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Abstract— Teleoperated robotic surgery allows filtering and
scaling the hand motion to achieve high precision during the
surgical interventions. Teleoperation represents a very complex
sensory-motor task, mainly due to the kinematic and Kkinetic
redundancies that characterize the human motor control. It
requires an intensive training phase to acquire sufficient famil-
iarity with the master-slave architecture.

We estimated the hand stiffness modulation during the
execution of a simulated suturing task in teleoperation, with
two different master devices, and in free-hand. Kinematic
data of eight right-handed users were acquired, using elec-
tromagnetic and optical tracking systems, and analysed using
a musculoskeletal model. Through inverse dynamics, muscular
activation was computed and used to obtain the joint torque
and stiffness, leading to end-point stiffness estimation. The
maximal stiffness value and its angular displacement with
respect to the trajectory tangent was computed. The results
show that there is a difference in how the main stiffness axis
was modulated by using the two master devices with respect
to free-hand, with higher values and variability for the serial
link manipulator. Moreover, a directional modulation of the
hand stiffness through the trajectory was found, showing that
the users were aligning the direction of the main stiffness axis
perpendicularly to the trajectory.

I. INTRODUCTION

Robot-Assisted Surgery (RAS) is achieving great out-
comes and feedbacks [1]. Thanks to its advantages, such
as augmented precision due to movement and force scaling,
hand tremor and chopstick effect compensation [2], this
technology has widely spread in the last decade. During
teleoperated robotic surgery, the user interacts with a master
controller that detects the position and motion of his/her hand
and sends it to the slave robot. In comparison with traditional
laparoscopic surgery, in which the tools usually have rigid
shafts constrained to approach the surgery area from the
direction of the incision, thus limiting the surgery tool mo-
bility, the mechanical characteristics of the tools developed
for robotic surgery allows for the reproduction of the human
wrist mobility. These mechanical differences are reflected
in substantial kinematic and motor control differences that
lead to limited correlation between laparoscopic expertise
and robotic surgery skills [3].

To be able to fully exploit the potential of this technique
[4] and take advantage of the tools high dexterity (the
capability of changing the position and orientation of the
manipulated objects to every arbitrary chosen pose), surgeons
have to undergo a long and intensive training phase [5].
During this process, teleoperators have to familiarise with the
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new environment, by means of, for example, compensating
for the absence of haptic feedback [6] or learning how to
fully exploit the 3D visualization. Researchers are trying to
restore the lack of force feedback from the tool tip to the
surgeon hand using different strategies [7], [8], involving
kinaesthetic feedback [9], generating guiding forces [10] and
actively changing the manipulator characteristics to help the
surgeons [11], [12]. While these studies will help in narrow-
ing the gap that exist between free-hand and teleoperated
surgery [13], a better understanding of the kinematic and
kinetic strategies that define the human interaction with the
master controller could potentially suggest new solutions to
improve the surgeon’s experience.

Teleoperation is a challenging task for the human mo-
tor control system, encompassing the management of the
intrinsic redundancy of the neuro-muscular-skeletal system.
In fact, from a kinematic standpoint, the human arm can be
modelled as a seven degrees of freedom (DoF) redundant
manipulator, which allows to theoretically assume infinite
joint configurations to achieve the same hand position and
orientation. Moreover, from a kinetic standpoint, a large
set of muscular activations produce the same motion, but
involving different levels of arm stiffness. The different ways
the central nervous system manages these redundancies are
decided by human motor control strategies.

A promising approach in the study of the teleoperators’
kinematic redundancy has been recently presented by Nisky
et al. [14], [15]. The authors studied the arm joint config-
uration in repeated reaching tasks performed with the Da
Vinci Si surgical system (Intuitive Surgical, Mountain View,
California) and in free-hand, comparing not only the task
precision performance in terms of end-effector control, but
also the arm configuration variability. Through the Uncon-
trolled Manifold (UCM) analysis the authors were able to
distinguish between two joint variability components: one
that helped the expert users in hand stabilization and another
that captured residual noise. Using the UCM analysis, the
authors were able to weight the users’ joint variability into
task relevant and irrelevant manifolds, showing that expe-
rienced surgeons were able to maximise the ratio between
task-irrelevant and task-relevant variability.

The central nervous system, while handling kinetic re-
dundancy, is able to control the mechanical impedance of
the arm also through mechanisms as muscle co-contraction.
Teleoperation is usually characterized by slow and precise
movements that can be divided in subsequent joint con-
figurations, each characterized by a mechanical impedance
dominated by stiffness.



Several studies measured the arm stiffness resulting from
small hand displacement in stationary and dynamic condi-
tions [16],[17], underlying the body capabilities of restoring
a desired configuration after being subjected to external
perturbation. Stiffness is a measure of arm stability against
noise and perturbation and its modulation has been studied
during the execution of multijoint tasks requiring accuracy
[18][19]. Other researches [20] also found that the arm
stiffness decreases during multiple executions of the same
tasks as far as the users learn. These results suggest that
stiffness and, more in general, impedance control is a key
factor in the process of learning and mastering the execution
of a specific task.

Previous studies obtained the arm end-point stiffness
applying known displacements to the subjects hand using
robotic handles and acquiring the force exchanged by the
hand with the robotic handle [21] [22]. Others evaluated the
arm stiffness by analysing surface EMG activity of antagonist
muscles [23]. In our study we propose a comparison between
the arm end-point stiffness computed using musculoskeletal
models during the execution of a 3D task with different
master devices in teleoperation and in free-hand. Using free-
hand as a reference of the most natural and transparent
controlling strategy, stiffness values and principal direction
were compared and correlated with the task execution per-
formance.

II. MATERIALS AND METHODS
A. Task

The task was designed with the aim of recreating the
wrist movement performed during suturing, where the needle
is inserted through the tissues with a wrist rotation. Users
were asked to follow an U-shaped trajectory with a ring-
terminating tool and to sweep the ring on the path while
keeping the ring centre as more aligned as possible with the
trajectory. The shape and length of the path were grossly
estimated reaching a compromise between wrist activation
and task feasibility.

1) The Virtual Task

Fig. 1(a) shows the virtual trajectory: the starting point,
in the rightmost position of the trajectory, is markerd with a
green sphere, the user had to reach the red sphere on the left.
During the task execution, users were given visual feedback
which consisted in a change of the trajectory color based
on the distance between the center of the tool ring and the
trajectory: from light green, when the trajectory is in the
middle of the ring, to red, when a collision was detected.

The virtual task was developed using V-Rep (Coppelia
Robotics GmbH, Zrich, Switzerland), a robot simulation
program that can be interfaced through the Robotic Operating
System (ROS) [24] network with the master devices involved
in the test and with the data acquisition framework.
2) The free-hand Task

In order to recreate the same task for the free-hand
movements, the trajectory was realised using a wooden base
and coated metal wires that were shaped to assume the same

Fig. 1. The complete setup: (a)The virtual reality trajectory. (b) The free-
hand task: 1. Base 2. Metal wire trajectory 3. EMT Pointer 4. 3D Printed
ring end-effector (c) The serial link master device (SL). (d) The parallel
link master device (PL).

dimensions and shape of the virtual one . The user performed
the task using a tracked fast prototyped tool with the same
dimensions as the virtual one (see Fig. 1(b)).

B. Experimental protocol

Eight users (3 males, 5 females, 24 4 1.3 year old) were
recruited during the experimental campaign; all of them were
right-handed novices with no surgical experience and no
previous experience with haptic interfaces or teleoperation.
This study was carried out in accordance with the recommen-
dations of our institution with written informed consent from
the subjects in accordance with the declaration of Helsinki.
Each user performed 10 repetitions of the task with three
control modalities:

1) Parallel Link robot (PL)

2) Serial Link robot (SL)

3) Free-hand (FH)

The users were given information about how to control the
device and about the visual and haptic feedback that they
were going to receive. In PL and SL the users had 5 to 15
minutes to gain a sufficient acquaintance with the control and
with the virtual environment. During FH, the initial training
time was limited to about 1 minute.

In PL, SL and FH, the users were instructed to find a
compromise between task execution time and accuracy.
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C. Master devices

To control the tool position and orientation in the virtual
reality, two haptic devices were used. In both cases the use of
a clutch was adopted to enlarge the robots’ workspace. For
both master devices a scaling factor of 0.5 was applied to the
hand movement for the reconstruction of the tool position
in the virtual scenarios. The Phantom Omni (3D Systems,
South Carolina, USA) haptic device (Fig. 1(c))(workspace
160x120x70mm) was used as SL. The device is characterized
by six dof with a stylus end-effector. The device is not
gravity compensated and has a resolution of 0.055mm. An
external pedal was used as clutch. As a controller, we used
a custom developed impedance controller [25] based on
the proprietary APIL. For PL, a gravity compensated Force
Dimension Sigma.7 (Force Dimension, Nyon, Switzerland)
haptic device (Fig. 1(d)) (workspace ©190x130mm) was
used. The robot is characterized by 6+1 DoF delta based
parallel kinematics with hand-centered rotation, it has a
resolution of 0.0015mm and 0.013deg. An external pedal was
used as a clutch. The device used the proprietary impedance
controller.

D. Acquisition architecture

A custom data acquisition framework was developed to
acquire, synchronize and record the different signals. Fig. 2
shows the ROS based acquisition framework, which allowed
to assign a network timestamp at each sampled signal.

The component functionalities were monitored through a
simple graphic interface, and they were running on three
different computers, all based on Ubuntu 14.

The position of the arm was measured using an electro-
magnetic tracker (EMT) (Aurora - Northern Digital, Ontario,
Canada, 30Hz samplig rate, 0.48mm and 0.3deg position and
orientation RMSE, 500mm dome shaped radius workspace).
The system tracks four 6 DoF 1.8x9mm sensors.

Due to its limitation in both the maximal number of
electromagnetic markers and the field dimension, the EMT
system was coupled with an optical localization system
(OPT) (Vicra - Northern Digital, Ontario, Canada, 20Hz
sampling rate, 0.25mm position RMSE) that was used to

acquire the thorax position. Three passive retroreflective
markers were attached to the right and left acromions and
beside the jugular notch. In order to register the data from the
two tracking devices (EMT and OPT) an hand-eye calibration
[26] was used. In order to perform the registration, a OPT
tool (REF) was attached to the EMT field emitter. The
homogeneous matrix that were computed, REFT oW om, maps
the transformation that brings the EMT reference frame on
REF reference frame (see Fig. 3).

In the teleoperated tasks (PL and SL), the distance between
the tool center and the closest point on the trajectory was
computed in the virtual environment. In order to obtain
this metric also in FH, an OPT tool (Base) was fixed to
the wooden base at which the metal trajectory is rigidly
connected (see Fig. 1(b)-1). 50 Points on the trajectory were
acquired using the OPT pointer, and these coordinates were
interpolated with a second order polynomial. The tool ring
centre was recorded using an EMT pointer (see Fig. 1(b)-3)
directly handled by the user terminating with a 3D printed
ring tool (see Fig. 1(b)-4).

E. The musculoskeletal model

The subject musculoskeletal model was implemented in
OpenSim [27]. The model derives from a 15 DoF model from
Holzbaur [28] whose hand grip and fingers kinematic were
fixed, simplifying it into a 7 DoF model. Its performance in
the dynamic prediction were previously demonstrated. [29].
The model is characterised by 50 Hill-type muscle-tendon
actuators, simulating 32 muscle compartments. To fit the
data from the different users that participated in the research,
the model was scaled accordingly with the anthropometric
characteristics, also adapting the different segments mass
proprieties.

In order to be able to integrate the acquired markers data
with the software, during patient calibration, we created vir-
tual markers from the the electromagnetic sensors connected
to the arm, forearm and hand segments (see Fig. 3).

Equation 1 describes the homogeneous transformation
matrices that were used during the acquisition.

Real EMT -1 EMT
o TVirt = ( TReal) . TVirt

)
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Fig. 3. Markers setup: gray points represent EMT markers position, i.e.
arm, forearm and hand; black points are the virtual markers created during
the calibration phase during which the EMT pointer tool was used to touch
two recognisable bony landmarks on each arm segment, while a custom ROS
component acquired the transformation that mapped the touched point in the
EMT marker reference frame of the corresponding segment (Bealy,. ).
Arm and forearm sensors were connected to lateral and medial repere point
of elbow and wrist respectively; the hand virtual sensors were placed on
the index and little finger’s knuckle.

EMTpy, . =FMT Tp o Bedl Ty, )

where 7Ty, . is the transformation matrix that maps
the virtual markers in the real markers reference frame,
EMTT ... is the transformation matrix that maps the real
markers in the EMT reference frame and #M7TTy,,, is the
transformation matrix that maps the virtual markers in the
EMT reference frame.

The inverse kinematic reconstruction was carried on using
the markers trajectories filtered with a second order low pass
Butterworth filter at 4Hz. The inverse dynamic reconstruction
was performed with the joint kinematic data from the inverse
kinematic solution, filtered with the same 4Hz low pass filter.
The simulations were performed on an i5 4670k processor,
operating at 3.8Ghz with 16Gb of DDR3 memory.

F. Stiffness computation

Based on the analysis performed with OpenSim, the joint
torque matrix Kj for each arm configuration during the task
execution was computed. The (k x k) joint stiffness matrix
for the i*" sample of the acquisition can be defined as follows
[30]:

o dr i
a dq;

T; is the (k x 1) vector that represents the joint torques
for the q; vector of joint angles and k is the model’s number
of joints.

The joint torques vector is defined as:

3)

Ji

7; =Jm; - Fm; 4)

Fm; is the (m x 1) vector of the muscle activations (with
m number of muscular units in the model) at the ith sample,
obtained from the inverse dynamic analysis in OpenSim and
Jm; is the muscle Jacobian at the i*"* sample, computed as
follows:

6l1=i all,i 8ll,i
9q1,;  0qa2; Oqk,i
Ola,i Olz,i  Olays
Jm,; = 9q1,i  O0qa, Oqy,i %)
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The muscular Jacobian matrix, Jm;, relates the variations
in muscle length 1; with the variations in joint angular
position q; and can also be seen as the muscle forces moment
arm matrix.

In order to study the stiffness characteristics and to create
a graphical representation in the Cartesian space, the joint
stiffness matrix at the ' sample was converted into the
end-effector stiffness matrix Ke; using the corresponding
Jacobian matrix J; that relates infinitesimal changes in the
Cartesian space into infinitesimal changes in the joint space.

Ke; = J. 'Kj,J;! (6)

From the singular value decomposition (SVD) of Ke; the
translational stiffness property of the arm can be obtained at
each arm configuration. The matrix Ke; has three nonzero
singular values that define the ellipsoids main axes dimension
while the ellipsoid orientation can be obtained from the (3x3)
left singular vectors [30].

G. Results analysis

1) Error: As a measure of the task execution perfor-
mance, in PL and SL the distance (E) between the tool centre
at the ¢t" sample (C;) and the closest point on the trajectory
(CP;) was computed with a sampling frequency of 60Hz (7).

Epri=Esr; =|C; — CPy| (N

where the norm indicates the Euclidean distance. In FH,
through the registration procedure described in Section II-
D, the tool center position was computed with respect to the
trajectory. In order to obtain the coordinate of the closest
point on the free hand trajectory (CPFH;), the Quickhull
algorithm [31] was used to find the closest point between
the interpolated curve and each tool position C; (see (8)).

Erp; =|/C; — CPFH;|| ®)

The data distribution normality was tested using the Lil-
liefors test with a significance level («) of 0.01. Since no
significant difference was found in the error distribution
among users (Kruskal-Wallis H test « = 0.001), we grouped
all the trials and users for each control modality into a
single population. The differences between the three control
modalities were evaluated through a post-hoc multivariate
analysis using the Willcoxon rank sum test (v = 0.001).

2) Stiffness ellipsoids - Main axis length: Fig. 4(a) rep-
resents the stiffness ellipsoid obtained in FH task execution.
The ellipsoid main axis length (K4, ) was computed for six
points (P1 <+ P6) along the trajectory (see Fig. 4(b)).

The population normality was tested using the Lilliefors
test (aw = 0.01). Since no statistical difference was found
between different users and repetitions (Kruskal-Wallis H
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Fig. 4. The computed ellipsoid (in blue) is overlapped to the muscoloskele-
tal model at a specific point on the trajectory (in red). (a) The main axis
dimension K,z and its angle with the tangent to the trajectory ¢ are
monitored through the different users task repetitions. (b) The six points
along the trajectory

test & = 0.001), the K,,q, values for each point through
the users and repetitions were grouped together. We grouped
the data from the six point along the trajectory together,
evaluating the statistical differences between the three control
modalities using multiple Willcoxon rank sum tests (o =
0.001).

3) Stiffness ellipsoids - Angular displacement: The angle
between the main axis and the tangent to the trajectory ()
was computed for the same six points (P1 + P6). The
value was computed obtaining the vector tangent to the
desired trajectory in the six points and the vector representing
the instantaneous end-effector direction of motion. Since no
statistical difference was found between different users and
repetitions (Kruskal-Wallis H test o = 0.001), the angular
displacement ¢ values for each point through the users and
repetitions were grouped together. The existence of possible
parabolic trends in the angular displacement through the
trajectory was evaluated using a second order polynomial
regression.

III. RESULTS
A. Error

Fig. 5 shows the error data distribution in the three control
modalities (PL, SL and FH). PL median error is statistically
lower that SL and FH (p < 0.001 ). In general, teleoperation
(PL and SL) allowed the users to execute the task with higher
accuracy with respect to free-hand.

B. Stiffness Ellipsoids - Main axis length

Fig. 6 shows the distribution of the maximal end-point
stiffness in the six trajectory points and the three controlling
modalities. The results obtained show that, during tasks
execution, a parabolic trend could be seen in all the control
modalities: while for SL and FH the maximal values seems
to be occurring for the central point of the trajectory (P3 and
P4), this trend is opposite in PL, where at the central points
of the trajectory correspond the smallest values of maximal
stiffness.
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Fig. 6. The maximal hand stiffness in the six points of the trajectory for the
parallel link robot, for the serial link robot and for free-hand. Boxes indicate
the 25" and 75%" percentiles, vertical dashed lines indicate the maximal
values and the horizontal dashed lines represent the median values of the
three populations. The horizontal lines at the top of the graph describe the
statistical difference between the control modalities when all the six points
are considered together, as in Table I. One star correspond to p < 0.05,
two stars to p < 0.01

Table I reports the stiffness maximal values K,,,, dis-
tributions for the six points grouped in the three control
modalities. The median values are also reported as dashed
lines in Fig. 6 (PL = 0.21 N/m, SL = 0.32 N/m, FH = 0.12
N/m).

The results show that SL. maximal stiffness values are
statistically higher from both PL (with a p < 0.05) and FH
(p < 0.01).

C. Stiffness Ellipsoids - Angular displacement

Fig. 7 shows the evolution of the angle ¢ in the six points
of the trajectory for the three control modalities. Analysing
the angular displacement results, a parabolic trend can be
found in the median values obtained through the six points



TABLE I
MAXIMAL STIFFNESS Kmaq IN THE THREE CONTROL MODALITIES

Parallel Link Robot  Serial Link Robot  Free-hand

PL SL FH
Min: 0.00 N/m 0.00 N/m 0.00 N/m
25tk p.: 0.04 N/m 0.04 N/m 0.04 N/m
Median: 0.21 N/m 0.32 N/m 0.12 N/m
75th p.: 3.60 N/m 4.00 N/m 0.71 N/m
Max: 5.55 N/m 8.73 N/m 1.45 N/m

on the trajectory. The R-square indexes obtained for PL, SL
and FH are respectively 0.32, 0.43 and 0.66 (Fig. 7 - dotted
lines).

This behaviour, which is particularly clear in the free-
hand control, tends to align the stiffness main axis in order
to make it perpendicular to the desired direction of motion
in correspondence to P3 and P4, the central points of the
trajectory.
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Fig. 7. The angle between the maximal hand stiffness direction and the

tangent to the desired trajectory in the six points for the three control
modalities. The points represent the median values, while the vertical lines
represent the 25%h and 75'h percentiles. The dotted line represents the
second order polynomial regression, with the corresponding R? values
associated.

IV. DISCUSSION

In this work we studied the arm end-point stiffness as
a measure of the impedance control strategies adopted by
the central nervous system to stabilize the hand movement
in three tasks, in teleoperation, executed with two master
devices, and in free-hand. A task mimicking suturing was
realised in a virtual and real environment;

As expected, we found that the error metric results reflect
the strength of the teleoperation scenario in reducing the
influence of the hand control variability: the tasks error are
smaller in teleoperation with respect to free-hand thanks to
the motion scaling and the color feedback that was used to
finely adjust the tool position.

By analysing the results obtained in the K,,,, modula-
tion, there are significant differences between the control
modalities. In SL control modality only, the users were

exploiting the pivoting stylus to execute the trajectory. In PL,
instead, the rotations were hand centred, as in FH, where
the dimensions of the tool and its weight discouraged the
users from executing the task mainly activating the wrist
joints. It is possible that the presence of this “lever” in SL
forced the users to increase the arm stiffness to achieve good
performance. This result suggests that hand-centred rotations
in the manipulator allow the users to achieve statistically
higher kinematic performances while eliciting lower arm
stiffness. Since lower arm stiffness values are obtained with
lower levels of muscular activation, hand-centred rotating
master devices could reduce the users’ muscular fatigue and
should therefore be preferred.

Regarding ¢ modulation, in FH the regression curve ob-
tained is partially able to fit the data, suggesting the possible
existence of a parabolic behaviour. This behaviour could be
the result of a motor strategy that aims at maximising the
hand resistance to external perturbation that would directly
influence the task execution while maintaining minimal stiff-
ness in the direction of motion. The maximal values of ¢
are achieved in P3 and P4, where the users had to change
their wrist configuration to follow the trajectory curvature;
from this result it seems that the users were relying on
the directional control of stiffness in particular in the most
challenging part of the trajectory. If this evidence would
be confirmed by more in depth researches, it would be
possible to actively use the master devices’ force feedback
to increase the stiffness on the directions perpendicular to
the motion, reducing the total muscular activation requested
to the arm. Future works will also test the hypothesis of
stiffness regulation with respect to motion direction in order
to understand how the master devices design could influence
the possibility of putting this motor strategy into practice.

The first limit of this work can be found in the high
variability of the data related to the stiffness ellipsoids. Both
the maximal stiffness K., and the angular displacement ¢
suffer from high interquartile dispersion inter and intra users.
A reason for this behaviour could be found in the complexity
of the tasks, that represents a difficult precision task, and
presents different challenges for each user. In spite of the
task being simplified from a previous set of acquisition,
this variability, even though reduced, still persist. An other
limitation can be found in the joint stiffness computation, that
does not take into consideration possible voluntary muscle
co-contractions.

Even though it presents some limitations, this study rep-
resent a novel approach to the study of the human robot
interaction in teleoperation. The results obtained could be
used as an optimization goal for the design of new master
devices.

V. FUTURE DEVELOPMENTS

Starting from this results, it would be desirable to extend
the analysis to more subjects and more trajectories, creat-
ing task on different planes to test the users capability in
modulating the hand stiffness orientation.



An interesting future development will be the comparison
between the stiffness computation method presented in this
work and other methods: for example, during the tasks
execution, known external forces could be applied, acting
as random perturbations on the users hand; the measured
displacement induced in the hand position could be used to
directly compute the hand stiffness. Another possible com-
parison could be done with the methods that use electromyo-
graphy signals to evaluate the arm stiffness. It would also be
interesting to acquire the electromyographic activation of the
muscles that control the upper limb movements, performing
a co-contraction analysis aimed at finding a physiological
correspondence to the analytical stiffness modulation that
was found.
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