active component (active stress approach), a different strategy based on an active
strain approach has been proposed in (Cherubini, Filippi, Nardinocchi and Teresi 2008,
Ambrosi, Arioli, Nobile and Quarteroni 2011). In this case, the following multiplicative
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decomposition of the deformation tensor is introduced

F = F P F A,

where F A is the active factor acting at the microscales and representing a distortion of the
fibers not preserving in general the compatibility of the body, whereas F P is the factor
describing the passive deformation at the macroscales and the deformation needed to
restore compatibility. With this choice, quite common when analyzing plasticity and the
remodeling of living tissues, the microscale information related to the fiber contraction is
directly incorporated in the body kinematics, allowing for the inclusion of fiber contraction
driven by the depolarization as a prescribed active deformation rather than a further
contribution to stress. In this case, the first Piola-Kirchhoff stress tensor is given by

T̂ s = JA DΘ

DF P
(F A)−T ,

and, in analogy with (7.25), a possible expression for F A is

F A = I − βVmâf ⊗ âf ,

for a suitable parameter β (Ambrosi et al. 2011). The active strain approach is probably
more satisfactory from the modeling point of view, since, unlike active stress, it should
provide the expected fiber contraction without any tuning. However, from the numerical
point of view it is more problematic since standard Finite Element finite elasticity solvers
cannot be directly used and should be properly adapted. From now on we refer only to
the active stress approach. For a comparison between the two approaches we refer to
(Ambrosi et al. 2011, Ambrosi and Pezzuto 2012), and to (Pezzuto 2013, Rossi et al. 2014)
for related computational results.

7.2.2. The coupled electro-mechanics problem

The values of the transmembrane potential Vm or calcium ion concentration cca to be used
in (7.26) or (7.27) to compute the active stress function PA are sometimes prescribed as
given data to the mechanics problem, see e.g. (Eriksson, Prassl, Plank and Holzapfel 2013).
However, in most of the cases, they are obtained from the bidomain or monodomain
equations. This leads to a coupled electro-mechanical problem.

The electric propagation problem needs to be solved in a domain that changes in time,
because of the cardiac contraction and relaxation. Under suitable assumptions (Colli Fran-
zone, Pavarino and Scacchi 2016), in an Eulerian framework, these problems assume the
form (7.5), (7.6), or (7.11), provided that the conductivity tensors (7.4) or (7.12) are com-
puted by using the deformed unit directions af , as, an, see e.g. (Keldermann et al. 2009).
However, for computational simplicity, most often the bidomain and monodomain equa-
tions are set in a Lagrangian framework and written in the reference undeformed configu-
ration. We report in what follows the corresponding monodomain equation (according to
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the notation of Part 1, we set Ωmus = Ω0
mus):

JχmCm

(
∂V̂m

∂t
− F−T∇V̂m · ∂ψ

∂t

)
−∇ ·

(
JF−1ΣF−T∇V̂m

)
+

JχmĨion

(
V̂m, ŵ, ĉ, λ

)
= JÎext in Ωmus,

(7.28)

coupled with the ODE systems (7.9e)-(7.9f) (similar arguments hold true for the bidomain
equations as well). The spatial derivatives have to be intended with respect to the unde-
formed domain, ψ is the deformation map between Ω0

mus and Ωt
mus and λ is the stretch

in the fiber direction introduced above.
From the previous equation, we observe that there are three sources of mechano-electric

feedbacks, i.e. three ways through which the mechanics problem influences the electric
one:

i) the effective conductivity tensor Σ̂ = JF−1ΣF−T depends on the deformation gra-
dient F ;

ii) the ionic current term Iion depends on the stretch in the fiber direction λ;
iii) the relation between the spatial and material time derivatives introduces the advec-

tion term −F−T∇V̂m · ∂ψ
∂t which depends on the solution of the mechanics problem

(Colli Franzone et al. 2016).

The first and the third terms are due to the pulling back of the monodomain equation
in the undeformed domain (geometrical feedback). The second one is instead due to a
well-known physical process consisting in the opening of ion channels under the action
of deformation (stretch-activated channels, see Sect. 5.4) (Kohl, Hunter and Noble 1999,
Kohl and Sachs 2001). Accordingly, the ionic current term is written as the sum of two
contributions,

Ĩion = Iion

(
V̂m, ŵ, ĉ

)
+ ISAC

(
V̂m, λ

)
, (7.29)

where Iion represents one of the classical independent-stretch models described in Section
7.1.2, and ISAC is the current activated by the deformation. A quite general expression
for the latter term is given by

ISAC =
∑

i

Ki(V̂m)(λ − 1)(V̂m − Vi)H(λ − 1), (7.30)

where the i − th term of the sum represents the stretch-activated currents related to the
i− th ion (usually sodium and potassium), Ki is a suitable function, Vi the Nerst potential
introduced in Section 7.1.2. The Heaviside function H(·) guarantees that the stretch-
activated ion channels open only under fiber tension (λ > 1) (Niederer and Smith 2007).
In (Colli Franzone et al. 2016), it was shown (computationally) that these terms do not
significantly alter the morphology of the action potential, however they strongly influence
the action potential duration.

Stretch-activated ionic currents together with the active stress component of the stress
tensor (or equivalently, to the active strain component of the deformation gradient) make
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the electro-mechanics problem a highly coupled system, that can be summarized as follows:
Find the muscle displacement d, the transmembrane potential Vm, the gating variables
w, and the ionic concentration variables c, such that

∇ ·
(

T̂
P

s (d̂) + T̂
A

s

(
ĉ, d̂,

dd̂

dt

))
= 0 in Ωmus, (7.31a)

T̂
A

s = PAaf ⊗ âf , PA = A
(

ĉ, d̂,
dd̂

dt

)
in Ωmus, (7.31b)

V̂m = M
(
V̂m; d̂, ŵ, ĉ

)
in Ωmus, (7.31c)

(ŵ, ĉ) = G(ŵ, ĉ; V̂m) in Ωmus. (7.31d)

In the previous system, equation (7.31a) stands for the mechanical problem. Notice that,
unlike for the vessel case, see (4.7), the time dependent inertial term has been neglected,

as commonly done for the heart mechanics. Moreover, T̂
P

s =
∂Θ

∂F
, where Θ is given for

example by the orthotropic law (7.24), and PA is given by either (7.26) or (7.27). Equation
(7.31c) represents in compact form the monodoman problem (7.28) together with the ionic
current expression given by (7.29)-(7.9c)-(7.9d)-(7.30). Finally, (7.31d) is a shorthand
notation for the ODE systems (7.9e)-(7.9f) for the gating and ionic concentration variables
characterizing the cardiac cell model. Notice also that in writing system (7.31), we have
exploited the fact that λ and F could be written in terms of d, allowing us to indicate the

dependences of the monodomain problem on λ and F and of T̂
A

s on λ in compact form
through d.

Regarding the well-posedness of the electro-mechanics coupled problem (7.31), very few
results have been obtained so far. We mention (Pathmanathan, Chapman, Gavaghan and
Whiteley 2010), where it has been noticed that for the general active stress model (7.27),
the equilibrium equation (7.31a) is not even elliptic when there is an explicit dependence on
the rate of stretch dλ

dt , and (Andreianov, Bendahmane, Quarteroni and Ruiz-Baier 2015),
where the existence of a weak solution is proved for the case of a linearized elasticity
equation in the active strain formulation coupled with the bidomain equations including
the geometrical feedback affecting the conductivity tensors.

7.2.3. The issue of boundary conditions for the mechanics problem

As for the mechanical contraction problem (7.31a), proper boundary conditions should
be prescribed at both the external epicardium and internal endocardium surfaces. For
the former, the presence of both the pericardium and the surrounding tissue has to be
accounted for, because of their effect on the heart movement. A sophisticated model of
interaction with the pericardium accounting for a frictionless contact has been proposed
in (Fritz, Wieners, Seemann, Steen and Dossel 2014). More commonly, similarly to the
vascular case, a Robin condition like (3.1) is prescribed at Σepi.

At the endocardium internal surface Σendo, in presence of a fluid model in the atrial and
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ventricular cavities, the usual dynamic and kinematic conditions (4.19c)-(4.19d), arising
from the fluid-structure interaction model, implicitly provides both the endocardial dis-
placement and normal stresses (see Section 7.5). When the fluid in the ventricular cavity is
not modeled, suitable strategies to prescribe boundary conditions at Σendo are mandatory.
A common strategy relies on prescribing a Neumann condition of type

T̂ sn̂ = P n̂, (7.32)

where P is a suitable estimate of the blood pressure distribution at the endocardium.
During the ventricular filling, condition (7.32) is prescribed both for atria and ventricles

by means of selected values of blood pressures taken from literature (see Figure 5.13).
During the isovolumic contraction, the ventricular volume is kept constant by means,

e.g., of fixed point iterations, where the value of the endocardial pressure to be prescribed
in (7.32) at each time step is updated until satisfaction of the constraint given by the
unchanged volume (Usyk, LeGrice and McCulloch 2002, Eriksson et al. 2013):

P(k+1) = P(k) + (V − V n)/Ck,

where V is the cavity volume, k the subiteration index, Ck a penalty parameter, and
where the current temporal index n+1 is as usual understood. Alternatively, a Lagrange
multiplier approach could be employed as well (Gurev et al. 2015). During this phase the
atrial pressure is kept constant to the values reached when the mitral and tricuspid valves
close.

For the ventricular ejection, a reduced 0D model (based on the analogy with electric
circuits, see Section 4.5.1) for the systemic (and in case pulmonary) circulation is usually
coupled with the cardiac mechanics problem, assuming that the ventricular pressure equals
the pressure in the aorta (or in the pulmonary artery) (Usyk et al. 2002, Eriksson et
al. 2013). This is a good approximation since, although the ventricular and circulatory
pressures are different (thus allowing for the acceleration and deceleration of blood, see
Figure 5.13), they are very similar. In this case we have a coupled problem between the
cardiac mechanics and the lumped parameters model where the two subproblems exchange
suitable interface conditions (e.g. in an iterative framework). For example, the 0D model
could provide the pressure to be prescribed to the mechanics problem by means of (7.32),
whereas the flow rate Q = ρf

dV
dt is prescribed to the 0D model. During the ejection phase

the atrial pressure is determined by the venous pressure that could be obtained again by
a 0D model or by literature values.

Finally, during the isovolumic relaxation, the endocardial pressure is decreased according
to literature values until it reaches the pressure atrial value. Also during this phase the
atrial pressure is determined by the venous pressure.

When only the ventricular mechanics is modeled (no atria), a truncated computational
domain like the one depicted in Figure 7.18, left, is considered. In this case we have to
provide suitable boundary conditions at the ventricular basis Σb. Often, this surface is
kept fixed by enforcing homogeneous Dirichlet conditions. In other cases, the tangen-
tial displacement is allowed by prescribing a homogeneous Neumann condition along the
tangential directions.
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7.2.4. Numerical approximation

The coupled electro-mechanics problem (7.31) is composed by four differential blocks,
namely the two PDEs (7.31a) and (7.31c) describing the heart mechanics and electric
propagation, respectively, the ODE system (7.31b) providing the active stress function, and
the ODE systems (7.31d) modeling gating and ionic concentration variables. Moreover,
the algebraic source of coupling (7.29)-(7.30) need to be accounted for to determine the
stretch-activated ion currents. Their influence on the electric problem has been included
directly in the right hand side of (7.31c).

A common numerical solution strategy for problem (7.31) addresses two PDEs sepa-
rately by relying (when possible) on pre-existing mechanics and electric codes: for instance
the mechanics subproblem is solved in (Pavarino et al. 2015) using efficient Newton-Krylov
iterations, while the electric subproblem (monodomain+cell ODE model) is solved by
means of one of the strategies described in Section 7.1.6 (see also (Sundnes, Wall, Osnes,
Thorvaldsen and McCulloch 2014) for an operator splitting method).

In this context, at each time step the electric subproblem is solved first and the me-
chanics problem later (Nash and Panfilov 2004, Gurev et al. 2015, Sundnes et al. 2014).
In particular, after time discretization, the following scheme is employed (as usual the
current temporal index n+1 is understood and ∗ means that the related term could be
treated either implicitly or explicitly, depending on the temporal scheme used):

EM1 Algorithm:
At each time step

1 solve the monodomain problem together with the cell model:

V̂m = M
(
V̂ ∗

m; d̂
n
, ŵ∗, ĉ∗

)
in Ωmus, (7.33a)

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗
m) in Ωmus; (7.33b)

2 then, solve the mechanics problem:

2a. update the active stress contribution

T̂
A

s = PAaf ⊗ âf , PA = A
(

ĉ, d̂
n
,
d̂

n − d̂
n−1

∆t

)
in Ωmus;

2b. solve the equilibrium equation by means of the following Newton iterations: at
each iteration k solve

∇·
(
DF T̂

P

s

(
d̂(k−1)

))
δd̂(k) = −∇·

(
T̂

P

s (d̂(k−1)) + T̂
A

s

(
ĉ, d̂

n
,
d̂

n − d̂
n−1

∆t

))
in Ωmus.

According to the notation introduced in Section 4.6.2, DF is the Gâteaux derivative with
respect to F , δd̂(k) = d̂(k) − d̂(k−1), and, for simplicity, we have considered a Forward

Euler approximation of dw
dt

∣∣
tn

. The active stress contribution is treated explicitly, i.e.
it is updated once per time step. This choice may lead to numerical instabilities, as
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computationally reported in (Niederer and Smith 2008). In (Pathmanathan et al. 2010)
it has been speculated that such instability could be ascribed to the (necessarily) explicit
time discretization of the explicit stretch rate term dλ

dt

∣∣
tn

(instead of dλ
dt

∣∣
tn+1) in the active

stress function solution.
To overcome these instabilities, in (Niederer and Smith 2008) it has been proposed to

update the active stress function at each Newton step, i.e. to substite step 2 in the previ-
ous scheme with the following one:

EM1/bis Algorithm:

2bis. solve the mechanics problem by the following Newton iterations: at each iteration k

2bis/a. update the active stress contribution

T̂
A

s = PAaf ⊗ âf , PA = A
(

ĉ, d̂(k−1),
d̂(k−1) − d̂

n

∆t

)
in Ωmus;

2bis/b. solve the equilibrium equation

∇·
(
DF T̂

P

s

(
d̂k−1

))
δd̂k = −∇·

(
T̂

P

s (d̂k−1) + T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
in Ωmus.

Notice that step 2bis does not coincide with a fully Newton iterations on (7.31a)-(7.31b).
Although at the expence of a higher number of iterations, this scheme provides stable
solutions and allows the use of a standard solver for the mechanics part.

A fully Newton method for the solution of the mechanics problem (7.31a)-(7.31b) used
in combination with a different explicit decoupled scheme has been successfully proposed
in (Pavarino et al. 2015), where the electric problem (7.31c)-(7.31d) is split into the cel-
lular and macroscopic problems (semi-implicit treatment) and the mechanics problem is
solved in between, as follows:

EM2 Algorithm:
At each time step

1 solve the ODE system for the gating and ionic concentration variables

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗
m) in Ωmus;

2 then, solve the mechanics problem by the following fully Newton method: at each
iteration k solve

2a. update the active stress contribution

T̂
A

s = PAaf ⊗ âf , PA = A
(

ĉ, d̂(k−1),
d̂(k−1) − d̂

n

∆t

)
in Ωmus,
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2b. solve the equilibrium equation

∇ ·
(

DF T̂
P

s

(
d̂(k−1)

)
+ DF T̂

A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
δd̂(k)

= −∇ ·
(

T̂
P

s (d̂(k−1)) + T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
in Ωmus;

3 solve the monodomain problem

V̂m = M
(
V̂ ∗

m; d̂, ŵ, ĉ
)

in Ωmus.

A simplified variant of the previous decoupled algorithms has been proposed in (Andreianov
et al. 2015) for the active strain formulation. We report here, for coherence with the pre-
vious algorithms, a variant of this scheme for the active stress formulation, where however
in the second equation of (7.31b) we have PA = A (ĉ), i.e. the active stress function does
not depend on the stretch and stretch rate:

EM3 Algorithm:
At each time step

1 update the active stress contribution

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉn−1

)
in Ωmus;

2 solve the equilibrium mechanics problem by the following Newton method : at each
iteration k solve

∇ ·
(
DF T̂

P

s

(
d̂k−1

))
δd̂k = −∇ ·

(
T̂

P

s (d̂k−1) + T̂
A

s

(
ĉn−1

))
in Ωmus;

3 then, solve the electric problem

V̂m = M
(
V̂ ∗

m; d̂
n−1

, ŵ∗, ĉ∗
)

in Ωmus,

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗
m) in Ωmus.

In (Andreianov et al. 2015) the convergence of the finite element solution of Algorithm
EM3 towards the continuous solution of (7.31) is proven.

Although segregated algorithms as those reported above are the most widely used to
numerically solve the coupled electro-mechanics problem (7.31), a monolithic approach
has been used in (Goktepe and Kuhl 2010), where a Newton method has been successfully
applied to the whole coupled problem with a FitzHugh-Nagumo cardiac cell model (i.e.
without the ODE systems (7.31d)).

In Figure 7.21 we report an example of fiber configuration in the left ventricle, whereas
in the same figure and in Figure 7.22, the results of an electro-mechanical simulation.
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Figure 7.21. Left: Fiber orientation in a real left ventricle obtained with the method proposed in
(Rossi et al. 2014). CT images from the Cardiology Division of Ospedale S. Maria del Carmine,

Rovereto (TN), Italy, and from the Radiology Division of Borgo-Trento (TN), Italy. Right:
Displacement configuration of a real left ventricle during the contraction phase at three different
instants. Orthotropic model of activation, see (Barbarotta 2014). These numerical results are

obtained using LifeV and taken from (Barbarotta 2014). CT images from the Cardio-surgery and
Radiology Divisions at Ospedale Sacco, Milan, Italy

Figure 7.22. Displacements of the two ventricles at six different instants during the systolic
contraction. Electro-mechanic coupled simulation, P1 Finite Elements. These numerical results

are obtained using LifeV; the computational mesh has been obtained by an open source
biventricular geometry segmented from CT images, see (Rousseau 2010)

7.3. The ventricular fluid-dynamics

Blood flow in heart cavities Ωcav, reported in Figure 6.15, can be regarded as homogeneous,
Newtonian and incompressible (Vierendeels, Riemslagh, Dick and Verdonck 2000, Watan-
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abe, Hisada, Sugiura, Okada and Fukunari 2002). The displacements induced by the inter-
action with the myocardium can be larger than 30%, hence the solution of fluid-structure
interaction problems is mandatory. Despite the large displacements, the ALE technique
introduced in Section 4.6.3 is suitable in this context, as shown by several authors, see e.g.
(Cheng, Oertel and Schenkel 2005, Nordsletten, McCormick, Kilner, Hunter, Kayand and
Smith 2011a). Alternatively, the Immersed Boundary method (Peskin 1972), that does
not require remeshing neither induces mesh deformation, has been often used since the
celebrated paper by C. Peskin (Mittal et al. 2016, Choi, Constantino, Vedula, Trayanova
and Mittal 2015) ; see Section 7.4 for its mathematical description.

One of the main features of the intraventricular fluid-dynamics is represented by the
formation of a vortex ring during diastole (i.e. the filling phase) just downstream the
mitral valve. This ring is generated during the peak flow due to pressure gradient between
left atrium and ventricle, and it is highly distorted due to the asymmetry of the mitral
valve leaflets (Seo, Vedula, Abraham, Lardo, Dawoud, Luo and Mittal 2014). At the end of
this phase, the vortex ring is broken up into small-scale structures that propagate towards
the posterior wall and the apex. After the second mitral peak flow due to the atrium
contraction, additional vortex rings pop up. However, due to the small duration of this
phase, they do not propagate far into the chamber (Le and Sotiropoulos 2013). Similar
vortex rings are generated in the left atrium from the flow ejected by the pulmonary
vein (Mittal et al. 2016). This complex and disturbed fluid-dynamics, in presence of a
quite high Reynolds number (≃ 4000), leads to transitional effect to turbulence even in
the healthy case (Querzoli, Fortini and Cenedese 2010). For this reason, inclusion of
turbulence model in heart simulations is common practice; see e.g. (Chnafa, Mendez
and Nicoud 2014) for LES models and (Tagliabue, Dedè and Quarteroni 2015) for the
Variational Multiscale (VMS) formulation, that includes in a unified framework some
stable schemes controlling the numerical instabilities arising in the convective regimes
(e.g. SUPG) and LES turbulence models (Hughes et al. 2000).

Regarding boundary conditions, at the endocardium Σendo (see Figure 6.15) the kine-
matic and dynamic conditions are implicitly determined by the coupling with the structural
problem holding in the myocardium, leading to a fluid-structure interaction problem (see
Section 7.5). The solution of a coupled fluid-structure interaction (FSI) problem can be
avoided in those cases where the wall velocity can be derived from dynamic MRI or CT
images. This requires however having at disposal several (20-30) wall displacement fields
at different instants of an heartbeat. The wall myocardium velocity (that provides the
Dirichlet boundary condition for the fluid equations in the ventricle) can be generated
by numerically differentiating the displacement field (Khalafvand et al. 2014, Mittal et
al. 2016). Alternatively, the wall myocardium velocity could be provided by the solution
of the electromechanics model in case the latter is segregated from the fluid model (Choi
et al. 2015).

The heart has also four artificial sections that delimit it from the circulatory system,
namely the aortic and pulmonary valve orifices (outlets) and the interfaces with the venae
cavae and the pulmonary vein (inlets). In these cases, suitable conditions could be obtained
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by coupling the heart fluid-dynamics with the aorta, the pulmonary artery, and the above-
mentioned veins. These can be modeled by means of 3D, 1D or 0D models.

In the case of simulation in the left ventricle solely (see Figure 7.18, right) we have to
prescribe suitable boundary conditions also at the mitral valve orifice Γmitr. For example,
in (Khalafvand et al. 2014) it has been proposed to prescribe the flow rates at Γmitr and at
the aortic valve outlet Γao obtained by measuring from MRI images the volume changes
of the left ventricle chamber, noticing that the two valves are never simultaneously open.
Alternatively, flow rates curves taken from literature could be applied as well, see e.g.
(Nordsletten et al. 2011a).

7.4. Valves modeling

Heart valves are made of thin leaflets. They do not cause any resistance to the blood
during systole and sustain large pressure gradients during diastole. Moreover, unlike
vascular vessel wall, they are subjected to very large displacements. These features make
the mathematical and numerical modeling of the valves mechanics and of their interaction
with the blood flow very demanding, requiring ad hoc techniques for their description.
Our main focus will be on the aortic and mitral valves of the left ventricle, the most
studied from the mathematical point of view. For recent reviews on valve modeling see,
e.g., (Marom 2015, Votta, Le, Stevanella, Fusinic, Caiani, Redaelli and Sotiropoulos 2013).

7.4.1. Mechanical models of the leaflets

Due to fibers alignment, which occurs mostly in the circumferential direction a, and to the
presence of collagen, most of the valve mechanical models proposed so far are of non-linear
transversally isotropic type. In particular, they depend on the two invariants I1 = tr C

and I4 = â · (Câ). For example, in (May-Newman, Lam and Yin 2009, Prot, Skallerud
and Holzapfel 2007) the following strain energy function has been used

Θ(I1, I4) = c
[
eb1(I1−3)2+b4(I4−1)2 − 1

]
,

for suitable constants c, b1, b4. Variants of the previous energy have been considered
e.g. in (Humphrey and Yin 1987, May-Newman and Yin 1998, Weinberg and Kaazempur-
Mofrad 2006). For a comparison of numerical results obtained with these constitutive laws,
see (Auricchio, Ferrara and Morganti 2012). More sophisticated energy functions include
also the microstructure of the leaflets tissue, see e.g. (Einstein, Kunzelman, Reinhall,
Nicosia and Cochran 2005).

Due to their small thickness, heart valves are often modeled as membrane shells by
neglecting the shear bending forces that are one order of magnitude smaller than the in
plane stresses (Merryman, Huang, Schoen and Sacks 2006, Kim, Lu, Sacks and Chandran
2008, Hsu, Kamensky, Bazilevs, Sacks and Hughes 2014).

Some works on the mitral valve consider also the presence of the chordae tendinae (see
Sect. 5.1). They comprise independent rings models, where the chordae are modeled
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as non-linear springs with zero elasticity during compression and exponential-like stiff-
ness during traction (Kunzelman and Cochran 1990, Mansi, Voigt, Georgescu, Zheng,
Mengue, Hackl, Ionasec, Noack, Seeburger and Comaniciu 2012), and one-dimensional
models characterized by a non-linear energy function (Einstein et al. 2005, Votta, Maisano,
Bolling, Alfieri, Montevecchi and Redaelli 2007, Padala, Sacks, Liou, Balachandran, He
and Yoganathan 2010).

Another difficulty arises when modeling the contact among the leaflets during the clo-
sure. A common strategy to handle this process is given by a penalty method (Hsu et
al. 2014, Marom 2015, Mansi et al. 2012). This is based on measuring the distance be-
tween each vertex and the closest leaflet and on locating a spring between the vertex and
the collision point when the distance is below a critical value. In (Astorino, Gerbeau,
Pantz and Traoré 2010) a more sophisticated algorithm has been proposed, based on the
introduction of subiterations that guarantee the satisfaction of the contact constraint by
the introduction of Lagrange multipliers that act as a force of repulsion among the leaflets.

The numerical simulation of valves mechanics has been usually obtained by prescribing
a pressure difference between the two sides of the leaflets, mimicking the effect of the fluid
(Gnyaneshwar, Kumar and Balakrishnan 2002, Votta et al. 2013). However, more realistic
models are obtained by considering the FSI problem arising between the blood flow and
the leaflets. This is the topic of the next two subsections.

7.4.2. Reduced models for fluid-valve interaction

As noticed, the simulation of the fluid-structure interaction between blood and valve
leaflets is computationally demanding. However, if one is interested only in the fluid-
dynamic quantities and not in the internal leaflet stresses, reduced models could be con-
sidered.

The first family does not explicitly represent the leaflets, rather, only the opening/closure
mechanism of the valve is modeled through the description of the valve orifice. The sim-
plest strategy consists in a priori operating the opening and closing of the valve on the
basis of a flow rate or pressure profile obtained from literature or from clinical data, see
e.g. (Faggiano, Antiga, Puppini, Quarteroni, Luciani and Vergara 2013). For an exam-
ple, see (Bazilevs et al. 2009, Vergara et al. 2012, Nestola, Faggiano, Vergara, Lancellotti,
Ippolito, Antona, Quarteroni and Scrofani 2016) for the flow simulation in the aorta and
(Khalafvand et al. 2014) for that in the left ventricle. A more realistic situation is obtained
by simulating the opening/closure mechanism of the aortic valve orifice by means of the
following conditions prescribed to the fluid problem:

if Pu > Pd then the valve opens;
if Qd < 0 then the valve closes,

(7.34)

where Pu is the upstream pressure, Pd and Qd the downstream pressure and flow rate
(Formaggia et al. 1999). The quantities Pu, Pd, Qd could be prescribed as data, or else
being the results of the numerical computation of the flow field. For example, in a fluid-
dynamic simulation in the aorta, Pu is the prescribed left ventricular pressure, whereas
Pd and Qd are the unknown aortic pressure and flow rate. For a left ventricular flow
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simulation, the situation is more involved as we have to distinguish between the mitral
and the aortic valve: for the former, Pu is the prescribed atrial pressure, whereas Pd and Qd

are the unknown left ventricular pressure and flow rate; for the latter, Pu is the unknown
left ventricular pressure, whereas Pd and Qd the prescribed aortic pressure and flow rate.
Many works considered a zero-dimensional model of the systemic circulation to provide
the latter quantities (Wenk, Ge, Zhang, Soleimani, Potter, Wallace, Tseng, Ratcliffe and
Guccione 2013). In any case, the opening/closure mechanism is not prescribed a priori.
This leads to a non-linear boundary condition for the fluid problem at the valve orifice
which, in the electrical circuit analogy of zero-dimensional models (see Section 4.5.1), is
represented by an ideal diode. Similar models have been proposed in (Korakianitis and Shi
2006b, Blanco and Feijóo 2013), to account for diseased valves, by introducing a suitable
non-ideal law for the diode. More refined reduced models consider the opening/closure
mechanism not simply in an on-off mode, rather the open part of the orifice dynamically
changes continuously by projecting the supposed leaflet position on the orifice plane. For
example, in (Sundaram, Balakrishnan and Kumar 2015) the dynamics of the valve orifice
opening/closure is given by a prescribed law, whereas in (Korakianitis and Shi 2006a) it
is given by

AV =
(1 − cos θ)2

(1 − cos θmax)2
,

where AV ∈ [0, 1] is the percentage of open orifice area, θ the opening leaflet angle (θ = 0
means closed valve) and θmax the maximum opening angle. The value of θ is determined
by the following ODE

d2θ

dt2
+ k1

dθ

dt
+ k2(Pd − Pu) cos θ = 0, (7.35)

for suitable parameters k1 and k2.
For all these models, that do not explicitly include the leaflets, there could be the need to

switch between Dirichlet to Neumann (and vice versa) boundary conditions along a single
heartbeat in a fluid problem. Indeed, a Dirichlet condition is usually prescribed when
the valve is closed (e.g. homogeneous in the physiological case), whereas a Neumann or a
resistance condition could be preferred when the valve is open. This could be problematic
at the numerical level, in particular in view of the implementation. In (Tagliabue et
al. 2015), a new way to overcome this problem has been proposed, based on a Robin-like
condition implemented by means of the extended Nitsche’s method proposed in (Juntunen
and Stenberg 2009). We detail here for the sake of simplicity the case of a Neumann-like
condition for the open valve and we refer the reader to (Tagliabue et al. 2015) for the
more physiological case of a resistance condition. Let Γ be the valve orifice at hand and
suppose that one wants to prescribe at each time the following conditions:

u = g if the valve is closed; (7.36a)

T fn = h if the valve is open. (7.36b)

For example, g could be obtained by a prescribed flow rate (null in the physiological
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case) by assuming a priori the shape of the velocity profile (e.g. flat), whereas usually
h = Pn, with P a prescribed mean pressure. Thus, the following term is added to the
weak formulation (4.6) of the fluid problem:

−
∫

Γ

γh

ξ + γh
T f (v, p)n ·w dω−

∫

Γ

γh

ξ + γh
(v−g) ·(T f (w, q)n) dω+

∫

Γ

1

ξ + γh
(v−g) ·w dω

−
∫

Γ

ξγh

ξ + γh
(T f (v, p)n − h) · (T f (w, q)n) dω +

∫

Γ

ξ

ξ + γh
h · w dω,

where ξ ∈ [0, +∞) and γ > 0 are two parameters and h is the mesh size (possibly not
constant). This discrete problem preserves the usual Finite Elements accuracy. We notice
that for ξ = 0 we recover the classical Nitsche method to prescribe the Dirichlet condition
(7.36a), whereas for ξ → +∞ the formulation is consistent with the Neumann condition
(7.36b). Thus, the idea is to change the value of ξ (0 or +∞) allowing for the switch
between Dirichlet and Neumann conditions. Alternatively, the switch between a flow rate
and mean pressure condition could be prescribed by means of the defective version of the
extended Nitsche method proposed in (Vergara 2011).

A second family of reduced strategies includes a reduced model of the leaflets without
solving the full 3D mechanical problem. These methods are very useful when one wants to
determine with a good accuracy the influence of the leaflets on the direction of the fluid jet.
A first simple model is based on including the position of the open leaflets obtained by a
preliminary mechanic simulation and considering an on-off opening/closure mode, see e.g.
(Bonomi, Vergara, Faggiano, Stevanella, Conti, Redaelli, Puppini, Faggian, Formaggia
and Luciani 2015). A similar model has been proposed in (Astorino, Hamers, Shadden
and Gerbeau 2012), where however an immersed resistive approach has been considered
to switch between the open and closed configuration. In particular, the following term is
added to the variational formulation of the fluid problem

∫

Γo

Rov · w dγ +

∫

Γc

Rcv · w dγ,

where Γo and Γc are the surfaces representing the open and closed leaflets configurations,
respectively, and Ro and Rc the corresponding resistance, which act as penalization terms
to enforce the no-slip condition v = 0 at the leaflet. Thus, when the value of the resistance
is high, the corresponding surface configuration is physically included in the model, the
velocity is zero at the leaflet and, accordingly, a pressure drop is generated across the
leaflet; on the contrary, when the value of the resistance is zero, the leaflet is invisible to
the model, no constraint is prescribed on the velocity and no pressure drop is generated.
The switch between large and vanishing values of the resistances is determined by (7.34).

More sophisticated models account not only for the open and closed configurations of
the leaflets, but also provide a simplified dynamics of the whole valve opening/closure
mechanism. For example, in (Laadhari and Quarteroni 2016, Fedele, Faggiano, Dedè and
Quarteroni 2016) a leaflet Γ is represented as a surface described by two embedded level-
set functions which depend on a single scalar function of time, i.e. the opening angle θ.
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The latter is determined by a relation very similar to (7.35). At each time step, the term
∫

Γ
R(v − vleaf ) · w dγ,

is added to the weak formulation of the fluid problem, in order to guarantee a no-slip
condition at the leaflet (v = vleaf , where vleaf is the leaflet velocity determined from
θ) by selecting the resistance R large enough. A similar approach has been recently
adopted also in (Auricchio, Lefieux, Reali and Veneziani 2016), where however the leaflet
is represented in a more simplified way by means of the opening angle solely (no level set
functions involved).

In Figure 7.23, we report an example of fluid-dynamics across the aortic valve obtained
by means of the method proposed in (Fedele et al. 2016).
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Figure 7.23. Fluid-dynamics in the ascending aorta with patient-specific aortic valve. These
numerical results are obtained using LifeV. See (Fedele et al. 2016) for a complete overview of the

results

7.4.3. Interaction between blood and leaflets

To accurately model the interaction between blood and valve leaflets, aimed, for example
to a detailed computation of the internal leaflet stresses, the solution of a fully FSI problem
is mandatory.

Unlike for the blood vessel and ventricular simulations, the Arbitrary Lagrangian-
Eulerian (ALE) formulation, described in Section 4.6, is not suited to handle the FSI
problem arising between blood and heart valve leaflets. Indeed, due to the large displace-
ments of the leaflets, the fluid mesh becomes highly distorted, producing severely stretched
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mesh elements and thus requiring a frequent remeshing of the grid. For this reason, spe-
cific FSI techniques have been developed specifically for the numerical solution of this
problem. The most successful are the Immersed Boundary method, the Fictitious Domain
approach, and the Cut-FEM, together with their numerous variants. All these methods
are characterized by a fixed fluid mesh and allow to treat non-conforming interface meshes.

Immersed Boundary method. The celebrated Immersed Boundary (IB) method has been
specifically developed for the fluid-dynamics in the heart in (Peskin 1972). The leaflets
are represented by membranes in a Lagrangian framework thought as a part of the fluid,
represented in an Eularian framework, and exerting to the latter internal localized forces.
This is achieved by introducing a Dirac delta distribution, δ, on the membrane.

The IB method has been originally developed for finite differences spatial discretization,
see e.g. (Peskin 1972, Mittal and Iaccarino 2005, Peskin 2002). In this case, in order to
avoid leaks, the Lagrangian grid should be fine enough so that the distance between
two adjacent points is less than the Eulerian mesh size. Then, the structural forces are
interpolated into the fixed nodes of the fluid mesh. The major issue when finite differences
are used is the approximation of δ. Usually, this is obtained by a function δh which is
non-singular for each h and tends to δ for h → 0 (Peskin 2002).

Here, we report the variational formulation of the IB method proposed in (Boffi and
Gastaldi 2003) which is useful for a Finite Element approximation and does not require
any specific approximation of the delta distribution. Given a two dimensional fluid domain
Ωf , let Γs be the immersed (one-dimensional) structure, whose material points are located
at each t in X(s, t), where s ∈ [0, L] is the Lagrangian coordinate. We consider as an
example the case of a massless linear elastic structure with elasticity constant κ. Thus,
referring to the notation introduced in Section 4.1 and assuming homogeneous boundary
conditions, the weak formulation of the IB methods reads for each t > 0 (Boffi, Gastaldi
and Heltai 2007): Find v ∈ V , v = v0 for t = 0, p ∈ L2(Ωf ), and X = X(t), X = X0

for t = 0, such that

ρf

∫

Ωf

∂v

∂t
· w dω + Af (v, v, w) + B(p, w) =

∫ L

0
κ

∂2X(s, t)

∂s2
w(X(s, t))ds, (7.37a)

B(q, v) = 0, (7.37b)

∂X

∂t
(s, t) = v(X(s, t), t), (7.37c)

for all w ∈ V and q ∈ L2(Ωf ). In fact, the right hand side of (7.37a) guarantees the
satisfaction of the normal stress continuity at the membrane, whereas (7.37c) is the velocity
continuity.

For the Finite Element approximation of the previous problem, usually the forcing term
is integrated by parts. For example, in the case of linear Finite Elements for the structure,
it becomes for each t > 0 (Boffi et al. 2007)

M−1∑

i=0

κ

(
∂Xi+1

h

∂s
− ∂Xi

h

∂s

)
w(Xi

h),
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where Xi
h = Xh(si), i = 0, . . . , M , is the Finite Element approximation of X and si are

the nodes of the one-dimensional mesh.
Regarding the time discretization, a first approach consists in considering a fully implicit

scheme. For the backward Euler approximation, unconditional stability is guaranteed (Tu
and Peskin 1992). However, this scheme requires the introduction of subiteratons to
handle the coupling between fluid and structure in (7.37). A more useful approach relies
on treating the right hand side of (7.37a) explicitly and the remaining of the equation
implicitly. The position occupied by the structure is then updated in a second step by
means of a suitable implicit approximation of (7.37c). This scheme has been proved to be
stable under a CFL-like condition (Boffi et al. 2007).

Several extensions and applications of the IB method have been provided. Among
them, we mention: the variational formulation for the case of a thick immersed structure
proposed in (Boffi, Gastaldi, Heltai and Peskin 2008), where the right hand side of (7.37a)

becomes
∫
Ωs

T̂ s(d̂(s, t)) : ∇w(X(s, t))ds, s being in this case a vectorial Lagrangian
coordinate; a mesh adaptive approach used in combination with a second order scheme,
see (Griffith, Hornung, McQueen and Peskin 2007); the use of a curvilinear fixed fluid
mesh to improve flexibility and efficiency (CURVIB approach, see (Borazjani, Ge and
Sotiropoulos 2008)); the application to realistic three-dimensional mitral and aortic valves
successfully addressed in (Griffith, Luo, McQueen and Peskin 2009, Yin, Luo, Wang and
Watton 2009).

Fictitious Domain approach. The Fictitious Domain (FD) approach was first introduced
in (Glowinski, Pan and Periaux 1997, Bertrand, Tanguy and Thibault 1997) and then
applied to the contest of heart valve in (Hart, Peters, Schreurs and Baaijens 2000, De Hart,
Baaijens, Peters and Schreurs 2003). FD can be regarded as the dual of the IB method, in
the sense that in the latter a weak enforcement of the normal stresses continuity at the FS
interface is added to the weak formulation of fluid problem, whereas in the FD approach
the velocity continuity is weakly enforced at the FS interface. This is achieved by means
of Lagrange multipliers, as detailed in what follows (we refer to Sections 4.1, 4.2 and 4.3
for the notation, in particular variables withbare referred to the reference domain, and we
assume homogeneous boundary conditions): Find v(t) ∈ V t, d̂(t) ∈ D, λ(t) ∈ H−1/2(Σt)
and p(t) ∈ L2(Ωt

f ), such that

ρf

∫

Ωt
f

∂v

∂t
· w dω + Af (v, v, w) + B(p, w) + ρs

∫

Ωs

∂2d̂

∂t2
· ê dω +

∫

Ωs

T̂ s

(
d̂
)

: ∇ê dω

=

∫

Σt

λ · (w − e)dσ,

B(q, v) = 0,∫

Σt

µ ·
(

v − ∂d

∂t

)
dσ = 0,

df = d at Σt,
(7.38)
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for all w ∈ V , ê ∈ D, µ ∈ H−1/2(Σt) and q ∈ L2(Ωf ). For the well-posedness of the
discretized-in-time version of problem (7.38) we refer to (Formaggia et al. 2009b). We
notice that the use of the same Lagrange multiplier λ from both the fluid and structure
sides guarantees also the continuity of normal stresses (Formaggia et al. 2009b).

A validation with experimental measures has been successfully reported in (Stijnen,
de Hart, Bovendeerd and van de Vosse 2004), whereas an application of the FD approach
for three-dimensional problems in combination with a contact model for the leaflets has
been reported in (Astorino et al. 2010).

Cut-FEM approach. A natural strategy to handle an internal interface cutting in an ar-
bitrary way the mesh consists in writing two weak formulations of the problem at hand,
one for each of the two subdomains generated by the presence of the interface, and then
to sum them up. In this case, the meshes of the two subdomains are fixed (background
meshes). Since some of the mesh elements are cut by the interface, their contribution in
the matrices assembling is split into two parts, see Figure 7.24, left. This method is known
as Cut-FEM (Hansbo and Hansbo 2002, Hansbo, Hansbo and Larson 2003). Here, the
jump between the normal stresses at the interface is determined by the physical interaction
with the interface, as happens for the blood/valve interaction.

Figure 7.24. Element mesh K cut by the interface Γ (left) and FS domain (right). For the latter,
we notice that Ω1

f and Ω2

f are two non-overlapping subdomains, whereas the related
computational meshes feature an overlap (in grey) in view of the X-FEM approach

A common strategy used to guarantee the satisfaction of the interface continuity con-
ditions is the Discontinuous Galerkin (DG) mortaring (often referred to as Nitsche mor-
taring). This is a very effective choice since DG method prescribes interface conditions
in a weak sense, thus allowing a great degree of flexibility of the solution at the interface
(Hansbo and Hansbo 2002, Hansbo et al. 2003).

Finally, we notice that the implementation of the Cut-FEM method is not standard since
in the cut elements we may have polygonal elements, see for example Figure 7.24, left,
where the original triangle is split into a triangle and a trapezoid. A solution is offered by
the Extended Finite Elements method (X-FEM), where the FE space is suitably enriched
in order to make easy the tratment of the cut elements. In particular, the basic idea is to
duplicate the degrees of freedom in the cut elements and to use in both the subdomains the
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basis functions of the original triangle either to represent the FE solution and to compute
the integrals (Hansbo and Hansbo 2002).

To provide a concrete example of the Cut-FEM method, we report in what follows
the weak formulation introduced and analyzed in (Alauzet, Fabréges, Fernández and
Landajuela 2016), related to the case of a valve embedded in blood and represented by
the membrane of equation

ρsHs
∂d

∂t
+ Ld = −[[T fn]] in Σ,

where Σ is the embedded membrane, L is an elliptic operator, and [[.]] denoted the jump
across the membrane. In particular, referring to Figure 7.24, right, let Ω1

f and Ω2
f be two

non-overlapping subdomains separated by Σ, and Ω1
f,h and Ω2

f,h two meshes containing

Ω1
f and Ω2

f , respectively, with an overlap region (in gray in the figure) containing the

membrane. Moreover, let V i
h and Qi

h be velocity and pressure Finite Elements spaces
related to Ωi

f,h and Ci one of the bilinear o trilinear forms C introduced in Section 2

restricted to Ωi
f,h. Thus we have

2∑

i=1

[
ρf

∫

Ωi
f

∂vi
h

∂t
· w dω + Ai

f (vi
h, vi

h, w) + Bi(pi
h, w) − Bi(q, vi

h)

]

+sh(vh, w) + ρsHs

∫

Σ

∂dh

∂t
· e dσ +

∫

Σ
Ldh · e dσ

+

2∑

i=1

[
−

∫

Σ
T f (vi

h, pi
h)ni · (w − e)dσ−

∫

Σ
T f (w, q)ni ·

(
vi

h − ∂dh

∂t

)
dσ +

γ

h

∫

Σ

(
vi

h − ∂dh

∂t

)
· (w − e)dσ

]
= 0.

The terms in the third and fourth rows of the previous formulation are nothing but the
usual DG terms guaranteeing consistency, symmetry and stability of the method, whereas
sh(·, ·) accounts for the ghost nodes stabilization (Burman, Claus, Hansbo, Larson and
Massing 2015) that guarantees an optimal convergence order. This formulation has been
introduced for infinitesimal displacements. However, the authors treat also the case of a
moving interface, for details see (Alauzet et al. 2016).

Finally, we notice that the Cut-FEM approach has been also considered for the case of
a thick structure, see (Burman and Fernández 2014, Zonca, Formaggia and Vergara 2016).

7.5. The total heart integration modeling

We conclude this section by providing some hints on the modeling of the complete heart
function, a challenging endeavor. The latter is very complex and requires the merge



Modeling the cardiovascular system 109

of all the mathematical, numerical and computational issues highlighted previously in
this section, see (Lee, Cookson, Roy, Kerfoot, Asner, Vigueras, Sochi, Deparis, Michler,
Smith and Nordsletten 2016, Chabiniok, Wang, Hadjicharalambous, Asner, Lee, Serme-
sant, Kuhl, Young, Moireau, Nash, Chapelle and Nordsletten 2016, Nordsletten, Niederer,
Nash, Hunter and Smith 2011b, Quarteroni et al. 2016a).

Basically, an heart integrated model involves the coupling of the electro-mechanical
problem (7.31), the blood fluid-dynamics (see Sect. 7.3), and the valve functioning (see
Sect. 7.4). The coupling between the first two subproblems occurs at the endocardium
Σendo, see Figure 6.15. In particular, this is determined by the classical fluid-structure
interaction coupling conditions, i.e. the kinematic condition (4.19c) and the dynamic
condition (4.19d). In particular, referring to the notation of Sect. 4.1-7.2 and to Figure
6.15, we have the following problem: Find the blood velocity v and pressure p, the muscle
displacement d, the transmembrane potential Vm, the gating variables w, and the ionic
concentration variables c, such that

ρf

(
∂v

∂t
+ ρf (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

cav, (7.39a)

∇ · v = 0 in Ωt
cav, (7.39b)

v =
∂d

∂t
at Σt

endo, (7.39c)
(

T P
s (d) + T A

s

(
c, d,

dd

dt

))
n = T f (v, p)n at Σt

endo, (7.39d)

∇ ·
(

T̂
P

s (d̂) + T̂
A

s

(
ĉ, d̂,

dd̂

dt

))
= 0 in Ωmus, (7.39e)

T̂
A

s = PAaf ⊗ âf , PA = A
(

ĉ, d̂,
dd̂

dt

)
in Ωmus, (7.39f)

V̂m = M
(
V̂m; d̂, ŵ, ĉ

)
in Ωmus, (7.39g)

(ŵ, ĉ) = G(ŵ, ĉ; V̂m) in Ωmus. (7.39h)

After numerical discretization in time and space, the corresponding nonlinear algebraic
system is tremendously stiff and can feature a very high numerical dimension. Devising
efficient numerical strategies for its solution is a very active research area.

An effective strategy to numerically solve the entire heart coupled problem is given by
the iterative solution at each time step of the electro-mechanical and fluid subproblems and
based on the exchange of the interface conditions (7.39c)-(7.39d). In particular, one of the
partitioned strategies described in Sect. 4.6.3 can be adapted and used for problem (7.39)
as well. Of course, at each iteration of the partitioned algorithm, the electro-mechanical
problem could be solved by means of one of the strategies reported in Sect. 7.2.

Another partitioned algorithm for the solution of problem (7.39) is obtained by consid-
ering the solution at each time step of the electrical problem first and the FSI problem
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later (Nordsletten et al. 2011b). This is nothing but an extension of Algorithms EM1
and EM1/bis reported in Sect. 7.2, where steps 2b and 2bis/b are replaced by a Newton
iteration over the FSI problem.

A different approach is based on the monolithic solution of the integrated heart problem
(7.39) by means of a full Newton method. In particular, in (Quarteroni et al. 2016a) fully
implicit and semi-implicit methods are described. The latter is based on updating only
a part of the Jacobian as a consequence of an operator splitting technique. The authors
highlighted by means of numerical experiments that particular choices of the splitting and
of the temporal scheme could lead to numerical instabilities. Whatever strategy is adopted,
the tangent problem at each Newton iteration is solved by means of a preconditioned
iterative method, which is in this case particularly suited due to the block structure of the
Jacobian, see (Quarteroni et al. 2016a).

Stability and convergence analysis of the different approaches is a field of current inves-
tigation.

PART THREE

OPTIMIZING, CONTROLLING, ADDRESSING UNCERTAINTY,

REDUCING COMPLEXITY

8. Going beyond direct simulation

In all problems considered so far, for given set of inputs (geometry, source terms, boundary
and initial conditions, etc.) the goal was to solve numerically a forward PDE problem and,
possibly, evaluate some physical indices of clinical interest, such as a flow rate across a
vessel section, the wall shear stress over a portion of the lumen boundary, the oscillatory
shear index, etc. On the other hand, efficient numerical algorithms and computational
resources nowadays available allow to tackle several additional kind of problems.

When simulating blood flows one has to face the variability of input data, like geomet-
rical features of the vessel, boundary conditions, physical coefficients (e.g. the Reynolds
number, the Womersley number, the structural model or material parameters related to
the vessel wall). Very often, these data vary within a broad range and are almost impos-
sible to be characterized exactly. All these inputs affect the solution of the problem under
investigation, as well as the outcomes of clinical interest. Being able to efficiently char-
acterize input/output relationships is thus important in the clinical context, in order to
investigate both intra-patients and inter-patients variability. In the former case we include
all those effects due to variations affecting a single patient, e.g., over time, or before/after
clinical intervention. Regarding the latter case, we mention for instance the morphological
variability among vessel shapes due to age, size or pathological factors (see, e.g., (Xiong
and Chong 2008) in the case of distal coronary anastomoses). Developing mathematical
techniques capable to detect the most relevant parameters, and then address the impact of
their variation on the outputs of interest, is thus of paramount importance. This requires
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the solution of many queries to the forward problem. In this context, three classical sit-
uations we may face are those of: (i) optimal control and optimal design, (ii) parameter
identification and data assimilation, and (iii) uncertainty quantification.

1 Optimal control and optimal design problems. When we pursue a suitable objective
through an optimal strategy to be determined, we act on some inputs of the given
partial differential equation, the state problem, such as boundary data, physical co-
efficients, or the shape of the domain itself, the control variables, so that the solution
of the corresponding state problem could meet the prescribed goal. This yields a
PDE-constrained optimization problem; its numerical solution usually poses severe
computational challenges, as the state problem needs to be solved several times while
searching the optimal control in an iterative way. Exploiting numerical optimiza-
tion procedures for blood flow simulations is meant to (i) improving the design of
prosthetic devices (such as stents, grafts, ventricular assist devices) with the aim
of fulfilling a specific target, or (ii) customizing treatments or surgical procedures
provided patient-specific information can be acquired. Examples include the optimal
placement of electrodes in a defibrillation stage to damp the electrical activity in the
myocardium in a desired way when dealing with the therapeutic treatment of car-
diac arrythmias (Nagaiah, Kunisch and Plank 2013b), the optimization of the shape
of a cannula in order to maximize the flow-rate through a ventricular assist device
(Marsden 2014), the improvement of the shape of a coronary bypass graft in order
to possibly avoid vessel reocclusion (Lei, Archie and Kleinstreuer 1997, Dur, Coskun,
Coskun, Frakes, Kara and Pekkan 2011), to mention a few. The first example men-
tioned above represents an optimal control problem, where the control variable is a
current source for the monodomain (or bidomain) equation (see Sect. 7.1) – i.e. one
of its data. The two other examples address a shape optimization or optimal design
problem to be solved, the control variable being the shape of the domain where the
state problem is set.

2 Parameter identification and data assimilation. In principle, cardiovascular models
necessitate a huge amount of data, such as patient’s radiological images and measure-
ments. In general, however, some of them may be missing – remember for instance
the issue of missing or defective boundary conditions discussed in Section 4.4, or the
lack of biological parameters characterizing the tissue properties. For instance, it is
very hard to estimate electrical conductivity of the myocardium for electrophysiology
models, whereas (pointwise) measures of the electrical potential – whose mathemati-
cal modeling can be characterized by a PDE model requiring electrical conductivities
as inputs – can be more easy to acquire. By solving inverse/identification problems
in cardiovascular modeling, we aim at identifying those inputs which are unknown
or affected by uncertainty. For that, we rely on suitable quantities which are (i) ac-
quired from measurements, such as displacements, pressures, flow rates, etc., and (ii)
obtained as outcome of a numerical simulation, and match these two sets of values.
In other words, identifying those input values yielding the acquired measurements
requires to drive the PDE outcome as near as possible to the measured quantity.
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In general, vastly different inputs may have produced the observed outcome: this is
why, instead of finding the most likely input configuration resulting in the performed
observation, we rather rely on statistical inversion theory, in order to incorporate
all possible information about the unknown inputs we may have prior to the mea-
surement. This requires to reformulate inverse problems as problems of statistical
inference, e.g. by means of Bayesian statistics. A second issue is data assimilation:
this rather generic term encompasses a wide range of techniques exploited to merge
measures/images into the mathematical model in order to improve numerical simu-
lations. Not only, a filtering effect induced by the numerical simulation can also be
exploited in view of noise reduction in images/measures acquisition as well.

3 Uncertainty quantification and propagation. The confidence in the outcome of a car-
diovascular simulation directly depends on the level of accuracy and certainty at
which inputs can be determined. In fact, although outcomes are computed from
inputs through a deterministic process, often input data are polluted by some ex-
perimental noise, or cannot be fully ascertained. Common sources of uncertainty
in cardiovascular simulations include (i) boundary conditions, (ii) anatomical mod-
els, where each geometrical model is polluted by image noise, (iii) flow-split, since
very often there is a lack of clinical data to determine flow distribution to multi-
ple distal branches, and (iv) material properties, related to vessel walls or blood
(Sankaran and Marsden 2010). Due to uncertainty, computational simulations have
to be performed for a set of different parameter configurations and then merged in
order to determine how robust simulation outcomes are with respect to variations
of uncertain inputs (Sankaran and Marsden 2011). This is indeed strictly related
with the task of parametric studies and sensitivity analyses, and can be seen as a
forward uncertainty quantification (UQ) problem. Evaluating the propagation of in-
put uncertainties through computed outputs means to evaluate suitable statistics of
the outputs (such as expected values, moments, confidence bands) that are functions
of the parameters affected by uncertainty. On the other hand, also the solution of
optimal control and inverse identification problems depends on those experimental
noises affecting observations and measures exploited during the identification process
or the setup of a desired target. Evaluating the effect of uncertainties in this case,
providing suitable confidence bands about the estimated quantities – and not only
point estimates – and characterizing the statistical distribution of the unknown pa-
rameters by taking into account a set of measured data represent instances of inverse
UQ problems. In this second case, quantifying uncertainties is even more important
because an inverse problem is intrinsically ill-posed.

In the following sections we sharpen our discussion about these three classes of problems,
showing relevant examples in cardiovascular modeling.
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9. Control and Optimization

Solving a PDE-constrained optimization problem consists of reaching a target by acting
on a system governed by PDEs. The goal is to act on a state problem E(y, u) = 0 given by
a PDE system modeling the behavior of a state variable y, through a control variable u in
order to reach a desirable target. This is usually done by minimizing (or maximizing) a
cost functional J = J(y, u) expressing some physical index of interest encoding the desired
objective – for instance, the squared distance from a target state. For a comprehensive
presentation of the functional setting and well-posedness analysis of PDE-constrained opti-
mization see the monographs (Hinze, Pinnau, Ulbrich and Ulbrich 2009, Gunzburger 2003).
Other classes of problems of interest in cardiovascular applications, such as those related
with parameter estimation, can also be casted into a PDE-constrained optimization frame-
work; see, e.g., Sect. 10.1 for further insights.

Generally speaking, a PDE-constrained optimization problem reads

min
y,u

J(y, u) subject to E(y, u) = 0, y ∈ V, u ∈ Uad ⊆ U . (9.1)

Here V and U denote the state and the control space, whereas E : V × U → V ∗ and
J : V × U → R denote the state equation and the cost functional, respectively; V ∗ is
the dual space of V , and 〈· , ·〉V ∗,V denotes the duality between two elements in V ∗ and
V ; in the same way, 〈· , ·〉U∗,U indicates the duality between two elements in U∗ and
U . Additional constraints, depending on the problem at hand, can also be imposed, e.g.
under the form of inequalities – we express this fact by saying that we seek the optimal
control in a closed subset Uad ⊆ U of admissible controls.

We assume that the state equation E(y, u) = 0 has a unique solution y = y(u) ∈ V ,
and that the Fréchet derivative (with respect to y) Ey(y(u), u) has a bounded inverse for
each u ∈ U . Under these assumptions, the solution operator of the state equation is
continuously differentiable – we denote by y′(u) its derivative – and the following reduced
formulation

min
u

J̃(u) = J(y(u), u), u ∈ Uad (9.2)

is equivalent to (9.1). Note that this is a convenient framework to embrace – upon defin-
ing suitable functional spaces and operators – both stationary and time-dependent state
problems; in the following we will make clear whether or not the proposed methods can
be used to tackle both classes of problems.

9.1. Optimality conditions

The solution (ŷ, û) of a PDE-constrained optimization problem like (9.1) requires a system
of optimality conditions to be fulfilled, including the state equation and an optimality
condition which involves the gradient of the cost functional. Indeed, if û ∈ Uad is a local
minimum of J̃ , then it satisfies the variational inequality (also referred to as optimality
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condition or minimum principle)

〈J̃ ′(û), v − û〉U∗,U ≥ 0 ∀v ∈ Uad. (9.3)

The quantity appearing at the left-hand side is the so-called Gâteaux derivative of J̃ ,
evaluated at û, in the generic, admissible direction v− û; see, e.g., (Tröltzsch 2010); J̃ ′(û)
denotes the gradient of J̃ at û. To express this latter quantity in terms of the state
solution y, we can use either (i) the sensitivity approach, or (ii) the adjoint approach. As
we will see below, in both cases at least a second PDE problem has to be solved in order
to evaluate J̃ ′(u).

9.1.1. Sensitivity approach

Computing sensitivities requires the evaluation of directional derivatives of both the cost
functional and the state solution. For any u, v ∈ U , we can write

〈J̃ ′(u), v〉U∗,U = 〈Jy(y(u), u), y′(u)v〉V ∗,V + 〈Ju(y(u), u), v〉U∗,U . (9.4)

The quantity δvy = y′(u)v represents the sensitivity of the state with respect to the control,
evaluated at u, for a given variation v, and can be obtained by solving a further PDE:
indeed, differentiating the state equation E(y(u), u) = 0 along the direction v we obtain

Ey(y(u), u)y′(u)v + Eu(y(u), u)v = 0, (9.5)

being Ey(y, u), Eu(y, u) the Fréchet derivatives of the state operator with respect to y and
u, respectively; see, e.g., (Tröltzsch 2010). Then, δvy = y′(u)v is given by the solution of
the linearized state equation

Ey(y(u), u)δvy = −Eu(y(u), u)v. (9.6)

Note that y′(u) : U → V is a linear operator so that, for any admissible v ∈ U , a new
problem has to be solved to evaluate δvy. Numerically, this approach is very demanding if
the whole gradient J̃ ′(u) is required: in this case, the number of linearized state equations
(9.6) to be solved is equal to the dimension of the control space U , a task that becomes
out of reach as soon as the control has dimension larger than O(10).

9.1.2. Adjoint approach and Lagrange multipliers

A convenient alternative is based on the so-called adjoint approach. By rewriting (9.4) as

〈J̃ ′(u), v〉U∗,U = 〈(y′(u))∗Jy(y(u), u) + Ju(y(u), u), v〉U∗,U (9.7)

and exploiting problem (9.5), we can express the first term at the right-hand side of (9.7)
as

(y′(u))∗Jy(y(u), u) = −E∗
u(y(u), u)((E∗

y(y(u), u)))−1Jy(y(u), u),
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where E∗
u(y(u), u) is the adjoint operator2 of Eu(y(u), u). Let us introduce an additional

variable λ = λ(u) ∈ V , called adjoint state, the solution of

Ey(y(u), u))∗λ = −Jy(y(u), u). (9.8)

Then (y′(u))∗Jy(y(u), u) = E∗
u(y(u), u)λ; moreover, owing to (9.7), the evaluation of

J̃ ′(u) = E∗
u(y(u), u)λ(u) + Ju(y(u), u), (9.9)

simply requires solving the state problem and a further PDE problem, no matter which the
dimension of the control space U is. Note that the adjoint problem is always a linear PDE.

The adjoint-based expression of the gradient of the cost functional (and, more in general,
a system of first-order optimality conditions) can also be obtained, in a more straightfor-
ward way, relying on the Lagrange multipliers’ method (Hinze et al. 2009). Let us define
the Lagrangian functional L : V × U × V → R,

L(y, u, λ) = J(y, u) + 〈λ, E(y, u)〉V,V ∗ ,

where λ ∈ V denotes a Lagrange multiplier enforcing the PDE constraint (playing the role
of adjoint variable); note that in this case the three variables are independent.

By deriving L with respect to λ and imposing that the derivative is equal to zero, we
recover the state problem,

〈Lλ(y, u, p), ϕ〉V ∗,V = 0 ∀ϕ ∈ V ⇔ E(y, u) = 0.

Similarly, by deriving L with respect to y, we obtain the expression of the adjoint problem
(9.8),

〈Ly(y, u, p), ψ〉V ∗,V = 0 ∀ψ ∈ V ⇔ Jy(y, u) + E∗
y (y, u) = 0. (9.10)

Finally, we impose that at the optimum,

〈Lu(y, u, λ), v−u〉U∗,U = 0 ∀v ∈ Uad ⇔ 〈Ju(y, u)+Eu(y, u)∗λ, v−u〉U∗,U ≥ 0 ∀v ∈ Uad.

In this way, a system of first-order necessary optimality conditions to be fulfilled by the
optimal solution (y, u) and the corresponding adjoint state λ is given by the following
Karush-Kuhn-Tucker (KKT) system:





E(y, u) = 0,

Ey(y, u)∗λ̂ = −Jy(y, u),

〈Ju(y, u) + Eu(y, u)∗λ, v − u〉U∗,U ≥ 0 ∀v ∈ Uad.

(9.11)

In the unconstrained case Uad ≡ U , the variational inequality reduces to an equation,

〈Ju(y, u) + Eu(y, u)∗λ, v〉U∗,U = 0 ∀v ∈ U ,

2 The adjoint operator of E , denoted by E∗, is given by the relation (E∗ϕ, ψ)L2(Ω) = (ϕ, Eψ)L2(Ω) for any
ϕ, ψ ∈ C∞

0 (Ω); note that no boundary condition is involved in its definition. For this reason, E∗ is also
referred to as the formal adjoint operator.
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so that (9.11) can be viewed as the Euler-Lagrange system for the Lagrangian functional,
that is, the solutions of (9.11) are the stationary points of L(·, ·, ·), i.e.

∇L(y, u, λ)[w, v, η] = 0 ∀(φ, v, ψ) ∈ Y × U × V.

The third inequality of system (9.11) allows to recover the expression of the gradient
J̃ ′(u). Indeed, since E(y(u), u) = 0, it holds L(y(u), u, λ) = J̃(u) for any arbitrary λ ∈ V ,
so that, by differentiating this latter equality with respect to u, we obtain

〈J̃ ′(u), v〉U∗,U = 〈Ly(y(u), u, λ), y′(u)v〉V ∗,V +〈Lu(y(u), u, λ), v〉U∗,U = 〈Lu(y(u), u, λ), v〉U∗,U .

Hence, J̃ ′(u) = Lu(y(u), u, λ(u)), since 〈Ly(y(u), u, λ), ψ〉V ∗,V = 0 for any ψ ∈ V , thanks
to (9.10).

For the sake of illustration, we discuss a specific example, by considering the problem
of minimizing the energy

J(v, u) =
1

2

∫

Ωobs

|v − vd|2dΩ +
α

2

∫

Γcon

|∇u|2dΓ,

of a fluid flow in a tract of blood vessel where a device (e.g. a bypass or a cannula) is
implanted. The function of the device is represented by a velocity control u acting on
the boundary Γcon ⊂ ∂Ωf that represents the crossing section between the device and the
vessel, see Fig. 9.25. The goal is to regularize the velocity pattern in a suitable observation
region Ωobs ⊆ Ωf by requiring v to be as close as possible to a desired distribution vd;
see the related discussion in the next section. Referring to the notation in Section 4, for
the sake of simplicity, we consider a steady version of the Navier-Stokes equations (4.1a)–
(4.1b), for which the velocity-pressure couple y = (v, p) ∈ V = (H1

0,ΓD
(Ωf ))d solves the

state problem

−∇ · Tf (v, p) + ρf (v · ∇)v = 0 in Ωf

∇ · v = 0 in Ωf

v = vin on Γin

v = 0 on Γw

v = u on Γcon

T f (v, p)n = 0 on Γout

where the control variable is the velocity u ∈ U = (H1
0 (Γcon))d imposed on the boundary

Γcon. α > 0 is a parameter penalizing the control magnitude (or cost); this can also be
seen as a regularization term, ensuring the convexity of the cost functional. The fluid
Cauchy stress tensor Tf (v, p) has been defined in (4.2).

Following the Lagrangian approach, we can derive a system of first-order optimality
conditions, where the adjoint problem for the adjoint variables λ = (z, q) ∈ V reads

−∇ · Tf (z, q) + ρf (∇T v)z − ρf (v · ∇)z = (v − vd)IΩobs
in Ωf

∇ · z = 0 in Ωf

z = 0 on Γin ∪ Γw ∪ Γcon

T f (z, q)n = 0 on Γout
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Figure 9.25. Left: schematic representation of a bypass graft. Right: domain, boundary portion
and observation region for the bypass model problem

being IΩobs
= IΩobs

(x) the characteristic function of the region Ωobs. Note that the adjoint
problem is linear in (z, q), and comes from the linearization of the Navier-Stokes equations
around the state solution; the optimality condition reads instead

αu + z = 0 on Γcon.

Remark 3. In the case of time-dependent state problems, the adjoint problem is a
backward in time time-dependent problem. Depending on the observation appearing in
the cost functional – which can be either on the whole time interval (0, T ), or at the final
time T only – the dependency of the adjoint problem on the state is only at t = T (thus,
as initial condition) or on the whole interval (0, T ). The approach followed so far can still
be employed to derive a system of optimality conditions, see, e.g., Sect. 9.3.2 for further
details on a case of interest.

9.2. Numerical approximation

Solving a PDE-constrained optimization problem entails a computational effort bigger
than the one required for the solution of a forward (state) problem. The two formulations
(9.1) and (9.2) yield two different paradigms for the approximation of such a problem. In
the former case, both state and control variables are optimization variables and PDE con-
straints are explicitly specified; in the latter, only the control variable u is an optimization
variable, whereas the state variable y is considered to be an implicit function of u through
the PDE constraint3. In this latter case, the solution of the state problem is nested in the
evaluation of the gradient J̃ ′(u) of the reduced cost functional.

Algorithms for solving PDE-constrained optimization problems can be sorted following
several criteria. a first classification criterion is between iterative methods, rooted on
iterative minimization algorithms for the reduced cost functional, and all-at-once methods,
where the PDE constraint is kept explicitly and the three equations forming (9.11) are
solved simultaneously. Another criterion is concerned with the highest order of derivatives

3 From the numerical standpoint, the former approach is often given the name of Simultaneous Analysis

and Design (SAND), whereas the latter is referred to as Nested Analysis and Design (NAND).
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exploited by the algorithm, yielding derivative-free methods, gradient-based methods and
Hessian-based methods.

A different perspective is taken when addressing the interplay between optimization and
discretization: numerical discretization can be performed prior or after the derivation of a
system of optimality conditions. More precisely, in the so-called optimize, then discretize
approach optimization is carried out at the continuous level (e.g. to find system (9.11)) and
then the discretization is operated on the resulting optimality system; alternatively, using
the discretize, then optimize approach we first approximate the state equation (and the
cost functional) and then carry out the optimization at the discrete level. Here we address
the former approach; further details are given at the end of this section. For the sake
of brevity, we recall the main features of iterative and all-at-once methods in the case of
unconstrained problems, that is, problems without further equality/inequality constraints
or, equivalently, for which Uad ≡ U . In particular, Y ∈ R

ny , U ∈ R
nu denote the discrete

representation of the state and the control variable, respectively, whereas λ ∈ R
nλ is the

discrete adjoint variable.

9.2.1. Iterative methods

Iterative (also referred to as black-box) methods treat the reduced problem

min
U

J̃(U) = J(Y (U), U),

once U is known; Y (U) is obtained as the solution of the state equation. An existing
algorithm for the solution of the state equation has therefore to be embedded into an opti-
mization loop, and any available PDE and optimization routines can be freely combined.
In particular, iterative methods represent a popular choice when dealing with OCPs by
extending an existing code for the state problem. Within this class, a notable difference
exists between gradient and non-gradient based algorithms.

Non-gradient based (or derivative-free) algorithms – such as the popular Nelder & Mead
algorithm – exploit either the comparison among functional evaluations in different direc-
tions at each step, or low-order local approximants of J̃ in order to assess its local behavior
and localize the minimizer; see for instance (Marsden, Feinstein and Taylor 2008). Em-
ploying a finite difference approximation of the gradient is an attractive alternative due
to its ease of implementation, but it may suffer from limited accuracy and large costs in
the presence of many design variables. Hence, these methods are feasible only in the case
where the control space has very small dimension – e.g., if the control is expressed in terms
of a vector of nu = O(10) design variables.

Gradient-based algorithms exploit the gradient J̃ ′ to iteratively update the control until
a suitable convergence criterion is fulfilled. Remarkable instances are descent methods,
such as the gradient, (nonlinear) conjugate gradient, quasi-Newton or Newton methods.

In the simplest case of a gradient method, starting from an initial guess U (0) we iteratively
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generate a sequence

U (k+1) = U (k) − τkJ̃
′(U (k)), k = 0, 1, . . .

being τk > 0 a step size, possibly varying at each step, until e.g. ‖J̃ ′(U (k))‖ < ε, for a
given tolerance ε > 0. Further details can be found, e.g. in (Nocedal 1992, Kelley 1999).
The solver for the state equation has to be augmented with a routine which provides the
gradient of the state with respect to the optimization variables, and hence the solution of
the adjoint problem. Relying on optimization procedures showing a faster convergence rate
is mandatory to speedup the execution of the whole algorithm. Although straightforward
to implement, the gradient method suffers from a poor rate of convergence when dealing
with the numerical solutions of PDE-constrained optimization problems; more efficient
methods, such as quasi-Newton methods, are more typically employed; see e.g. (Borz̀ı and
Schulz 2011) for further details.

9.2.2. All-at-once methods

By treating both the control and the state variables as independent optimization variables,
coupled through the PDE constraint, we deal with an equality constrained nonlinear opti-
mization problem, the state equation playing now the role of equality constraint. The goal
of all-at-once (also referred to as one-shot) methods is to tackle the (possibly) nonlinear
optimality system (9.11) as a whole problem to be solved. After numerical discretization,
in the unconstrained case we land on the algebraic system





JY (Y , U) + eT
Y (Y , U)λ = 0

JU(Y , U) + eT
U(Y , U)λ = 0

e(Y , U) = 0.

(9.12)

Here e(Y , U) denotes the discrete state operator, JY and JU are the gradients of J with
respect to state and control variables, respectively, whereas eY and eU are the Jaco-
bians of the state equations with respect to state and control variables, respectively. The
three equations of system (9.12) can also be seen as the conditions obtained by requiring
that the gradient of the discrete Lagrangian L(Y , U , λ) = J(Y , U)−λTe(Y , U) vanishes.

The strategy above is well-suited for PDE-constrained optimization problems involv-
ing stationary state systems, however it is more computationally involved in the time-
dependent case. If J(Y , U) is quadratic and e(Y , U) is linear in Y and U , (9.12) is a
linear system of equations in saddle-point form, as those arising from quadratic program-
ming. In this case, preconditioned iterative methods for linear systems such as those based
on Krylov subspaces could be employed; in this respect, several preconditioners have been
proposed in the last decade, in which multigrid schemes are exploited as inner solvers
(or preconditioners) for some blocks of the KKT matrix within an outer iterative solver;
see, e.g., (Benzi, Golub and Liesen 2005a, Rees, Dollar and Wathen 2010). More recent
extensions to constrained problems have been addressed, e.g., in (Borz̀ı and Schulz 2011)
and the references therein.
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If the state problem is nonlinear, the optimality system has to be solved through ap-
propriate linearization procedures (like sequential quadratic programming methods) or
modern penalty methods (like augmented Lagrangian methods). Indeed, the equations
of system (9.12) are still linear in λ but are nonlinear in (Y , U). When a Newton-type
method is applied to (9.12), each iteration on the KKT system entails the solution of the
following linear system




LY Y LY U eT
Y

LUY LUU eT
U

eY eU 0







δY
δU

λ(k+1)


 = −




JY

JU

e


 (9.13)

for the update δXT = (δY , δU)T of the optimization variable and the new value λ(k+1)

of the adjoint variable; then, we set (Y (k+1), U (k+1))T = (Y (k), U (k))T +(δY , δU)T . Here

H =

(
LY Y LY U

LUY LUU

)

denotes the Hessian of the Lagrangian functional, to be evaluated at (Y (k), U (k), λ(k))T .
Note the saddle-point structure of system (9.13), where the adjoint variable indeed plays
the role of multiplier for the constraint expressed by the (linearized) state equation. The
system (9.13) can be equivalently obtained as the KKT system for the following linear-
quadratic optimization problem, see, e.g., (Hinze et al. 2009, Borz̀ı and Schulz 2011),

min
δX

[
1

2
δXTHδX +

(
JY

JU

)T

δX

]
subject to

(
eY

eU

)
δX + e = 0,

whence the name of sequential quadratic programming method which is commonly used
to refer to the Newton iterations on system (9.13). Indeed, a quadratic programming
problem has to be solved at each step, e.g. by means of a preconditioned Krylov mehod
like MINRES, until a suitable convergence criterion is fulfilled. Suitable approximation of
the Hessian, based e.g. on quasi-Newton methods, are required to make this algorithm
more computationally attractive, see, e.g., (Borz̀ı and Schulz 2011).

Remark 4. Constraints on the control and/or state variables add nonlinearity to the
optimization problem. A first option is to treat inequality constraints in an outer loop,
through penalty methods which allow to convert them into additional terms in the cost func-
tional. For instance, if u ≤ b is a pointwise control constraint, the term c

2‖max{0, u−b}‖2
U

can be added, being c > 0 a penalty parameter to be properly selected, and then an it-
erative method can be used in the inner loop. Another option in iterative methods is
to perform a projection over the space of admissible controls at each step. More effi-
cient strategies to tackle constrained problems are usually obtained when dealing with
constraints in the main optimization loop, such as in the case of primal-dual active set
strategies, see, e.g., the monographs (Borz̀ı and Schulz 2011, Hinze et al. 2009).

We finally point out that in this section we have opted for the optimize, then discretize
approach; that is, we have shown how to recover a system of optimality conditions and then
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proceed to its numerical discretization. The opposite strategy (discretize, then optimize)
would have led to substantially similar numerical methods, by setting either an iterative
or an all-at-once method on the system of optimality conditions derived once the original
state system had been discretized. The two approaches do not yield identical solutions in
general; see, e.g., (Hinze et al. 2009) for a discussion.

9.3. Examples of applications in cardiovascular modeling

9.3.1. Optimal design of bypass grafts

PDE-constrained optimization problems are obtained when looking for the optimal design
of prosthetic devices, such as ventricular assist devices or bypass grafts. For instance,
coronary artery bypass grafting (CABG) is a standard surgical procedure to restore blood
perfusion to the cardiac muscle by redirecting blood from the aorta through a graft vessel
to the downstream of a coronary artery affected by stenosis or occlusion. Being able to
design the graft-vessel connection (the so-called anastomosis, which we refer to as the
domain Ω) in an efficient way is a critical factor to prevent post-operative recurrence of
restenosis.

It is nowadays accepted that intimal wall thickening, caused by the accelerated growth of
smooth muscle cells and surrounding matrix, represents one of the leading causes of long-
term failure of end-to-side vascular grafts (Haruguchi and Teraoka 2003). Low and/or
highly oscillatory patterns of WSS, as well as strong vorticity and recirculations, cause in-
timal wall thickening (Ethier, Steinman, Zhang, Karpik and Ojha 1998, Keynton, Evancho,
Sims, Rodway, Gobin and Rittgers 2001) at sites where curvatures, bifurcations, tortuosity
and branching occur, and, more in general, where flow departs from unidirectional patterns
(Giordana, Sherwin, Peiró, Doorly, Crane, Lee, Cheshire and Caro 2005, Loth, Fischer and
Bassiouny 2008). In mathematical terms, an optimal graft is one that minimizes suitable
cost functionals involving the area of low WSS, spatial WSS gradient (Lei et al. 1997) or
the vorticity (Quarteroni and Rozza 2003, Manzoni, Quarteroni and Rozza 2012b), see e.g.
(Kleinstreuer 2006) for a detailed review. Taking as state variables blood velocity v and
pressure p, and as control variable u = Ω, i.e. the shape of the domain itself, the goal is
thus to find the optimal shape Ω̂ of the graft by minimizing, e.g.

J(v, Ω) =

∫ T

0

∫

Ωobs

|∇ × v|2 dΩ dt,

where Ωobs ⊂ Ω is a given observation region, in the artery portion right after the anasto-
mosis. Indeed, high downstream vorticity may lead to strong flow recirculation, yielding
similar effects in terms of intimal thickening.

Other cost functionals that can be employed are, for instance:

• a tracking-type functional, in order to drive the blood velocity (and pressure, if
δ > 0) towards a specified velocity (and pressure) target state vd, pd, featuring a
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regular pattern

J(v, Ω) =
1

2

∫ T

0

∫

Ωobs

|v − vd|2dΩdt +
δ

2

∫ T

0

∫

Ωobs

|p − pd|2 dΩ dt;

a typical choice of (vd, pd) is provided by the Stokes (or a low-Reynolds Navier-Stokes)
flow in the same domain;

• in dimension two, a Galilean invariant vortex measure identifies a region to be a
vortex if ∇v has complex eigenvalues, that is, if det(∇v) > 0; following (Hintermüller,
Kunisch, Spasov and Volkwein 2004, Kunisch and Vexler 2007, Lassila, Manzoni,
Quarteroni and Rozza 2013a), the functional

J(v, Ω) =

∫ T

0

∫

Ωobs

max(0, det(∇v)) dΩ dt

can be used as a cost functional when dealing with vortex suppression;
• a WSS gradient-based functional is given by

J(v, Ω) =

∫ T

0

∫

Γobs

WSSG(t) dΓ dt, WSSG(t) =

((
∂wp

∂τ p

)2

+

(
∂wn

∂τn

)2
)

that is, by a time-average of the WSS gradient, measured over the portion Γobs ⊂ ∂Ω
of the boundary in the anastomosis region. Here we refer to WSSG as to the WSS
gradient, being w = w(t, x) the WSS vector of components w(j) = ∇vn(t, x) · τ (j),
τ p and τn the unit vectors parallel and normal to the direction of the time-averaged
WSS vector w, respectively. Only a linear combination of the normal components
∂xj/∂τ j , j = p, n is considered as index to quantify the tension yielding to intimal
thickening. Moreover, the time-averaged WSS is relatively insensitive to changes
in the anastomosis configuration, while the time-averaged WSS gradient is highly
sensitive, and has been linked to localized mechanobiological responses in tissues (see
(Lei et al. 1997) and discussion therein). Using WSSG rather than WSS can be
understood as filtering the WSS by removing its component induced by the steady
mean flow and considering only the spatially fluctuating term as part of the indicator.
For the sake of numerical efficiency of the whole optimization process, a steady flow
simulation (e.g., corresponding to the systolic peak) can be considered, and the WSS
gradient of the steady flow can be taken as an approximation of the time-averaged
WSS gradient. The interested reader can refer, e.g., to (Kleinstreuer 2006) for further
details.

Many works have focused in the last decades on the optimal shape design of end-to-side
anastomoses, typically by acting on the wall shape near the anastomosis by local shape
variations. If a simpler parametric optimization approach is considered, the three most
significant design variables are (Loth et al. 2008): the anastomosis angle, the graft-to-host
diameter ratio (Keynton et al. 2001, Do, Owida, Yang and Morsi 2011), and the toe shape,
that is, the profile of the bypass junction. Optimizing a complex configuration in terms
of few design variables is more advantageous since it is known that grafts usually feature
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an extended patch or cuff that effectively provides a hood to ease the flow transition from
the graft to the artery. Not only, improved anastomosis design must comply with the
constraints set by surgical realization. For a more comprehensive review of bypass graft
design results, we refer to (Migliavacca and Dubini 2005, Loth et al. 2008, Owida, Do and
Morsi 2012, Marsden 2014).

Concerning the objective to be minimized, each cost functional involves suitable observa-
tions, obtained as functions of the state variables over the entire domain or some boundary
portions, and over a given time interval and, possibly, data acquired from measurements,
like in the case of a tracking-type functional. There are of course other parameters affect-
ing the distribution of physical indices like the WSS or the vorticity: this is e.g. the case of
the Reynolds number, or of the flow split between the proximal host artery and the graft
(Giordana et al. 2005). All these parameters should be considered as uncertainties within
a robust optimization framework, in order to characterize the optimal shape of the graft
in a range of possible operating conditions. First examples of optimal design in presence
of uncertainty in cardiovascular applications have been considered e.g. in (Sankaran and
Marsden 2010).

As a concluding remark, we point out that the coupling of optimization algorithms to
blood flow simulations is computationally challenging, since each evaluation of the cost
functional requires the solution of an unsteady, three-dimensional Navier-Stokes problem.
If relying on the adjoint approach to characterize the gradient of the cost functional,
a further linearized Navier-Stokes (Oseen) problem has to be solved at every iteration.
For this reason, the most part of works related to applications in surgery and device
optimization have focused, so far, on small-scale and/or two-dimensional problems, or on
steady-flow problems, usually relying on gradient-free methods.

For the sake of illustration, we report some numerical results for the optimal design
of a femoro-popliteal bypass graft. This surgery is used to bypass diseased blood vessels
above or below the knee, and represents one of the most common surgical treatments of
chronic lower-extremity ischemia. We model the blood flow across a bypass graft by a
steady Navier-Stokes model and consider a vorticity cost functional

J(v, Ω) =

∫

Ωobs

|∇ × v|2 dΩ

where Ωobs ⊂ Ω is the observation region. Initial and optimal shapes are shown in Fig. 9.26
for the case of a stenosed host artery; its occlusion, either total or partial, is expressed
through a Dirichlet boundary condition on the incoming velocity field on Γres, homoge-
neous for the completely occluded case, non-homogeneous otherwise; see Fig. 9.26 (b) for
the definition of Ωobs and Γref . A shape parametrization technique based on Free-Form
Deformations (FFD) is very suitable to describe admissible shapes through a deforma-
tion of a reference configuration by acting on a small set of control points; see, e.g.,
(Manzoni 2012, Manzoni et al. 2012b).
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Figure 9.26. Optimal design of bypass grafts. (a) A tract of femoral artery with the bypass graft;
(b) computational domain, boundaries and observation region; (c) FFD shape parametrization
used to generate admissible shapes. Global shape deformations are induced by the displacement
of few, selected control points (shown in red) in the 6 × 4 FFD lattice. These control points are
selected by a preliminary screening procedure based on sensitivity analysis; (d) initial and (e)
optimal bypass configurations in the case of total (above) or partial (below) occlusion. These

numerical results are obtained using the Matlab Finite Element library MLife

9.3.2. Optimal control of electrical defibrillation

While in healthy conditions the electrical activation of the heart is an extremely organized
(and efficient) process, some disturbances in the formation and/or propagation of electri-
cal signals may induce reentrant activation patterns which lead to tachycardia, that is, a
noticeable increase in the hearts activation rate. In the worst cases, this may turn to an
even less organized activation pattern, called fibrillation. A common therapy to terminate
a fibrillation and restore a regular cardiac rhythm is electrical defibrillation, consisting in
the delivery of a strong electrical shock by injecting external currents through a set of
electrodes. This restores a spatially uniform activation pattern, recovering an extracel-
lular potential distribution showing damped voltage gradients. Electrical defibrillation is
nowadays operated by implanting some devices (the so-called cardioverters defibrillators)
able to monitor the heart rhythm and then to deliver electrical discharges when needed.

This process can be modeled e.g. by considering as state system the monodomain
equation (7.11), for which the extracellular stimulation current Ie = Ie(t) to be applied
plays the role of distributed control function, and has to be determined in order to minimize
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e.g. the cost functional

J(Vm, Ie) =
1

2

∫ T

0

∫

Ωobs

|Vm − vd|2dΩdt +
α

2

∫ T

0

∫

Ωcon

|Ie|2dΩdt. (9.14)

Here Vm is the transmembrane potential, Ωobs ⊆ Ωmus is the observation domain, Ωcon ⊆
Ωmus is the control domain, whereas vd is the target potential distribution. For instance,
if vd = 0, the minimum of J(Vm, Ie) corresponds to the case of an excitation wave which
is suppressed in the region Ωobs, see e.g. (Nagaiah, Kunisch and Plank 2011). The trans-
membrane potential Vm can be obtained by solving the following monodomain equations
(see Sect. 7.1.3)

χmCm
∂Vm

∂t
−∇ · (Σ∇Vm) + χmIion = Ie in Ωmus × (0, T )

∂w

∂t
= g(Vm, w) in Ωmus × (0, T )

Vm|t=0 = Vm,0 in Ωmus

w|t=0 = w0 in Ωmus

Σ∇Vm · n = 0 on Σepi ∪ Σendo

(9.15)

with Iion provided e.g. by the Fitzhugh-Nagumo model (see Sect. 7.1.2),

Iion = f(Vm, w) = −kVm(Vm − a)(Vm − 1) − w, g(Vm, w) = ǫ(Vm − γw).

An analysis of this OC problem can be found, e.g., in (Nagaiah et al. 2011). We can
exploit the Lagrangian approach to derive a system of first-order optimality conditions,
by introducing the Lagrangian

L(Vm, w, Ie, z, q) = J(Vm, Ie) + 〈E(Vm, w, Ie), (z, q)〉V,V ∗

= J(Vm, Ie)

+

∫ T

0

∫

Ωmus

(
χmCm

∂Vm

∂t
−∇ · (Σ∇Vm) + χmIion − Ie

)
zdΩdt

+

∫ T

0

∫

Ωmus

(
∂w

∂t
− g(Vm, w)

)
qdΩdt

where (z, q) denote the dual variables of Vm, w, respectively; here (Vm, w) ∈ V =
L2(0, T ;V) × W 1,2(0, T ;H), being V = H1(Ωmus) and H = L2(Ωmus); the control space
can be chosen as U = L2(0, T ; L2(Ω)), and the initial conditions can be kept as explicit
constraints. By setting the partial derivatives of L equal to zero, we find the following
expression for the adjoint problem:

−χmCm
∂z

∂t
−∇ · (Σ∇z) + χm

∂Iion

∂Vm
z − ∂g

∂Vm
q = vd − Vm in Ωmus × (0, T )

−∂q

∂t
− ∂g

∂w
q +

∂Iion

∂w
z = 0 in Ωmus × (0, T )

z|t=T = 0 in Ωmus

q|t=T = 0 in Ωmus

Σ∇z · n = 0 on Σepi ∪ Σendo

(9.16)
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and the following optimality condition

z + αIe = 0 on Ωcon. (9.17)

The OC problem (9.14)–(9.15) can be solved by an optimize-then-discretize strategy, where
both spatial and temporal discretizations are required because of the time-dependent na-
ture of the problem. After discretization, we can employ an iterative method, by com-
puting at each step the solution of the (coupled) state problem (9.15) over (0, T ), and
the solution of the adjoint problem (9.16), which is a linear problem, backward in time,
where the adjoint variables are coupled similarly to (Vm, w) in the state problem. Note
that the data of the adjoint problem are related with the Fréchet derivative of the cost
functional with respect to the state variables, and that the adjoint problem depends on
the control function only through the state variable. Moreover, the adjoint operator calls
into play the linearization of the state operator around the computed state solution – that
is, the derivatives ∂Iion/∂Vm, ∂g/∂Vm, ∂Iion/∂w, ∂g/∂w have to be evaluated, at each
step, around the computed solution of the state system. The optimality condition (9.17)
then allows to determine the gradient J̃ ′(Ie) of the cost functional J̃(Ie) = J(Vm(Ie), Ie),
required to update the control function at each step.

To simplify the OC problem, we can for instance look for control functions under the
form

Ie(t,x) =

Nel∑

k=1

uk(t)IΩcon,k
(x)I(0,Tdef )(t)

where the location of Nel electrodes through which the current is delivered is prescribed,
and only its time intensity has to be controlled over time; here IΩcon,k

(x) denotes the
indicator function of the region Ωcon,k where the k-th electrode is located. Additional
inequality constraints under the form umin ≤ uk(t) ≤ umax can also be taken into account
in order to limit currents amplitude.

Further extensions of this framework consider e.g. the bidomain model (Nagaiah et
al. 2013b), the case of boundary controls (Nagaiah, Kunisch and Plank 2013a) and a
different Mitchell-Schaeffer model to describe ionic currents, together with the presence
of a conductive bath medium outside the heart effects and experimentally-based fiber and
sheet orientations (Nagaiah, Kunisch and Plank 2016). Moreover, the case where the
shock duration itself is also optimized has been considered in (Kunisch and Rund 2015).
The reason to consider this further effect is that after applying a defibrillation shock, the
muscle tissue needs a suitable amount of time to reach a non-fibrillatory state, so that a
successful defibrillation can only be assessed at a time T ≫ Tdef , being Tdef the end time
of the defibrillation shock and T the final observation time, at which the tissue should
have reached a non-excited state. In this context, the following cost functional

J(Vm, u, Tdef ) = Tdef +
µ

2

∫

Ωobs

|Vm(·, T )|2dΩ +
α

2

Nel∑

k=1

∫ T

0
|uk|2dt

can be minimized, accounting for (i) a minimum time term, for (ii) a final time obser-
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vation at t = T and (iii) for the amplitude of the applied currents, subject to the state
system (9.15) to be solved over (0, T ). Indeed, the shock duration and its energy have
to be minimized to avoid negative side effects of the applied shock, while the final time
observation term is taken into account to quantify defibrillation, thus requiring that the
tissue reaches a non-excited state at T ≫ Tdef .

For the sake of illustration, we consider the case of an axially symmetric domain Ωmus =
(0, 2) × (0, 0.8) where a constant pulse of intensity u is delivered in the control domain
Ωcon = (0, 0.25) × (0.3, 0.55) ∪ (1.75, 2) × (0.3, 0.55), until time Tdef ; here U = (u, Tdef )T

is the control variable, with 1 ≤ u ≤ 100 mV and 0.1 ≤ Tdef ≤ 4 ms; the final time
is T = 64 ms. The initial condition (Vm,0, w0)

T describe a reentry wave of the “figure
of eight” type, obtained following the procedure described in (Kunisch and Rund 2015),
where more general optimal control problems are also taken into account. For the case at
hand, a planar wave front travelling from the bottom to the top can be damped by acting
an optimal control of intensity u ≈ 95 mV until Tdef ≈ 1.2 ms on the control region.
The successful defibrillation – resulting from a trade-off between a large intensity and a
short duration of the pulse – is clearly visible in Fig. 9.27, where in the controlled case
at the final time the tissue is almost completely unexcited. Indeed, the pulse acts on the
excitable region of the tissue adjacent to the wave front, bringing it to a non-excitable
state.

Figure 9.27. Electrical potential at times t = 0, 4, 12, 20, 40, 52, 64 ms in the uncontrolled case
(top) and in the controlled case (bottom). The reentry wave appearing in the uncontrolled case is

damped by the control acting on Ωcon
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Remark 5. We point out that choosing the cost functional and, if needed, imposing
suitable constraints on the control and/or the state variable, are two extremely hard,
problem-dependent tasks. Moreover, very often control functions are described in terms of
(possibly few) relevant parameters, which play the role of design variables; their automatic
selection however, in the case e.g. of complex, patient-dependent geometries, can result
in a quite involved procedure. Last, but not least, in the case where a target state to
be reached depends on acquired data, the effect of uncertainty has to be considered in
the formulation (and then, solution) of the problem. This feature may be accommodated
by using, e.g., robust optimization problems, or PDE-constrained optimization problems
under uncertainty. This is indeed an active research field, where very few applications to
cardiovascular modeling have been considered so far.

10. Parameter estimation from clinical data

When dealing with the mathematical and numerical modeling of the circulatory sys-
tem, initial conditions, boundary conditions or physical coefficients, e.g., tissue proper-
ties, might be (partially) unwknown (Veneziani and Vergara 2013), see Sects. 3 and 6.
Hereon we refer to any of these quantities as input parameters, independently of their
mathematical nature – they could be scalar or vectors, or even parametric fields varying
in space – and to the issue of making inferences about unknown parameters from data as
to parameter estimation (or identification). To perform parameter estimation for a system
of PDEs we need to combine state observations and additional data which are not strictly
required for solving the PDE problem, and have to be acquired from measurements.

Parameter estimation for PDEs can be done according to several techniques, which can
be coarsely classified depending on their outcome (Tarantola 2004, Dimet and Talagrand
1986). Point estimates rely on either variational or sequential methods (Ide, Courtier, Ghil
and Lorenc 1997). Both methods provide optimal least-squares estimates by minimizing a
cost functional accounting for the misfit between measured data and state observations. A
second class of techniques yields instead confidence regions or, more generally speaking, the
possibility to characterize the probability distribution of the unknown parameters provided
they are described in terms of random variables; this is the goal, e.g., of statistical inversion
theory relying on Bayesian inference, which Sect. 11.2 is largely devoted to.

In the context of cardiovascular modeling, parameter estimation is necessary for the
sake of model calibration/personalization, e.g. in view of diagnosis or treatment purposes;
indeed, parameters that are not directly measurable – this is e.g. the case of tissue con-
ductivity or vessel compliance – are tuned so that the outcome of the numerical model is
able to reproduce patient-specific data (Krishnamurthy, Villongco, Chuang, Frank, Nigam,
Belezzuoli, Stark, Krummen, Narayan, Omens, McCulloch and Kerckhoffs 2013). Difficul-
ties arise because of data sparsity (Konukoglu, Relan, Cilingir, Menze, Chinchapatnam,
Jadidi, Cochet, Hocini, Delingette, Jäıs, Häıssaguerre, Ayache and Sermesant 2011): in-
deed, spatial resolution and temporal frequency are typically undersampled; on the other
hand, experimental data are always polluted by measurement noise.
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Remark 6. Data assimilation (DA) is the process by which a numerical model of a
given system, usually affected by noise or model uncertainties, is improved by incorpo-
rating system observations. Although DA relies on the same variational or filtering ap-
proaches addressed in this section, in the case of, e.g., geophysical fluids, its main goal
often goes beyond parameter estimation; indeed, it is more often related to state estima-
tion, namely, to improving the outcome of the numerical model and of its initial state to
correctly initialize forecasts, by assimilating available measurements into the numerical
model itself. DA is intrinsically related to time-varying phenomena and deals with highly
nonlinear dynamical systems, very often far from being periodical (such as in the case of
meteorological models) and ill-posed; see, e.g., (Blum, Dimet and Navon 2009, Voss, Tim-
mer and Kurths 2004, Dimet and Talagrand 1986) for a detailed discussion. In the last
decade several works dealing with cardiovascular applications have focused on data assim-
ilation (Sermesant, Moireau, Camara, Sainte-Marie, Andriantsimiavona, Cimrman, Hill,
Chapelle and Razavi 2006, Delingette, Billet, Wong, Sermesant, Rhode, Ginks, Rinaldi,
Razavi and Ayache 2012, Bertagna, D’Elia, Perego and Veneziani 2014, Lal, Mohammadi
and Nicoud 2016) which has been considered, in many cases, as synonymous of parameter
estimation.

In this section we provide an overview of both variational and sequential approaches
for parameter estimation in time-dependent systems. Parameter estimation problems
dealing with stationary systems in cardiovascular applications have also been solved –
see, e.g., (D’Elia, Perego and Veneziani 2012, Bertagna et al. 2014, MacLachlan, Nielsen,
m. Lysaker and Tveito 2006, Nielsen, Cai and Lykaser 2007a, Lassila, Manzoni, Quarteroni
and Rozza 2013b, Manzoni, Lassila, Quarteroni and Rozza 2014) for the sake of space and
relevance here we focus on time-dependent problems.

10.1. Variational approach: PDE-constrained optimization

The variational approach recasts parameter estimation in the framework of PDE-constrained
optimization, by considering the equations governing the problem at hand as state system
and the discrepancy between the observation of the state and the measured data as cost
functional to be minimized (Banks and Kunisch 1989, Chavent 2010). The parameters
to be estimated (often involving the initial condition) play the role of optimization vari-
ables, just like control variables in the case of optimal control (OC) problems; however,
differently than the OC case, parameters to be estimated are quantities which no one
can actually control. Often, they are coefficients of the operator appearing in the PDE
problem.

Here we provide an abstract formulation of the variational approach, following (Bertoglio,
Moireau and Gerbeau 2012, Blum et al. 2009); for more see, e.g., (Nichols 2010, Chapelle,
Fragu, Mallet and Moireau 2013a, Sermesant et al. 2006). We assume that the state prob-
lem has already been discretized in space. We denote by X(t) ∈ R

nx the semi-discrete
state, by θ ∈ R

p the parameters of the model to be estimated, and by A(t, X(t), θ) the
(semi-discretized in space) state operator; note that usually p ≪ nx. The state variable
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then solves the dynamical system
{

Ẋ(t) = A(t, X(t), θ), t ∈ (0, T ),
X(0) = G.

(10.1)

For instance, in the case of the FSI system (4.19), X = (v, p, d) contains fluid velocity and
pressure, and structure displacement, θ may contain, e.g., the value of the Young modulus
(here assumed to be piecewise constant) in different patches of the arterial wall.

We consider the case where the parameter vector θ is unknown, and for which the
estimation problem consists in finding θ̂ such that the discrepancy between the observation
and a set of measurements Z(t) ∈ R

nz , t ∈ (0, T ), is minimized, e.g. in a least-squares
sense. The case of unknown initial data G to be estimated can be treated essentially in
the same way. Usually, we assume that measurements Z(t) are related to observations of
the true state through an additive noise model, that is,

Z(t) = H(t)X(t) + ε(t), t ∈ (0, T ),

where H = H(t) ∈ Rnz×nx is an observation operator which maps the state space into the
observation space Rnz , and ε = ε(t) is a noise term accounting for measurement errors.
The following minimization problem is then solved

J(X, θ) =
1

2

∫ T

0
‖Z(t) − H(t)X(t)‖2

M dt +
αθ

2
‖θ − θ0‖2

P−1
θ

→ min
θ∈P

(10.2)

being X = X(t) the solution of (10.1). Here P ⊂ Rp × Rnx denotes the set of admis-
sible parameters. Additional information is usually added to the least-squares objective
expressed by the first term in (10.2), through a background estimate θ0 of θ; M and P−1

θ
are suitable symmetric positive definite matrices (the reason why we consider an inverse
matrix to define this latter norm will be clarified in the following). This procedure goes
under the name of Levenberg-Marquardt-Tykhonov regularization; see, e.g., (Kaipio and
Somersalo 2005) for a discussion on classical regularization methods for inverse problems;
note that usual penalization coefficients are embedded in the definition of the matrix P−1

θ .
The minimization problem (10.2) can be solved by an optimization algorithm based

e.g. on the evaluation of the gradient of J with respect to θ; as shown in Sect. 9.1, this
latter can be computed by relying on the solution of a suitable adjoint problem. This
is a four-dimensional variational (4D-Var) assimilation (a three-dimensional variational
(3D-Var) assimilation would arise in the case of steady state systems). See Sect. 10.3.1
for further details on a relevant example in cardiovascular modeling and, e.g., (Blum et
al. 2009, Chapelle et al. 2013a) for more on 4D-Var assimilation problems.

Since measurements Z are only available at a discrete number of time instants τ1, . . . , τK ,
we formulate the identification problem by replacing the dynamical system (10.1) with its
discretized-in-time version:

{
Xk+1 = Ak|k+1(X

k, θ), k = 0, . . . , K − 1

X0 = G
(10.3)
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where Ak|k+1 is a nonlinear function describing the evolution of the state from time τk to

time τk+1 and Xk ≈ X(k∆τ) denotes the state vector at time τk. Note that the length
∆τ = τk+1 − τk of the time windows between two subsequent measurements is usually
larger than the time step ∆t used for the sake of time discretization, and that θ does
not depend on k. We notice that hereon k will denote the temporal index of the system
evolution, thus using a different notation from the one introduced in Parts 1 and 2 (the
temporal index was denoted by n therein).

We then formulate an optimal discrete time minimization criterion and, finally, de-
termine the corresponding adjoint problem, rather than discretizing in time the adjoint
problem. This yields the minimization problem

JK(X, θ) =
1

2

K∑

k=1

‖Zk − HXk‖2
Mk

+
1

2
‖θ − θ0‖2

P−1
θ

→ min
θ∈P

(10.4)

where X = (X1, . . . ,Xk) and we set

Zk = HkX
k + εk. (10.5)

Here εk denotes the noise of the measurement device at τk = k∆τ ; a possible choice for Mk

is Mk = ∆τM , whereas Hk ≈ H(k∆τ). Also in this case a gradient-based optimization
procedure can be used to solve the constrained optimization problem (10.3)–(10.4) with
gradients evaluated by introducing a suitable adjoint problem.

10.2. Sequential approach: Kalman filter and extensions

A drawback of the variational approach is the need to wait until the whole set of measure-
ments has been acquired in order to perform an optimization step. A sequential approach,
instead, performs the assimilation of acquired measurements on the fly and updates the
estimate of the unknown quantities accordingly.

A numerical milestone for the solution of sequential estimation problems, the Kalman
Filter (KF) (Kalman 1960), has been introduced as a recursive filter for the estimation of
the state of a noisy dynamical system from a set of measurements, that is, to improve the
prediction of the state dynamics by taking into account additional data; an augmented
form of the KF can be easily adapted, as we will see, also to the problem of estimating
unknown parameters. Originally designed for linear dynamical systems, the KF has severe
memory requirements. To mitigate these two limitations, several improvements and ex-
tensions have been proposed in the past decades, most notably the Extended KF (EKF),
the Unscented KF (UKF) and the Ensemble KF (EnKF); detailed reviews can be found,
e.g., in (Kaipio and Somersalo 2005, Simon 2006, Humpherys, Redd and West 2012). In
this section we recall the formulation of the basic KF and provide some hints about its ex-
tensions, with special focus on the field of cardiovascular modeling where these techniques
have been applied.

The literature offers many possible derivations of the KF; following (Humpherys et
al. 2012, Chapelle et al. 2013a), here we exploit the analogy with the solution of a recur-
sive least-squares problem yielding the best linear unbiased estimator for a linear model;
alternative derivations can be obtained, e.g., relying on the so-called push-forward and
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subsequent conditioning of Gaussian measures (Sullivan 2015) or a sequential Bayesian
estimation framework (Law, Stuart and Zygalakis 2015).

10.2.1. The Kalman filter algorithm

The KF algorithm sequentially generates an estimate of the unknown quantity through
a linear combination of the current estimate and the acquired measurement. Let us first
consider the case where there is no dynamics and data are generated by the linear model

Z = HX + ε (10.6)

where H is a given nz × nx matrix of rank nx, ε is an nz-dimensional random variable
with zero mean and known positive-definite covariance Q = E[εεT ] > 0 and Z represents
known, but inexact, measurements with errors given by ε. The vector X ∈ Rnx is the
quantity to be estimated from the observation Z; E[·] denotes the expected value.

Among all linear estimators of X, that is estimators of the form X̂ = KZ for some

matrix K ∈ Rnx×nz , which are unbiased (i.e. E[X̂] = X), the best choice is the one

which minimizes the mean-squared error E[(X̂ − X)T (X̂ − X)]; by the Gauss-Markov
theorem (see, e.g., (Sullivan 2015, Chap. 7)), the best or minimum variance linear unbiased
estimator for (10.6) is given by

X̂ = (HT Q−1H)−1HT Q−1Z. (10.7)

In that case, E[(X̂ − X)(X̂ − X)T ] = (HT Q−1H)−1. Equivalently, (10.7) can also be
obtained by solving the weighted least-squares problem

X̂ =
1

2
‖HX − Z‖2

Q−1 → min
X

(10.8)

again resorting to a variational argument. In the slightly different case where we want to
combine the observation and a background estimate X0 of X with covariance P−, (10.8)
becomes

X̂ =
1

2
‖HX − Z‖2

Q−1 +
1

2
‖X − X0‖2

(P−)−1 → min
X

and, instead of (10.7) we find

X̂ = X0 + K(Z − HX0), K = P+HT Q−1, (10.9)

upon defining the matrix playing the role of updated covariance as

P+ = ((P−)−1 + HT Q−1H)−1. (10.10)

Note that this estimate is given by a linear combination of the background estimate X0

and the so-called innovation Z − HX0. K is usually referred to as Kalman gain matrix;
it can also be evaluated exploiting the prior covariance P− instead than the updated
covariance P+, according to the equivalence

P+HT Q−1 = P−HT (HP−HT + Q)−1. (10.11)
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We consider now the case of a discrete-time linear system, with data acquired over a
time interval. Then, the model (10.6) is replaced by

Xk = Ak−1|kX
k−1 + vk, k = 1, . . . , K, X0 = G,

Zk = HkX
k + wk

(10.12)

where Xk ∈ R
nx denotes the state and Zk ∈ R

nz are the measurements; vk and wk

are uncorrelated zero-mean random noise processes with positive-definite covariances Qk

and Rk, modeling the uncertainty of the model and the additive noise in the observation,
respectively. The state estimation problem is the problem to find the state Xk given k
known observations Z1, . . . ,Zk.

The Kalman filter is a recursive algorithm that provides the best linear unbiased estimate
Xk

a of Xk in terms of both the previous estimate Xk−1
a and the latest data Zk up to that

point in time. It is based on a predictor-corrector strategy, made of:

1 a prediction step (called forecast, or time update) consists in letting the system
dynamics evolve from Xk−1

a without taking into account the observations, yielding
the forecast state Xk

f ;
2 a correction step (called analysis, or measurement update) updates the forecast state

Xk
f by assimilating the measurements into the model, yielding the assimilated state

Xk
a.

To derive the expression of the correction step, let us suppose that the current prediction

based on observations Z1, . . . ,Zk−1 is Xk
f , with covariance matrix P f

k . If the true state
is Xk, model (10.6) becomes [

Xk
f

Zk

]
=

[
I

Hk

]
Xk + ε

being ε an (nx + nz)-dimensional random variable with zero mean and covariance Qk =

diag(P f
k , Rk). The best linear unbiased estimator of this system (see (10.7)) is given by

Xk
a = P a

k

[
I HT

k

] [
(P f

k )−1 0
0 R−1

k

] [
Xk

f

Zk

]
= P a

k

(
(P f

k )−1Xk
f + HT

k R−1
k Zk

)
(10.13)

and results from the linear combination of the current estimate and the last observation
Zk, where

P a
k =

([
I HT

k

] [
(P f

k )−1 0
0 R−1

k

] [
I

Hk

])−1

= ((P f
k )−1 + HT

k R−1
k Hk)

−1;

note the formal analogy with (10.10), where now P f
k and P a

k play the role of P− and P+

, respectively. (10.13) can be written in the more convenient form

Xk
a = P a

k [(P a
k )−1 − HT

k R−1
k Hk))X

k
f + HT

k R−1
k Zk] = Xk

f + P a
k HT

k R−1
k (Zk − HkX

k
f )

= Xk
f + Kk(Z

k − HkX
k
f )
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as a function of the innovation Zk − HkX
k
f . Similarly to (10.11), the following relation

holds

Kk = P a
k HT

k R−1
k = P f

k HT
k (HkP

f
k HT + Rk)

−1, (10.14)

so that it is possible to evaluate the Kalman gain matrix Kk as a function of P f
k , and then

correct the covariance,

P a
k = ((P f

k )−1 +HT
k R−1

k Hk)
−1 = (I−KkHk)P

f
k (I−KkHk)

T +KkRkK
T
k = (I−KkHk)P

f
k .

The prediction step instead exploits the dynamical system to propagate the state, yield-
ing

Xk+1
f = Ak|k+1X

k
a

for the time update of the state, and

P f
k+1 = E[(Xk+1

f − Xk+1)(Xk+1
f − Xk+1)T ]

= E[(Ak|k+1X
k
a − Ak|k+1Xk − wk)(Ak|k+1X̂

k

a − Ak|k+1Xk − wk)
T ]

= Ak|k+1P
a
k AT

k|k+1 + Qk+1

for the time update of the covariance. Grouping together the prediction and the correction
steps, we finally obtain the k-th step of the KF algorithm:

Xk
f =Ak−1|kX

k−1
a state prediction (10.15a)

P f
k =Ak−1|kP

a
k−1A

T
k−1|k + Qk error covariance prediction (10.15b)

Kk =P k
f HT

k (HkP
f
k HT

k + Rk)
−1 Kalman gain evaluation (10.15c)

Xk
a =Xk

f + Kk(Z
k − HkX

k
f ) state correction (10.15d)

P a
k =(I − KkHk)P

f
k error covariance correction. (10.15e)

Note that from (10.15d) only the estimated state from the previous step and the current
measurement are needed to compute the estimate of the current state. The two pre-
diction and correction steps alternate: the prediction advances the state until the next
measurement is acquired, then the correction incorporates this latter.

Remark 7. The Kalman gain Kk defined in (10.14) can also be expressed as Kk =

P
Xf Z
k (PZ

k )−1; here P
Xf Z
k = E[Xk

f (Zk −HkX
k
f )T ] = P f

k HT
k is the the cross-covariance be-

tween Xk
f and the innovation Zk−HkX

k
f , whereas PZ

k = E[(Zk−HkX
k
f )(Zk−HkX

k
f )T ] =

HkP
f
k Hk + Rk is the innovation covariance. Similarly, (10.15e) can be rewritten as

P a
k = P f

k − KkP
Z
k KT

k . This interpretation is useful when dealing with the unscented
Kalman filter (see Sect. 10.2.3).

Remark 8. In the linear case, the variational and the sequential approaches yield the
same result at the end of a time window, provided the following assumptions are made:
the same background estimation and the same covariance matrices are used, the same
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measurements are acquired – that is, both algorithms are optimal in a least-squares or
minimum variance standpoint.

Let us now return to our problem of estimating the parameter θ. For that, we apply
the KF algorithm to the system:

Xk = Ak−1|kX
k−1 + Bkθ

k + vk, k = 1, . . . , K, X0 = G,

θk = θk−1

with observations

Zk = HkX
k + wk, k = 1, . . . , K;

here θk ∈ Rp denotes the parameter vector and (under the linearity assumption), Bk ∈
R

nx×p and we assume that no random error is associated with model parameters. This
is the so-called state augmentation technique. In order to exploit the KF algorithm,

we consider as state vector X̃
k

= (Xk, θk)T instead of Xk, thus yielding the following
augmented KF algorithm:

X̃
k

f =Ãk−1|kX̃
k−1

a state prediction (10.16a)

P̃ f
k =Ãk−1|kP̃

a
k−1Ã

T
k−1|k + Q̃k error covariance prediction (10.16b)

Kk =P̃ k
f H̃T

k (H̃kP̃
f
k HT

k + R̃k)
−1 Kalman gain evaluation (10.16c)

X̃
k

a =X̃
k

f + Kk(Z̃
k − H̃kX̃

k

f ) state correction (10.16d)

P̃ a
k =(I − KkH̃k)P̃

f
k error covariance correction (10.16e)

where

Ãk−1|k =

[
Ak−1|k Bk

0 I

]
, Z̃

k
=

[
Zk

0

]
, H̃k =

[
Hk 0
0 0

]
, Q̃k =

[
Qk

0

]
, R̃k =

[
Rk 0
0 0

]
.

We point out that, by construction of the filtering procedure, the estimated parameter
values evolve along the simulation period and the actual estimation is achieved with the
final values, that is, the estimated parameter vector is θ̂ = θK

a . Hence, we expect these
estimation trajectories to become less and less fluctuating more during the simulation (see,
e.g., Fig. 11.32 in Sect. 11.3.2); non-converging case would therefore denote the presence
of persistent modeling errors.

We close this section by pointing out that when a sequential approach like the Kalman
filter is used for the sake of parameter estimation, the dynamical system has to be solved
only once, by updating the parameter value after each assimilation of new measurements.
On the other hand, a variational approach would require to solve the dynamical system
on the whole time interval several times, assuming that an iterative approach is used for
performing the optimization; see the sketch in Fig. 10.28.
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Figure 10.28. Variational approach (left) versus KF (right) approach: in the former, at each
optimization stage the whole state dynamics has to be computed, whereas in the latter each

measurement is sequentially used for the state (and parameter) correction

10.2.2. Extended Kalman Filter

The classical KF formulation is well-suited for low-dimensional, linear dynamical sys-
tems, although in real applications these assumptions are seldom verified. The extended
Kalman filter (EKF) has been introduced for nonlinear dynamical systems, where (10.12)
is replaced by

Xk = f(Xk−1, τk) + εk, Zk = h(Xk, τk) + ηk, (10.17)

being f and h two nonlinear functions. Nonlinearity here involves both the system dy-
namics and the observation model. The EKF consists in applying the KF algorithm
(10.15a)–(10.15e) to a linearized version of (10.17) around the previous state, so that at
each step we set

Ak−1|k =
∂f

∂X

∣∣∣∣
Xk−1

a ,θk

, Hk =
∂h

∂X

∣∣∣∣
Xk

f

.

At each step two Jacobian matrices have to be evaluated at the current predicted state/pa-
rameters. A similar extension of the algorithm (10.16a)–(10.16e) provides the EKF for
parameter estimation. Although feasible in principle, EKF suffers from several draw-
backs: for instance, it entails prohibitive computational costs to invert large matrices and
to propagate the covariance matrix in time. Even more importantly, the EKF may lack of
stability, meaning that as the estimated state deviates from the true state, the linearized
model becomes inaccurate, which may lead to an even larger error in state estimation.
To mitigate these shortcomings, several strategies have been put in place: low rank ap-
proximation of the covariance matrices have been considered, and other extensions of the
original Kalman filter like UKF and EnKF have been introduced.

10.2.3. Unscented Kalman filter

While the EKF exploits the differentiation of nonlinear operators modeling both the state
dynamics and the observation process to evaluate the propagation of means and covari-
ances, the unscented Kalman Filter (UKF), introduced in (Julier, Uhlmann and Durrant-
Whyte 1995), relies on a set of well-chosen deterministic points (or sigma points) whose
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propagation through the nonlinear operators yields the empirical means and covariances
required in the Kalman prediction/correction formulas. The rationale behind goes under
the name of unscented transformation, whose goal is to map a set of points so that their
sample distribution approximates the true distribution (Julier, Uhlmann and Durrant-
Whyte 2000).

Supposing that we know the mean E[X] and the covariance Σ of a random vector
X ∈ R

nx , the simplest choice is to select 2nx (symmetric) sigma points x(i) as

x(i) = E[X] +
(√

nxΣ
)

i
, x(nx+i) = E[X] −

(√
nxΣ

)
i
, i = 1, . . . , nx

being
(√

nxΣ
)
i
the i − th column of the Cholesky factor of nxΣ; different options for the

sigma points selection are however possible, see, e.g., (Julier and Uhlmann 2004).
The prediction-correction strategy of the KF is then performed. Referring to the

same notation used in Sect. 10.2.1 and supposing that the current forecast based on

Z1, . . . ,Zk−1 is X̂
k

f , with covariance matrix P f
k , the following correction step is performed:

• from the estimated mean X̂
k

f and covariance P f
k at time τk, select a set of 2nx sigma

points

xk
f,(i) = X̂

k

f +

(√
nxP f

k

)

i

, xk
f,(nx+i) = X̂

k

f −
(√

nxP f
k

)

i

, i = 1, . . . , nx

centered around X̂
k

f at a distance given by the standard deviation extracted from
the covariance matrix and obtain the predicted measurement

Ẑ
k

=
1

2nx

2nx∑

i=1

Ẑ
k

(i), being Ẑ
k

(i) = h(xk
f,(i), τ

k), i = 1, . . . , 2nx;

• estimate the covariance of the predicted measurement

PZ
k =

1

2nx

2nx∑

i=1

(
Ẑ

k

(i) − Ẑ
k
) (

Ẑ
k

(i) − Ẑ
k
)T

+ Rk

and the cross-covariance between Xk
f and Ẑ

k

P
Xf Z
k =

1

2nx

2nx∑

i=1

(
X̂

k

f − xk
f,(i)

) (
Ẑ

k − Ẑ
k

(i)

)T
;

• perform the Kalman gain evaluation, state correction and the error covariance cor-
rection similarly to (10.16c)–(10.16e) (recall Remark 7),

Kk = P
Xf Z
k (PZ

k )−1

X̂
k

a = X̂
k

f + Kk(Z
k − Ẑ

k
)

P a
k = P f

k − KkP
Z
k KT

k .

In the prediction step, a set of sigma points is selected as

xk
a,(i) = X̂

k

a +
(√

nxP a
k

)
i
, xk

a,(nx+i) = X̂
k

a −
(√

nxP a
k

)
i
, i = 1, . . . , nx
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and a forward computation of one time window is performed to get the state prediction
at step k + 1

X̂
k+1

f =
1

2nx

2nx∑

i=1

xk+1
f,(i), being xk+1

f,(i) = f(xk
a,(i), τ

k+1)

(note that each sigma point is treated independently); finally, the covariance is updated
as

P f
k+1 =

1

2nx

2nx∑

i=1

(
X̂

k+1

f − xk
f,(i+1)

) (
X̂

k+1

f − xk
f,(i+1)

)T

+ Qk+1.

Provided the analysis step is performed in parallel, the cost of the whole estimation pro-
cedure is comparable to that of a simple forward simulation; by contrast, a variational
estimation would require a significant number of successive iterations (typically, order of
hundreds) of both forward and adjoint simulations.

An augmented formulation of the UKF can be easily obtained, similarly to (10.16), in
order to treat the case where the system depends on a set of p parameters affected by
uncertainty, which need to be estimated; nevertheless, the very large dimension of the
state vector (depending on the spatial discretization of the state variable) makes this filter
intractable in practice. In those cases where uncertainty only affects the parameters, and
p ≪ nx, a much more feasible version yielding a reduced-order UKF limits the computa-
tions of the filter operator to a subspace of small dimension and is much more efficient.
The reduction to the parametric space as regarding the choice of the sigma-points for
the sake of parameter estimation was originally introduced in (Pham 2001, Hoteit, Pham
and Blum 2002); a first application to the estimation of electrophysiology parameters can
be found instead in (Wang, Zhang, Wong and Shi 2009) and in (Wang, Wong, Zhang,
Liu and Shi 2011). A detailed analysis of the reduced-order UKF can be found, e.g., in
(Moireau and Chapelle 2011). A possible alternative, recently explored in (Pagani, Man-
zoni and Quarteroni 2016, Pagani 2016), is to perform instead a state reduction relying on
a reduced-order model, and then consider the problem of simultaneous state-parameter
estimation.

10.3. Examples of applications in cardiovascular modeling

In the past decade, parameter identification problems have been considered in several ap-
plications to cardiovascular modeling. In this section we report a list of relevant contribu-
tions; two meaningful examples will be more specifically discussed in Sects. 10.3.1–10.3.2.

The problem of identifying a set of parameters of one-dimensional models for the arterial
circulation has been first considered in (Martin, Clément, Decoene and Gerbeau 2005),
where a nonlinear least squares approach based on the optimization of a cost function and
the introduction of a suitable adjoint problem has been considered. A relevant application
in this context is the estimation of the elastic coefficient of a subject-specific vessel based on
measurements of its displacement recovered from medical images. A variational approach
based on the minimization of suitable functionals has been proposed in (Perego, Veneziani
and Vergara 2011) and, more recently, in (Bertagna and Veneziani 2014); we present
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this technique in Sect. 10.3.1. A different approach based on an unscented Kalman filter
has been proposed in (Bertoglio et al. 2012) and further explored in (Moireau, Bertoglio,
Xiao, Figueroa, Taylor, Chapelle and Gerbeau 2013) for estimating modeling parameters
pertaining to vessel wall boundary conditions. Similar strategies based on the unscented
Kalman filter have been considered e.g. in (Lombardi 2014) to solve inverse problems in
large one-dymensional arterial networks, and in (Pant, Fabréges, Gerbeau and Vignon-
Clementel 2014) for the sake of estimation of lumped (e.g., windkessel) model parameters
by using the pressure curve in ascending aorta.

Other approaches have been considered e.g. in (Blanco, Watanabe and Feijóo 2012) to
characterize the terminal peripheral resistances in a network describing one-dimensional
arterial blood flow, or in (Spilker and Taylor 2010) to adjust the parameters of a wind-
kessel outflow boundary conditions of three-dimensional blood flow models, in order to
match some desired features of pressure and flow waveforms.

Several works have been recently focused on parameter identification and, more gener-
ally speaking, on the solution of inverse problems in heart modeling. The classical inverse
problem in electrocardiology has been considered by many authors in the last decades; it
consists in recovering the electrical potential at the epicardial surface by using a number
of remote, non-invasive or minimally-invasive potential recordings, e.g. acquired along
the body surface (Rudy and Messinger-Rapport 1988, Pullan, Cheng, Nash, Bradley
and Paterson 2001, Cheng, Bodley and Pullan 2003) which are usually referred to as
body surface-potential data. In its original formulation, this problem involves the pure
(linear) diffusion model for the torso as direct problem (Colli Franzone, Taccardi and
Viganotti 1978, Colli Franzone, Guerri, Viganotti and Taccardi 1985, Yamashita 1982),
see Sect. 7.1.5. Such inverse problem is mathematically ill-posed, and several regulariza-
tion strategies have been proposed; see, e.g., the reviews (Pullan, Cheng, Nash, Ghodrati,
MacLeod and Brooks 2010, Colli Franzone et al. 2014). Another method to solve the
inverse electrocardiology problem relies on measurements of the electrical potential within
one of the heart chambers (ventricles and atria) by means of non-contact multi electrode
catether arrays, and tries to estimate the endocardial surface potential from them. Since
the measurements are recorded closer to the endocardial surface than the ones acquired
on the body surface, this problem is less ill-conditioned than the former. If the problem
is recast under the form of a parameter estimation problem, i.e. where the epicardial
potential distribution is described in terms of a set of parameters, the inverse problem can
be more easily tackled.

More generally speaking, inverse and parameter estimation problems have been con-
sidered in several works in order to reconstruct, e.g., the cardiac electrical activity in
the myocardium, or to locate ischemic or infarcted zones by estimating conductibility pa-
rameters. Concerning variational approaches, we can mention a level set framework for
identifying heart infarctions (Lykaser and Nielsen 2006) by relying on a least-squares for-
mulation and an adjoint problem to determine the gradient of the cost functional. In this
case, the infarcted region in a simplified two-dimensional domain has been described in
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terms of a discrete level-set function, involving a set of parameters to be identified from
synthetic ECG boundary measurements, and a Tikhonov regularization procedure. The
solution of a parameter identification problem to locate (in terms of size and position)
ischemic regions, where a simplified state elliptic system modeling the electrical potential
in both the heart and the torso in the resting phase is considered also in (MacLachlan
et al. 2006, Nielsen et al. 2007a). In all these papers, the PDE-constrained optimization
problem has been solved using an iterative method, following an optimize, then discretize
approach. An all-at-once approach has been instead considered in (Nielsen, Lykaser and
Tveito 2007b) for a similar problem, taking also into account anisotropic cardiac conduc-
tivities and fiber orientation. A more involved version of this problem, still focusing on
the inverse electrocardiographic source localization of ischemias, has been more recently
considered in (Wang, Kirby, MacLeod and Johnson 2013), taking into account physically-
based constraints (in both equality and inequality forms), a total variation regularization
and a primal-dual interior point method.

The personalization of a cardiac electrophysiology model involving e.g. the identifica-
tion of conductivities, local conduction velocities and parameters related to action po-
tential duration restitution curve has been addressed in (Chinchapatnam, Rhode, Ginks,
Rinaldi, Lambiase, Razavi, Arridge and Sermesant 2008, Relan, Chinchapatnam, Serme-
sant, Rhode, Ginks, Delingette, Rinaldi, Razavi and Ayache 2011) – although relying
on a simplified Eikonal model – and applied to a clinical dataset derived from a hy-
brid X-ray/magnetic resonance imaging and non-contact mapping procedure on patients
with heart failure. More recently, a variational approach for the estimation of cardiac
conductivities entering in a bidomain model, from measures of the transmembrane and
extracellular potentials available at some sites of the tissue, has been proposed in (Yang
and Veneziani 2015). It relies on a derivative-based optimization method where the gra-
dient of the functional to minimize is computed by resorting to the adjoint equations of
the bidomain model. Parameter estimation in a problem where the bidomain model for
the heart is coupled with the Laplace equation for the passive conduction in the torso
has been considered in (Boulakia, Fernandez, Gerbeau and Zemzemi 2008) for the sake of
estimating the torso conductivity parameters.

The unscented Kalman filter has been exploited in (Wang et al. 2011) and more recently
in (Marchesseau, Delingette, Sermesant, Cabrera-Lozoya, Tobon-Gomez, Moireau, i Ven-
tura, Lekadir, Hernandez, Garreau, Donal, Leclercq, Duckett, Rhode, Rinaldi, Frangi,
Razavi, Chapelle and Ayache 2013, Talbot, Cotin, Razavi, Rinaldi and Delingette 2015)
for the identification of scar locations and their size from body surface-potential and MRI
data, using a monodomain two-variables Allev-Panfilov model. A reduced-order UKF has
been recently exploited in (Corrado, Gerbeau and Moireau 2015) for the estimation of elec-
trical parameters within an electromechanical model, by taking advantage of observations
from both electrocardiograms and myocardium displacements.

Another inverse problem in electro-physiology has been studied in (Vergara et al. 2014,
Palamara et al. 2015). The measures of the electrical activation time on the endocardium,
acquired by the NavX system (see Sect. 6.2), were used to find the optimal Purkinje net-
work configuration. For this problem, the parameters to be estimated are the coordinates
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of the network. In particular, starting from an initial network with fractal shape, a func-
tional accounting for the discrepancy between measured and computed activation times is
minimized in order to find the patient specific location of the PMJ (see Sect. 5.3). This
methodology has been successfully applied to real pathological scenarios, see (Palamara
et al. 2014).

Regarding instead cardiac biomechanics, the estimation of contractility parameters has
been addressed in (Moireau, Chapelle and Tallec 2009, Moireau and Chapelle 2011) using
the unscented Kalman filter, where the degree of damage in cardiac tissues caused by an
infarct is estimated using velocity measurements coming e.g. from tagged MRI; see also
(Moireau, Chapelle and Le Tallec 2008). A reduced-order UKF has been applied in (Xi,
Lamata, J.L., Moireau, Chapelle and Smith 2011) for the sake of identification of material
parameters in a transversally isotropic mechanical model; further details concerning this
applications will be provided in Sect. 10.3.2. Later on, the same technique has been
exploited in (Chabiniok, P., P.-F., Rahmouni, Deux and Chapelle 2012) for estimating
contractility values in a more complex cardiac model, where the tissue is described by
combining an active constitutive law in the muscle fiber direction and a visco-hyperelastic
material, using actual clinical data consisting of in-vivo Cine-MR image sequences and
pressure measurements.

Finally, concerning the coupled electromechanical problem, very few numerical results
are nowadays available. The personalization of a 3D electromechanical model has been
tackled by variational approaches e.g. in (Sermesant et al. 2006), where local ventricular
myocardium contractility has been estimated using MRI in an electromechanical model.
Similarly, in (Delingette et al. 2012) both the parameters of a Mitchell-Schaeffer model
and cardiac contractilities are estimated from catheterized electrophysiology data and
cine-MRI images, respectively. The calibration of mechanical parameters of a complete
electro-mechanical model of the heart involving the Eikonal model for electrophysiology
and an isotropic Mooney-Rivlin material for cardiac mechanics has been performed e.g.
by relying on the unscented Kalman filter in (Marchesseau, Delingette, Sermesant and
Ayache 2012).

Although several works have made a big step ahead, the solution of parameter estima-
tion problems remains an open computational challenge if complex, coupled models and
patient-specific data are taken into account. Also in the case where UKF and EnKF tech-
niques are exploited – which features natural parallelism to a high degree – the need to
evaluate the state dynamics for several different scenarios (given e.g. by the elements of the
ensemble) makes the computational effort exorbitant. For this reason, simplified physical
models have been considered in many contexts so far; on the other hand, reduced-order
strategies, like the reduced-order unscented Kalman filter, have been recently proposed
as a possible way to overcome the computational complexity arising from these problems.
Dramatic progress is expected in the following years in this field.
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10.3.1. A variational approach for estimating the tissue compliance

In this section we illustrate a variational approach introduced in (Perego et al. 2011)
for estimating the Young modulus E of a cardiovascular tissue from displacement data.
Indeed, this parameter – and, more generally speaking, the deformability of a soft tissue –
is an important index for detecting diseases: low compliance may indicate atherosclerosis
or hypertension in the case of an artery, or a marker of diastolic dysfunction in the case
of the left ventricle wall. The basic steps consist in (i) retrieving the vessel displacement
dmeas by image registration procedures on time frames of the vessel of interest, and then
(ii) minimizing the difference between dmeas and the displacement computed by solving
the coupled 3D blood-vessel problem, in order to estimate the Young modulus. Here the
structure is assumed to be linearly elastic and the only parameter to be estimated is E,
which is in general a function of space (e.g. an atherosclerotic plaque has different modulus
than healthy tissue) but not of time.

The former step consists of data acquisition, image segmentation and reconstruction,
and finally registration, see (Perego et al. 2011) for further details. The latter, which
we focus on, is an example of an inverse fluid-structure interaction (IFSI) problem, and
results in a constrained optimization problem, where the constraint is the FSI problem,
and the functional to be minimized is a measure of the mismatch between the data and
the computed solution.

A first formulation of the IFSI problem is obtained by assuming that the displacement
data dmeas(x, τk) for x ∈ Στk retrieved from the image registration process are available
within the interval [0, T ] in some instants denoted by τk, k = 1, . . . , K. K is the number
of instants when image registration is performed, ∆τ the time step between two measure-
ments, driven by the sampling frequency of the image devices, Στk denotes the interface
between the fluid and the structure domain. Following the formulation of problem (10.4),
we consider the functional

JK(d, E) =
1

2

N∑

k=1

∫

Στk

(
dmeas(x, τk) − d(x, τk)

)2
dσ +

αE

2

N∑

k=1

∫

Ωs

(
E(x, τk) − Eref

)2
dx,

(10.18)
where d(x, τk) denotes the solution of the FSI system (4.44) in the ALE formulation, at
t = τk and the second term is a non-negative Tikonov regularization term. Here Eref

is a prior estimate (available e.g. from ex vivo specimens), so that the regularization
forces E to be close to its reference value. Given an admissible set Ead where we seek the
parameter E, a possible formulation of the IFSI problem reads: for t > 0, x ∈ Ωs, find
E = E(x, t) ∈ P that minimizes (10.18) under the constraint (4.44). A possible choice for
P is

P = {E : E ∈ L∞(Ωs), 0 < Emin ≤ E ≤ Emax, with Emin, Emax ∈ R}. (10.19)

Such a problem entails the solution of a time-dependent minimization problem, for which
a classical KKT system can be obtained using the Lagrange multipliers method. In this
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setting the parameter E plays the role of control variable. However, this approach is rather
involved, since the adjoint problem results in a final value problem which would involve
differentiation with respect to the deformable domain, too – the so-called shape derivative.
Moreover, it requires a massive memory occupancy as the solution at all the time steps
needs to be stored due to the back-in-time nature of the adjoint problem.

A more convenient alternative numerical approach proposed in (Perego et al. 2011) con-
siders first the time-discretization of the forward problem, and formulates a minimization
problem at each time step. For the sake of simplicity a constant time step ∆t = ∆τ

s is

assumed, for a suitable s ∈ N, s ≥ 1, that is, the instants τk in which measurements are
acquired are a subset of the time discretization of (4.44); for the sake of simplicity, hereon
we consider s = 1. For the time discretization of (4.44) implicit methods with a semi-
implicit treatment of the convective term and of the fluid domain are considered, whereas
the fluid viscous term is treated implicitly. Exploiting the notation already introduced in
Sect. 4.6.1; we denote by Ω⋆

f , u⋆ and w⋆ appropriate extrapolations of the fluid domain,
fluid velocity and fluid domain velocity, respectively, and introduce the following spaces:

V ⋆ = {v ∈ H1(Ω⋆
f ) : v|Γ⋆

D,f
= 0}, Q⋆ = L2(Ω⋆

f ), W = {ψ ∈ H1(Ωs) : ψΓD,s
= 0},

where Γ⋆
D,f and ΓD,s are the portions of the boundary where a Dirichlet condition is

prescribed. We denote moreover Z⋆ = {(v, ψ) ∈ V ⋆ × W : v|Σ⋆ − ψ̂|Σ⋆/∆t = 0} and
introduce the following bilinear forms:

a(v, d; w, ψ)⋆ =
ρf

∆t
(v, w)⋆

f + (T f (v, p),∇w)⋆
f + ρf (((v⋆ − v⋆

f ) · ∇)v, w)⋆
f + ρs

(
d

∆t2
,

ψ

∆t

)

s

,

b(q; w)⋆ = −(q,∇ · w)⋆
f ,

where (v, w)⋆
f =

∫
Ω⋆

f
v ·w dx and (ψ, χ)s =

∫
Ωs

ψ ·χ dx. Then, for any given E ∈ Ead, at

each time tn+1, the time discrete forward FSI problem consists of the following steps:

1. compute extrapolations Ω⋆
f , v⋆ and v⋆

f for approximating Ωn+1
f , vn+1 and vn+1

f ;

2. given fn+1
f ∈ L2(Ω⋆

f ) and fn+1
s ∈ L2(Ωs), find (vn+1, dn+1) ∈ Z⋆ and pn+1 ∈ Q⋆

such that

a(vn+1, dn+1; w, ψ)⋆ +
(
E Ss(d

n+1), 1
∆t∇ψ

)
s
+ b(pn+1; v)⋆

= Fn+1
f (w) + Fn+1

s

(
ψ
∆t

)
− a(Rn+1

f ,0; w, ψ)⋆ ∀(w, ψ) ∈ Z⋆

b(q; vn+1)⋆ = 0 ∀q ∈ Q⋆;
(10.20)

3. update the fluid domain to obtain Ωn+1
f .

For the sake of notation, here we have set

Ss(d) =
1

2(1 + ν)
(∇d + (∇d)T ) +

ν

(1 + ν)(1 − 2ν)
(∇ · d)I

so that we can write T s = E Ss; moreover, given g ∈ H1/2(Σ⋆), we have denoted by
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Rf (g) ∈ Hdiv(Ω⋆
f ) = {v ∈ H1(Ω⋆

f ) : ∇·v = 0} and Rs(g) ∈ H1(Ωs) two lifting functions
for the fluid-structure interface continuity, defined as

Rf (g) − Rs(g) = −g/∆t on Σ⋆.

Due to the arbitrariness of one of these functions, in what follows we set Rs(g) = 0;
moreover, when applied to function dm−1, it is possible to set Rm

f = Rf (dm−1). Finally,

the functionals Fn+1
f and Fn+1

s in (10.20) account for forcing terms, boundary data on

∂Ω⋆
f \ Σ⋆ and ∂Ωs \ Σ and terms coming from the time discretization at previous time

steps.
Regarding the parameter estimation problem, once the problem has been discretized in

time, the minimization of the following cost functional

J̃k(d, E) =

∫

Σ

(
dmeas(x, τk) − d(x, τk)

)2
dσ +

αE

2

∫

Ωs

(
E(x, τk) − Eref

)2
dx

for each k = 1, 2, . . . , K is considered in (Perego et al. 2011), under the constraint (10.20).
Hence, a system of KKT conditions can be derived relying on the standard Lagrange
multiplier approach (see Sect. 9.1.2), by introducing the Lagrangian functional at time τk

L(v, p, d; λv, λp, λd; E) = J̃k(d, E) + a(v, d; λv, λd)
⋆ +

(
E Ss(d),

1

∆t
∇λd

)

s

+b(p; λv)
⋆ + b(λp; v)⋆ − Ff (λv) − Fs

(
λd

∆t

)
+ a(Rf ,0; λv, λd)

⋆.

By imposing that the gradient of L vanishes, we obtain:

• the adjoint problem, by forcing to zero the (Gâteaux) derivatives of the Lagrangian
functional with respect to (v, p, d), which in fact is a discretized-in-time FSI problem
(see below for the interface condition): find (λu, λd) ∈ Z⋆, λp ∈ Q⋆ such that

a(v, ψ; λu, λd)
⋆ +

(
E Ss(

ψ

∆t
),∇λd

)

s

+ b(λp; v)⋆

+

∫

Σ
(d − dmeas) · ψ dσ = 0

b(q; λu)⋆ = 0 ∀(v, ψ) ∈ Z⋆, q ∈ Q⋆;
(10.21)

• the optimality condition

(ϕ Ss(d),∇λη)s = 0 ∀ϕ ∈ L∞(Ωs),

by forcing to zero the derivative with respect to E.

These two problems, together with the state problem: find (u, d) ∈ Z⋆, p ∈ Q∗ such that

a(u, d; v, ψ)⋆ +

(
E Ss(d),

1

∆t
∇ψ

)

s

+ b(p; v)⋆ = Ff (v) + Fs

(
ψ

∆t

)
− a(Rf ,0; v, ψ)⋆

b(q; u)⋆ = 0 ∀(v, ψ) ∈ Z⋆, q ∈ Q⋆,
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formally obtained by deriving the Lagrangian with respect to (λv, λp, λd), yield at each
τk the system of KKT conditions, which couples two linearized FSI problems and a scalar
equation.
In particular, for the adjoint problem the interface velocity condition reads

λu =
λd

∆t
on Σ⋆,

whereas the interface stress condition is

T s(λd)n − T f (λu, λp)n = − (d − dmeas) on Σ⋆, (10.22)

taking into account the mismatch between the data and the solution, and modifying the
homogeneous interface stress condition (4.19d) accordingly.

The same strategies described in Sect. 9.2 (e.g., gradient-based methods) can be ex-
ploited to solve numerically the KKT system. To take into account the constraint E > 0
in the case at hand, it is possible to transform the parameter as ψ = log(E), so that
E = exp(ψ) > 0 for every ψ ∈ L∞(Ωs) and then optimize with respect to ψ. Finally,
a finite element discretization in space is required to solve numerically the state and the
adjoint problem.

By construction, this approach provides an estimate for E at each time; a possible
option is then to average them in order to obtain a unique estimate, although this may
suffer of instabilities in presence of highly noisy data. A more robust approach consists of
solving the minimization problem over time. In this case, however, the complexity of the
problem would increase due to the inclusion of the shape derivatives into the minimization
problem. In Fig. 10.29, we report the number of iterations and the convergence history
for the algorithm described above for the estimation of the Young modulus.

Figure 10.29. Convergence history for the estimation of the Young modulus by means of the
algorithm proposed in (Perego et al. 2011). Rectangular fluid and structure domains are used,

with synthetic measures generated by means of forward FSI simulations. These numerical results
are obtained using the Matlab Finite Element library MLife
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10.3.2. A Kalman filter approach for estimating material parameters in cardiac
mechanics

In this section we illustrate a Kalman filter approach introduced in (Xi et al. 2011) for
estimating material parameters entering in the mechanical model describing myocardial
contractility. Only passive mechanics is modeled making a quasi-static assumption, and
without taking into account the electro-mechanical coupling. A transversely isotropic
Guccione’s constitutive law (Guccione et al. 1991) is used and four parameters are esti-
mated in-silico from noisy displacement measurements of material points located on the
myocardial surface. A similar approach can be in principle applied, e.g., also to identify
the material parameters affecting the orthotropic model (7.24).

The transversely isotropic strain energy function in the Guccione law can be expressed
as

Θ(E) =
1

2
θ1(e

Q − 1)

where

Q = θ2E
2
ff + θ3(E

2
ss + E2

nn + 2E2
sn) + θ4(2E2

fs + 2E2
fn);

here θ = (θ1, . . . , θ4) ∈ R
p denotes a vector of p = 4 material parameters, whereas Eij is

the (i, j)-th component of the Green-Lagrange strain tensor E = 1
2(F T F − I) = 1

2(C −
I), with i, j ∈ {f, s, n} denoting fiber, sheet and sheet-normal directions, respectively.

After performing spatial discretization, at each time step the augmented state X̃
k

=
(Xk, θk)T ∈ R

nx+p made by the deformed configuration Xk and the material parameter
vector θk has to be determined by solving a nonlinear problem of the form

X̃
k

= f(X̃
k−1

, uk−1) + εk, f(X̃
k−1

, uk−1) =

[
G(θk−1, uk−1)

θk−1

]
,

being the input vector uk−1 at time k − 1 given by the external forces, with observations

Zk = h(X̃
k
) + wk, k = 1, . . . , K.

In (Xi et al. 2011) h : R
nx+p → R

nz is taken as a linear (interpolation) matrix H ∈
R

(nx+p)×nz mapping the augmented state vector to the coordinates of the points where
measured are acquired; those measurements are assumed to be corrupted by a noise term
wk with zero mean and covariance Rk; note that the material parameter has no time
dependence itself. Nevertheless, as already pointed out, the filter will provide recursively
updated estimates of θk; the goal is thus to compute the estimate θK at the final time
t = tK .

Moreover, since the augmented state vector X̃
k

does not depend on the deformed con-

figuration X̃
k−1

, the rank of the error covariance matrix P̃k at each step will be equal to
p; this is a crucial point in order to devise a reduced-order UKF, making possible to (i)
store a covariance matrix of dimension (nx +p)×p, (ii) perform inversion of p×p matrices
and, even more importantly, (iii) decrease from O(nx + p) to O(p) the number of model
evaluations required by the filter at each time step.
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Slight differences arise with respect to the UKF formulation addressed in Sect. 10.2.3,

due to the reduction of the estimation process to the subset of X̃
k

corresponding to the p
parameter components. The filtering algorithm consists of three steps:

• inizialization: a singular value decomposition P a
0 = La

0Λ
a
0(L

a
0)

T of the initial error
covariance P a

0 ∈ R
(nx+p)×(nx+p) is performed; for instance, P a

0 can be given by a
diagonal matrix with p non-zero entries representing the variances of the initial (or
background) parameter estimates. Denoting by La

0,p the matrix whose columns are
the first p singular vectors of La

0 and Λa
0,p the p × p diagonal matrix of the singular

values, the reduced-rank square-root approximation Sa
0 ∈ R

(nx+p)×p can be obtained
as

Sa
0 = La

0,p

√
Λa

0,p;

• prediction (or time update): at each step k = 1, . . ., starting from the assimilated

state
̂̃
X

k−1

a at step k − 1, a set of sigma points is selected as

x̃k−1
a,(i) =

̂̃
X

k−1

a +
(
Sa

k−1

)
i
, x̃k−1

a,(p+i) =
̂̃
X

k−1

a −
(
Sa

k−1

)
i
, i = 1, . . . , p.

Then, the sigma points are transformed through the state dynamics to obtain

x̃k
f,(i) = f

(
x̃k−1

a,(i), u
k−1

)
, i = 1, . . . , 2p,

the mean
̂̃
X

k

f and the error covariance P f
k are estimated as

̂̃
X

k

f =

2p∑

i=1

x̃k
f,(i), P f

k =

2p∑

i=1

(
̂̃
X

k

f − x̃k
f,(i))(

̂̃
X

k

f − x̃k
f,(i))

T ;

to preserve the low-rank structure of the correlation matrix P f
k , a singular value

decomposition P f
k = Lf

kΛf
0(Lf

k)T is performed, thus yielding

P f
k = Sf

k (Sf
k )T , Sf

k = Lf
k,p

√
Λf

k,p;

• correction (or measurement update): at each step k = 1, . . ., the observation Zk is

assimilated into the forecast
ˆ̃
X

k

f yielding the corrected state

ˆ̃
X

k

a =
ˆ̃
X

k

f + Kk(Z
k − H

ˆ̃
X

k

f ).

In this case the Kalman gain can be obtained as

Kk = Sf
k (I + (HSf

k )T R−1
k HSf

k )−1(HSf
k )T R−1

k

along with the square-root of the error covariance, given by

Sa
k = Sf

k (I + (HSf
k )T R−1

k HSf
k )−1/2.
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Note that here, compared to the UKF formulation derived in Sect. 10.2.3, update
formulas for the Kalman gain and the error covariance are directly obtained for the
square-root of the covariance matrix; see, e.g., (Simon 2006, Xi et al. 2011) for further
details.

In (Xi et al. 2011) such a reduced-order UKF is shown to be able to estimate p = 4 (and,
subsequently, p = 12) material parameters starting from a set of synthetic measurements
generated by adding a Gaussian noise to a set of noise-free measurements obtained through
model simulation for a chosen, ground-truth, parameter vector. Myocardial dilation is
considered by loading the structure with a given ventricular pressure on the endocardium,
and nz = 600 material points located on the epicardium and endocardium.

We have chosen to report this example to illustrate how to take advantage of a KF
strategy in a relatively simple cardiovascular application; further details and more involved
cases can be found, e.g., in (Moireau and Chapelle 2011, Bertoglio et al. 2012, Chabiniok et
al. 2012, Moireau et al. 2013, Corrado et al. 2015). Numerical results related to parameter
identification in electrophysiology by means of an Ensemble Kalman Filter – a technique
which shares several similarities with the UKF, indeed – will be shown in Sect. 11.2.2.

11. Including uncertainty

Moving towards model personalization – that is, the adaptation of model inputs to subject-
specific conditions – the question on the sensitivity of model predictions to errors and
uncertainties in the model inputs dramatically arises. The inputs to be personalized may
include the computational domain (e.g., vascular networks), physical parameters (such as
vascular material properties), and boundary conditions. Because of noise in input mea-
surements, as well as of their large biological variability, model inputs are unavoidably
hampered by uncertainty. Furthermore, as already seen in Sect. 10, not all model inputs
are directly measurable, as in the case of the local mechanical properties of the arterial wall,
thus calling into play the need of solving parameter estimation problems. The uncertain-
ties carried by patient-specific features should then be incorporated into the computational
model, to quantify their impact on the computed results and to obtain more reliable predic-
tions or best/worst-case scenarios (Eck, Donders, Sturdy, Feinberg, Delhaas, Hellevik and
Huberts 2015). These are the main reasons behind the very rapid growth of applications of
sensitivity analysis and uncertainty quantification (UQ) to cardiovascular problems in the
last decade. Being UQ a very active (and less mature than PDE-constrained optimization
or parameter estimation) field from both a mathematical and a computational viewpoint,
in this section we only touch some basic, yet relevant, issues related to UQ techniques;
see, e.g., (Sullivan 2015, Kaipio and Somersalo 2005, Le Mâıtre and Knio 2010) for a more
in-depth overview of numerical aspects of UQ.

Typically, UQ problems involve a mathematical model for a process of interest, subject
to some uncertainty about the correct form of this model or, more frequently, about some
of its parameters. Although featuring substantial overlap with the field of parameter
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estimation and data assimilation, UQ problems additionally involve the propagation of
uncertainty on output of interest, reliability or certification problems, prediction problems
and, very often, consist of several of these aspects coupled together. For instance, after
estimating some model parameters, we may use them to forward propagate some other
uncertainties. Often, though not always, uncertainties are treated probabilistically, thus
calling into play probabilistic and statistical methods. Here we focus on basic aspects
related with forward propagation and backward propagation of uncertainty, focusing for
the latter case on statistical inversion methods within a Bayesian framework.

11.1. Forward Uncertainty Quantification

The goal of forward UQ is to derive information about the uncertainties in system outputs
of interest, given information about the uncertainties in the system inputs. The goal is to
obtain the probability density function (PDF) of some output of interest Z = f(θ) ∈ R

nz

given the probability distribution of the input θ ∈ R
p, or evaluate moments (such as

the expected value and the variance), correlation functions, confidence regions, quantiles,
etc4. Here f : R

p → R
nz denotes an input-output map; for instance, in (Sankaran and

Marsden 2011) the radius of an abdominal aortic aneurysm, the radii and the inflow
velocity of the carotid artery bifurcation, and the flow split of the left and right pulmonary
arteries are taken as random variables to account for the uncertainty impact on blood
flows modeled by three-dimensional Navier–Stokes equations with rigid arterial walls, by
considering as outputs blood velocity and wall shear stresses.

Once a probabilistic description of the random inputs has been provided, a suitable
strategy to propagate uncertainties through the model is needed. Regarding the former
aspect, the simplest case is the one where the PDE system depends on a set of random
inputs that are constant with respect to space and time. In this case, they can be described
by means of a finite-dimensional random vector, with a given probability distribution. A
more involved case is the one where input data may vary randomly from one point of
the physical domain to another (and, possibly, from one time instant to another); in this
case, they are described in terms of random fields. Two popular strategies to describe
correlated random fields include Karhunen-Loève expansions and expansions in terms of
global orthogonal polynomials (Ghanem and Spanos 2003, Xiu and Karniadakis 2002b).
Made by infinitely many terms, these expansions are usually truncated to approximate
random fields: the milder the variations in space and time of the random field realizations,
the fewer the terms retained in the expansion.

Several approaches to solve PDE problems with random input data are available. Monte
Carlo (MC) methods are the most popular; they are based on independent realizations

4 Sensitivity analysis (see, e.g., (Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli, Salsana and
Tarantola 2008) for a detailed review) may be seen as a precursor of forward UQ, sharing the need of
providing a quantitative description of the dependence of the solution of a model on input parameters.
See, e.g., (Donders, Huberts, van de Vosse and Delhaas 2015) for the application of SA to a pulse wave
propagation model of arterial flows.
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θ1, . . . ,θM of the random variable θ (whose probability distribution is denoted by µ) yield-
ing approximations of the expectation by averaging over the corresponding realizations of
that quantity, that is,

E[f(θ)] =

∫

Rp

f(θ)µ(dθ) ≈ 1

M

M∑

i=1

f(θi) (11.1)

where the sample θ1, . . . ,θM is generated randomly from the probability distribution of
θ. Such a method requires a deterministic PDE query for each realization, and a very
large number of queries to achieve a small error, this latter being proportional to 1/

√
M .

This entails an excessive computational burden especially for systems which are already
computationally expensive in their deterministic setting. See, e.g., (Fishman 1996, Robert
and Casella 2004, Voss 2013) for more on MC methods, (Dick, Kuo and Sloan 2013) and
(Giles 2015) for quasi Monte Carlo and multilevel Monte Carlo methods, respectively.

When the solution depends analytically on the random input parameters, other ap-
proaches feature much faster convergence rates. These include spectral (global) stochastic
Galerkin (SG) methods (Ghanem and Spanos 2003, Xiu and Karniadakis 2002a, Babuška,
Tempone and Zouraris 2004) and stochastic collocation (SC) methods (Babuška, Nobile
and Tempone 2007, Xiu and Hesthaven 2005, Nobile, Tempone and Webster 2008); see,
e.g., the detailed review (Gunzburger, Webster and Zhang 2014) and the recent books
(Le Mâıtre and Knio 2010, Sullivan 2015) for a mathematical and numerical discussion.
These methods are based on the discretization of a PDE system not only with respect
to spatial variables, but also with respect to the random inputs. SG methods are intru-
sive approaches since the physical and the probabilistic degrees of freedom are coupled;
stochastic sampling (SS) and interpolatory-type SC methods are instead non-intrusive.
SG methods require the solution of discrete systems that couple all spatial and proba-
bilistic degrees of freedom, whereas SC methods can combine standard approximations
in physical space with globally defined polynomial approximation in the probability do-
main, either by full polynomial spaces, tensor product polynomial spaces, or sparse tensor
product polynomials. The stochastic space can then be queried at any point in order to
construct the PDF of the output, the interpolation in the stochastic space being built on
top, and independently, of the PDE solver.

For the sake of illustration, we report in Fig. 11.30 the activation times obtained using
the monodomain model coupled with the Aliev-Panfilov cell model. This computation is
carried out on a patient-specific left ventricle geometry, obtained by considering different
levels of tissue damage (or ischemia), caused by an insufficient blood perfusion of the my-
ocardium. In this case, each component of the conductivity Σ is multiplied by a spatial
field σ(x; θ) ranging from 0 (lack of conductivity, damaged tissue) to 1 (regular conductiv-
ity, healthy tissue), which we refer to as relative conductivity; as soon as the position and
the size of the ischemia are unknown, σ is a random field, depending on (a finite number
p of) random inputs θ1, . . . , θp. We highlight that in this case input uncertainty yields
significant variability in the output, thus making uncertainty propagation a problem of
interest in this context.
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Figure 11.30. Different degrees of tissue damage in terms of relative conductivity (top) and
activation times in milliseconds (bottom) for an healthy case (left) and different ischemic regions
on the myocardium. The patient-specific geometry of the left ventricle has been reconstructed

using the semi-automatic segmentation method proposed in (Fedele, Faggiano, Barbarotta,
Cremonesi, Formaggia and Perotto 2015). These numerical results are obtained using the Finite

Element library redbKIT v2.1 (github.com/redbKIT/redbKIT/releases)

11.2. Inverse Uncertainty Quantification

Inverse UQ (or backward uncertainty propagation) problems refer to those situations in
which input quantities are inferred starting from observed system outputs. Variational or
sequential methods described in Sect. 10.1–10.2 provide point estimates of the quantities
of interest, given a set of observations. The statistical inversion approach provides a well-
established framework to better characterize the uncertainty in the data, and the resulting
uncertainty in the computed estimates, adopting a Bayesian formulation. In this setting,
all the model inputs included in the model are described by random variables, where
randomness accounts for the available degree of information concerning their realizations,
and is expressed in terms of probability distributions; as a result, the solution of the
inverse UQ problem is the posterior PDF of the unknown inputs. Compared to variational
methods of Sect. 10.1, where classical regularization methods yield point estimates by
curing the ill-posedness of the problem, statistical inversion aims at removing ill-posedness
by recasting the inverse problem in a larger space of probability distributions (Kaipio and
Somersalo 2005). This strategy also allows to better characterize the prior information
brought, e.g., by the regularization terms in (10.2), under the form of a prior PDF of
the unknown inputs. The task of Bayesian inversion is to improve the knowledge on the
unknown system features starting from the prior belief and exploiting information from a
set of model realizations. For more on this topic, see also, e.g., (Stuart 2010, Sullivan 2015).
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11.2.1. Static problems

Assume that we are measuring an output z = f(θ, ε) ∈ R
nz in order to get information

on the unknown input θ ∈ R
p, and that the measured quantity is polluted by noise ε . By

treating input and output as random quantities, let us denote by Z ∈ R
nz and Θ ∈ R

p two
random variables, of which z an θ represent the corresponding realizations. Very often,
the noise is modeled as additive and mutually independent of Θ, so that the input-output
map takes the form

Z = f(Θ) + ε

where Z, ε ∈ R
nz , Θ ∈ R

p are random variables. Here Z is called measurement, and its
realization Z = z in the actual measurement process the data; moreover, let us denote by
πnoise(ε) the PDF of the noise ε, usually encoding experimental errors. Before performing
output measurements, all the information (structure, regularity, etc.) about the distribu-
tion of the input Θ are encapsulated in the prior PDF πprior(θ), to be selected according
to problem-specific considerations.

The conditional probability π(z |θ) of Z |Θ = θ (that is, of Z conditioned on Θ = θ)
is the so-called (conditional) likelihood function, and expresses the likelihood of different
measurement outcomes z being Θ = θ given. In our case the input/output map f : R

p →
R

nz the solution of a PDE problem, and the evaluation of the output f(θ). Thanks to
the assumption of mutual independence of Θ and ε, Z |Θ = θ is distributed like ε, that
is, the likelihood function is

π(z |θ) = πnoise(z − f(θ)).

Assuming that the measurement data Z = z is given, in the Bayesian framework the
inverse problem is to find the conditional PDF π(θ | z) of Θ; this latter is the posterior
PDF of Θ given the data Z = z and can be expressed through the Bayes theorem as

π(θ | z) =
πprior(θ)π(z |θ)

π(z)
;

π(z) =
∫

Rnz π(z |θ)πprior(θ)dθ plays the role of a normalization constant, and has often
little importance from a computational standpoint.

Solving an inverse UQ problem in the static case – alternatively, in literature such a
problem is referred to as stationary inverse problem – thus consists in finding a prior PDF
πprior(θ), expressing the likelihood function π(z |θ) using the interplay between the obser-
vation and the unknown and finally developing suitable numerical techniques to explore
the posterior PDF. Each of these tasks is a challenging problem from a computational
standpoint; here we provide some hints on how to cast in this framework a wide range of
applications related with backward uncertainty quantification in cardiovascular modeling.

In the case where the unknown is a random variable with few components, the posterior
PDF can also be visualized under the form of a nonnegative function of these variables;
most applications however yield larger scale inverse UQ problems, and resulting PDFs
in high-dimensional spaces, for which it is much more effective to evaluate suitable point
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estimators, like the maximum a posteriori estimator

θMAP = arg max
θ∈Rp

π(θ | z)

or the conditional mean

θCM = E[θ | z] =

∫

Rp

θ π(θ | z) dθ.

Evaluating the former requires the solution of an optimization problem, using e.g. it-
erative, gradient-based methods; computing the latter involves a numerical quadrature
problem in high-dimensional spaces. The evaluation of variability estimators like the con-
ditional covariance

Cov(θ | z) =

∫

Rp

(θ − θCM )(θ − θCM )T π(θ | z) dθ ∈ R
p×p

or confidence regions, also provides further indicators for the sake of uncertainty quantifi-
cation.

The simplest probabilistic model that can be used to describe experimental uncertainties
is the Gaussian model, for which the noise ε ∼ N (0, Σε) is normally distributed, with mean
0 and covariance matrix Σε. In this case, the likelihood function is

π(z |θ) ∝ exp

(
−1

2
‖z − f(θ)‖2

Σ−1
ε

)
.

If we can assume a Gaussian model also on the prior knowledge of the parameters distri-
butions, i.e. πprior ∼ N (θp, Σp), then the posterior PDF will be normally distributed as
well,

π(θ | z) ∝ exp

(
−1

2
‖z − f(θ)‖2

Σ−1
ε

− 1

2
‖θ − θp‖2

Σ−1
p

)
. (11.2)

In this case, the maximum a posteriori estimator is

θMAP = arg min
θ∈Rp

(
1

2
‖z − f(θ)‖2

Σ−1
ε

+
1

2
‖θ − θp‖2

Σ−1
p

)
,

that is, it coincides with the estimator obtained by solving the (static version, with K = 1
of the) regularized least-squares problem (10.4), as long as we choose θ0 = θp, Pθ = Σp

and M = Σ−1
ε . If we assume instead that no information is available about the parameter

distribution except that it resides in a subset D of the parameter space R
p, πprior(θ) ∼

U(D) is a uniform distribution over D.

Remark 9. Note that parameter estimation techniques of Sect. 10.1 can be seen as
strategies yielding point estimates without any reference to underlying statistical models;
however, when in the Bayesian framework a Gaussian assumption is made, the regulariza-
tion term and the norms ‖ · ‖Σ−1

ε
, ‖ · ‖Σ−1

p
and the value θp have a clear interpretation in

terms of measurement noise and prior probability distribution; hence, a prior that carries
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sufficient information about the true underlying structure of the parameters often pro-
vides more meaningful estimates and regularizes the inverse problem in a more natural
way than relying on abstract regularization terms, as in (10.4), that might not have any
interpretation. The benefit of casting parameter estimation problems under the form of
inverse UQ problems is that one is also able to characterize the variance of the prediction
due to measurement and model errors more precisely than from the single-point estimates.

Exploring the posterior distribution in the case where the input space D has a larger
dimension than p = 2 or 3 calls into play suitable sampling methods, among which the
Markov chain Monte Carlo (MCMC) techinques represent the most relevant example.
Instead than evaluating the posterior PDF at a single point, an MCMC technique is a
systematic way to generate a sample which can be used to explore the distribution, as well
as to perform MC integration like in (11.1) in order, e.g., to compute the conditional mean
or the conditional covariance. In the former case, the posterior π(θ | z) plays the role of
target probability distribution that we want to explore, and is obtained as a realization of
a Markov chain by relying, e.g., on the following Metropolis-Hastings algorithm:

1 Pick an initial θ1.
2 For m = 1, . . . , M :

(a) compute π(θm | z);

(b) draw w ∼ N (0, Σε) and take a random step to find the next candidate θ̂ = θk+w;

(c) compute π(θ̂ | z);

(d) define the acceptance ratio αm = min

{
1,

π(θ̂ | z)

π(θm | z)

}
;

(e) let u ∼ U([0, 1]); if u ≤ αm, accept, set θm+1 = θ̂, and add to the set of samples
Ξ; otherwise reject, and keep θm+1 = θm.

After M steps of the algorithm, the set Ξ of samples contains realizations of the probability
distribution π(θ | z). The random step in point (b) from the current sample to the
next candidate is distributed as white noise; its covariance should be chosen as large as
possible while still maintaining a reasonable acceptance rate; moreover, the initial points
of the generated set usually poorly represent the distribution to be explored and are then
removed from the sample; to learn more on MCMC algorithms we refer, e.g., to (Kaipio
and Somersalo 2005, Robert and Casella 2004, Voss 2013) and references therein.

11.2.2. Dynamical problems

Backward UQ problems whose forward system is stationary, or with observations that
are not acquired sequentially in time, can be cast under the form of a Bayesian inverse
problem as shown in the previous section. In these cases, backward UQ can be formu-
lated in the Bayesian framework by means of Bayesian filtering methods, among which
the Kalman filter can be seen as a particular instance. These problems are also referred
to as nonstationary inverse problems. As in Sect. 10.2, depending on the quantities that
have to be estimated, the problem can be formulated as a state estimation or a joint
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state-parameter estimation problem. We will treat both these cases, but we will limit our
discussion to finite-dimensional models (that usually arise from space and time discretiza-
tion of unsteady PDEs) and using discrete time evolution models. Further details can be
found, e.g., in (Kaipio and Somersalo 2005, Särkkä 2013, Sullivan 2015).

Let us denote by {Xk}K
k=0 and {Zk}K

k=1 two stochastic processes; the former is related
with the quantity we are interested in, whereas the latter represents the measurement. In
particular, the random vector Xk ∈ R

nx is referred to as the state vector, whereas the
random vector Zk ∈ R

nz is referred to as the observation, both considered at the k-th
time instant τk. From a Bayesian standpoint, the goal is to use the observations until
time k to get information about the state Xk and quantify the uncertainty related to this
estimate. To frame this problem in the Bayesian setting, we assume that {Xk}K

k=0 and

{Zk}K
k=1 are an evolution-observation model, that is:

1 {Xk}K
k=0 and {Zk}K

k=1 are Markov processes, that is

π(xk+1 |x0, x1, . . . ,xk) = π(xk+1 |xk), k = 0, 1, . . .

π(zk |x0, x1, . . . ,xk) = π(zk |xk), k = 1, 2, . . . ;

2 {Xk}K
k=0 depends on the past observations only through its own history, that is

π(xk+1 |xk, z1, . . . ,zk) = π(xk+1 | zk), k = 0, 1, . . . .

Here xk, zk denote the realizations of the processes {Xk}K
k=0 and {Zk}K

k=1, respectively.
In order to characterize such a model, we need to specify the PDF of the initial state X0,
πprior(x

0), the so-called transition kernel π(xk+1 |xk), k = 0, 1, . . . and the conditional
probability π(zk |xk), k = 1, 2, . . ., the so-called (conditional) likelihood function. We
assume to deal with a state evolution equation under the form

Xk+1 = fk+1(Xk, V k+1), k = 0, 1, . . . (11.3)

and an observation equation under the form

Zk = hk(Xk, W k), k = 1, 2, . . . ; (11.4)

fk+1 and hk are known functions, whereas V k+1 ∈ R
nx and W k ∈ R

nz represent the state
noise and the observation noise, respectively. We want to determine the conditional PDF
π(xk |Dk) of the state at the k-th time instant given the observations Dk = (z1, . . . ,zk)
up to the same time instant; this procedure is usually referred to as filtering problem. By
recursive application of the Bayes theorem, we have that

• the time evolution updating, that is, the problem of determining π(xk+1 |Dk) given
π(xk |Dk) and the transition kernel π(xk+1 |xk), provides

π(xk+1 |Dk) =

∫

Rnx

π(xk+1 |xk)π(xk |Dk)dxk; (11.5)

• the observation updating, that is, the problem of determining the posterior distribu-
tion π(xk+1 |Dk+1) of Xk |Dk based on the new observation Zk+1 given π(xk+1 |Dk)
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and the likelihood function π(zk+1 |xk+1), provides

π(xk+1 |Dk+1) =
π(zk+1 |xk+1)π(xk+1 |Dk)

π(zk+1 |Dk)
(11.6)

where

π(zk+1 |Dk) =

∫

Rnx

π(zk+1 |xk+1)π(xk+1 |Dk)dxk+1.

Formula (11.6) is the Bayes formula where π(xk+1 |Dk) is considered as prior distri-
bution for xk+1.

The Kalman filter introduced in Sect. 10.2.1 is a remarkable instance of Bayesian filter
method. Indeed, let us assume that the state and the observation equations are linear
with additive noise processes, that is

fk+1(xk, vk) = Ak|k+1x
k + vk, hk = Hkx

k + wk,

for given matrices Ak|k+1, Hk, that the noise vectors V k+1 and W k are mutually indepen-
dent, Gaussian, with zero mean and known covariances Qk+1 and Rk, respectively, and
that the prior PDF of X0 is Gaussian with mean m0 and covariance P 0. Under these
assumptions, the time evolution and the observation updating formulas (11.3)–(11.4) in-
volve Gaussian distributions, whose means and covariances can be updated at each step
according to prediction (10.15a)–(10.15b) and correction (10.15d)–(10.15e) formulas, re-
spectively. In particular, we have that

π(xk+1 |xk) ∼ N(Ak|k+1x
k, Qk)

π(zk |xk) ∼ N(Hkx
k, Rk).

The Bayesian filtering equations can be evaluated in closed form, yielding the following
Gaussian distributions:

π(xk |Dk−1) ∼ N (mk
f , P f

k )

π(xk |Dk) ∼ N (mk
a, P

a
k )

π(zk |Dk−1) ∼ N (Hkm
k
f , HkP

f
k HT

k + Rk)

where the means and the variances can be computed with the following KF prediction
step:

mk
f = Ak−1|km

k−1

P f
k = Ak−1|kP

a
k−1A

T
k−1|k + Qk−1

(11.7)

and the consequent correction step:

Kk = P f
k HT

k (HkP
f
k HT

k + Rk)
−1

mk
a = mk

f + Fk(z
k − Hkm

k
f )

P a
k = (I − KkHk)P

f
k .

(11.8)

In other words, under the Gaussian assumption, the density is updated only through the
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mean and the covariance. A similar interpretation also holds for the EKF, as soon as a
Gaussian approximation of the densities is considered, and the evolution of these densities
is taken into account. In this respect, Bayesian filtering can be seen as a generalization
of deterministic filters, like the KF, the EKF and the UKF introduced in Sect. 10.2. See,
e.g., (Kaipio and Somersalo 2005, Särkkä 2013, Sullivan 2015).

As already remarked in Sect. 10.2.2, when the evolution model is fully nonlinear, the
EKF, which can be seen as a particular instance of approximate Gaussian filter, may per-
form badly: this can be explained by considering that the push-forward of the previous
state estimate (which has a Gaussian distribution) by a nonlinear map is poorly approx-
imated by a Gaussian distribution. To avoid the linearization of the evolution and the
observation models, one can rely on Monte Carlo methods to simulate the distributions
by random samples, similarly to what has been done in the static case. This strategy
yields the so-called particle filters (also referred to as sequential Monte Carlo methods),
nowadays very popular for complex backward UQ problems.

The goal of a particle filter is to sequentially produce an ensemble {xk|k
1 , . . . ,x

k|k
Ne

} of
Ne particles, that is, a random sample distributed according to the conditional probability
distribution π(xk |Dk). The Ensemble Kalman Filter (EnKF), introduced by Evensen
(Evensen 1994, Evensen 2003), is a particle filter exploiting the idea of approximating the
means and the covariances of the current estimate involved in the Kalman filter prediction-
correction strategy by a set of particles sampled from the distribution. Unlike the KF, we
evaluate the error covariance predictions and corrections by the ensemble covariance ma-
trices around the corresponding ensemble mean, instead of classical covariance equations
(10.15b)–(10.15e) given in the KF algorithm. The covariance matrices of the state vector
X need not be evolved, thus eliminating the costs associated with storing, multiplying
and inverting the matrices appearing in the equations (10.15b)–(10.15e).

The ensemble is initialized by drawing Ne independent particles from, say, a Gaussian
distribution with mean m0 and covariance P0. Then:

• at each prediction step, each particle is evolved using the KF prediction step,

xk|k−1
e = Ak−1|kx

k−1|k−1
e + vk−1

if the system is linear, or

xk|k−1
e = fk(xk−1|k−1

e , vk−1)

if the system is nonlinear;
• at each correction step, the observation zk is replicated Ne times, obtaining

dk
e = zk + ηk

e , ηk
e ∼ N(0, Rk).

Then, the empirical mean

x̄k|k−1
e =

1

Ne

Ne∑

e=1

xk|k−1
e
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and the empirical covariance

CE
k|k−1 =

1

Ne − 1

Ne∑

e=1

(
xk|k−1

e − x̄k|k−1
e

) (
xk|k−1

e − x̄k|k−1
e

)T

of the particles set {xk|k−1
e }Ne

e=1 are computed. The exact Kalman gain is then ap-
proximated by

KE
k = CE

k|k−1H
T
k (HkC

E
k|k−1H

T
k + Rk)

−1

and, finally, the state correction is obtained by applying the formula (10.15d) to each
particle, that is,

xk|k
e = xk|k−1

e + KE
k (dk

e − Hkx
k|k−1
e ).

Several alternative implementations can be found , e.g., in (Evensen 1994, Evensen 2009);
see, e.g., also (Iglesias, Law and Stuart 2013, Kelly, Law and Stuart 2014, Ernst, Sprungk
and Starkloff 2014) for more on the Ensemble Kalman Filter.

If the backward UQ problem also involves random inputs (as in the case of model param-
eters θ, which can also be time-varying), the problem of state estimation and parameter
estimation simultaneously arises. Generally speaking, there is no unique optimal solution
for this problem. Similarly to the state augmentation technique presented in Sect. 10.2, a
possible way to face this problem is to treat the unknown parameters θ as part of the state,
and use conventional filtering technique to infer the parameter and state simultaneously;
this strategy goes under the name of joint estimation; see, e.g. (Moradkhani, Sorooshian,
Gupta and Houser 2005, Ching, Beck and Porter 2006, Evensen 2009) for more details
on this aspect. An example related to cardiovascular modeling where an EnKF can be
exploited to deal with state and parameter estimation is addressed in Sect. 11.3.2.

11.3. Applications to Cardiovascular Modeling

Until recently, UQ has not represented a priority for cardiovascular modeling. Today, a
growing number of works focus on both forward and inverse UQ problems, taking into ac-
count uncertainties related to (i) measurement errors in experimental data (also referred
to as observational uncertainty); (ii) model parameters, which may result from observa-
tional uncertainty as well as from variability, or lack of information; (iii) boundary and/or
initial conditions and, possibly, (iv) the computational model itself, because of model lim-
itations (model uncertainty) or systematic approximation errors (which can be seen as a
form of epistemic uncertainty) introduced, e.g., when the original high-fidelity model is
replaced by a cheaper surrogate model or a reduced-order model. The list of contributions
we mention is unavoidably incomplete.

The effect of uncertain parameters in one dimensional models of the arterial network
has first been considered in (Xiu and Sherwin 2007); a high-order stochastic collocation
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method based on the generalized polynomial chaos expansion, combined with a discon-
tinuous Galerkin spectral/hp element discretization in physical space, has been exploited
to analyze the effects of parametric uncertainties related with material properties and the
initial cross-sectional area of the arterial vessel in pulse wave propagation in a network up
to 37 vessels connected via 16 bifurcations. A more general setting taking into account a
wider network and many more sources of parametric uncertainties, including parameter-
dependent boundary conditions in each distal boundary site and geometrical parameters
describing the cross section area) in each arterial segment, has been considered in (Chen,
Quarteroni and Rozza 2013). Similar problems, involving both sensitivity analysis and un-
certainty propagation for networks built over subject-specific datasets, can also be found
in (Leguy, Bosboom, Hoeks and van de Vosse 2011, Huberts, de Jonge, van der Linden,
Inda, Tordoir, van de Vosse and Bosboom 2013b, Huberts, de Jonge, van der Linden, Inda,
Passera, Tordoir, van de Vosse and Bosboom 2013a).

The use of an adaptive stochastic collocation framework to deal with UQ in haemody-
namical simulations has been considered in (Sankaran and Marsden 2011), where relevant
hemodynamic features are extracted – and their uncertainty is quantified – on two ide-
alized problems, namely an abdominal aortic aneurysm and a carotid artery bifurcation,
and on a first case of subject-specific problem, a Fontan procedure for congenital heart
defects. In the former case, for instance, the radius of the abdominal aortic aneurysm, the
radius and inflow velocity of the carotid artery bifurcation, and the flow split of the left
and right pulmonary arteries are treated as random variables, following either Gaussian or
uniform distributions, to account for the uncertainty impact on blood flows described by
three-dimensional Navier-Stokes equations with rigid walls in small arterial portions. More
detailed versions of this methodology have been recently exploited in (Sankaran, Grady
and Taylor 2015, Sankaran, Kim, Choi and Taylor 2016) to analyze the impact of geomet-
ric uncertainties (that is, anatomic uncertainties resulting in error of the reconstructed
geometry) and physiological uncertainties (yielding to errors in boundary conditions or
blood viscosity) on the blood flow and pressures in the coronary artery.

The problem of calibrating outflow boundary conditions of blood flow simulations in
truncated arterial domains is cast in a Bayesian framework in (D’Elia and Veneziani 2013,
Perdikaris and Karniadakis 2015), with the goal of quantifying the uncertainty affecting
velocity and flow related variables of interest, all treated as random variables.

A complete uncertainty propagation pipeline from clinical data to computational re-
sults has been considered in (Schiavazzi, Arbia, Baker, Hlavacek, Hsia, Marsden, Vignon-
Clementel and Investigators 2016) focusing on single ventricle palliation surgery example.
After determining the probability density functions of right pulmonary artery flow split
ratio and average pulmonary pressures from clinical measurements, Bayesian parameter
estimation is carried out in order to characterize the distributions of boundary conditions
yielding the observed flow splits and average pressure distributions. Then, uncertain-
ties in the boundary conditions are propagated to simulation predictions by employing
sparse grid stochastic collocation to statistically characterize model predictions of post-
operative hemodynamics in models with and without pulmonary artery stenosis, in order
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to quantify the statistical variability in virtual surgery predictions. Finally, the impact of
uncertainty on the optimal design of idealized bypass graft models has been considered,
e.g., in (Sankaran and Marsden 2010, Lassila et al. 2013a, Lassila et al. 2013b).

Regarding cardiac electrophysiology, a systematic application of UQ techniques to the
forward problem of electrocardiography (namely, the characterization of the torso poten-
tial given the electrical conductivity inside the heart and the torso) has been considered
in (Geneser, Kirby and MacLeod 2008), focusing on a simplified two-dimensional config-
uration representing a geometric model of a slice through the human thorax. The for-
ward UQ propagation problem yielding the standard deviation of the resulting stochastic
torso potentials depending on several uncertainties affecting, e.g., the electrical conduc-
tivities of the organs and the representation of cardiac sources, has been faced by a SG
method based on the generalized polynomial chaos expansion. Model personalization in
cardiac electrophysiology has been considered in (Konukoglu et al. 2011), where an ef-
ficient Bayesian method exploiting polynomial chaos and compressed sensing has been
applied to an eikonal-diffusion model involving a large (> 10) number of parameters, by
integrating uncertainty on data and parameters.

In (Johnstone, Chang, Bardenet, de Boer, Gavaghan, Pathmanathan, Clayton and
Mirams 2016) a UQ framework for cardiac action potential models has been addressed,
focusing on (i) the inverse UQ problem of inferring the maximal conductance of ionic chan-
nels from noisy experimental recordings, and (ii) the forward UQ problem of propagating
the uncertainty in maximal ion channel conductances to suitable outputs of interest, such
as the action potential duration. To solve the inverse UQ problem a Bayesian framework,
such as the one described in Sect. 11.2, has been successfully employed, whereas the UQ
propagation problem has been tackled by means of a MC approach exploiting suitable
surrogate models, such as Gaussian Process emulators, to speed up the evaluation of the
system model under analysis. A detailed analysis of the mechanisms underlying physio-
logical variability in cardiac electrophysiology and pro-arrytmic risks under a variety of
conditions can be found, e.g., in (Muszkiewicz, Britton, Gemmell, Passini, Sánchez, Zhou,
Carusi, Quinn, Burrage, Bueno-Orovio and Rodriguez 2016).

Concerning heart electromechanics, the quantification of the effect of uncertainties in
the fiber orientation and the elasticity parameters included in the strain energy function
on global output quantities such as the increase in cavity volume, the elongation of the
ventricle, the increase in inner radius, the decrease in wall thickness, and the rotation at
apex during the passive filling phase, has been addressed in (Osnes and Sundnes 2012). In
(Wallman, Smith and Rodriguez 2014), cardiac tissue properties have been estimated by
integrating structural information with electrophysiological data from, e.g., electroanatom-
ical mapping systems. By means of Bayesian inference tools, a simultaneous description
of clinically-relevant electrophysiological conduction properties and their associated un-
certainty for various levels of noise have been obtained, together with suitable design
strategies to optimize the location and number of measurements required to maximize
information and reduce uncertainty. A relevant application of UQ techniques to nonlin-
ear biomechanics has been considered in (Biehler, Gee and Wall 2015), where parametric
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uncertainties related with the constitutive law for the artery wall of an AAA are modeled
as random fields. In particular, a lognormal three-dimensional random field is used to
describe the inter- and intra-patient variations of one constitutive parameter of a hyper-
elastic constitutive model, and sampling-based approaches like MC are used to solve the
resulting stochastic mechanical problem. A multi-fidelity Bayesian framework incorpo-
rating information from different low-fidelity models has been developed to speed up the
intensive approximation of the resulting problem, following some general ideas reported
in (Kennedy and O’Hagan 2000, Koutsourelakis 2009). Employing surrogate models or
more reliable reduced-order models (for more on this subject, see Sect. 12) to speed up the
numerical solution of direct and inverse UQ problems represents indeed a powerful alter-
native to SC and SG methods, which has only been partially touched in the case of simple
problems, like in (Cui, Marzouk and Willcox 2015, Chen and Schwab 2015, Dihlmann and
Haasdonk 2016, Manzoni, Pagani and Lassila 2016, Pagani et al. 2016).

11.3.1. Backward uncertainty propagation in a simplified blood flow model

We want to compare the solution of a parameter estimation problem in a variational
framework and in a Bayesian setting, on a simplified blood flow problem. We consider a
two-dimensional section of a carotid bifurcation where the diameters dc, db of the common
carotid artery (CCA) at the bifurcation and of the mid-sinus level of the internal carotid
artery (ICA) are the input parameters, assumed to be uncertain. In this idealized setting,
our goal is to identify θ = (dc, db)

T from the observation of the mean pressure drop

z =

∫

Γin

p dΓ −
∫

ΓICA

p dΓ

between the internal carotid outflow ΓICA and the inflow Γin, see Fig. 11.31 (a). For the
sake of simplicity a steady incompressible Navier-Stokes model is employed to model the
blood flow, although the same approach concerning the solution of the inverse UQ problem
can be applied to the case of an unsteady fluid model, as soon as a peak (or time average)
pressure drop is evaluated. Although presented here in a very simplified way for the sake
of illustration, the problem of recovering information about vessel features by evaluating
physical indices related to flow variables is of general interest also for diagnostic purposes;
for instance, the fractional flow reserve is a procedure exploited in coronary catheterization
to measure pressure differences across a coronary artery stenosis in order to determine the
stenosis degree.

The parameter estimation problem is first solved by minimizing a least-squares func-
tional for different observations of the pressure drop, z = −1400 and z = −2200, by
assuming 5% relative additive noise in the measurements. The results of the inverse iden-
tification problem are represented in Fig. 11.31(b) for 100 realizations of random noise
in both cases. The recovered diameter values are shown to be quite sensitive to small
noise variations; this is due to the fact that several geometrical configurations – in terms
of diameters (dc, db) – may correspond to the same output observation. The backward
UQ propagation problem is then solved in a Bayesian setting, characterizing the posterior
PDF of θ = (dc, db) starting from a Gaussian prior and assuming a Gaussian model to de-
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scribe experimental noise; in particular, we can assume that the two diameters are either a
priori independent (case (c), left), or correlated (case (c), right)). The two corresponding
posterior distributions, obtained for the observations z = −1400 and z = −2200 of the
pressure drop, are reported in Fig. 11.31 (d-e).

Figure 11.31. (a) Velocity profiles [cm/s] for different carotid bifurcations parametrized with
respect to the diameters dc, db; (b) variational parameter estimation and isolines of the pressure

drop; (c) two different choices of the prior distribution on diameters θ = (dc, db)
T ; (d)-(e): results

of the backward UQ problem obtained with the priors in (c) with observed pressure drop
zobs = −1400 and zobs = −2200 [dyn/cm2], respectively. These numerical results are obtained

using the Matlab Finite Element library MLife

11.3.2. Backward uncertainty propagation in cardiac electrophysiology
We finally consider the problem of identifying the size and the position of an ischemic
region in the myocardial tissue, as a remarkable instance of backward UQ problem dealing
with cardiovascular applications. Such a problem case can be cast under the form of a joint
state/parameter estimation problem, and can be efficiently faced by an EnKF technique.

The state evolution equation is given by the (space and time discretization of the) mon-
odomain equation for the transmembrane potential Vm, coupled with an Alliev-Panfilov
cellular model involving a single gating variable w; the state variable is thus u = (Vm, w)T .
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Similarly to the example in Sect. 11.1, to represent lacks of conductivity in the tissue we
introduce the relative conductivity σ = σ(x; θ) ∈ [0, 1]; σ = 1 and σ = 0 correspond to
proper electrical conduction or total lack of conductivity, respectively.

Since the position and the extension of the ischemic region is unknown, σ(x; θ) is a
random field. To make its representation low-dimensional, we parametrize the field σ(x; θ)
in terms of p = 20 random inputs θ = (θ1, . . . , θ20)

T entering into a linear combination of
p = 20 radial basis functions (RBFs), around p given centers {xi}20

i=1,

σ(x; θ) =
1

ν(x)

p∑

i=1

θi exp

(
−‖x − xi‖2

λ2

)
, ν(x) =

p∑

i=1

exp

(
−‖x − xi‖2

λ2

)
;

ν(x) is a normalization factor so that σ(x; θ) ∈ [0, 1]. We consider a subject-specific left-
ventricle geometry, and assume that a set of data z1, . . . ,zK is acquired sequentially over
a time interval; in particular, at each time instant τk, k = 1, . . . , K data are given by the
transmembrane potential values computed at a set of 9 points located on the endocardium,
polluted by Gaussian noise with zero mean and known covariance, to simulate the effect
of experimental noise while evaluating the so-called simultaneous endocardial mapping in
the human left ventricle; these invasive measurements are usually obtained using a non-
contact catheter (see, e.g., (Schilling, Peters and Davies 1998, Álvarez, Alonso-Atienza,

Rojo-Álvarez, Garcia-Alberola and Moscoso 2012)). For the sake of the computational
experiment, we assume that the data zk, k = 1, . . . , K, are generated by the monodomain
model with relative conductivity σ∗ = σ∗(x; θ∗) for a particular choice θ = θ∗ of the input
vector, that is,

zk = h(u(θ∗)) + ηk, ηk ∼ N(0, Rk).

The goal is thus to recover the (posterior) PDF of θK |Dk given the observations Dk =
(z1, . . . ,zk), evaluate the conditional mean θK

CM = E[θK |Dk], and finally estimate the
conductivity field as σ(x; θK

CM ).

Starting from a prior distribution for the input vector θ0 ∼ U([0, 1]20), reflecting the
lack of information about the possible presence and position of the ischemic region, we
rely on the EnKF to produce sequentially an ensemble {θk

e}Ne

e=1 of Ne particles distributed

according to the conditional distribution π(θk |Dk), and the associated ensemble of Ne

states {uk|k(θk
e)}Ne

e=1. Hence, starting from the initial ensemble {P(0),U (0)} sampled from
the prior distribution, the prediction-analysis procedure of the EnKF is given by the
following two stages recursion:

1 at each prediction step, compute the solution uk|k−1(θk−1
e ) of the state system over

[τk−1, τk) with initial datum uk|k−1(θk−1
e );

2 at each correction step, the observation zk is replicated Ne times, obtaining

dk
e = zk + ηk

e , ηk
e ∼ N(0, Rk).
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Then, the sample means

uk|k−1 =
1

Ne

Ne∑

e=1

uk|k−1(θk−1
e ), sk|k−1

e =
1

Ne

Ne∑

e=1

h(uk|k−1(θk−1
e )), θ

k−1
e =

1

Ne

Ne∑

e=1

θk−1
e ,

(11.9)
and the sample covariances

Ck
ss =

1

Ne − 1

Ne∑

e=1

(h(uk|k−1(θk−1
e )) − sk|k−1

e )(h(uk|k−1(θk−1
e )) − sk|k−1

e )T ∈ R
nz×nz ,

(11.10)

Ck
θs =

1

Ne − 1

Ne∑

e=1

(θk−1
e − θ

k−1
e )(h(uk|k−1(θk−1

e )) − sk|k−1
e )T ∈ R

p×nz , (11.11)

Ck
us =

1

Ne − 1

Ne∑

e=1

(uk|k−1(θk−1
e ) − uk|k−1)(h(uk|k−1(θk−1

e )) − sk|k−1
e )T ∈ R

nx×nz ;

(11.12)
are computed. Finally, the state/parameters ensembles are updated through the
following Kalman formula

[
θk

e

uk|k(θk
e)

]
=

[
θk−1

e

uk(θk−1
e )

]
+

[
Ck

θz

Ck
uz

]
(Rk + Ck

zz)
−1(dk

e − h(uk|k−1(θk−1
e ))), (11.13)

for each e = 1, . . . , Ne.

The numerical results obtained by this procedure are reported in Fig. 11.32. The
data have been generated by the monodomain model with the relative conductivity field
σ∗ = σ∗(x; θ∗) reported on Fig. 11.32, left; a uniform prior distribution θ0 ∼ U([0, 1]20)
is assumed. After executing the EnKF algorithm, we obtain the posterior distribution
whose mean and 5%, 95% quantiles are reported on Fig. 11.32, bottom. The uncertainty
on the input parameters is greatly reduced, while the conditional mean of the posterior
distribution correctly approximates the realization of the random field reported on the
left, by which data exploited for the sake of parameter estimation have been generated.

12. Reduced order modeling

As seen in Sects. 9–11, several numerical strategies used to face PDE-constrained opti-
mization, parameter estimation, and uncertainty quantification problems arising in cardio-
vascular modeling involve the approximation of PDE systems for several input parameter
values. On the other hand, the repeated evaluation of input/output maps to characterize
different scenarios requires many queries to numerical models, too. Not only, if quantita-
tive outputs are meant to support clinicians and medical doctors in their decisions, each
new numerical simulation should be carried out very rapidly (say, order of minutes) on
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Figure 11.32. Top: 5% quantile, mean and 95% quantile of the uniform prior distribution of θ0.
Middle: identification of p = 20 parameters through the EnKF algorithm. References values θ∗i ,
i = 1, . . . , 20, estimates (θ̄k

e )i and confidence intervals are reported in dot red, blue and dot blue
lines, respectively. Bottom: 5% quantile, conditional mean and 95% quantile of the posterior

distribution of θK . These numerical results are obtained using the Finite Element library
redbKIT v2.1 (github.com/redbKIT/redbKIT/releases)

deployed platforms rather than on huge parallel hardware architectures, possibly requiring
limited data storage and memory capacity. Meeting all these requirements is a challenging
task, that makes traditional high-fidelity, or full-order, techniques (such as the FE method)
ill-suited, despite the constant growth of computer resources available.

Reduced-order models (ROMs) represent emerging methodologies aimed at reducing the
computational complexity and costs entailed by the repeated solution of PDE problems
(Antoulas 2005, Benner, Gugercin and Willcox 2015, Quarteroni and Rozza 2014). In the
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case of parametrized PDEs (that is, PDEs depending on a vector of parameters µ ∈ P ⊂
R

p) PDEs, the reduced basis (RB) method is a remarkable example of ROM that allows
to dramatically reduce the dimension of the discrete problems arising from numerical
approximation – from millions to hundreds, or thousands at most, degrees of freedom.

Here, y(t; µ) represent the solution of a time-dependent nonlinear problem (here µ ∈
P ⊂ R

p denotes a set of input parameters) under the form:

M(µ)
dy(t; µ)

dt
+ A(µ)y(t; µ) + F (y(t; µ)) = f(t; µ), t ∈ (0, T ]

y(0; µ) = y0(µ)
(12.1)

stemming from the (e.g. finite element) discretization of a parametrized PDE, being
A(µ) ∈ R

Nh×Nh , M(µ) ∈ R
Nh×Nh and F (µ) : R

Nh → R
Nh three operators corresponding

to the linear, the mass and the nonlinear terms of the PDE.
The dimensional reduction is made possible by exploiting the parametric dependence

of the solution manifold, that is, the set Mh = {y(t; µ) : t ∈ (0, T ], µ ∈ P}, thanks to
the evaluation of a database of solutions, or snapshots, for selected parameter values, and
to a (Petrov-)Galerkin projection onto the RB space spanned by a set of RB functions.
In the case of a stationary problem, these latter are the snapshots themselves if a greedy
algorithm is used, or the first singular vectors of the snapshot matrix if proper orthogonal
decomposition (POD) is used; see, e.g. (Quarteroni, Manzoni and Negri 2016b, Hesthaven,
Rozza and Stamm 2016, Cohen and DeVore 2015). For time-dependent problems, the
parameter space can still be sampled relying on one of the two mentioned techniques,
whereas POD is usually exploited for reducing trajectories of the system over the time
interval.

Hence, the RB method seeks an approximation VNyN (t; µ) ≈ y(t; µ) to the solution of
(12.1), being yN (t; µ) the reduced state vector and VN = [v1, . . . ,vN ] ∈ R

Nh×N a matrix
stacking by columns the RB functions. A possible RB approximation of (12.1) would read:

MN (µ)
dyN (t; µ)

dt
+ AN (µ)yN (t; µ) + V T

N F(VNyN (t; µ)) = fN (t; µ), t ∈ (0, T ]

yN (0; µ) = yN,0(µ)
(12.2)

where

AN (µ) = V T
N A(µ)VN , MN (µ) = V T

N M(µ)VN , fN (t; µ) = V T
N f(t; µ)

The arrays appearing in (12.2) can be efficiently assembled in a rapid online phase by
combining parameter-independent quantities stored during a more expensive offline phase.
Suitable hyper-reduction techniques are instead required to manage nonlinear terms in or-
der to make their assembling independent of the dimension Nh of the high-fidelity problem.

We emphasize that a RB method requires the solution of some full-order, and therefore
very expensive, discrete equations. The key-idea is that these demanding calculations can
be done offline, before the optimization with respect to the control parameters, or the
parameter estimation, is attempted. As a matter of fact, the cost of each optimization
step performed online is much smaller than that involving the full-order state approxima-
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tion; similarly, computing the evolution of a particles set in the Ensemble Kalman Filter
algorithm by querying the ROM can thus be performed in a substantially inexpensive way.

Describing the mathematical principles and the numerical algorithms on which the
RB method is rooted would bring us quite far; the interested reader can refer, e.g., to
(Quarteroni et al. 2016b) for a detailed presentation. We limit ourselves to cite some re-
markable applications of the RB method to problems of interest in cardiovascular modeling
(this list is of course incomplete). Parametrized blood flows in idealized cardiovascular
geometries have been considered in (Lassila, Quarteroni and Rozza 2012, Manzoni, Quar-
teroni and Rozza 2012a) and in (Ballarin, Faggiano, Ippolito, Manzoni, Quarteroni, Rozza
and Scrofani 2016, Colciago et al. 2014, Negri 2016) by taking into account more complex
(and computationally challenging) subject-specific configurations; in all these cases, solu-
tions of Navier-Stokes equations are computed with respect to inflow and/or geometrical
parameters. Applications to PDE-constrained optimization problems arising in the context
of optimal design of prosthetic devices can be found, e.g., in (Manzoni et al. 2012b, Lassila
et al. 2013a). A reduced-order model based on POD is proposed for the bidomain equa-
tions of cardiac electrophysiology in (Boulakia, Schenone and Gerbeau 2012), yielding the
efficient approximation of a restitution curve and the estimation of ionic parameters and
infarction locations from synthetic electrocardiograms with an evolutionary algorithm.
Alternative options in this respect have been more recently proposed in (Gerbeau, Lom-
bardi and Schenone 2015). Applications of POD to parameter estimation problems with
sequential filtering techniques can be found in (Chapelle, Gariah, Moireau and Sainte-
Marie 2013b), whereas an application of the RB method for the computational speedup
of Bayesian inverse problems related to blood flows modeling is reported in (Lassila et
al. 2013b, Manzoni et al. 2014).

We highlight that while physical coefficients, boundary and/or initial conditions, as
well as source terms can be usually described in terms of input parameters in a straight-
forward way, dealing with geometries of varying shape is much more involved. In this
latter case, additional techniques providing flexible descriptions of complex shapes, possi-
bly involving few parameters, are required. Notable examples are given by volume-based
representations, which operate on a control volume and define parametric maps by in-
troducing a set of control points over the control volume; control points displacements,
actually inducing a shape deformation, can thus be treated as input parameters. Within
this class, free-form deformation techniques and interpolants built over a family of radial
basis functions have been successfully employed, see, e.g., (Manzoni et al. 2012b, Manzoni
et al. 2012a, Ballarin et al. 2016) for further details. We also point out that the need of
deriving flexible and low-dimensional parametrizations is not confined to the realm of RB
methods for parametrized PDEs. Indeed, it also arises when dealing with random inputs
or fields; in this latter case, input uncertainties are usually parametrized with respect to
a finite number of random variables, corresponding to the retained terms after truncating
Karhunen-Loève or Polynomial Chaos expansions.

The analysis, development and application of reduced-order modeling techniques is a
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very active field in the context of numerical approximation for PDEs; without any doubt,
cardiovascular applications represent one of the most relevant testing environment.

Disclaimers

Despite being 200 pages long5, several topics related to the cardiovascular system have
not been addressed in this review paper. Among others, we mention the venous system
(mandatory when one wants to consider a closed loop model of the CS and playing a crucial
role in some specific pathologies, see e.g. (Toro 2016)), the metabolic system (D’Angelo
2007), the respiratory system (Maury 2013, Wall, Wiechert, Comerford and Rausch 2010,
Trenhago, Fernandes, Müller, Blanco and Feijóo 2016), the cerebro-spinal fluid circulation
(Fin and Grebe 2003), the nervous system (Liang and Liu 2006), and the limphatyc system
(Margaris and Black 2012). For some of them (for example the venous and the respiratory
systems) research has progressed remarkably in the last years. Yet, the mathematical
investigation of these systems is still in its infancy. In particular, their coupling with CS
is almost lacking. Many research avenues are open to the contribution of both pure and
applied mathematicians, with the dream of bringing mathematical achievements to play
a decisive role in clinical everyday’s practice.
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P. Blanco, M. Pivello, S. Urquiza and R. Feijòo (2009), ‘On the potentialities of 3d-1d coupled
models in hemodynamics simulations’, J. Biomech. 42, 919–930.
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sanne.

S. Deparis, M. Discacciati, G. Fourestey and A. Quarteroni (2006), ‘Fluid-structure algo-
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Lausanne. Thesis n◦ 5453.

A. Malossi, P. Blanco and S. Deparis (2012), ‘A two-level time step technique for the partitioned
solution of one-dimensional arterial networks’, Comput. Methods Appl. Mech. Engrg. 237–
240, 212–226.

A. Malossi, P. Blanco, P. Crosetto, S. Deparis and A. Quarteroni (2013), ‘Implicit coupling of
one-dimensional and three-dimensional blood flow models with compliant vessels’, Multiscale
Model Simul 11(2), 474–506.



188 A. Quarteroni and A. Manzoni and C. Vergara

T. Mansi, I. Voigt, B. Georgescu, X. Zheng, E. Mengue, M. Hackl, R. Ionasec, T. Noack, J. See-
burger and D. Comaniciu (2012), ‘An integrated framework for finite-element modeling of
mitral valve biomechanics from medical images: Application to mitralclip intervention plan-
ning’, Medical Image Analysis 16(7), 13301346.

A. Manzoni (2012), Reduced Models for optimal control, shape optimization and inverse problems
in haemodynamics, PhD thesis, Ecole Polytechnique Fédérale de Lausanne.

A. Manzoni, T. Lassila, A. Quarteroni and G. Rozza (2014), A reduced-order strategy for solving
inverse bayesian shape identification problems in physiological flows, in Modeling, Simulation
and Optimization of Complex Processes - HPSC 2012: Proceedings of the Fifth International
Conference on High Performance Scientific Computing, March 5-9, 2012, Hanoi, Vietnam
(G. Bock, P. Hoang, R. Rannacher and P. Schlöder, eds), Springer International Publishing,
Cham, pp. 145–155.

A. Manzoni, S. Pagani and T. Lassila (2016), ‘Accurate solution of bayesian inverse uncer-
tainty quantification problems combining reduced basis methods and reduction error models’,
SIAM/ASA J. Uncert. Quant. 4, 380–412.

A. Manzoni, A. Quarteroni and G. Rozza (2012a), ‘Model reduction techniques for fast blood
flow simulation in parametrized geometries’, Int. J. Numer. Methods Biomed. Engng. 28(6–
7), 604–625.

A. Manzoni, A. Quarteroni and G. Rozza (2012b), ‘Shape optimization of cardiovascular geometries
by reduced basis methods and free-form deformation techniques’, Int. J. Numer. Methods
Fluids 70(5), 646–670.

S. Marchesseau, H. Delingette, M. Sermesant and N. Ayache (2012), ‘Fast parameter calibration of
a cardiac electromechanical model from medical images based on the unscented transform’,
Biomech. Model. Mechanobiol. 12(4), 815–831.

S. Marchesseau, H. Delingette, M. Sermesant, R. Cabrera-Lozoya, C. Tobon-Gomez, P. Moireau,
R. F. i Ventura, K. Lekadir, A. Hernandez, M. Garreau, E. Donal, C. Leclercq, S. Duckett,
K. Rhode, C. Rinaldi, A. Frangi, R. Razavi, D. Chapelle and N. Ayache (2013), ‘Personal-
ization of a cardiac electromechanical model using reduced order unscented kalman filtering
from regional volumes’, Medical Image Analysis 17(7), 816–829.

K. Mardal, B. Nielsen, X. Cai and A. Tveito (2007), ‘Semi-implicit time-discretization schemes for
the bidomain modelan order optimal solver for the discretized bidomain equations’, Numerical
Linear Algebra with Applications 14(2), 83–98.

K. Margaris and R. Black (2012), ‘Modelling the lymphatic system: challenges and opportunities’,
J. R. Soc. Interface 69(9), 601–612.

G. Marom (2015), ‘Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves’,
Arch Computat Methods Eng 22(4), 595–620.

A. Marsden (2014), ‘Optimization in cardiovascular modeling’, Annual Review of Fluid Mechanics
46(1), 519–546.

A. Marsden, J. Feinstein and C. Taylor (2008), ‘A computational framework for derivative-free
optimization of cardiovascular geometries’, Comput. Methods Appl. Mech. Engrg. 197(21–
24), 1890–1905.

V. Martin, F. Clément, A. Decoene and J.-F. Gerbeau (2005), ‘Parameter identification for a
one-dimensional blood flow model’, ESAIM: Proc. 14, 174–200.
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stazionarie’, Rendiconti del Seminario Matematico della Universitá di Padova 32, 374–397.
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