
Modeling and experimental verification of an ultra-wide bandgap in 3D phononic
crystal
L. D'Alessandro, E. Belloni, R. Ardito, A. Corigliano, and F. Braghin

Citation: Appl. Phys. Lett. 109, 221907 (2016); doi: 10.1063/1.4971290
View online: http://dx.doi.org/10.1063/1.4971290
View Table of Contents: http://aip.scitation.org/toc/apl/109/22
Published by the American Institute of Physics

http://aip.scitation.org/author/D%27Alessandro%2C+L
http://aip.scitation.org/author/Belloni%2C+E
http://aip.scitation.org/author/Ardito%2C+R
http://aip.scitation.org/author/Corigliano%2C+A
http://aip.scitation.org/author/Braghin%2C+F
/loi/apl
http://dx.doi.org/10.1063/1.4971290
http://aip.scitation.org/toc/apl/109/22
http://aip.scitation.org/publisher/


Modeling and experimental verification of an ultra-wide bandgap
in 3D phononic crystal

L. D’Alessandro,1 E. Belloni,2,a) R. Ardito,1 A. Corigliano,1 and F. Braghin2

1Department of Civil and Environmental Engineering, Politecnico di Milano, Milano 20133, Italy
2Department of Mechanical Engineering, Politecnico di Milano, Milano 20156, Italy

(Received 10 August 2016; accepted 17 November 2016; published online 2 December 2016)

This paper reports a comprehensive modeling and experimental characterization of a three-

dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete

bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest

full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal

structure has been manufactured in polyamide by means of additive manufacturing technology and

tested to assess the transmission spectrum of the crystal. The transmission spectrum has been

numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh

model for damping. The measured and numerical transmission spectra are in good agreement and

present up to 75 dB of attenuation for a three-layer crystal. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4971290]

The study of wave propagation along the spatially peri-

odic structures1 is of great interest for solid state physics

while approaching the influence of atomic vibration on crys-

tal properties.2 The peculiar property of these structures is

the formation of bandgaps, i.e., portions of the frequency

response for which an incident wave cannot propagate

through the crystal. This idea is used in several applications

in the electromagnetic domain, namely, the so-called pho-

tonic crystals (PtCs), to build waveguides, mirrors, and fil-

ters.3 More recently,4,5 large interest has been devoted to

phononic crystals6 (PnCs). Formally, a phonon is a quasi-

particle that describes the vibrational state of a lattice.

Therefore depending on dimensions and materials of the

crystal structure, applications range from vibrations suppres-

sion to noise isolation, from acoustic diodes to thermal meta-

materials.7 A third class, the so-called phoxonic crystals

(PxCs), is nowadays becoming popular due to the interaction

between phonons and photons.8–11

It is undeniable that bandgap width is a key factor to

boost performances and robustness, i.e., wider bandgap

means stronger attenuation around the gap central fre-

quency.12–14 Width of a bandgap can be expressed using the

gap-mid gap ratio, a non-dimensional parameter that avoids

frequency dependence

BG% ¼
2 ftop � fbotð Þ

ftop þ fbot
%; (1)

where ftop and fbot are the bounding frequencies of the

bandgap. A 3D crystal with a full bandgap guarantees wave

scattering in all directions,3,6,15 as it is demonstrated in sev-

eral 3D structures for the photonic applications. To broaden

the bandgap size in phononic crystals, acoustic or elastic

impedance mismatch between portions of the structure is

essential: an array of steel spheres in an epoxy matrix shows

a bandgap with a ratio of 66.7%,6 while a similar system

with steel spheres in plastic matrix presents a ratio between

33.0% and 50.2% depending on the geometry and material

choice.16 Polyimide, polyamide, and bronze tube structure

shows a bandgap with ratio equal to 54.5%.17 In order to use

a single material, the crystal geometry must be optimized

using suitable ratios between regions of material and voids.

A cube with cylindrical holes shows a complete phononic

bandgap with a ratio around 27.3% in simulation and some-

what wider in experiments.18 A gap-mid gap ratio of about

50.4% is achieved by a silicon rubber phononic crystal.19 As

a last example, a simple cubic lattice with optimized geomet-

rical parameters numerically shows a full bandgap with

gap-mid gap ratio of 82.1% for phononic and 11.4% for pho-

tonic.20 These results are summarized in Table I.

The topology presented in this work is the three-

dimensional generalization of an optimal shape, in terms of

gap-mid gap ratio, for in-plane periodic single material elas-

tic phononic crystals.21 The fundamental unit cell topology

could be approximated by means of an external frame with

half circles centered in the middle-point of the edges (see

Fig. 1(a)). The optimization process sets the following inter-

nal proportions: the frame thickness as t¼ 0.05 a, the radius of

the circle as s¼ 0.33 a, where a is the unit cell characteristic

dimension.22 In order to build a three-dimensional phononic

TABLE I. Examples of bandgaps in photonic, phononic, and phoxonic

crystals.

References Type Gap-mid gap ratio

Laude6 PnCa 66.7%

Zhang et al.16 PnC 33.0–50.2%

Delpero et al.17 PnC 54.5%

Lucklum and Vellekoop18 PnC 27.3%

Babaee et al.19 PnC 50.4%

Ma et al.20 PxCb 82.1% PnC and 11.4% PtCc

aPhononic crystal.
bPhoxonic crystal.
cPhotonic crystal.a)Electronic mail: edoardo.belloni@polimi.it
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crystal, the symmetries and proportions are maintained ending

up with a cubic structure where each face is the planar topol-

ogy of Fig. 1(a) properly extended, i.e., the half circles are

extended to quarters of spheres (see Fig. 1(b)). The non-

dimensional phononic band structure of the crystal with a unit

cell of Fig. 1(b) is reported in Fig. 2. It is calculated by means

of a finite element (FE) analysis repeating the simulation both

with the Solid Mechanics Module of COMSOL Multiphysics

v5.2 and ANSYS Mechanical APDL v16 in order to double-

check the results. In COMSOL, the phononic band structure

can be obtained by imposing Floquet periodic boundary con-

ditions and performing a parametric sweep over the wave vec-

tor, while in ANSYS, a proper macro has been implemented

to impose the periodic boundary conditions. The FE problem

is formulated considering only the solid part of the domain,

being the phononic crystal bandgap investigation referred to

elastic waves in the structure and not to acoustic ones in the

acoustic-structure interaction problem.23 Such a conclusion

has been corroborated by the execution of analyses that

include the acoustic-structure interaction, finally obtaining

that air modeling has no impact on the bandgap assessment.

The Irreducible Brillouin Zone (IBZ),1 that is the tetrahedron

drawn in Fig. 1(b), corresponds to the simple cubic lattice

structure.6 Two bandgaps are highlighted: the first one

endowed with a gap-mid gap ratio equal to 132.2%, and the

second one with 9.3%. The first one is the greatest gap-mid

gap ratio in literature for three-dimensional phononic crystals,

see Table I.

The unit cell analyzed in this work has a fundamental

length a¼ 0.05 m, the geometry has the same proportions

described above, and it is made of sintered Nylon PA220024

which, considering a pure linear elastic constitutive model,

has Young’s modulus E0¼ 1750 MPa, Poisson’s coefficient

�¼ 0.4 and density q¼ 930 kg/m3. By considering the Nylon

properties and the unit cell characteristic dimension, the first

bandgap extends from 3.85 kHz to 18.87 kHz, while the sec-

ond one from 21.95 kHz to 24.09 kHz. A finite structure

composed of 4� 4� 3 unit cells (see Fig. 3) has been pro-

duced through Selective Laser Sintering (SLS), an additive

manufacturing process that has no need of support material

(a critical issue for the realization of suspended parts, like

spheres in this case) while guaranteeing good precision.

The overall dimensions of the finite structure are 200 mm

� 200 mm� 150 mm, for an air-solid volume ratio around

15% and a total weight of approximately 4.8 kg. The finite

structure response is assessed both numerically, by means of

a FE model, and experimentally.

The FE model of the finite structure has been developed

in COMSOL Multiphysics v5.2, Solid Mechanics Module.

Free boundary conditions are imposed to the structure in all

the boundaries except from the central portion area of face A

where a harmonic pressure that spans from 0.5 kHz to

20.0 kHz is applied. The output is measured on the central

portion of face B and the transmission spectrum is deter-

mined. For the range of analyzed frequencies, the material

behavior is better described by the visco-elastic model.25,26

In this work, the damping is described by a Rayleigh model

with coefficients a¼ 1 s�1 and b¼ 4.0e-7 s, and further a

frequency dependence of Young’s modulus is considered.

Between 0.5 kHz and 20.0 kHz, Young’s modulus E(f) is

assumed to increase with logarithmic trend from E0 to 1.1E0

as experimentally assessed.27

The experimental setup is schematically represented in

Fig. 4. Free boundary conditions are approximated using a

soft material (i.e., bubble wrap) as base for the device. This

configuration safely and uniformly sustains the crystal and

does not sensibly affect its dynamics. The 4� 4 side of

the crystal leans against the base, so the bandgap is tested

along a direction with 3 unit cells. The excitation is applied

FIG. 1. (a) Optimized unit cell topology for in-plane periodic single material

phononic crystal. (b) Unit cell topology for the three-dimensional periodic

phononic crystal. The Irreducible Brillouin Zones for both the cases are

highlighted.

FIG. 2. Non-dimensional phononic band structure for the three-dimensional

phononic crystal. The highlighted areas are the first two bandgaps. The num-

ber reported inside the bandgaps is the related gap-mid gap ratio in percent-

age. In the definition of the non-dimensional frequency fnd, f [Hz] is the

frequency, a [m] the unit cell dimension, and v [m/s] the sound velocity in

the medium.

FIG. 3. Prototype of the finite crystal, composed by 4� 4� 3 unit cells and

made of Nylon PA2200 by additive manufacturing (SLS).

221907-2 D’Alessandro et al. Appl. Phys. Lett. 109, 221907 (2016)



vertically using an inertial actuator, a VibeTribe-Troll with

10 W power and a frequency range from 40 Hz to 20 kHz.

Two PCB Piezotronics 353B15 accelerometers, with a sensi-

tivity of 10 mV/g and resonant frequency higher than

70 kHz, are placed at the center of faces (see Fig. 4): sensor

A on top directly measures the input from actuator, while

sensor B acquires the output signal. Acquisition chain is

completed with a 8-channel ICP
VR

Sensor Signal Conditioner,

a PCB 483C05, and a NI 9205 module, with 16-bit resolu-

tion. Tests are performed with a slow sweep sine input from

0.5 kHz to 20.0 kHz, both sweep up and sweep down. Data

are then post-processed in order to estimate the transmission

spectrum.

The transmission diagram between the top face of the

crystal and the bottom face is reported in Fig. 5 for both

numerical and experimental results. The black dotted curve

shows the numerically calculated transmission considering a

linear elastic material with no dependency of its parameters

from the excitation frequency. Although the considered crys-

tal has finite dimensions, it can be seen that the bandgap ini-

tial and final frequencies (the vertical green dashed lines) are

close to those of the infinite periodic crystal. Moreover, its

resonance peaks around 14.0 kHz and 15.0 kHz are associ-

ated to resonances induced in the structure by the provided

punctual excitation. The numerical prediction considering a

frequency-dependent Young’s modulus and Rayleigh damp-

ing (red dashed curve) is in good agreement with the experi-

mental measurements (blue solid curve). The attenuation is

null till the initial bandgap frequency. It then reaches values

of approximately 75 dB at the center of the bandgap, and it

starts to decrease until the bandgap closing frequency. The

effects of frequency dependent Young’s modulus and damp-

ing can justify the larger width of the bandgap,28 while a bet-

ter non-linear visco-elastic model of Nylon PA2200 could

improve the matching between numerical and experimental

results in the high frequency range, i.e., from 18.0 kHz on.

Furthermore, the larger bandgap width at high frequency can

also be related to the C – X path used as the preferential

direction for the input forcing of the inertial shaker during

the experimental tests.

In the present work, the authors show a 3D phononic

crystal endowed with the widest full bandgap in literature.

FIG. 5. Transmission diagram, in dB, between the central portion of the top face of the crystal and the opposite one: numerical linear elastic model with no

material parameters dependency on the frequency (black dotted line), numerical with material parameters dependency on the frequency (red dashed line) and

experimental (blue solid line). The two green vertical dashed lines represent the bottom and top limits of the first bandgap of the analyzed crystal.

FIG. 6. Trend of the first and second bandgaps using different materials in

the proposed geometry for the frame and the spheres. The material proper-

ties of the spheres are changed with respect to the ones of PA2200 by means

of a multiplication factor for both Young’s modulus E and density q.

Non-dimensional frequencies are obtained with the same scaling factors of

Figure 2 referred to Nylon.

FIG. 4. Schematic representation of the experimental setup. One accelerom-

eter is placed on top (A, below the actuator) and another one on the bottom

(B) of the finite structure, connected to a data acquisition (DAQ) system. A

bubble wrap is used to hold up the structure.
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An optimized topology of in-plane periodic crystal is

extended to create a 3D crystal. An idea to further broaden

the bandgap size, keeping the optimized geometry unaltered,

is to introduce material inhomogeneity in order to enhance

the difference of elastic impedances. Splitting the geometry

into a beam frame and spheres of different material would

modify the bandgap width as shown in Fig. 6. Multiplication

factors of 0.3, 2, and 5 are considered for both Young’s mod-

ulus and density with respect to PA2200 characteristics. It

can be seen that, by using different materials, the gap-mid

gap ratio can be increased up to 162%, while lowering the

first bandgap starting frequency and strongly affecting the

second bandgap. Of course, this is just a first attempt to con-

sider the two materials inside the structure. A deeper analysis

is however required to assess the technological feasibility.

To reduce the frequencies at which this bandgap

occurs, resonant portions could be further introduced in the

considered crystal in order to create a so-called elastic

metastructure.29
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