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Abstract — Generalized Frequency-Division Multiplexing 

(GFDM) is one of the multicarrier modulation schemes currently 

under study for next generation 5G cellular networks. One of the 

main characteristics of GFDM is the low out of band emission that 

is achieved by means of a flexible time-domain pulse shaping of 

individual subcarriers. In the paper, we propose to use improved 

Nyquist pulse shaping filters which have been originally 

introduced in the context of single-carrier modulation schemes for 

reducing the sensitivity to symbol timing error due to their higher 

eye opening and smaller maximum distortion. Here we consider 

their use in GFDM and evaluate their symbol error rate (SER) 

performance in case of 16-QAM transmission over an additive 

white Gaussian noise channel. Moreover, we also considered the 

concept of the wavelet for better time-frequency localization of the 

pulse shaping filters by using the Meyer auxiliary function. 

Numerical results are reported to demonstrate the superior SER 

performance achieved by the proposed improved Nyquist pulse 

shaping filters in comparison to that achieved with conventional 

Nyquist pulse shaping filters. 

Keywords — Generalized frequency-division multiplexing 

(GFDM); Nyquist filtering; symbol error rate (SER). 

I. INTRODUCTION  

Nowadays, increasing demand for smart devices with low 
round-trip latency and ultra-high reliability appears as a decisive 
factor for the implementation of future communication systems 
[1]. Upcoming 5th generation (5G) cellular networks must be 
able to cope with a high number of connected devices as well as 
a significant growth in data volume [2]. Main scenarios for 5G 
cellular networks are machine type communication (MTC) [3], 
Tactile Internet [4] and wireless regional area network (WRAN) 
[5]. In particular, the introduction of MTC, characterized by 
devices with sporadic random access, can be accomplished by 
means of cognitive radio (CR) techniques [6], where the 
flexibility in shaping and structuring the transmit signal is a key 
aspect. 

A CR system must be able to flexibly aggregate spectrum 
white spaces where, at the same time, the out-of-band (OOB) 
leakage is minimized in order not to affect neighboring systems. 
As is well known, current cellular transmission schemes like 
Long-Term Evolution (LTE) and LTE-Advanced (LTE-A) 
employ orthogonal frequency division multiplexing (OFDM) in 
the PHY layer [7]. Although OFDM is robust against the 
frequency-selective fading channel and offers an efficient 

implementation using the Fourier transform, it is not well suited 
for future requirements [8]. Main weaknesses of OFDM are its 
sensitivity to carrier frequency offset and phase noise [9], [10], 
[11] and its large OOB leakage, which makes it unattractive for 
CR applications. While effects of carrier frequency offset and 
phase noise can be mitigated by fine synchronization and phase 
tracking capabilities [12], [13], a reduction of OOB emission can 
be achieved through a time-domain pulse shaping of individual 
subcarriers. In fact, high OOB radiation of OFDM is due to the 
rectangular pulse shaping filter applied on each subcarrier in 
time domain, which leads to large tails in the frequency domain. 
Another problem of OFDM is the requirement of a cyclic prefix 
(CP) in every symbol which reduces the spectral efficiency. In 
order to address all these issues, new multi-carrier modulation 
(MCM) schemes are under investigation for the 5G physical 
layer. Among the proposed 5G MCM schemes, filter bank 
multicarrier (FBMC) [14] and generalized frequency division 
multiplexing (GFDM) [15] are the most promising candidates 
for 5G application.  

In FBMC modulation the use of a prototype pulse shaping 
filter on each subcarrier is proposed to minimize OOB radiation. 
Several works in the literature focus on the design of pulse 
shaping filters for FBMC with the aim of minimizing the OOB 
radiation [16], [17]. The main property of FBMC is that of 
maintaining orthogonality among sub-carriers and allowing for 
reduction of OOB emissions by a proper choice of the pulse 
shaping filters. However, it does not have some other properties 
that are needed in 5G such as robustness against the frequency 
selective fading channel. In contrast, GFDM that is derived from 
the filter bank approach, is based on a block filtered MCM 
scheme allows to achieve higher robustness to frequency 
selective fading channel. The data transmission on each block is 
distributed in time and frequency and each sub-carrier is pulse-
shaped. Reduction of OOB emission is obtained in GFDM by 
using different time-domain pulse shaping filters other than the 
conventional rectangular one used in CP-OFDM [18]. 
Moreover, the tail biting technique used in GFDM makes the CP 
length to be independent of transmit and receive filters length 
[16]. This allows to reduce the overhead caused by the CP, thus 
increasing the spectral efficiency. Another advantage of GFDM 
is related to its flexible frame structure: by changing the number 
of time slots or sub-carriers in a GFDM frame, it can cover both 
conventional CP-OFDM and single-carrier frequency-domain 
multiple access. Furthermore, GFDM allows to achieve an 
additional frequency diversity gain at the cost of an inherent self- 



 

Figure 1: Block diagram of baseband GFDM transceiver. 

 

interference that originates from the non-orthogonality and, 
therefore, prohibits the decoupling of individual subcarriers. 
These features make GFDM the strongest candidate MCM 
scheme for 5G. 

Several standard receiver options can be used for 
demodulation of the GFDM signal: 

    Matched filter (MF): MF receiver maximizes the signal-to-
noise ratio (SNR) per subcarrier, but with the effect of 
introducing self-interference when a non-orthogonal 
transmit pulse is applied. Methods for the cancellation of 
self-interference with a MF receiver have been proposed in 
[19], where it is shown that almost equal performance as 
orthogonal MCM can be achieved. The same MF receiver 
is considered in [18] to study the impact of different pulse 
shaping filters on OOB and error rate performance.  

    Linear minimum mean-squared error (MMSE): MMSE 
receiver makes a trade-off between self-interference and 
noise enhancement. 

    Zero forcing (ZF): ZF receiver completely removes self-
interference at the receiving side at the cost of introducing 
a possible noise enhancement, which depends on the 
impulse response of the pulse shaping filter. Noise 
enhancement has an impact on symbol error-rate (SER) 
performance. So, by a proper design of the pulse shaping it 
is possible to overcome the effect of noise enhancement 
and to improve the SER performance.  

The main contribution of this paper consists in the evaluation 
of the SER performance for GFDM using different types of 
improved Nyquist pulse shaping filters. Transmission over an 
additive white Gaussian noise (AWGN) channel is considered 
in the case of ZF receiver. Improved Nyquist pulse shaping 
filters have been originally proposed in [20] to achieve higher 
tolerance to symbol timing error in single-carrier modulation 
schemes. As suggested in [21], when Nyquist pulse shaping 
filters are considered in GFDM a performance improvement can 
be achieved by exchanging the role of the frequency 
independent variable with that of the time independent variable 
in the formal expression defining the raised cosine pulse. The 
main advantage is that there is no overlapping in the frequency 
domain and, therefore, less interference is observed. 

The paper is organized as follows. Section II gives a short 

description of the GFDM system model together with the 

notation that will be used throughout this paper. The different 

types of improved Nyquist pulse shaping filters are introduced 

in Sec. III, while the SER analysis of GFDM is provided in Sec. 

IV. Simulation results for different pulse shaping filters are 

given in Sec. V and, finally, conclusions are drawn in Sec. VI.  

II. SYSTEM MODEL 

The block diagram of the considered GFDM transmission 

scheme is shown in Figure 1. In this scheme the transmitter part 

includes several blocks. By using a matrix notation, the vector 

of input bits 𝐛 is applied at the input of the encoder. The encoder 

splits the high bit-rate stream into a number of lower bit-rate 

streams and forms the encoded vector  𝐛𝑐 . The vector 𝐛𝑐  is 

applied at the input of the mapper which gives at its output an 

𝑁 × 1  data vector 𝐝  whose elements take values from a 

complex constellation, e.g., QAM. The data vector 𝐝  is then 

applied at the input of the GFDM modulator that contains 𝑁 

elements. Which can be decomposes into 𝐾  groups of 𝑀 

symbols according to 

𝐝 = [(𝒅0)
𝑇 , (𝐝1)

𝑇 , … . . . , (𝐝𝐾−1)
𝑇]𝑇  

with 

𝐝𝑘 = [𝑑𝑘,0, 𝑑𝑘,1, … . . , 𝑑𝑘,𝑀−1]
𝑇
, 

where 𝑑𝑘,𝑚 corresponds to the QAM symbol transmitted on the 

𝑘-th sub-carrier and in the 𝑚-th sub-symbol of the block and 

(∙)𝑇 denotes transposition. The time-duration of each data block  

𝐝𝑘 is 𝑀𝑇𝑠 and the sub-carrier spacing is equal to 1/M𝑇𝑠. 

 In the GFDM modulator, each 𝑑𝑘,𝑚  is transmitted with the 

corresponding pulse shape  

                  𝑔𝑘,𝑚[𝑛] = 𝑔[(𝑛 − 𝑚𝑘) mod 𝑁]𝑒
−𝑗 2 𝜋 𝑘 𝑛 

𝐾 ,             (1) 

where 𝑔[𝑛] is a prototype discrete-time impulse response and 𝑛 

is the sampling index. Note that, each 𝑔𝑘,𝑚[𝑛] corresponds to a 

time and frequency shifted version of 𝑔[𝑛], where the complex 

exponential performs the shifting operation in the frequency 

domain. The 𝑛-th entry of the 𝑀𝐾 × 1 transmitted vector 𝐱 is 

given by 

  𝑥[𝑛] = ∑ ∑ 𝑑𝑘,𝑚𝑔𝑘,𝑚[𝑛]

𝑀−1

𝑚=0

𝐾−1

𝑘=0

,    𝑛 = 0,1, …… . . 𝐾𝑀 − 1.   (2) 

By collecting the pulse shaping filter samples in the 𝐾𝑀 × 1 

vector 𝒈𝑘,𝑚 = [𝑔𝑘,𝑚[0], 𝑔𝑘,𝑚[1], … , 𝑔𝑘,𝑚[𝑀𝐾 − 1]]
𝑇

,  allows 

to represent eq. (2) in matrix form as  

                                               𝐱 = 𝐀𝐝,                                             (3) 

where 𝐀 , a 𝐾𝑀 × 𝐾𝑀  matrix known as GFDM modulation 

matrix is given by [22] 

𝐀 = [𝒈0,0…𝒈𝐾−1,0   𝒈0,1……𝒈𝐾−1,1   𝒈0,𝑀−1… . 𝒈𝐾−1,𝑀−1] .  (4) 

Before transmission a CP of length 𝑁𝐶𝑃  is added to form the 

vector 𝒙 = [𝐱(𝑁 − 𝑁𝐶𝑃: 𝑁 − 1)
𝑇 , 𝐱𝑇]𝑇 . 



Considering transmission over an AWGN channel, the 

received signal vector is modelled as 

                                            𝒚̂ =  𝒙 + 𝐰,                                         (5) 

where each entry of 𝐰 is an i.i.d. zero mean complex Gaussian 

random variable with variance 𝜎𝑤
2 .  The received vector after 

removal of the CP is defined as  𝐲 = 𝒚̂(𝑁𝐶𝑃: 𝑁𝐶𝑃 + 𝑁 − 1) . 

After weighting with the ZF matrix 𝐁𝑍𝐹 = 𝐀
−1 , the received 

signal vector is given by  

                            𝐳 =  𝐁𝑍𝐹𝐀𝐝 + 𝐁𝑍𝐹𝐰 = 𝐝 + 𝐰̃.                      (6) 

From the eq. (6) we observe that the ZF receiver completely 

removes self-interference at the cost of noise enhancement. The 

noise enhancement factor (NEF) 𝜉  determines the SNR 

reduction when using the ZF receiver. It is defined as 

                                   𝜉 = ∑ |[𝐵𝑍𝐹]𝑘, 𝑛|
2

𝑀𝐾−1

𝑛=0

,                               (7) 

which is the same for every 𝑘. 

III. PULSE SHAPING FILTER 

The choice of the pulse shaping filters 𝑔[∙]  strongly 

influences the spectral properties of the GFDM signal. As is well 

known, Nyquist impulse responses have periodic zero values in 

time-domain at multiples of the symbol period. When we move 

in the frequency domain this condition turns into a vestigial 

symmetry [23]. This means that their spectrum exhibits odd 

symmetry around the cut-off frequency, which is half the 

symbol rate. Hence, Nyquist filters can be defined by imposing 

an odd symmetry to the frequency coefficients around the cut-

off frequency. In digital communication systems, the global 

Nyquist filter is generally split into two parts, a square-root 

Nyquist filter in the transmitter and a square-root Nyquist filter 

in the receiver. Then, the symmetry condition is satisfied by the 

squares of the frequency coefficients. In order to design a proper 

Nyquist filter to be used in GFDM, the principles of odd 

symmetry need to be applied from a time-domain perspective by 

interchanging the role of the frequency independent variable 

with that of the time independent variable in the analytical 

function defining the Nyquist function. The advantage deriving 

from this formal exchange between the two independent 

variables is the elimination of the time-domain overlapping with 

consequent reduction of interference.  

The concept of wavelet is here included to achieve a better 

time-frequency localization and also to add flexibility in the 

design of the pulse shaping filter. As is well known, square-root 

Nyquist pulse has a major impact on the system design and, 

therefore, an alternative solution to define it in the time-domain 

is required. This alternative solution must assure that the 

derivative of the designed pulse is smooth in order to confine the 

frequency span as much as possible. Many authors have 

investigated solutions based on the concept of wavelets [24, 25]. 

A wavelet is a wave-like oscillation with an amplitude that 

begins at zero, increases, and then decreases back to zero. To 

assure this smooth transition, an auxiliary function was 

introduced by Meyer in [26] to be used as an inner argument of 

different pulse shaping filters. The Meyer auxiliary function is 

defined as  

            𝑣(𝑥) =  𝑥4(35 −  84𝑥 +  70𝑥2  −  20𝑥3),                (8) 

Therefore, in our results we will consider the impact of 

improved Nyquist pulse shaping filters with and without Meyer 

on the SER performance of the GFDM in case of transmission 

over the AWGN channel.  

A. Root raised cosine (RRC) 

This category of pulse shaping filters is defined by the well-

known raised cosine (RC) and root raised cosine (RRC) 

functions in time-domain for a given roll-off factor 𝛼. Here, we 

consider the time-domain expression that results by 

interchanging the independent frequency variable with the time 

variable 

𝑔𝑅𝐶(𝑡) =

{
 
 

 
 1,                                            |𝑡| ≤

(1 − 𝛼)𝑇

2
 

1

2
[1 + 𝑐𝑜𝑠(𝜋𝑃𝑅𝐶(𝑡))],

  (1 − 𝛼)𝑇

2
< |𝑡| ≤

(1 + 𝛼)𝑇

2 
0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  

 

 

(9) 

where  𝑃𝑅𝐶(𝑡) is the inner argument of the cosine written as   

                  𝑃𝑅𝐶(𝑡) = (
|𝑡| − (

(1 − 𝛼)𝑇
2

)

𝛼 𝑇
) .                           (10) 

By introducing the Meyer auxiliary function  𝑣(𝑥) , the inner 

argument of the cosine must be modified as  

                   𝑃𝑅𝐶(𝑡) = 𝑣 (
|𝑡| − (

(1 − 𝛼)𝑇
2

)

𝛼 𝑇
).                        (11) 

The RRC pulse shaping filter is defined as 

                                  𝑔𝑅𝑅𝐶(𝑡) = √𝑔𝑅𝐶(𝑡).                                 (12) 

B. Flipped-hyperbolic secant (Fsech) 

The improved Nyquist pulse shaping filter proposed in [20], 

by following [20], first we consider the flipped-hyperbolic 

secant (Fsech) pulse shaping filters. The time-domain 

expression is obtained by interchanging independent frequency 

variable with the time variable is given by 

𝑔(𝑡) =

{
 
 
 
 

 
 
 
 1,                                                               |𝑡| ≤

(1 − 𝛼)𝑇

2
 

 1 −   𝑠𝑒𝑐ℎ (𝜌𝑃1𝐹𝑠𝑒𝑐ℎ(𝑡)) ,
 (1 − 𝛼)𝑇

2
< |𝑡| ≤

𝑇

2
 

 

   𝑠𝑒𝑐ℎ (𝜌𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡)),     
𝑇

2
 < |𝑡| ≤  

 (1 + 𝛼)𝑇

2

0,                                                           
 (1 + 𝛼)𝑇

2
< |𝑡|

 

(13) 



where 𝑠𝑒𝑐ℎ is the hyperbolic secant function, 𝜌 = 𝑙𝑛(√3 + 2)/

𝛼 ×
𝑇

2
,  𝑃1𝐹𝑠𝑒𝑐ℎ(𝑡) and  𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡) is the inner arguments of the 

hyperbolic secant function written as   

                     𝑃1𝐹𝑠𝑒𝑐ℎ(𝑡) = ((
(1 + 𝛼)𝑇

2
) − |𝑡|),                   (14) 

and 

                  𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡) = (|𝑡| − (
(1 − 𝛼)𝑇

2
)).                     (15) 

When we introduce the Meyer auxiliary function 𝑣(𝑥), inner 

arguments of the hyperbolic secant function 𝑃1𝐹𝑠𝑒𝑐ℎ(𝑡)  and 

𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡)  must be modified as  

                𝑃1𝐹𝑠𝑒𝑐ℎ(𝑡) = 𝑣 ((
(1 + 𝛼)𝑇

2
) − |𝑡|),                     (16) 

and 

                𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡) = 𝑣 (|𝑡| − (
(1 − 𝛼)𝑇

2
)).                     (17) 

C. Flipped-inverse hyperbolic secant (Farcsech) 

Another considered improved Nyquist pulse shaping filter is 

that proposed in [20] that is known as flipped-inverse hyperbolic 

secant (Farcsech). The time-domain expression of Farcsech 

pulse shaping filters is obtained by interchanging independent 

frequency variable with the time variable is given by 

𝑔(𝑡) =

{
 
 
 
 

 
 
 
 1,                                                          |𝑡| ≤

(1 − 𝛼)𝑇

2
 

𝑎𝑟𝑐𝑠𝑒𝑐ℎ (
1

𝜌
 𝑃1𝐹𝑎𝑟𝑐𝑠𝑒𝑐ℎ(𝑡)) ,    

 (1 − 𝛼)𝑇

2
< |𝑡| ≤

𝑇

2
 

 

1 − 𝑎𝑟𝑐𝑠𝑒𝑐ℎ (
1

𝜌
 𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡)) ,

𝑇

2
< |𝑡| ≤

 (1 + 𝛼)𝑇

2

0,                                                           
 (1 + 𝛼)𝑇

2
< |𝑡|

 

(18) 

where 𝑎𝑟𝑐𝑠𝑒𝑐ℎ  is the inverse hyperbolic secant function, 

  𝑃1𝐹𝑎𝑟𝑐𝑠𝑒𝑐ℎ(𝑡) and    𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡)  is the inner arguments of the 

inverse hyperbolic secant function written as   

               𝑃1𝐹𝑎𝑟𝑐𝑠𝑒𝑐ℎ(𝑡) = (|𝑡| − (
(1 − 𝛼)𝑇

2
)),                   (19) 

and 

                  𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡)  = ((
(1 + 𝛼)𝑇

2
) − |𝑡|).                     (20) 

By introducing the concept of the Meyer auxiliary 

function  𝑣(𝑥) , the inner arguments Farcsech pulse shaping 

filters 𝑃1𝐹𝑎𝑟𝑐𝑠𝑒𝑐ℎ(𝑡) and 𝑃2𝐹𝑠𝑒𝑐ℎ(𝑡) are modified as  

                    𝑃1𝐹𝑎𝑟𝑐𝑠𝑒𝑐ℎ(𝑡) = 𝑣 ((
(1+𝛼)𝑇

2
) − |𝑡|)                    (21)  

and 

                𝑃2𝐹𝑎𝑟𝑐𝑠𝑒𝑐ℎ(𝑡) = 𝑣 (|𝑡| − (
(1 − 𝛼)𝑇

2
))                    (22) 

IV. SER ANALYSIS 

In this section, we analyze the SER performance of the 

GFDM system in the case of the ZF receiver. This means that 

self-generated interference is removed on the receiver side but 

noise enhancement can be introduced, depending on the pulse 

shaping filters. The SER performance is evaluated considering 

the AWGN channel for16-QAM modulation technique by 

considering different improved Nyquist pulse shaping filters 

given in [20]. Moreover, we have also considered the concept 

of wavelet to achieve better time-frequency localization of the 

pulse shaping filters, by using the Meyer auxiliary function. A 

comparison of the GFDM SER performance is done for different 

improved Nyquist pulse shaping filters with and without using 

Meyer auxiliary functions.  

The NEF adjusts the equivalent SNR for GFDM at the 

receiver side [22]. Therefore, the SER expression of 16-QAM 

modulation technique for GFDM system transmission over the 

AWGN is written as 

𝑃𝐴𝑊𝐺𝑁 = 2 (
𝜅 − 1

𝜅
)  𝑒𝑟𝑓𝑐(√𝛾) − (

𝜅 − 1

𝜅
)  𝑒𝑟𝑓𝑐2(√𝛾)  (23) 

where, 𝛾 =
3𝑅𝑇

2(2𝜇−1)
 
𝐸𝑠

𝜉𝑁𝑜
, 𝑅𝑇 =

𝐾𝑀

𝐾𝑀+𝑁𝑐𝑝+𝐶𝑐𝑠
, 𝜇  is the number of 

bits per QAM symbol, 𝜅 = √2𝜇  , and 𝑁𝑐𝑝  & 𝑁𝑐𝑠 are the length 

of CP and guard symbol, respectively, 𝐸𝑠  is the average energy 

per symbol, and 𝑁𝑜 is the noise power density of complex 

AWGN. The SER performance of GFDM is severely degraded 

due to the noise enhancement and, therefore, the prototype pulse 

shape must be properly chosen in order to avoid prohibitive 

performance loss due to the NEF. 

V. SIMULATION RESULTS 

Figure 2 shows the time-domain plots of different Nyquist 

pulse shaping filters such as RRC, Fsech and Farcsech for 

different values of roll-off (α) = 0.1, 0.5 and 0.5 and the 

corresponding time-domain filter expressions are obtained by 

interchanging the frequency variable with the time variable. 

After interchanging the independent variable, the corresponding 

time-domain expression of RRC, Fsech and Farcsech pulse 

shaping filters are given in the eqns. (9), (13) and (18) 

respectively. From the Fig. 2, it is clearly visible that by 

increasing the value of α we have larger spread but in case of 

Farcsech pulse shape filter we have almost same band at 

different values of α. 

Figure 3 shows the comparison of SER performance verses 

𝐸𝑠 /𝑁𝑜 of 16-QAM with different pulse shaping filters given by 

eqns. (9), (13) and (18) with and without Meyer for the GFDM 

system transmission over the AWGN channel. A number of 64 



 

Figure 2: Time-domain function of different pulse shaping filters. 

 
Figure 3: SER performance of different pulse shaping filter at α =0.1.

 
Figure 4: SER SER performance of different pulse shaping filter at α = 0.9.  

sub-carriers is considered where on each sub-carrier contain the 

7 sub-symbols with  𝛼 =  0.1 . It is clearly evident from the 

graphs that at 𝛼 =  0.1 , Farcsech pulse shaping filter is the 

optimal one in comparison with the RRC given in [22] and with 

Fsech pulse shaping filter. 

 

Figure 5: SER comparison of RRC and Farcsech with and without Meyer at 10 

dB SNR. 

 
Figure 6: SER comparison of RRC and Farcsech with and without Meyer at 20 

dB SNR. 

Furthermore, if we apply the concept of Meyer auxiliary 

function on these filters given in [20]. We observe the further 

improvements in terms of SER as compared to without Meyer 

auxiliary function. The same type of comparison done in Fig.3 

for 𝛼 =  0.1 is considered in Fig. 4 for 𝛼 =  0.9. It is clearly 

evident from the graphs that at 𝛼 =  0.9 , Farcsech pulse 

shaping filter is the optimal one as compared to the RRC given 

in [22] and Fsech pulse shaping filters but when we apply the  

Meyer auxiliary function on the Farcsech pulse shape filter it 

results in a higher SER, as compared with that without Meyer. 

To investigate the effect of Meyer auxiliary function on the 

Farcsech pulse shaping filter, in the Figs. 5 and 6 we have 

considered two fixed values of the 𝐸𝑠/𝑁𝑜  10 and 20 dB 

respectively. Then, we have plotted SER versus different values 

𝛼 . It can be observed that at low values of 𝛼  Farcsech with 

Meyer performs better than without Meyer while at higher 

values of 𝛼  starting from  𝛼 = 0.65  Farcsech without Meyer 

performs better than with Meyer.  

Similarly in Fig. 7 it is shown SER verses 𝛼 for the Fsech 

pulse shape filter with and without Meyer at 10 and 20 dB of 

Es/N0. In this case for Fsech pulse shaping filter Meyer function 



 
Figure 7: SER comparison of Fsech with and without Meyer at 10 and 20 dB 

SNR 

always provides an improvement in comparison to Fsech pulse 

shaping filter. 

VI. CONCLUSION  

Generalized frequency-division multiplexing is a block 

based multi-carrier modulation scheme that employs pulse 

shaping on a per subcarrier basis. The Improved Nyquist pulse 

shaping filters enables GFDM to achieve better performance in 

terms SER in comparison to raised-cosine pulse shaping filter. 

In this paper, we demonstrate the SER performance over the 

AWGN channel for GFDM using the different improved 

Nyquist pulse shaping filters with Meyer and Meyer auxiliary 

function in the case of zero forcing receiver. Form the given 

Figures it is clearly visible that the improved Nyquist pulse 

shaping filters perform better and when we include the Meyer 

auxiliary function in the improved Nyquist pulse shaping filters 

there is a further improvement in terms of SER. 
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