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Abstract In this paper, we show that even an 
extremely simple nonlinear vehicle and driver model 
can show complex behaviors, like multi-stability and 
sensible dependence on the initial condition. The 
mechanical model of the car has two degrees of free-
dom, and the related equations of motion contain the 
nonlinear characteristics of the tires. The driver model 
is described by a single (nonlinear) equation, charac-
terized by three parameters that describe how the driver 
steers the vehicle. Namely such parameters are the gain 
(steering angle per lateral deviation from desired path), 
the preview distance, and the reaction time delay. Bifur-
cation analysis is adopted to characterize straight ahead 
motion at different speeds, considering separately the 
two cases of understeering or oversteering cars. In the 
first case, we show that at suitable speeds the model can 
have three different attracting oscillating trajectories on 
which the system can work and that are reached due to 
different disturbances. In the second case, we confirm 
that instability arises if the forward speed is too high. 
The final results of the paper, bifurcation diagrams, can 
be used for many considerations critical both from the 
theoretical and from the practical viewpoints.
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1 Introduction

Even if straight ahead motion is the most frequent run-
ning condition, accounting for cars 98% of the trav-
elled distance, the literature devoted to such a topic,
looking in particular to the arising nonlinear phenom-
ena, is far from be completed [1–5]. Unexpected hard
lateral disturbances to the vehicle are one of the most
important causes of accident, so that in Europe a num-
ber of tracks exist with the aim to train drivers in coping
such phenomena [6–8]. In particular, it is important to
understand not only how the vehicle behaves (i.e., if
the vehicle can or cannot maintain a straight line tra-
jectory), but also how drivers react in order to return
to the desired straight trajectory they have to follow. In
fact, vehicle–driver interaction, intrinsically part of the
same system (the problem can be naturally recasted as
a human-in-the-loop system), dramatically influences
the overall behavior of the system. In this paper, we
propose to analyze both the model of the vehicle and
the vehicle+driver model.

In the literature, mathematical modeling of vehicle
dynamics is often carried out looking at linear mod-
els [9–20], while only few papers and almost no text-
books deal in-depth with the analysis of nonlinear car
models [3–5]. It is known that understeering vehicles
can recover straight ahead running condition indepen-
dently from the forward velocity (for small distur-
bances), while oversteering vehicles generically have a
threshold speed after which even an infinitesimal dis-
turbance causes the vehicle tomiss the aimed trajectory.Received: 28 October 2016
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To obtain such a simplified model, the main assump-
tions are:

• the forward speed u is constant or varies much
slower than the lateral velocity v of the vehicle;

• the center of gravity lies at the ground level;
• the vehicle body is modeled referring to its longi-
tudinal axis;

• the resultant of the forces acting at the front and
rear axles is applied at the centers of the axles;

• the slip angles αi , i = 1, 2, and the steering angle
δ (see Fig. 1) are small;

• no longitudinal forces are acting at the wheels (i.e.,
we neglect Fx1 and Fx2 depicted in Fig. 1).

Under the above hypothesis, the equations of motion
with respect to the reference system of the vehicle read

m(v̇ + ur) = Fy1 (v, r) + Fy2(v, r)

Iz ṙ = Fy1 (v, r) a − Fy2(v, r) b (1a)

where dots stand for time-derivative, u and v are the
longitudinal and lateral speeds, respectively, r is the
yaw rate, subscripts 1 and 2 refer, respectively, to the
front and rear axle, Fyi is the lateral force on the i th

axle, m is the vehicle mass, a and b are the distances,
respectively, of the front and the rear axle centers from
the vehicle’s center of mass, Iz is the moment of inertia
of the vehicle around the vertical axis at the center of
gravity. The front and rear slip angles can be obtained
through the following equations:

−α2 = (v − rb) /u δ − α1 = (v + ra) /u. (1b)

The nonlinear dynamics of the model is embedded in
the reaction functions of the tires [3,9]. Such lateral
forces Fyi (αi ) (i = 1, 2) can be expressed as func-
tions of the slip angles αi [9] and are highly nonlinear.
They typically saturate, i.e., lateral forces stop increas-
ing if slip angles get high, as depicted in the right panel
of Fig. 1. These nonlinear functions can have very dif-
ferent shapes, depending on tire size, tire pressure, tire
temperature andwear, car center of gravity location, car
mass, suspension kinematics, driving axle, torque dis-
tribution between the two wheels of the same axle, …
(for a comprehensive description see [10]). The vehi-
cle model behavior critically depends on these nonlin-
ear functions [3]. In this paper, we analyze only two
simple cases (monotonically increasing, not intersect-
ing characteristics, i.e., the ones depicted in the right
panel of Fig. 1) and we switch between understeering

These studies however analyze vehicle stability using 
local systems coordinates (on the vehicle itself), and 
therefore cannot cope with the real cases in which a 
particular—straight or bend—trajectory should be fol-
lowed by a human or autonomous driver. In this paper, 
we gather some of the results given in [3,5,21] (refer-
ring only to straight ahead running condition), high-
lighting that nonlinear dynamical phenomena (like per-
sistent periodic oscillations and sensible dependence on 
initial conditions) can arise even assuming the simplest 
driver model.

The paper is organized as follows. First we introduce 
and validate the system models of the car and of the 
driver, depending on the two main tire characteristics 
we already discussed (understeering and oversteering 
vehicles). Then we analyze what models predict, refer-
ring only to straight ahead motion. The tool used for 
this analysis is bifurcation theory [22–24]. Bifurcation 
theory is proposed because it is able to obtain global 
information about the system dynamics (e.g., the pres-
ence of other attractors, robustness, shape of the basin 
of attraction, …) looking at local phenomena (stabil-
ity loss of a specific attractor). We therefore discuss 
the obtained results and propose directions for further 
research.

2 System model

In this section, we propose two mathematical models, 
one for the vehicle and one for the car + driver systems. 
The models we propose are as simple as possible, they 
contain only the essential characteristics needed for 
the description of both vehicle stability and the driver 
action to follow a given path. They are simple enough to 
allow an in-depth analysis. More complex (and more 
realistic) models can be proposed, but their analysis 
could be cumbersome. Validations of the simple pro-
posed models are produced in the next section, showing 
that although the simplification hypotheses are strict, 
the models reproduce sufficiently well the actual vehi-
cle and car + driver behaviors.

2.1 Vehicle model

The vehicle mechanical model analyzed in this paper 
is the well-known two degrees of freedom single-track 
model [3,9,11,25,26] shown in the left panel of Fig. 1.



Fig. 1 Left panel representation of the single-track model. Right panel tire characteristics of the analyzed vehicles

Table 1 Considered vehicle and tire parameters

Vehicle Front tire Rear tire

Mass m 950kg UN OV UN OV

Principal inertia moment Iz 1100 kgm2 B1 10 10 B2 10 10

Wheelbase l 2.46m C1 1 1 C2 1 1

a 0.95m E1 0 0 E2 0 0

b 1.51m μ1 0.9 0.7 μ2 0.7 0.9

(UN) or oversteering (OV) vehicles simply switching
the front with the rear tires nonlinear functions. The
analytic expression of those functions, known asmagic
formulae [9] is:

Fyi (αi ) = Di sin (Ci arctan (Biαi

−Ei (Biαi − arctan (Biαi )))) (1c)

where D1 = μ1 (mg/ l) b, D2 = μ2 (mg/ l) a, μ1

and μ2 are the friction coefficients, while parameters
Bi , Ci , Ei , (i = 1, 2) shape the nonlinear functions.
The parameter set can be divided into three subsets:
the vehicle parameters (m, Iz , a, b, l = a + b), the
tire parameters (μi , Bi , Ci , Ei , i = 1, 2), and the
parameters (u, δ) which represent the running condi-
tions (Table 1).

The equilibrium of model (1) (no driver control) is
represented by (v, r) = (0, 0) and refers to a straight
ahead running condition; the vehicle is running ahead
on an undefined straight line. After a disturbance, if the
system (without any control) comes back to the equi-
librium, the straight line on which the vehicle runs is
virtually different, both in slope and in position. If one
wants to cope with the real case in which a driver must

follow a specific straight trajectory (say, follow a line
Y = tan θX , where θ is the angle between the straight
trajectory and the X axis, see Fig. 1), the model’s ref-
erence system cannot be on the vehicle: We can always
set, without losing generality, θ = 0. In this case,
we can assume that Ẋ � Ẏ (and therefore u ∼ Ẋ).
Under this hypothesis, model (1) can be rewritten as
[13,14,21]

m Ÿ = Fy1(θ, θ̇ , Y ) + Fy2(θ, θ̇ , Y )

Iz θ̈ = Fy1(θ, θ̇ , Y ) a − Fy2(θ, θ̇ , Y ) b (2a)

where the double dots stand for second time-derivative
of the vertical position and the trajectory angle, while
the slip angles should be shifted taking into account the
(nonstationary) trajectory’s slope, i.e.,

θ − α2 = Ẏ − bθ̇

u
, δ + θ − α1 = Ẏ + a θ̇

u
(2b)

Note that the obtained model has now three state vari-
ables, namely

(
Ẏ , θ, θ̇

)
.



2.2 Driver model

We derive the simplest possible driver model, inspired
to what was proposed in [4,5,10,11,21,27,30]. In this
case, the model we analyze is the well-known path fol-
lower [10]. Summarizing its derivation, we first assume
that the driver inside the car is able to see a point
L forward beyond the current position of the vehicle
and, exploiting such a point, he/she is able to estimate
the deviation of the future position of the vehicle with
respect to a reference path (Xref , Yref)

e =
(
X
Y

)
+ L

(
cos θ

sin θ

)
−

(
Xref

Yref

)

(note that, in general, e is a two-dimensional vector)
and that the driver reacts with a gain kp to this error
with a delay τr , i.e.,

δ (t + τr ) = kp e (t) . (3a)

Since we want to analyze only the straight ahead run-
ning, at steady state we can use a reference system in
which Xref can assume any value, while Yref has a pre-
cise constant value. We then assume that the driver has
a delay in his/her reaction, and that it is possible to
approximate this delay with the linear term of its Tay-
lor expansion (this approximation is acceptable since
the frequency at which a human can vary the steering
angle does not exceed 3Hz). So the final model of the
driver simplifies to the differential equation:

τr δ̇ = −δ + h(Y + L sin(θ) − Yref). (3b)

The path follower is the simplest driver model. How-
ever, it is quite common to consider the reaction of the
driver not only proportional to the error, but also con-
sidering how the error is changing (derivative feedback)
[10]. In this case, equations (3) become

δ (t + τr ) = h e(t) + kd ė(t)

τr δ̇ = −δ + kp(Y + L sin(θ) − Yref)

+ kd(Ẏ + L θ̇ cos θ). (4)

In this paper, we first analyze an autonomous driver (3),
and then we will homotopically increase the deriva-
tive gain kd in order to understand the effect of a
more human-like driving behavior. The driver param-
eters used in the following for the analysis are taken
from the literature (see, e.g., [4,5,11,21,27]) and are
τr = 0.2 s, kp = 0.02 rad

s , L = 12m. Note that

human drivers are able to adapt their parameters to
maintain stability, or change their parameters in dif-
ferent driving conditions: Also in this case, we assume
that driver parameters change slower than the lateral
dynamics of the vehicle (and so we assume they are
constant at constant forward speed u).

2.3 Car+driver model

We now couple the vehicle and the driver models
to obtain a human-in-the-loop system. Since in this
paper, we are only interested in the lateral dynam-
ics, we assume that the driver cannot change his/her
forward speed u (that will be treated as a parame-
ter), while the steering angle δ is changed according
to model (3) or (4). The complete model has five vari-
ables (Y, Ẏ , θ, θ̇ , δ) and reads

m Ÿ = Fy1(θ, θ̇ , Y ) + Fy2(θ, θ̇ , Y )

Iz θ̈ = Fy1(θ, θ̇ , Y ) a + Fy2(θ, θ̇ , Y ) b

τr δ̇ = −δ + h(Y + L sin(θ) − Yref). (5)

This could be the case of an autonomous path follower.
Referring to a more human-like behavior, we write

m Ÿ = Fy1(θ, θ̇ , Y ) + Fy2(θ, θ̇ , Y )

Iz θ̈ = Fy1(θ, θ̇ , Y ) a + Fy2(θ, θ̇ ,Y ) b

τr δ̇ = −δ + h(Y + L sin(θ) − Yref)

+ kd(Ẏ + L θ̇ cos θ). (5a)

The desired equilibrium of themodel,
[
Y, Ẏ , θ, θ̇ , δ

] =
[Yref , 0, 0, 0, 0], represents a driver that follows a pre-
cise straight line trajectory with increasing abscissa
(with velocity Ẋ = u) and constant ordinate Y = Yref .

3 Validation

Two different validations of the simple models intro-
duced in the previous section have been performed. The
first validation is reported in the top panel of Fig. 2 and
refers to a car running on a race track (for more details
see [5]).

The second validation refers to tests performed at
the ACI test track in Milan (Lainate), Italy. A severe
yaw vehicle motion is excited by a kick-plate acting
at the rear axle of the car at a certain time instant as
the car is running straight ahead. The driver is heav-
ily involved in controlling the yaw motion, to avoid



Fig. 2 Validation of system model (1) (top panels), and driver model (3) (bottom panels). Adapted from [5,21]

a complete spin. Driver parameters are then estimated
through a nonlinear optimization algorithm. The results
of this experiment are reported in the bottom panel of
Fig. 2 (for more details see [21]). The mathematical
models are implemented in MATLAB/Simulink: With
these validations, we show that even the simple models
we proposed can reasonably handle real data (the error
that is found is not too high).

4 Fixed steering angle model analysis

The easiest (but not the only!) way for a vehicle to
go straight ahead is with the steering angle fixed at
δ = 0. In this case, we can analyze model (1) looking
at the stability of the trivial equilibrium (v, r) = (0, 0)
for different values of forward speed u. The linearized

analysis [9–11] says that in the UN case, the equilib-
rium is always stable, while for the OV case, a maxi-
mum velocity exists (uP = 99.3km/h in our case) at
which the equilibrium becomes unstable: This quali-
tative change is called bifurcation. Bifurcation theory
[3,24,25] allows us to analyze the influence of nonlin-
ear terms of the model locally with respect to the bifur-
cation point.We can classify that point as a catastrophic
pitchfork bifurcation point, discovering that two saddle
equilibria, whose stable manifolds, before the bifurca-
tion, limit the basin of attraction of the stable equilib-
rium, and then they collide and disappear at the bifurca-
tion. By means of a continuation algorithm [22,23], it
is possible to summarize the obtained results in Fig. 3,
where the possible asymptotic regimes (stable—solid
and unstable—dashed) are shown in the phase space
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Fig. 3 Bifurcation diagrams of model (1) for the UN (left) and the OV (right) tire nonlinear functions in Fig. 1. Solid line stable
equilibria. Dashed lines unstable equilibria
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Fig. 4 Three different state portraits of model (1) with OV tire characteristics

disturbance can cause a stability loss, a typical issue of
catastrophic bifurcations.

5 Car+driver model analysis

The analysis presented in the previous section can be
performed for the car+driver model (5). A projection
in the (Y, θ, u) subspace of the results of such an anal-
ysis is presented in Fig. 5.

On the left panel, the case with an understeering car
(UN) is shown. It is possible to note immediately, as
previously discussed, how the presence of a driver and
the need of targeting a particular trajectory dramatically
changes the final expected behavior.

As a first remark, we note that introducing the
driver’s dynamic (i.e., control action)makes the straight

(α1, α2) for different values of the parameter u. In the  
left panel, the UN case is shown: As expected, no other 
equilibria are present, and the trivial equilibrium is 
globally stable. In the right panel, the OV case is shown: 
In this case, three equilibria are present if u < u P , the  
trivial one is stable while the other two are unstable 
(saddles). If u approaches the bifurcation value, the two 
unstable equilibria approach the stable one, and then 
they collide and disappear. After the bifurcation, the 
trivial equilibrium becomes unstable. To better under-
stand this phenomenon, the phase space of this last case 
is shown in Fig. 4 for three increasing values of u. Note  
how the stable manifold of the saddles (e1 and e2 in the 
figure) delimit the basin of attraction (gray in the figure) 
of the 0 equilibrium (e0 in the figure). Approaching the 
catastrophic pitchfork bifurcation, the basin of attrac-
tion of the stable equilibrium shrinks, and even a small



Fig. 5 Bifurcation diagrams of model (5) for the UN (left) and the OV (right) cases

ahead running condition unstable if the forward speed
u > uH = 32.4m/s, at which a non-catastrophic Hopf
bifurcation occurs. Being non-catastrophic, it means
that the basin of attraction of the bifurcating solution
is unbounded before the bifurcation, while after the
bifurcation, a stable limit cycle substitutes the previ-
ous stable solution, with an amplitude that vanishes at
the bifurcation point. This means that the driver who
slowly increases the forward speed can realize a smooth
loss of stability without violent dynamics, since ini-
tially the trajectory simply wiggles around the target
(and comes back to the target if u is reduced). Even if
the forward speed is further increased, the amplitude of
the oscillations remains quite small (it starts from zero
at 32.4m/s and will reach about 0.5m at 36m/s), while
the period is about 10 s, i.e., the frequency is about
0.1Hz (these last two data cannot be seen in Fig. 5).
At u = 33.8m/s a saddle-node bifurcation of limit
cycles occurs (SNC2a in Fig. 5). If 33.8< u <38.2m/s
the model predicts two possible asymptotic behaviors,
actually there are two stable limit cycles, one with big
amplitude (around 7m, with steering angles that oscil-
lates with amplitude around 6◦), and one with small
amplitude (around 1.5m, with amplitude of the corre-
sponding steering angles around 1.5◦). Reaching one
or the other limit cycle depends on the initial distur-
bance (i.e., initial condition). After a small disturbance,
the driver can keep the small amplitude limit cycle,
and on the contrary after a big disturbance, the driver
would be forced to cope with the biggest limit cycle.
At u = 38.2 m/s, another saddle-node bifurcation of

limit cycles occurs (SNC2b in Fig. 5), where the small
amplitude limit cycle disappears and the big amplitude
limit cycle is the only viable attractor. At u = 44 m/s,
another saddle-node bifurcation of limit cycle occurs,
and crashes (i.e., violent dynamics) cannot be avoided.
Note that while all the trajectories can virtually be pro-
duced by the driver, only the ones with lowest ampli-
tude can effectively be attained, since actual oscilla-
tions would be smaller than the street width. Attractor
multiplicity reveals the fragility of those situations that
easily lead to tragedy.

The right panel of Fig. 5 shows the bifurcation anal-
ysis performed for the oversteering case (OV). In this
case, the behavior ofmodel (5)matcheswith the behav-
ior of model (1) depicted in Fig. 3 (right panel): At
uH = 17m/s, a catastrophic Hopf bifurcation occurs,
and the stability of the straight ahead running condi-
tion (obviously stable for forward speed sufficiently
small) is lost. Notice that in this case, the Hopf bifurca-
tion is catastrophic, and thus disturbances cannot be
absorbed by the system if they are sufficiently big,
and the amplitude of dangerous disturbances vanishes
approaching the bifurcation, i.e., stability can be lost
even for u < uH due to a finite disturbance.

Bifurcation analysis can be used not only to partition
the parameter space into regions in which the system
qualitatively behaves in the sameway, but also to deter-
mine the regions in the parameter space in which the
stationary regimehas a sufficiently large basin of attrac-
tion, i.e., it is the only asymptotically stable regime
(global stability) or, alternatively, large disturbances are
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Fig. 6 Bifurcation diagrams in the (u, L) parameter space of model (5) for the UN (left) and the OV (right) cases
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Fig. 7 Bifurcation diagrams of model (5a) for different values of kd. Left panel UN case. Right panel OV case

the parameter settings in which the car+driver straight
ahead running condition can be recovered even after a
big disturbance in the position Y (∼10m). Notice that
this analysis suffers from the fact that even milder dis-
turbances can trigger instability, if not only the position
but also other state variables are considered [28]. Nev-
ertheless, the stable domain can give a good idea of
the region in which the system is robust. The bifurca-
tion diagrams in Fig. 6 can be used to fast analyze other
cases: For example, with a small preview distance (e.g.,
L = 6m) only a Hopf bifurcation would occur, even
if in this case, the bifurcation is catastrophic. Or again,
since the preview distance L may depend on speed u
[4,10,11], we can set L = L (u) and follow a specific

absorbed by the system. The results of the addressed 
bifurcation analyses are shown in Fig. 6. Two parame-
ters are considered, u, characterizing the running con-
dition, and L qualifying the driver.

In the left panel of Fig. 6, the UN case is analyzed. 
The curves plotted are the bifurcation curves, i.e., the 
parameters combination at which one of the bifurca-
tions we have described occurs. Note that the result we 
have discussed in Fig. 5 can be seen again following the 
black dotted line in Fig. 6. First, when u = 32.4m/s,  
the green Hopf bifurcation curve is crossed. Then, the 
orange SNC2 bifurcation is crossed twice, and finally 
the blue SNC1 curve is crossed. The shaded area of the 
diagram that we will call the stable domain represents



line on the bifurcation diagram to see which bifurca-
tions occurs. For example, the sloped straight line fea-
turing L = ku is depicted (pink dotted). In this case, the
sequence of bifurcations is quite different with respect
to the one described in Fig. 5: Two saddle-nodes of limit
cycles bifurcations occur before the Hopf bifurcation.

In the right panel of Fig. 6, the OV case is reported.
Only a catastrophic Hopf bifurcation curve occurs, at
which, as seen in Fig. 5, an unstable limit cycle shrinks
on the desired asymptotic condition. As already said,
since the Hopf bifurcation is catastrophic, the basin
of attraction of the straight ahead running condition
is bounded by (the stable manifold of) the unstable
limit cycle involved in the bifurcation: This is why by
increasing u we quit the stable domain (shaded in the
figure) much before we lose stability. The dotted hori-
zontal line refers to L = 12m, i.e., to the case analyzed
in Fig. 5.

The last question we want to answer in this paper
is whether a more “human like” driving behavior
improves or worsens the obtained results. This can
be done analyzing model (5a) and reproducing the
diagrams in Fig. 6 for increasing values of kd. The
result of this simulation is reported in Fig. 7. In both
cases, adding derivative feedback enlarges the stability
domain.

6 Conclusion and discussion

In this paper, we have analyzed simple car and
car+driver nonlinear models in order to study straight
ahead running at different forward velocities. The nov-
elty of the paper refers not only on body-fixed [3,5,29],
but also on ground-fixed local coordinates, thus obtain-
ing a model that can effectively reproduce the driver
behavior. We have synthesized the stability and the
robustness of the desired asymptotic behavior bymeans
of bifurcation diagrams. Such diagrams can be used to
understand and quantify the safety level associatedwith
a particular car and driver control (in terms of their dis-
tance to the stability region boundary).

A number of often unreferenced (but actual) behav-
iors have been described by exploiting the simple mod-
els used. Limit cycles and the sudden loss of stability
are all described in a comprehensive framework.

A straightforward comparison between understeer-
ing and oversteering vehicles has been carried out,
remarking the common experience that oversteering

vehicles are quite more dangerous than understeering
ones. This can be seen looking both at the parameter
values at which the loss of stability occurs and at the
differences in the reshaping of the basin of attraction
(and, thus, the ability of the system to absorb distur-
bances) for increasing velocity.

The results of the paper fully agree with practice.
Actually it is well known that the driver may make a
vehicle that is inherently stable unstable. Also, it is well
known from practice that a skilled driver may make an
unstable vehicle stable.

The proposed analysis complements and must be
taken into considerations for all the studies on traf-
fic flow behaviors. In particular, many studies (also
based on bifurcation theory, see, e.g., [31–33]) con-
sider how the traffic flow is affected depending on dif-
ferent driver’s characteristics, without checking the lat-
eral stability of each driven vehicle.

The influence of a number of vehicle parameters
(namely, the speed, the nonlinear functions describing
tire forces, the driver preview distance, the driver con-
trol delay and the driver steering gain) on vehicle sta-
bility has been highlighted. Although an experimental
validation of the obtained results is still to be com-
pleted, the paper addresses unreferenced issues onvehi-
cle driver behavior that can be useful to vehicle design-
ers, chassis control engineers, traffic psychologist, and
infrastructure planners.
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