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Abstract

Given a graph representing a substrate (or physical) network with node and edge
capacities and a set of virtual networks with node capacity demands and node-to-
node traffic demands, the Virtual Network Embedding problem (VNE) calls for an
embedding of (a subset of) the virtual networks onto the substrate network which
maximizes the total profit while respecting the physical node and edge capacities.
In this work, we investigate the computational complexity of VNE. In particular, we
present a polynomial-time reduction from the maximum stable set problem which
implies strong NP-hardness for VNE even for very special subclasses of graphs and
yields a strong inapproximability result for general graphs. We also consider the
special cases obtained when fixing one of the dimensions of the problem to one. We
show that VNE is still strongly NP-hard when a single virtual network request is
present or when each virtual network request consists of a single virtual node and
that it is weakly NP-hard for the case with a single physical node.
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1 Introduction

Network virtualization techniques are a prominent topic in the recent network-
ing literature [CB10]. The general idea of this paradigm is that of decoupling the 
high level role of service provisioning from the low level one of manage-ment 
and operation of the substrate physical network. This allows for a largely more 
flexible environment which, at least partially, helps preventing ossifica-tion 
phenomena due to the difficulty of upgrading the physical topology of large, 
preexisting networks.

We face a Virtual Network Embedding problem (VNE) when, given a sub-
strate network and set of Virtual Network (VN) requests, we have to decide 
which VN requests to accept or reject and how to allocate the physical re-
sources to the accepted VNs so as to maximize a profit function. Each VN is 
typically endowed with node demands, i.e., physical capacity requirements for 
its virtual nodes, and traffic demands between pairs of virtual nodes shar-ing a 
virtual edge. By performing a mapping, for the accepted VNs, of the virtual 
nodes onto the physical ones and of the virtual edges onto physical paths, a 
solution to VNE realizes an embedding of the virtual networks onto the 
substrate network.

As discussed in [CGK+15], see also the comprehensive survey in [CB10], 
VNE has a number of features. First, it can be either online, with VN requests 
arriving dynamically over time, or offline. Second, according to some authors, it 
may or may not involve admission control, thus either allowing or preventing 
the rejection of VN requests. The node mapping aspect can then be subject to 
locality requirements which, when present, restrict the set of physical nodes 
onto which a virtual node can be mapped. Also, different routing schemes can be 
considered, typically allowing for either a splittable or an unsplittable routing. 
Lastly, the substrate graph, as well as the different VNs, can be either directed 
or undirected graphs.

To the best of our knowledge, most of the papers where the complexity of 
VNE is mentioned claim that the problem is NP-hard by reduction from the k-
multiway separator problem, citing an (unpublished) technical report [And02] 
devoted to the (therein called) testbed allocation problem. Although the latter 
problem is connected to VNE, to establish its NP-hardness the technical re-
port sketches a reduction which lacks sufficient detail to verify its correctness. 
The only alternative NP-hardness result which we are aware of (mentioned, 
among others, in [YYRC08]) relies on a straightforward reduction from the 
unsplittable multicommodity flow problem. However, this result only holds for 
the special case of VNE where the node mapping is already given and an



unsplittable routing is employed.

In this work, we present a general polynomial-time reduction which implies
the NP-hardness of VNE even when restricting the problem to very specific
subclasses of graphs and a strong inapproximability result for general graphs.
We also investigate the complexity of VNE when one of its dimensions (i.e.,
the number of requests or that of virtual or physical nodes) is fixed to one.
Throughout this paper, we focus on the offline version of the problem, as-
suming that both the physical and the virtual networks are undirected graphs
and assuming an unsplittable single path routing (an option which is often
favored in the applications as it avoids the issue of packet reordering). To be
as general as possible, we will consider the case where locality constraints can
be present.

2 Problem definition and previous work

Let R be the set of indices of the collection of VN requests. Let G0 = (V 0, E0)
denote the undirected graph representing the substrate network. Physical
node and edge capacities are denoted by Bi, for i ∈ V 0, and Kij, for {i, j} ∈
E0. For each VN request of index r ∈ R, let Gr = (V r, Er) be the correspond-
ing virtual graph. For each virtual node v ∈ V r, trv denotes the corresponding
node demand. Virtual links {v, w} ∈ Er are specified implicitly via the traffic
demand drvw between their end points v, w ∈ V r. For each r ∈ R, the overall

traffic matrix is denoted by Dr ∈ R
|V r|×|V r|
+ . Profits for embedded requests

are denoted by pr ≥ 0, for r ∈ R. For each r ∈ R and v ∈ V r, let V 0(r, v)
be the set of physical nodes on which the virtual node v can be mapped (due
to locality restrictions). When |V 0(r, v)| = 1 for some r ∈ R and v ∈ V r, we
refer to VNE with extreme locality constraints.

The (offline) version of VNE that we consider in this paper (see Figure 1
for the sketch of an instance) is defined as follows:

Given: i) an undirected substrate graph G0 = (V 0, E0) with node and edge
capacities Bi and Kij and ii) for each r ∈ R, an undirected virtual network
Gr = (V r, Er) with a profit pr, node demands trv and traffic demands drvw,
select a subset R′ ⊆ R of requests and, for each r ∈ R′, determine an
embedding (a mapping of the virtual nodes v ∈ V r onto eligible physical
nodes V 0(r, v) and of the virtual links {v, w} ∈ Er onto paths of G0, for
every r ∈ R′) which does not exceed physical node and link capacities and
maximizes the sum of the profits of the accepted VN requests in R′.

In the literature, among the many previous and related works, most of
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Fig. 1. A VNE instance with a mapping of two VN requests G1 and G2 onto the 
substrate G0.

those which tackle variants of VNE as optimization problems adopt a two-
phase heuristic approach, splitting the problem into two subproblems solved
in sequence: a node mapping problem and a link mapping one, see [ZA06] and 
the references in [CB10]. Note that the second phase problem of these methods 
can be seen as a special case of VNE with extreme locality constraints for all the 
virtual nodes.

To the best of our knowledge, little attention has been devoted, so far, to 
exact approaches. Among the few cases, we mention [HLBAZ11,CGK+15,CKT15]. 
In [HLBAZ11], a Mixed-Integer Linear Programming (MILP) formulation is 
proposed and used as an (optimal) oracle in an algorithm for the online version
of VNE. In [CGK+15], the authors propose an MILP formulation encompassing 
admission control, splittable or unsplittable routing, and locality restrictions. Their 
model also entails an extra network design aspect, according to which physical 
capacities must be rented, in bulks, before the corresponding physical nodes and 
links can be used. For a robust optimization approach where Γ-robustness is 
adopted to account for data uncertainties in the node and traffic demands, see 
[CKT15].

3 Strong NP-hardness and inapproximability results

In this section, we propose a reduction from the Maximum Stable Set Problem
(MSSP) which, as we shall see, implies a strong inapproximability result for 
VNE. In MSSP, given an undirected graph G = (V, E), we look for a stable set 
(i.e., a subset of nodes that are not pairwise adjacent) that is as large
as possible. We first propose the reduction for VNE with extreme locality 
constraints and then extend it to the less restrictive case where each virtual node 
can be mapped to any physical node.

Theorem 3.1 VNE with extreme locality is strongly NP-hard.

Proof. Consider the decision version of MSSP which, given a graph G =
(V, E) and a positive integer k, asks whether G contains a stable set of cardi-
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Fig. 2. Illustrations of the reductions in Theorem 3.1 (a) and Corollary 3.2 (b).

nality at least k. We describe a polynomial time reduction from this problem 
to VNE with extreme locality constraints. For any instance of the decision 
version of MSSP, we construct (in linear time) the special instance of VNE 
consisting of the substrate network G0 = G with unit node and edge capaci-
ties, and |V 0| VN requests with unit profits, one for each node i ∈ V 0. The VN  
request Gr with r ∈ R corresponding to physical node i ∈ V 0 is isomorphic to 
the closed neighborhood of node i, i.e., is a star graph with 1 + |δ(i)| nodes 
(a central virtual node corresponding to i ∈ V 0 and |δ(i)| virtual leaf nodes, 
one for each neighbor j ∈ δ(i)). The central virtual node has a unit demand, 
while all the virtual leaf nodes have a demand of 1 , where Δ = max ∈V 0 |δ(i)|.

The extreme locality constraints are as follows: for each r ∈ R, the central 
node of the VN Gr corresponding to node i ∈ V 0 can only be mapped to node 
i, while each virtual leaf node only to the corresponding neighbor j ∈ δ(i) in  
G0. See Figure 2 (a) for an illustration, where the numbers in the nodes of 
G0 and of the VNs indicate the extreme node mapping constraints.

Due to the unit node and edge capacities, if a VN of index r ∈ R (whose 
central virtual node corresponds to the physical node i ∈ V 0) is accepted, then 
no other VN of index r′ ∈ R with a center corresponding to some j ∈ δ(i) can  
be accepted. Therefore, the VNE instance admits a feasible solution of total 
profit k (where k VNs are simultaneously embedded) if and only if the graph G 
of the MSSP instance contains a stable set of cardinality at least k. 

It is worth pointing out that, since MSSP is NP-hard even for planar 
graphs of maximum degree 3 [Pol74] and for triangle-free graphs (i.e., graphs 
with chordless cycles of size 4 or more) [GJS76], this also holds for VNE (with 
extreme locality constraints).

The above complexity result can be extended as follows:

Corollary 3.2 VNE is strongly NP-hard even without locality constraints.



Proof. We modify the reduction in the proof of Theorem 3.1 as follows. In the 
substrate network, for each node i ∈ V 0, we add Δ− |δ(i)| nodes (leaves) 
connected solely to i. All the VNs are now identical stars with exactly Δ 
leaves, with unit traffic demands, a demand of 1 for the central node, and one
of 1

Δ
for all the leaf nodes. See Figure 2 (b) for an illustration. Because of

the traffic requirements, no two virtual nodes of a VN can be mapped onto 
the same physical node. As before, due to the node capacity constraints, 
no central node of a VN corresponding to a request r can be mapped next 
(adjacent) to a node where the central node of another request r′ has been 
mapped. 

As far as the approximability of VNE is concerned, the reduction from 
MSSP in the proof of Theorem 3.1 and the inapproximability result for MSSP 
in [Has99] imply that:

Corollary 3.3 Unless P = NP, VNE with extreme locality constraints can-
not be approximated in polynomial time within a factor of n1/2−ε for any ε > 0.

4 Special cases of VNE with a constant dimension

We consider three cases where one of the dimensions of VNE, namely, the 
number of requests |R|, the size of the VNs |V r| for r ∈ R, and the size of the 
substrate |V 0|, is equal to 1.

The first result is obtained when fixing the number of requests to one. It 
relies on minor containment and, specifically, on the Maximum Clique Minor 
Problem (MCMP). Given a graph G and an integer  k, MCMP calls for a 
subgraph G′ which, after an edge contraction operation, is isomorphic to a 
clique of cardinality k. Since MCMP is strongly NP-hard [Epp09], we have 
the following:

Proposition 4.1 VNE is strongly NP-hard even when |R| = 1.

Proof. For any MCMP instance with a graph G asking for a clique minor 
of at least size k, it suffices to construct a VNE instance with G0 = G (with 
unit node and edge capacities) and with a single VN request (with k nodes, a 
complete demand matrix with unit entries, and unit node demands). 

The second result concerns the case of VNs with a single node and relies on 
the strong NP-hardness of the Multi-Knapsack Problem (MKP) [GZ86]:

Proposition 4.2 VNE is strongly NP-hard even when |V r| = 1 for all r ∈ R.
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Fig. 3. Illustration of the reduction used in Proposition 4.1.

Proof. Consider any MKP instance with p knapsacks and q items, with knap-
sack capacities bj ∈ Z+, for all j = 1, . . . , p, item weights wi ∈ Z+ and profits 
pi ∈ Z+, for all i = 1, . . . , q, and a nonnegative integer k. Construct a VNE 
instance with a physical node for each knapsack of index j in MKP, also having 
the same capacity bj , and as many VN requests as the MKP items. Construct 
each VN request as a single virtual node with demand tir equal to the weight wi 
of the corresponding MKP item, also having the same profit pi. Then, the 
MKP instance has a solution of value at least k if and only if a subset of VN 
requests with a total profit of at least k can be embedded. 

It is well known that the standard dynamic programming algorithm for 
the (single) Knapsack Problem (KP) can be adapted for the solution of MKP. 
Although the algorithm becomes exponential in the number of knapsacks, it 
is pseudo-polynomial whenever the number of knapsacks is a constant. This 
immediately implies that the special case of VNE with a single physical node 
can be solved in pseudo-polynomial time. Note that this holds regardless 
of the size or topology of each VN which, due to the presence of a single 
physical node, can be transformed w.l.o.g. into a single virtual node. By a 
straightforward reduction from KP, we also have the following:

Corollary 4.3 VNE with |V 0| = 1  is weakly NP-hard.

5 Concluding remarks

We have addressed the computational complexity of VNE, showing its strong 
NP-hardness even for a restricted subclass of graphs and derived a strong 
inapproximability result for general graphs. We have also shown NP-hardness 
for the special cases of VNE where a dimension of the problem is fixed to one.
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