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Abstract 

Electric traction motors in automotive applications work in operational conditions characterized by 

variable load, rotational speed and other external conditions: this complicates the task of diagnosing 

bearing defects. The objective of the present work is the development of a diagnostic system for 

detecting the onset of degradation, isolating the degrading bearing, classifying the type of defect. The 

developed diagnostic system is based on an hierarchical structure of K-Nearest Neighbours 

classifiers. The selection of the features from the measured vibrational signals to be used in input by 

the bearing diagnostic system is done by a wrapper approach based on a Multi-Objective (MO) 

optimization that integrates a Binary Differential Evolution (BDE) algorithm with the K-Nearest 

Neighbour (KNN) classifiers. The developed approach is applied to an experimental dataset. The 

satisfactory diagnostic performances obtain show the capability of the method, independently from 

the bearings operational conditions. 
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1. INTRODUCTION  

According to both the IEEE large machine survey (P. Zhang, 2011) and the Norwegian offshore and 

petrochemical machines data, bearing-related defects are responsible of more than 40% of the failure 

in industrial machines (O'Donnell, 1983). Then, in industrial practice it is of great interest to promptly 

detect the bearing degradation onset, to identify which bearing is degrading, to correctly classify the 

cause of the bearing degradation (type of defects) and to assess the bearing degradation level. The 

most critical bearing degradation modes involve the bearing inner race, outer race and balls (Rao, 

2012) (Shoen, 1995). At the earliest stage of bearing degradation, information on the bearing health 

state, and, eventually, on the type of degradation can be obtained by observing the machine 

vibrational behavior. Thus, a typical approach to fault diagnosis in bearings is based on the extraction 

of features from the raw vibrational signals (accelerations) and on the use of classification models, 

such as Support Vector Machine (SVM) (Gryllias, 2012) (Zhu, 2014), Relevance Vector Machines 

(Di Maio et al., 2012a), K-Nearest Neighbors (KNN) (Jiang, 2013), Artificial Neural networks (ANN) 

(Li, 1997), neuro-fuzzy techniques (Zio et al., 2009) (Pan, 2014) and multi-symptom-domain 

consensus diagnosis techniques (He et al., 2001): input to the classifiers are the selected features, 

whereas the outputs are the detection of the onset of bearing degradation, the isolation of which 

bearing is degrading, the classification of the degradation mechanism and the assessment of the 

bearing degradation level. 

Approaches to fault diagnosis in bearings have been developed considering the vibrational signals in 

the time domain, in the frequency domain and in both time and frequency domains. Time-domain 

approaches are based on the use of statistical indicators of the raw acceleration signals, such as mean, 

standard deviation, peak value, root mean square error, crest factor, kurtosis and skewness (Martin, 

1995). Alternative time domain indicators have been developed (Tao et al., 2007) for dealing with 

incipient bearing faults, although the most critical shortcoming of all time-domain approaches is their 

inability to correctly diagnose bearing failures at the last stages of the degradation process, when the 

signal behaviors tend to be highly unpredictable and random (Ocak, 2007). In frequency-domain 



approaches, the principal frequencies of the vibrational signals and their amplitudes are identified 

(Chebil, 2009). Most of the proposed approaches to fault diagnosis for bearings in the frequency 

domain assume a priori knowledge of the principal frequencies associated to the bearings faults 

(Chebil, 2009). This setting is not realistic in automotive applications where the environmental and 

operational conditions modify the frequency spectra of the vibrational signals. Furthermore, real 

bearing spectra are characterized by a large number of frequency components, which can be difficult 

to be managed (Ocak, 2007). Time-frequency approaches, which combine time and frequency domain 

information, have been reported to provide the most satisfactory performances (Georgoulas, 2013). 

Several time-frequency features have been proposed in literature, such as Short Time Fourier 

Transforms (STFT) (Kaewkongka, 2003), Wigner-Ville Distribution (WVD) (Hui, 2006), Wavelet 

Transform (WT) (T.Loutas, 2012) (Abbasion, 2007), and Empirical Mode Decomposition (EMD) 

(Huang, 1998) (Ben Ali, 2015). For example, a multilevel classification approach for bearing 

diagnosis based on WT has been proposed in (Chebil, 2009). Conversely, EMD is suitable and 

attractive in dealing with highly non-linear, non-stationary signals but can be computationally 

expensive due to the non-smooth behaviour of vibration signals. This limitation can be partially 

overcome using EMD and the Hilbert Huang transforms for the extraction of a compact set of features 

(Georgoulas, 2013). 

A common characteristic of the frequency and time-frequency domain approaches is that they 

typically generate feature sets of very high dimensionality. Reducing the dimensionality of the feature 

set allows to remarkably reduce the computational burden. Furthermore, it has been shown that 

irrelevant and noisy features unnecessarily increase the complexity of the classification problem and 

can degrade modeling performance (Emmanouilidis, 1999). Thus, in this work, the development of 

classification algorithms for bearing diagnosis is accompanied by the application of feature extraction 

methods which map the n-dimensional data being classified onto an m-dimensional space, where m 

< n (Dash, 1997). Examples of feature extraction methods are Kernel Principal Component Analysis 

(KPCA) (Schölkopf, 1998), Kernel Fisher Discriminant Analysis (KFDA) (Mika, 1999) (Baudat, 



2000) or Semi-supervised Kernel Marginal Fisher Analysis (SKMFA) (Jiang, 2013), Linear Local 

Tangent Space Alignment (LLTSA) (Li, 2013), Self-Organizing feature Map (SOM) (Kohonen, 

1982). A special case of feature extraction is feature selection, whereby (𝑛 − 𝑚) irrelevant features 

are discarded. More specifically, the objective of feature selection is that of finding a subset of the 

original features such that the classification algorithm based on these features generates a classifier 

with the highest possible performance (Zio, 2006). In general, feature selection methods can be 

classified into two categories: filter and wrapper methods (Kohavi, 1997). In filter methods, the 

feature selector algorithm is used as a filter to discard irrelevant and/or redundant features a priori of 

the construction of the classification algorithm. A numerical evaluation function is used to compare 

the feature subsets with respect to their classification performance (Dash, 1997). On the contrary, in 

wrapper methods the feature selector behaves as a wrapper around the specific learning algorithm 

used to construct the classifier. The feature subsets are compared using as criterium the classification 

performance achieved by the classification algorithm itself (Zio et al., 2008). 

This work is motivated by the interest of investigating the possibility of effectively performing in 

practice fault diagnostics of bearings installed on the powertrain of a Fully Electric Vehicle (FEV). 

The research is part of the European Union funded project Electrical power train Health Monitoring 

for Increased Safety of FEVs (HEMIS, www.hemis-eu.org) (Sedano et al., 2013), (Baraldi et al., 

2013), which aims at the development of a Prognostics and Health Monitoring System (PHMS) for 

the most critical components of FEVs. The difficulty of the fault diagnostics task is that automotive 

motors differ from other industrial motors since they work in operational conditions characterized by 

variable load, rotational speed and other external conditions which can cause major modifications of 

the vibrational signal behaviour. Thus, the novelty of the feature selection approach here proposed 

consists in the capability of identifying those features which are independent from operational 

conditions; this is expected to allow the development of a diagnostic system that can be used 

independently from the operational and environmental conditions that the FEV is experiencing. A 

further novelty of the work is the embedding of the feature selection problem in a multi-classification 

http://www.hemis-eu.org/


problem, where several classifiers developed for different scopes (detection, isolation, degradation 

mode classification and degradation level assessment) are integrated.  

The proposed diagnostic system is based on an hierarchical model of K-Nearest Neighbor (KNN) 

(Jiang, 2013) classifiers. A multi-objective (MO) Binary Differential Evolution (BDE) optimization 

algorithm has been used for the identification of the feature set to be used. The optimization aims at 

the identification of a feature set, which allows to obtain a high classification performance by using 

a low number of features extracted from a low number of vibrational signals. Notice that the use of a 

low number of features allows reducing the computational burden and memory demand of the 

diagnostic system, whereas the use of a limited number of vibration signals allows minimizing the 

cost of the installation of the measurement system. The proposed approach is verified with respect to 

the Western Reserve Case University Bearing dataset (CWRUBD). 

The paper is organized as follows: in Section 2 the hierarchical model for bearing degradation 

detection, isolation, diagnosis and degradation level assessment is proposed; in Section 3, a wrapper 

approach for optimal feature selection based on the use of a BDE-based MO optimization algorithm 

is discussed; the application to the Western Reserve Case University Bearing dataset is described in 

Section 4, whereas in Section 5 conclusions are drawn. 

 

2. THE HIERARCHICAL DIAGNOSTIC MODEL 

In this work, a motor system containing two bearings, one installed at the drive end (DE) and one at 

the Fan End (FE) of the powertrain, is considered. The main objective of the work is the development 

of a diagnostic system for the identification of: i) the onset of the degradation , ii) which bearing is 

degrading, iii) the degradation mode and iv) the assessment of the degradation level. To this aim, we 

have developed a hierarchical model based on a set of classifiers (Figure 1). The first classifier 

identifies the onset of the bearing degradation (stage 0, classifier 𝐶0), the second the location of the 

degradation, i.e. which bearing is degrading (stage 1, classifier 𝐶1), the third the degradation mode 

(stage 2, classifiers 𝐶2
𝑏, b=1, 2) and the last one the degradation intensity of the failure (stage 3, 



classifier  𝐶3
𝑏,𝑖

, b=1, 2, i =1, Nc with Nc indicating the number of possible bearing degradation modes). 

Notice that for each bearing a different classifier, 𝐶2
𝑏, 𝑏 = 1,2 of the degradation mode is developed, 

and for each bearing and each degradation mode a different classifier, 𝐶3
𝑏,𝑖

, of the intensity, b = 1,2 

and 𝑖 = 1, … , 𝑁𝑑𝑚 is developed (Figure 1).  

All the classifiers are fed with information extracted from vibrational signals correlated to the 

degradation process of the bearings. In particular, in this work we consider the possibility of installing 

up to 𝑆 accelerometers in different locations of the motor housing and motor supporting base plate, 

and the possibility of extracting from each vibrational signal, 𝐾 features, including statistical 

indicators (Di Maio et al., 2012b), Discrete Wavelet Transform (DWT) (Baraldi et al., 2012) and 

Wavelet Packet Transform (WPT) (Chebil, 2009). These different types of features have been 

considered since they have been already used in bearing diagnostic problems and they have been 

shown to contain information correlated with the bearing degradation.  

 

 

3. THE FEATURE SELECTION PROBLEM 

Each classifier of the hierarchical structure can receive in input up to 𝑛 = 𝐾 ∙ 𝑆 features. In this work, 

the problem of selecting the most performing features for the classifiers is addressed considering only 

the classifiers at stages 2 and 3 of the hierarchical model (identification of the degradation mode and 

assessment of the degradation level, respectively). The input features used by classifiers 𝐶0 and 𝐶1 

for the detection of the onset of the degradation and the identification of which bearing is degrading 

will be identified in a second phase considering only the features identified for the classifiers at the 

second and third stages. This simplification of the problem is justified by the fact that the classifiers 

for the detection of the degradation (𝐶0) and the isolation of the degrading bearing (𝐶1) will be shown 

to achieve high performance using the same features selected for the fault diagnosis (stage 2). 

The overall objectives of the feature selection process are to identify a set of features which 

guarantees: 



I. high classification performance in each stage of the classification (diagnosis of the 

degradation mode, assessment of the degradation level); 

II. low cost for the development of the overall diagnostic system. The cost should take into 

account: the number of vibrational sensors required, the computational burden and memory 

demand for processing of the vibrational signals, the training of the classification algorithms 

and the storage of the training examples. 

With respect to I), notice that the selected features should be able to provide good classification 

performances independently from the operational conditions experienced from the automotive 

vehicle. In practice, the first objective that is considered is the minimization of the misclassification 

rates of the two classifiers 𝐶2
1 and 𝐶2

2 at stage 2 of the hierarchical model, dedicated to the 

identification of the degradation mode at the DE and FE bearings, respectively. With respect to a 

feature set represented by a n-dimensional vector 𝒙 ∈ {0,1}𝑛, where 𝑥(𝑘) = 1 denotes that feature k 

is selected whereas 𝑥(𝑘) = 0 that it is not selected, the objective function F1, i.e. the average 

misclassification rate at stage 2, is defined by:                                                                                                                                                                                                                                                                        

                                                                   𝐹1(𝒙) =
1

2
∑ 𝑅2

𝑏(𝒙) 2
𝑏=1                                                             (1)                                                                                                                       

where 𝑅2
𝑏(𝒙) is the misclassification rate of classifier 𝐶2

𝑏 on a set of test patterns. In order to verify 

the capability of the classifiers to provide good performances independently from the operational 

conditions, the empirical classification models are trained using examples taken at operational 

conditions different from those which are used to test their performances (Baraldi et al., 2011): 

                                                                          𝑅2
𝑏(𝒙) =

1

𝒍
∑ 𝑅2

𝑏,𝑗(𝒙)𝒍
𝒋=𝟏                                                                   (2)   

where l indicates the number of possible operational conditions that can be experienced by the 

bearings and 𝑅2
𝑏,𝑗

  the misclassification rate of classifier 𝐶2
𝑏  built using a training set containing 

patterns taken at the operational condition j and tested using only patterns taken at operational 

conditions different from j. In practice, in order to guarantee the independence of the classifiers from 

the operational conditions, a procedure inspired from the leave-one-out cross validation method is 



adopted (Polikar, 2007): we train a first classifier using patterns taken at operational conditions 1 and 

test its performance using patterns taken at operational conditions 2, … , 𝑙; then, we train a second 

classifier using patterns taken at operational conditions 2 and test its performance using patterns taken 

at operational conditions 1, 3,…, l and we repeat the procedure until l different classifiers are 

developed. 

The second objective takes into account the performance of the classifiers 𝐶3
𝑏,𝑖

 for the assessment of 

the degradation level, with 𝑏 = 1,2, and 𝑖 = 1, … , 𝑁𝑑𝑚. With respect to a feature set represented by 

the n-dimensional vector 𝒚 ∈ {0,1}𝑛, where 𝑦(𝑘) = 1 indicates that feature k is selected as input of 

the classifier, whereas 𝑦(𝑘) = 0 is not selected, the average misclassification rate at stage 3, F2, is 

defined by: 

                                                           𝐹2(𝒚) =
𝟏

𝟐𝑁𝑑𝑚 
∑ ∑ 𝑅3

𝑏,𝑖(𝒚)
𝑁𝑑𝑚
𝑖=1

2
𝑏=1                                                  (3)                                                                                             

where  𝑅3
𝑏,𝑖(𝒚) is the misclassification rate of classifier 𝐶3

𝑏,𝑖
 obtained applying the same procedure 

followed in eq (2) to guarantee independence from the operational conditions. 

With respect to the objectives in II), we consider two different cost indicators: the net number of 

features employed by the overall hierarchical model, F3, and the number of accelerometers to be used, 

F4. For a given feature set  𝒛 = (𝒙, 𝒚), F3  is given by: 

                              𝐹3(𝒛) = ∑ 𝑥𝑘
𝑛
𝑘=1 + ∑ 𝑦𝑘

𝑛
𝑘=1 − ∑ 1{𝑥𝑘 =𝑦𝑘}       𝒛 = (𝒙, 𝒚) ∈ {0,1}2∙𝑛   𝑛

𝑘=1              (4)                                                                                                                        

where n is the total number of features which can be extracted. 

The number of accelerometers to be used, F4, is given by:  

                                                                    𝐹4(𝒛) = ∑ 𝑅4,𝑠(𝒛)    𝑆−1
𝑠=0                                                       (5)                                                                                                                                                                                                                               

where 𝑆 − 1 is the total number of accelerometers which can be installed and 𝑅4,𝑠(𝒛) is equal to 1 if 

at least one feature extracted from the acceleration signal measured by accelerometer s is selected. 

According to the proposed wrapper approach (Figure 2), the search engine builds a candidate group 

of features set  𝒛 = (𝒙, 𝒚) whose performance is evaluated with respect to a fitness function 𝑭 that is 

defined as: 



                         𝑭 (𝒛) = [𝐹1(𝒙), 𝐹2(𝒚), 𝐹3(𝒛), 𝐹4(𝒛)]         𝒙, 𝒚 ∈ {0,1}𝑛   𝒛 = (𝒙, 𝒚) ∈ {0,1}2∙𝑛        (6)                        

 

Dealing with a MO optmization problem (in our specific case a MO minimization), we introduce the 

definition of Pareto Optimal Set 𝒫∗ = {𝒛 ∈ ℱ ∶  𝒛  is Pareto-optimal}, that is a set of optimal 

solutions among which we select the preferred solution 𝒛𝑜𝑝𝑡. A vector of decision variable  𝒛∗ ∈ ℱ is 

Pareto Optimal if it is non-dominated with respect to ℱ, i.e., it does not exist another solution 𝒛′ ∈ ℱ 

such that 𝑭(𝒛′)  dominates 𝑭( 𝒛∗): 

               ∀ 𝛼 ∈ {1, … ,4}, 𝐹𝛼(𝒛′) ≤ 𝐹𝛼( 𝒛∗), and ∃ 𝛼̃ ∈ {1, … ,4}, such that 𝐹𝛼̃(𝒛′) < 𝐹𝛼̃( 𝒛∗)           (7)          

                                                                                     

3.1      Binary Differential Evolution for feature selection 

Performing an exhaustive search of the best solution among all the possible 22∙𝑛 solutions is typically 

impracticable unless 2 ∙ 𝑛 is very small (Dong, 2003). For this reason, different combination of 

optimization heuristics such as Ant Colony (Al-ani, 2005), Genetic Algorithm (Sikora, 2007), Particle 

Swarm Optimization (PSO) (Samanta, 2009) (Firpi, 2005), Binary Genetic Algorithms (Zio, 2006), 

and Binary Differential Evolution BDE (He, 2009) (Kushaba, 2011) have been used within wrapper 

approaches for feature selection. In this work, we resort to a Binary Differential Evolution (BDE) 

algorithm to address the MO feature selection problem, since BDE has been shown to explore the 

decision space more efficiently than other multi-objective evolutionary algorithms (Tušar, 2007) such 

as Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb, 2002), Strength Pareto 

Evolutionary Algorithms (SPEA2) (Zitzler, 2001) and Indicator Based Evolutionary Algorithm 

(IBEA) (Zitzler, 2004). The BDE procedure is briefly sketched in Figure 3. 

 

In BDE, each candidate solution 𝒛𝑝,𝐺, called target vector, of the 𝐺𝑡ℎ population is encoded by a 

binary sequence (chromosome) of 2∙n bits (genes) for 2∙n decision variables, where each bit indicates 

whether a feature is present (1) or discarded (0) in the candidate solution 𝒛𝑝,𝐺. Each gene, 𝑧𝑝,𝑘,𝐺, 𝑝 =

1: 𝑁𝑃, 𝑘 = 1: 2 ∙ 𝑛 of each chromosome of the G-th population  is conveniently mapped into a 



continuous variable 𝑧̃𝑝,𝑘,𝐺. In practice, the interval [0,1] is partitioned into two equal subintervals 

[0,0.5) and [0.5,1], such that if  the gene   𝑧𝑝,𝑘,𝐺 = 0, 𝑧̃𝑝,𝑘,𝐺  belongs to the first sub-interval, whereas 

if 𝑧𝑝,𝑘,𝐺 = 1, 𝑧̃𝑝,𝑘,𝐺  it belongs to the second interval. The mapping operator  

                                          𝑧̃𝑝,𝑘,𝐺  = {
0.5 ∗ 𝑟𝑎𝑛𝑑                 𝑖𝑓  𝑧𝑝,𝑘,𝐺  =  0

0.5 + 𝑟𝑎𝑛𝑑 ∗ 𝑟𝑎𝑛𝑑  𝑖𝑓 if 𝑧𝑝,𝑘,𝐺 =  1  
                                   (8)                   

is used for this purpose, where rand is a random number in [0,1). 

1. Mutation 

For each vector 𝒛𝑝,𝐺 in the population, a noisy vector 𝝂𝑠 is generated randomly choosing three 

mutually different vector indices 𝑟1, 𝑟2, 𝑟3  ∈ {1, … , 𝑁𝑃}  with p ≠{ 𝑟1, 𝑟2, 𝑟3}  

                                                                 𝝂𝑝   = 𝒛𝑟1,𝐺 + 𝑆𝐹(𝒛𝑟2,𝐺 − 𝒛𝑟3,𝐺)                                               (9)                

where the scaling factor 𝑆𝐹 ∈ (0,2] (Khushaba, 2011). 

A sigmoid function is applied to 𝑣𝑝,𝑘,𝐺 to ensure that the result generated by the mutation operator 

falls into the interval [0,1]:                              

                                                                         
1

1+𝑒
−𝑣𝑝,𝑘,𝐺

                                                              (10)                                                                     

An inverse operator is then used: 

                                                   𝑣𝑝,𝑘,𝐺 = {
0    𝑖𝑓  𝑣𝑝,𝑘,𝐺 ∈ [0 , 0.5)

1    𝑖𝑓  𝑣𝑝,𝑘,𝐺 ∈ [0.5  ,1 ]
                                                (11)                                        

2. Crossover 

In order to increase diversity of the perturbed parameter vectors, crossover can be introduced. This 

procedure is typically referred to as recombination. To this aim, the trial vector 𝒖𝑝,𝐺 =

(𝑢𝑝,1,𝐺 , … , 𝑢𝑝,𝑘,𝐺 , … , 𝑢𝑝,2∙𝑛 ,𝐺) is defined by:  

                              𝑢𝑝,𝑘,𝐺 = {
𝑧𝑝,𝑘,𝐺 𝑖𝑓 𝒰(0,1] ≤ 𝐶𝑅 𝑜𝑟 𝑘 = 𝑖𝑟𝑎𝑛𝑑(𝑁𝑃)

𝑣𝑝,𝑘,𝐺  𝑖𝑓  𝒰(0,1] > 𝐶𝑅 𝑎𝑛𝑑 𝑘 ≠ 𝑖𝑟𝑎𝑛𝑑(𝑁𝑃)
                                      (12) 

 



where 𝒰(0,1] is a uniform continuous random value [0,1], whereas irand(NP) is a discrete random 

number in the set {1,2, … , 𝑁𝑃} sampled from a uniform distribution . The crossover parameter 

CR ∈ [0,1] influences the probability that the noisy vector’s variables are selected for the mutation 

process (Wang, 2011). 

 

3. Selection 

In order to avoid stagnation of population in local minima due to the impoverishment of the 

population, selection strategies have been deeply investigated in literature (Mezura-Montes, 2008) 

(Salman, 2007). According to the MODE-III selection technique (Wang, 2011), each trial vector 

generated at each iteration by mutation and crossover operations, 𝒖𝑝,𝐺, is compared only with its 

target vector 𝒛𝑝,𝐺 from which it inherits some variables: if 𝒖𝑝,𝐺 dominates 𝒛𝑝,𝐺, it takes its place in 

the population for the next generation, otherwise 𝒛𝑝,𝐺, survives (Wang, 2011). Notice, however, that, 

this approach suffers of a low level of elitism since each trial vector is compared only with its own 

target vector. 

In the present work, we have applied a different technique, called Non-Dominated Sorting Binary 

Differential Evolution (NSDBE), which combines the robust and effective BDE strategy with the fast 

non-dominated sorting and ranking selection scheme of NSGA-II (Deb, 2002). In practice, at the 

𝐺𝑡ℎgeneration the combined population of size 2NP comprising all 𝒖𝑝,𝐺 and 𝒛𝑝,𝐺 is ranked using a 

fast non-dominated sorting algorithm that identifies the ranked non-dominated solutions of the Pareto 

optimal set, Σ. Then, the first NP candidate solutions are selected according to the crowding distance 

(Deb, 2002).  

 

 

2.2. The classification algorithm  

The hierarchical model has been developed using as classification algorithm the K-Nearest 

Neighbours (KNN) (Altman, 1992). This choice has been motivated by the necessity of having an 



algorithm characterized by few parameters to be tuned and which does not call for classes to be 

linearly separable in the input space. 

The KNN classification of a test pattern 𝒐 is based on the computation of its distance with the T  

Labelled patterns of a training set, 𝑻𝒓 = {(𝒐𝒕 , 𝒄𝒕)}, 𝒕 = 𝟏: 𝑻, 𝒄𝒕 ∈ {𝟏, . . . , 𝑪𝒍}, with 𝒄𝒕 indicating the 

class of the t-th pattern and Cl the total number of classes. In practice, the KNN algorithm: 

a) finds the 𝐾̃ closest training patterns to the test pattern, according to an opportune distance (e.g. 

Euclidean distance, Mahalanobis distance etc.), where 𝐾̃ is a user-defined nonnegative 

integer; 

b) assigns the test pattern 𝒐 to the class with most representatives among those of its 𝐾̃ neighbors. 

 

4. CASE STUDY: THE CASE WESTERN RESERVE UNIVERSITY BEARING DATASET 

The Case Western Reserve University bearing dataset contains the results of 72 experiments 

consisting in the measurement of 3 acceleration signals. The acceleration signals are measured using 

𝑆 = 3 accelerometers placed at the 12 o’clock position at the drive end and at the fan end of the motor 

housing and on the motor supporting base plate. Data are collected at frequencies of 12000 samples 

per second for time lengths of about 10 seconds. Two ball bearings are installed at the drive end and 

at the fan end of the motor, respectively. For both bearing, 𝑁𝑑𝑚 = 3 degradation mode are considered 

affecting the inner race, outer race and ball, respectively. For each failure mode, 12 experiments have 

been performed, considering all the possible combinations of 𝑁𝑑𝑙 = 3 different degradation levels 

(i.e., 𝑓 = 7, 14, 21, mils (mil inches) long defects) and 𝑗 = 4 different operation conditions 

represented by motor loads from 0 to 3 horsepowers. Bearings in normal conditions have also been 

tested at the 𝑙 =4 different loads. The vibration time series have been verified to be stationary by 

applying the Kwiatkowski, Phillips, Schmidt, and Shin’s test (KPSS test) (Kwiatkowski, 1992). 

4.1      Feature extraction  



Each vibration signal has been segmented using a fixed time window of approximately 1.4 seconds, 

overlapping of about 0.37 seconds. Each time window contains 214 acceleration measures from each 

sensor. Therefore, from each time series, we have extracted 10 different time windows, hereafter 

called records. From each record, we have extracted 𝐾 = 29 different features: these include 

statistical indicators (1 to 9) (Di Maio et al., 2012b), Discrete Wavelet Transform (DWT) using Haar 

basis (10 and 11) (Baraldi et al., 2012), DWT using Daubechies3 basis (12 to 15) and Wavelet Packet 

Transform (WPT) using Symlet6 basis (16 to 29) (Chebil, 2009), as listed in Appendix A. Since these 

features have been extracted from 𝑆 = 3 vibrational signals measured by 𝑆 = 3 different 

accelerometers, the total number of features extracted is 𝑛 = 87. Thus, the available data-set consists 

of 720 87-dimensional patterns (Table 1). Notice that for each pattern we know whether it 

corresponds to a motor with a degraded or healthy bearing and in the former case, the occurring 

degradation mode and the degradation level. Thus, the patterns are labelled with respect to all the 

classifiers of the hierarchical model. 

All the available 720 labelled data are partitioned into a set used for the feature selection task formed 

by 80% of the total number of patterns and obtained by randomly sampling 8 patterns among the 10 

at a given load in each row of Table 1, and a validation set formed by the remaining patterns, which 

will be used for validating the performance of the diagnostic model after the optimal features subset 

selection. 

 
4.2      Validation of the feature selection algorithm 

In this subsection, we compare the results obtained by the proposed feature selection algorithm with 

those obtained in literature considering the same dataset (Y. Zhang, 2012) (Jiang, 2013) (Zhu, 2013) 

(Li, 2013). To this aim, in order to have the same test conditions used in the literature works, the 

feature selection task has been performed considering only the failure of the drive-end bearing and 

the vibrational signal registered at the drive-end of the motor housing. Furthermore, in accordance 

with the literature works, a direct, one-stage classification of the fault type and intensity has been 



performed. In practice, we have considered a 10 classes classification problem, where the classes 

correspond to the normal state and all the possible 9 combinations of the 3 failure types and 3 failure 

intensities. The only objective of the feature selection is the minimization of the misclassification 

rate, i.e. the fraction of test patterns not assigned to the correct class. The best solution identified by 

the DE algorithm is reported in Table 2, whereas Table 3 reports the performance in terms of 

misclassification rates obtained by adopting a 50-fold cross-validation approach on validation data 

not used for the feature selection. In other words, for 50 times we have randomly chosen among the 

validation set, 75% of the patterns for the training set and 25% for the test set, ensuring that at least 

3 patterns of each class are present in the training set. Table 4 compares the obtained results with 

those of other literature works. Notice that the performance obtained using the selected features is 

more satisfactory than those obtained in (Li Jiang, 2013) (KNN classifier), (Y. Zhang, 2012) and are 

comparable to those obtained in (K. Zhu, 2013) and (Li Jiang, 2013) (SVM) which are based on a 

more refined classification model. It is, however, worth noting that our approach is the only one which 

is tackling the problem of independence from operational conditions, which complicates the 

classification problem since it reduces the amount of data available for training the classifier and the 

similarity between the training and test data. 

 

4.3 The overall hierarchical classification model 

According to Figure 1, the overall hierarchical model is formed by:  

1. one classifier for identifying the onset of the degradation, 𝐶0 

2. one classifier for identifying the location of the degradation, 𝐶1 

3. two classifiers for identifying the degradation mode, 𝐶2
𝑏 with 𝑏 = 1,2 indicating which 

bearing is degrading, where 𝑏 = 1 and 𝑏 = 2 refer to drive end and fan end bearing, 

respectively 

4. six classifiers for identifying the degradation level, 𝐶3
𝑏,𝑖

 with  𝑖 = 1,2,3 indicating the 

degradation mode (1 refers to inner race defects, 2 to balls defects and 3 to outer race defects) 



In order to obtain independence from the operational conditions, the training sets used to build the 

classifiers are always formed by patterns extracted from signals collected from a motor operating at 

a load different from that from which the patterns of the test sets have been obtained. The test is 

repeated considering classifiers trained with patterns collected from motor operating at different 

loads, until all the loads have been considered. The number of patterns used for the training and test 

of the different classifiers are summarized in Table 5. 

 

4.4      Feature selection results 

A MOBDE-based approach has been applied using the MO fitness functions  𝑭(𝒛)  in (7) as criteria 

for the selection of the relevant features. Each candidate solution 𝒛 is a binary string of 174 bits 

(genes), the first 87 genes represent the input features to the classifiers at stage 2, whereas genes from 

88 to 174 represent the input features to the classifiers at stage 3. The parameters CR, SF and NP of 

the BDE have been set to 0.30, 0.5 and 350, respectively. The choice of the value of 0.30 for the 

crossover parameter, CR, is motivated by the necessity of maintaining diversity in the population and 

it has been set according to the suggestions in (Gong, 2014), where it is shown that low CR values 

can lead to a gradual and successful exploration of a complex search space. The scale factor 

parameter, SF, has been set to 0.5 according to the suggestion of (Ali, 2005). Finally, a large 

population, formed by 350 chromosomes has been used in order to allow a deep exploration of the 

multidimensional search space (Mallipeddi, 2008). 

The performance of the MO optimization can be quantified in terms of the diversity of the solutions 

and the convergence to the Pareto optimal front (Deb, 2001). Since in a MO optimization problem, it 

is typically not possible to simultaneously improve the values of two or more objective functions 

without causing the deterioration of some other objectives (Azevedo, 2011), diversity is a 

fundamental requirement in a MO evolutionary optimization. In practice, diversity in the population 

allows improving the coverage of the search space and exploring different evolutionary paths. An 

indicator of the diversity of a Pareto optimal set is the hyper-volume over the non-dominated set, 



which has been defined as the Lebesgue-measure of the hyper-volume with respect to a lower 

reference bound (normally, the ideal worst values of each objective function) (Zitzler, 2003): when 

two Pareto fronts are compared, higher is the value of such indicator, better is the performance in 

terms of objective function evaluations and wider is the exploration of the search space. In our case, 

we set as upper reference point, the point (1,1,87,3) i.e., the feature set characterized by the worst 

possible performances i.e. all the patterns are misclassificated and 87 features extracted from 𝑆 = 3 

sensors are used. Figure 4 shows the Pareto fronts obtained after G=1500 generations applying the 

NSBDE and the MODE III selection strategies, and Table 6 reports the statistics of the corresponding 

hyper-volumes. 

 

Notice that NSBDE performs better than MODE III in terms of diversity and performance of the solutions. 

This has justified the application of the NSBDE strategy with a high number of generations in order to identify 

the optimal Pareto set. Figure 5 shows that the optimal Pareto set hyper-volume is increasing until generation 

15500 and then it tends to remain constant. This indicates that the Pareto set becomes stable and no 

improvement of the solutions is expected to be found by further increasing the number of generations. 

 

In order to select the solution to be actually used for the development of the bearing diagnostic system, 

we have considered the following information provided by experts: 

a) the computational cost of memory pre-allocation depends on the number of slots to be used. 

A slot typically allows to use from one to eight features, thus the computational cost is the 

same if the number of features is between 1 and 8, and it increases when the number of features 

exceeds 9. Since solutions with more than 16 features have not been identified, the 

computational cost can be that of 1 or 2 slots. 

b) the monetary cost for sensors (i.e., measurement devices and data collection system) is 

directly proportional to the number of sensors to be installed. 



In order to select the best compromise solution  𝒛𝑜𝑝𝑡
∗ , we firstly normalize the four objective functions 

in a scale from 0 to 1, where 0 corresponds to the minimum value of the objective function in the 

Pareto optimal front and 1 to the maximum value. With respect to the objective function 3, in order 

to take into account the information provided by the expert,  we have assigned a normalized value of 

0 to all the solutions of the Pareto optimal set characterized by less than 9 features (all characterized 

by the same cost) and of 1 to all the solutions with more than 8 features (all characterized by the same 

cost). 

Then, we resort to the TOPSIS method (Technique for Order Preference by Similarity to an Ideal 

Solution) (Opricovic, 2004), which is a multiple criteria decision making method whose basic 

principle is that the chosen solution should have the shortest distance from the ideal solution and the 

farthest distance from the negative-ideal solution (Appendix B). Table 7 reports the features in the 

best compromise solution, 𝒛𝑜𝑝𝑡
∗ , whereas its performance is reported in Table 8. 

 

It can be observed that only one statistical indicator, the peak value, has been selected for both 

classifiers, whereas all the other features, except a minimum wavelet coefficient, are norms computed 

at different levels of the WPD. This result confirms the superiority of the WPD feature for diagnostics 

in bearings with respect to DWT, as already pointed out in (Chebil, 2009) where, however, the 

problem of the independence from operational conditions is not addressed and the possibility of 

building classifiers based on a mixture of DWT and WPD features is not considered. It is also 

interesting to notice that 6 features are extracted from the DE sensor and just 2 from the FE sensor. 

Thus, it seems that the drive-end features are more informative with respect to bearing degradation 

than the fan-end features. This is also confirmed by the analysis of the solution of the Pareto optimal 

front with features extracted from only one sensor (circles in Figure 6): in all these solutions the DE 

sensor is selected. Finally, according to the identified optimal compromise solution, the classifiers 

for the identification of the degradation mode require more features than those for the identification 

of the degradation level. This can be interpreted by observing that the task of the degradation mode 



classifiers is more complex since it has to consider a large set of patterns characterized by all the 

types of degradation modes, whereas the degradation level classifiers have to consider only a subset 

of those patterns, i.e. those characterized by a specific degradation mode (Figure 1) and thus a more 

limited training space. 

 

4.5  Classification results 

Once the feature selection task has been performed, the bearing diagnostic system has been developed 

using as input features for classifiers at stages 2 and 3 the features in Table 8 (first and second 

columns, respectively). With respect to the classifiers, 𝐶0 and 𝐶1, we have performed an exhaustive 

search among all the possible combinations of the 8 selected features for the classifiers at stage 2 and 

we have obtained the best performance using the feature sets in Tables 9 and 10, respectively. It is 

interesting to notice that one feature is sufficient for the bearing detection task. 

 

The overall performance of the hierarchical classification model has been verified on the data of the 

validation set, not previously used during the feature selection. The percentage of patterns for which 

the classification is correct in all the 4 stages of the diagnostic system is 79.78% in the case in which 

the training set is forced to contain only patterns collected from an operational condition (load) 

different from that of the test patterns (hereafter referred to as Case 1) and 97.61% in the case in 

which the training set contains patterns collected at any load (hereafter referred to as Case 2). Table 

11, second column, reports the performances of the single classifiers of the hierarchical structure in 

Case 1 and column 4 in Case 2. 

The less satisfactory performance is obtained by classifier C2
2,3

 which is devoted to the identification 

of the intensity of the FE bearing degradation due to outer raceway defects. It is interesting to notice 

that according to (CWRU), the Case Western Reserve University Bearing data referring to the outer 

raceway defects with an intensity level of 21 mils and at load 0 have been collected considering 



bearing with defects located at the 3 o’clock direction (directly in the load zone), whereas, for the 

other degradation levels, the defects are located at a 6 o’clock direction (orthogonal to the load zone). 

Thus, the misclassifications are due to the different ways in which the defects are induced, as it can 

be seen in Table 12 which reports the misclassifications of the patterns at the different intensity levels. 

Misclassifications of C2
2 are also due to the same cause. 

With respect to the analysis of the other misclassification causes, it is interesting to observe that the 

proposed feature selection approach is constraining all the classifiers of a given level of the 

hierarchical model to be based on the same set of features, i.e. the 2 classifiers (𝐶2
1 and 𝐶2

2) at level 2 

are all based on the features in Table 7, first column and all the 6 classifiers at level 3 (𝐶3
𝑏,𝑖, 𝑏 = 1,2 

and 𝑖 = 1,2,3) on the features, Table 7, second column. This choice allows obtaining, for each level 

of the hierarchical model, a set of features which provides a good compromise between the 

performance of the different classifiers of the level, but is not optimal for the single classifier. 

Considering, for example, classifier 𝐶2
1 which is devoted to the classification of the degradation mode 

for the drive-end bearing, its performance can be remarkably increased by considering a subset of the 

selected features which does not contain the features measured by the FE sensor. In particular, the 

misclassification rate of 𝐶2
1 reduces from 4.17 to 0.02 when only features 2A, 2B and 2E (Table 7) are 

used as input of the classifier. Thus, the fan-end features (2F and 2G in Table 7) have been selected 

by the MOBDE algorithm only for the information that they provide for the classification of defects 

at the fan-end bearing, but they cause a decrease in the performance of the drive-end bearing fault 

classifier. This can be graphically seen in Figures 7 and 8: the patterns representative of the different 

degradation modes are clearly separated when the drive-end features 2A, 2B and 2E are used (Figure 

7), whereas they become more confused when the fan-end feature 2G is taken into account (Figure 

8).  

 

5.            CONCLUSIONS 



 

In this work, we have developed a diagnostic approach for the identification and characterization of 

defeats in automotive bearings based on a hierarchical architecture of K-Nearest Neigbour classifiers. 

Different features extracted from acceleration signals in the time and frequency domains have been 

considered, and an optimal feature set has been identified by resorting to a wrapper approach based 

on the use of a binary differential evolution algorithm. Multiple objectives of the search have been 

the maximization of the diagnostic system performance, and the minimization of the cost associated 

to the development of the diagnostic system and the measurement of the acceleration signals. Since 

the external conditions experienced by automotive bearings remarkably influence the acceleration 

signal data and, thus, may cause unsatisfactory performance in application, a further requirement is 

the independence of the extracted features from the external conditions. 

The developed method has been applied with success to the data of the Western Reserve Case 

University Bearing dataset which contains real vibrational data collected in experimental tests 

performed on degraded bearings. The practical deployment and validation of the proposed diagnostic 

approach for automotive bearings requires the design and execution of further tests reproducing 

bearing degradation in automotive vehicles under realistic external conditions. These activity is being 

performed within the European Project HEMIS (www.hemis-eu.org), whose objective is the 

development of prognostics and health monitoring systems for the most critical components of Fully 

Electric Vehicles. 
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Appendix A:  List of features 

1. Mean value                                                                                                                                

 2. Kurtosis                                                                                                                                       

3. Skew value                                                                                                                                

4. Standard Deviation                                                                                                                     

5. Crest indicator                                                                                                                        

 6. Clearance indicator                                                                                                                        

7. Shape indicator                                                                                                                        

8. Impulse indicator                                                                                                                      

 9. Peak value                                                                                                                              

10. Minimum Haar Wavelet coefficient                                                                                        

11. Maximum Haar Wavelet coefficient                                                                                       

12. Norm  level A3 Daubechies Wavelet transform                                                                  

13. Norm  level D3 Daubechies Wavelet transform                                                                 

14. Norm  level D2 Daubechies Wavelet transform                                                                  

15. Norn  level D1 Daubechies Wavelet Transform                                                                   

16. Norm Node 1 Symlet6 Wavelet                                                                                                     

17. Norm Node 2 Symlet6  Wavelet                                                                                              

                           …                                                                                                                                        

28. Norm Node 13 Symlet6 Wavelet                                                                                                   

29. Norm Node 14 Symlet6 Wavelet 

 

 

Appendix B: the TOPSIS method for the selection of the best compromise solution 

The basic principle of this technique is that the chosen alternative should have the shortest distance 

from the ideal solution and the farthest distance from the negative-ideal solution. The TOPSIS method 

is described in (Opricovic, 2004): 

1. Compute for each solution in the Pareto optimal set the values 𝑧̃𝑝,𝛼: 

                                     𝑧̃𝑝,𝛼 = 𝐹𝑝(𝑧𝑝)
𝐹𝑝(𝑧𝑝)

√∑ 𝐹𝛼(𝑧𝑠)2𝑃
𝑠=1

       𝑝 = 1: 𝑃, 𝛼 = 1: 4                          (13)                                                                               

2. Calculate the weighted values 𝜉𝑝,𝛼: 



                                           𝜉𝑝,𝛼 = 𝑧̃𝑝,𝛼 ∙ 𝜔𝛼         𝑝 = 1: 𝑃, 𝛼 = 1: 4                                   (14) 

                                                                             ∑ 𝜔𝜁
4
𝜁=1 = 1                                                       (15) 

where 𝜔𝛼 indicates the relative importance of the i-th objective and is here taken equal to 0.25 

for all the objectives. 

3. Determine the ideal and negative-ideal solution: 

                                          𝐴∗ = {𝜉1
∗, 𝜉2

∗, 𝜉3
∗, 𝜉4

∗} = min
𝛼

( 𝜉𝑝,𝛼| 𝛼 = 1: 4)                           (16) 

                                       𝐴− = {𝜉1
−, 𝜉2

−, 𝜉3
−, 𝜉4

−} = max
𝑝=1:𝑃

( 𝜉𝑝,𝛼| 𝛼 = 1: 4)                          (17) 

4. Compute the separation measures, according to the Euclidean distance. The separation of each 

candidate solution from the ideal solution is given by 

                                             𝐷𝑝
∗ = √∑ (𝜉𝑝,𝛼 − 𝜉𝛼

∗ )24
𝛼=1    𝑝 = 1: 𝑃                                     (18) 

Analogously, from the negative-ideal solution is given by       

                                             𝐷𝑝
− = √∑ (𝜉𝑝,𝛼 − 𝜉𝛼

−)24
𝛼=1    𝑝 = 1: 𝑃                                    (19)   

5. Calculate the relative closeness to the ideal solution. For each candidate solution 𝒛𝑝 the 

relative closeness with respect to 𝐴∗ is defined as 

                                                     𝐶𝑝
∗ =

𝐷𝑝
−

𝐷𝑝
∗ +𝐷𝑝

−    𝑝 = 1: 𝑃                                                    (20) 

6. Ranking the solutions in increasing order. 

 

 

 

 



 

Figure 1: The hierarchical model of the bearing diagnostic system 

 

 

 

 

Figure 2: Wrapper approach for optimal feature subset selection based on BDE optimization algorithm.  

 

 

 

Figure 3: BDE procedure 

Initialization Mutation Recombination Selection 



 

Degradation  i Failure intensity f Number of patterns 

(all loads) 

Number of patterns 

for each load 

Inner race (DE) 7 mils 40 10 

Inner race (DE) 14 mils 40 10 

Inner race (DE) 21 mils 40 10 

Balls (DE) 7 mils 40 10 

Balls (DE) 14 mils 40 10 

Balls (DE) 21 mils 40 10 

Outer race (DE) 7 mils 40 10 

Outer race (DE) 14 mils 40 10 

Outer race (DE) 21 mils 40 10 

Inner race (FE) 7 mils 40 10 

Inner race (FE) 14 mils 40 10 

Inner race (FE) 21 mils 40 10 

Balls (FE) 7 mils 40 10 

Balls (FE) 14 mils 40 10 

Balls (FE) 21 mils 40 10 

Outer race (FE) 7 mils 40 10 

Outer race (FE) 14 mils 40 10 

Outer race (FE) 21 mils 40 10 

 

Table 1: Type of degradation mode and intensity in all the available patterns. DE=Drive End bearing and 

FE=Fan End bearing 

 

Selected features 

Shape Indicator (DE) 

Peak Value (DE) 

Norm Node 5 Symlet6 wavelet  (DE) 

Norm Node 11 Symlet6 wavelet (DE) 

Norm Node 14 Symlet6 wavelet (DE) 

 

                                            Table 2: Selected features (DE= Drive End sensor) 

 

Average misclassification rate Standard deviation 

0.0059 0.0008 

 

Table 3: Performance obtained in a 50-folds cross validation approach 

 

 

 

 

 



 

 

Work Number of 

features 

extracted 

Feature 

selection 

approach 

Number of 

features  

after 

reduction 

Number of 

classes 

considered 

Bearing 

considered 

Classifier Misclassification rate 

Y.Zhang, 
2013 

21 Kernel Principal 
Component 

Analysis 

3 7 Drive End SVM 0.47% 

L.Jiang, 
2013 

16 Semi-supervised 
kernel Marginal 

Fisher Analysis 

5 10 Drive End SVM 
KNN 

0.00% 
1.50% 

K. Zhu, 

2013 

8 None 8 10 Drive End SVM 0.00% 

F. Li, 2013 14 Linear Local 

Tangent Space 

Alignment 

3 7 Drive End Littlewoods-

Paley SVM 

5.71% 

Ours 29 Wrapper search 5 10 Drive End KNN 0.01% 

 

Table 4: Comparison of our work with other literature works 

 

 No. of patterns in the training 

set 

No. of patterns in the test set 

𝑅2
𝑏,𝑗 144 432 

𝑅3
𝑏.𝑖.𝑗 48 144 

 

Table 5: Number of patterns in the training and test set. 

 

 

Selection 

strategy 

Hyper 

Volume 

Median 

Hyper 

Volume 

Mean value 

Hyper 

Volume 

standard 

deviation 

NSBDE 148.4094 148.4146 0.1913 

MODE III 64.2715 64.4124 1.3780 
 

Table 6: Statistics on the hyper-volume over the non-dominated set obtained by applying the NSDE and the 

MODE III selection strategies. 

 



 

Figure 4: Pareto optimal front, after 𝑮 = 𝟏𝟓𝟎𝟎 generations (stars NSBDE strategy, squares MODE III strategy) 

 

Figure 5: Hyper-volume values every 1500 generations 

 

The NSBDE based Pareto optimal front consists of 𝑃 = 211 solutions,  𝒛∗ (Figure 6).  



 

Figure 6: Pareto optimal front after 19500 generations 

 

 

Input features selected for the  classifiers 

of the degradation mode (𝑪𝟐
𝟏 and 𝑪𝟐

𝟐) 
Input features selected for the classifiers of the 

degradation level (𝑪𝟑
𝟏,𝟏

, 𝑪𝟑
𝟏,𝟐

, 𝑪𝟑
𝟏,𝟑, 𝑪𝟑

𝟐,𝟏, 𝑪𝟑
𝟐,𝟐, 𝑪𝟑

𝟐,𝟑
) 

2A = Peak Value (DE)  3A = Peak Value (DE) 

2B = Norm Node 5 Symlet6 wavelet  (DE) 3B = Minimum Haar wavelet coefficient (DE) 

2C = Norm Node 7 Symlet6 wavelet  (DE) 3C = Norm Node 5 Symlet6 wavelet  (DE) 

2D = Norm Node 12 Symlet6 wavelet  (DE) 3D = Norm Node 12 Symlet6 wavelet  (DE) 

2E = Norm Node 14 Symlet6 wavelet  (DE) 3E = Norm Node 11 Symlet6 wavelet  (FE) 

2F = Minimum Haar wavelet coefficient (FE)  

2G = Norm Node 11 Symlet6 wavelet  (FE)  

Table 7: features in the optimal compromise solution 𝒛𝑜𝑝𝑡
∗ : the column on the left contains the features selected 

for the classifiers of the degradation mode (hereafter indicated by 2A, 2B,…, 2G), the column on the right that 

for the classifiers of the degradation level (hereafter indicated by 3A, 3B,…, 3E); DE refers to features extracted 

from the Drive End sensor, FE from the Fan End sensor. 

 

𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 

0.0463 0.0495 8 2 
 

Table 8: objective function values in the optimal solution 𝒛𝑜𝑝𝑡
∗   

 

 

 



Detection of the degradation  
Norm Node 7 Symlet6 wavelet  (DE) 

 

Table 9: input feature of the bearing d the solution 𝒛𝑜𝑝𝑡
∗  for the detection of the degradation classifier (DE= 

Drive End sensor). 

 

 

Isolation of the degrading bearing 
Peak Value (DE) 

Minimum Haar wavelet coefficient (DE) 

Norm Node 12 Symlet6 wavelet  (DE) 

Minimum Haar wavelet coefficient (FE) 

 

Table 10: features of the solution 𝒛𝑜𝑝𝑡
∗  for the degradation isolation of the degrading bearing classifier 

(DE= Drive End sensor, FE=Fan End sensor). 

 

 

Classifiers Misclassification rate 

Case 1 

Misclassification rate 

Case 2 

Standard deviation 

Case2 

 𝐶0  0.00% 0.00% ±0.00% 

 𝐶1  1.61% 0.22% ±0.01% 

 𝐶2
1 4.17% 1.11% ±3.33% 

 𝐶2
2 8.33% 4.44% ±5.07% 

  𝐶3
1,1 0.00% 0.00% ±0.00% 

  𝐶3
1,2 12.50% 0.00% ±0.00% 

 𝐶3
1,3 0.00% 0.00% ±0.00% 

 𝐶3
2,1 12.50% 0.00% ±0.00% 

 𝐶3
2,2 8.33% 2.67% ±6.24% 

 𝐶3
2,3 16.67% 6.67% ±8.21% 

 

Table 11: Misclassification rates of the KNN-classifiers for the solution 𝒛𝑜𝑝𝑡
∗ . 

True class of the test pattern 

(intensity of the degradation level) 

Misclassification rate 

7 0 

14 0 

21 0.50 

Mean 0.1667 
 

Table 12: Analysis of the misclassification rate of the 𝑪𝟑
𝟐,𝟑

 classifier  

 



 

 

Figure 7: Representation of the patterns used to train classifier 𝑪𝟐
𝟏 in the space of the Peak Value (DE), Norm 

Node 5 Symlet6 (DE) and Norm Node 14 Symlet6 (DE) features 

 

 

Figure 8: Representation of the patterns used to train classifier 𝑪𝟐
𝟏 in the space of Peak Value (DE), Norm Node 5 

Symlet6 (DE) and Norm Node 11 Symlet6 (FE). 

 


