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Inverse analysis for time dependent problems is discusstids chapter. When time
dependent processes are analysed, further uncertaintie® drom initial conditions
as well as from time dependent boundary conditions and ldadsddition to model
parameters. Inverse modelling techniques have been sylifdeveloped for this
class of problems, which exploit the availability of a setm#fasurement and/or mon-
itoring data at given locations at subsequent time instaStquential Bayesian data
assimilation is introduced, and a brief review of filterirechniques is given. In fil-
tering the problem unknown is the time evolution of the phbilitg density function
of the system state, described by means of appropriate tpendient variables and
time invariant parameters, conditioned to all previous edy&tions. Particle filtering
is chosen to conceptually illustrate the methodology, bgme®f two simple introduc-
tory examples.

1 Introduction

Many engineering systems, and most often geotechnicamgstshow time depen-
dent response, due to time dependent loads and boundaritionadas well as to
multiphysics coupling. To assess time dependdyhamic systems and to predict
their evolution in time, a proper model to describe the behavof the soil has to
be conceived and calibrated, the initial state has to be knawd the time evolution
of boundary conditions and of loads has to be described. ddhis further uncer-
tainty to the comprehensiveodelwe use to describe the physical system. Moreover,
small scale laboratory tests can usually give only pantitdrimation on the material
properties, which have to be upscaled to properly deschbeadsponse of the sys-
tem at the field scale. This is true, in general, for any gédut®al property, but even
more for the hydraulic behaviour of soils, which typicallyosvs high non-linearities
due to multiphysics coupling, and which is usually stronafiected by scale effects
and heterogeneity. Without loss in generality, in this ¢bapeference is made to
the hydraulic behaviour, although the derivations can heablyapplied to any other



multiphysics process.

Iterative adjustment of the model parameters, includiregsthil property values, the
initial conditions of the system, and the time dependentidauy conditions, is a
powerful tool to infer the future state of a system, given hiietory of its observed
previous respons&equential data assimilatiantilises inverse modelling to estimate
the state of the dynamic system at each time a measurementadrservation from
the system becomes available. In this context, we speakt aheasuremenivhen

a variable describing the state of the system is measuredtljire.g. pore water
pressure), and aboobservation when the state variable is inferred by measuring a
related quantity, like water content or porosity from eleanagnetic sensors.

When looking at a general time dependent physical systeitheméts “real (true)
state”, x, nor the“real (true) observation”, y, at the current time,+ 1, are known in
reality. The true state is a function of the true history & statek|°—~**+!, the true and
time invariant soil parametefs = {p1, P2, ...} and the true history of the boundary
conditionsi|°~ 1, while the true observation is a function of the true stat¢hef
system at that time
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with £ € RY#, whereN; is the dimension of the vector describing the system state
at a given location, angl € RV7 is the observation vector of dimensiog.

In order to analyse and infer the response of a time depesgistgms, two types of
models are required; (a) a mod#l of some form describing the transient processes
affecting the state, and (b) a modgtelating some observation of the processes to the
system state.

(a) The state of a dynamic system is commonly assessed uslisgrate-time ap-
proach. Thepredicted state(s)x, may be defined as a first order Markov pro-
cess, that is, the system state at the current timel, is only a function of the
state at the previous time stepHence

Xt+1 _ /\/l(xt,p,ut) +€§(+1 (3)

where M is the model operator describing the non-linear physicat@ss as

a function of the stata! at timet, the time invariant model parametgssc
RN» and the prescribed model boundary conditiahst timet. The Gaussian
(white) noise terme, ~ N(0, afx) (see Chapter 1, [Fen14]) is adding stochastic
diffusion and has a mean of zero and a variance?of

The state can be also written as an augmented state variable
Zt+1 — (Xt-ﬁ-l,pt-ﬁ-l) (4)

[e.g. RHV10, MDS12]. As the parameters in Equations 3 are finvariant,
this augmented state variable may be used to describe timageh of the
parameterg with respect to the state at time- 1.



(b) The observation &t+ 1 can be computed by
yH =Gt p) + et (5)

whereg is the measurement function of the system response,and/\/ (0, afy)
is the Gaussian noise term of the observation.

For most time dependent non-linear soil processes, theeimée of the state, as well
as of the soil property values, from direct inversion usihgsed-from analytical
frameworks is virtually impossible, as already discussedhie previous chapters
[Led14, Call4]. The local gradient-based search algostipreviously introduced to
iteratively determine the local minimum within a maximurkelihood and weighted
least square framework, become more likely to fail in findihg global minimum
with increasing non-linearity of the system. Indeed, tre@gerithms are not designed
to handle highly multivariate problems with multiple lo@gtima in parameter space
and multiple domains of attraction, and they become lesdesweffective with in-
creasing domain size or in the presence of discontinuopsnses [VSW 08]. More
robust global optimisation algorithms have been develpghed use multiple searches
from different starting points within the parameter spdoegduce the risk of attrac-
tion towards a single local domain. The classical inferemethods for non-linear
dynamic systems are thé@lman filtersand its variants, which have been have been
successfully applied to many non-linear problems. An al#ve sequential Monte
Carlo method, thearticle filter, has been chosen here to introduce the potentials and
the limitations of global optimisation methods for time degent processes. After
a brief general introduction to sequential Bayesian dagarakation, a review of se-
quential inference is given. The Particle Filter is therfhyiillustrated, and discussed
by means of two introductory examples.

2 Inverse modelling

2.1 Bayesian basics

A background on Bayesian theory is provided in Chapter 1 [B¢or in specific
monographs [e.g. BT92, Gre05] and thus will be summarised bely briefly. The
basic form of Bayes’ theorem in a continuous version is

P[A|E;]|P|E;]

where F; is the event, i.e. the state to be predictedis the occurrence, i.e. the
observed data/measurmenf3[F;] is the prior distribution or expectation defining
the prior knowledge of the event(| P[E;] = 1), P[A|E;] o P[E;|A]P[A] is the

likelihood function (| P[A|E] # 1), P[E;|A] is the posterior distribution estimating



the eventE; given the observed datd ( P[E|A] = 1) and P[A] represents the
marginal distribution ofd ([ P[A] = 1), i.e. the normalisation factor
P[A] = P[A|E|P[E]+ P[E|A°|P[A°]

n

UAnE)

=1

Inserting Equation 7 into Equation 6 the posterior disttithucan be written as
P[A|E;| P[E)]

Yoim1 PIA|E]PIE]

= P

- Z P[ANE;] = ZP[A|EZ]P[EZ] (7)

P[E;|A] =

(8)

A simple example will illustrate how a Bayesian scheme caafygied. Let us as-
sume that the volumetric water contéhtas to be inferred to describe the state of an
unsaturated soil, and that, based on previous experieafumdtory tests, or database,
we know thatd ~ N (ug,07) with a variance ok = 0.0009. A set of new direct
laboratory measurements ®from soil samples retrieved in the field becomes avail-
able, which allows updating our prior knowledge on the meganGiven the prior of
the meany = © ~ N(ue,0d)

2
[(©) =4/2m0d exp {—(MGQ%} 9)

the likelihood of the mean given one measurenteistproportional to the likelihood
of the sample meafifor a set of N, independent measurements.

5 7 a2
p(9|@) = \/277‘0’3 exp {_(92_7@)} X NS/27T0'§ exp {—(29037/@]\])} (10)

0

Therefore, the likelihood is normally distributed with a ame9, a variancer} /N
and the shape being controlled by the sample size. The prstigstribution is then
obtained via multiplication of the prior and likelihood fciion

(0-©)" (1o -9)
©|60 — — 11
P(®| )“eXp{ 202/N, 202 an
[ . . ©02/Ns+020 . . 0302/N;
wherep(©|0) ~ N (f1,5) withamean: = U(%Tgm“ and variancé = W

It's worth noting that the example can be extended to the chsaknown mean and
variance, given that the state variable can be describedrxyraal or log-normal
distribution.

The quality of the prior information and the advantage pdediby the new measure-
ments are illustrated in Figure 1, whe¥g is the number of samples available. Given
f(©) ~ N(0.42,0.0009) andp(0|©) ~ N(0.33,0.18%/Nj) taking only three sam-
ples the likelihood is low, and the prior distribution domias the posterior (Figure
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Figure 1: Example of Bayesian inference of normally distréll mean estimatey of
a sampld.

1(a)). With increasing sample size, the confidence in themasion increases and the
prior information becomes less significant for the postasiediction (Figure 1(b-c)),
The difference between the prior and the posterior didfiobs indicates that the prior
information was poor in this case.

Two simplifying assumptions were implicitly introduced time previous derivation:
(i) that the water content does not change in time, and (@) thcan be sampled by
means of direct measurement. In a more realistic scengrtbe(water content in the
field will be time dependent, as it is the result of soil-atpiuare interaction and of the
position of the groundwater table, and (ii) non-invasiveavations, often based on
electromagnetic techniques, are usually preferred t& trecphysical process. There-
fore, the information available usually refers to a seqiatdistribution of states, and
a model, including its own uncertainty (Equation 5), haseartiroduced to translate
the observations into water content sampling. To deal wifbrmation referring to a
time dependent sequence of states, the Bayesian scheme ezatebded over time.

2.2 Sequential Bayesian Data Assimilation

Given the initial jointprobability density functioPDF) of the staten(xg|yo) =
f(x0), wherey, indicates no observation, the aim of this assimilation pssds to
sequentially infer the posterior stgiéx"‘+1|y1:*+1) at present time conditioned by
any observation which became available in time. This chareation of the distri-
bution state of the hidden Markov tracking process is reféto adfiltering [DJ11].



Given the statd’ = z (Equation 4), and the observatidn= y (Equation 5), Equation
8 gives the conditional posterior PDF at time 1

1:t+1|z0:t+1)pz(zozt+1)
pY(y1:t+1)

wherepy |z (y'*+1z%*1) is the likelihood pz (z%'*!) is the prior andpy (y'**1)

is scaling the numerator to satisﬁ/pz‘y(zoitﬂ|y1:t+1) = 1. For simplicity the

subscriptsZ andY, indicating the random nature afandy, will be omitted from
here on.

pZ\Y(ZO:t+1|y1:t+1) —_ pY|Z(y (12)

The above posterior distribution (Equation 12) joins imfi@ation of all past states and
is commonly referred to agptimal filtering problenfe.g. DJ11]. Recursion of Equa-
tion 12 satisfying the marginal filtering posterior distriton p(z!*!|y!:**1), holding
only information of the current state, can be written as

b1y Lit+1y g(yt+1|zt+1)p(zt+1|y1:t) 13
z |y ) - t4+1 |y 10t ( )
p(y"*y"t)

whereg is the homogeneous likelihood (state and observation tlesiaire time inde-
pendent) and the prior distribution is estimated as

p(

Py = [ £y ey ™) dat = [ ey ot

(14)
also known asChapman-Kolmogorov equatipwhich simplifies to the second term
due to the first order Markov process [DJ11, MDS12]. The lileddg is commonly
described by a Gaussian with zero mean and a given varianke.ndrmalisation
factor may be predicted using the augmented state as indéataeeariables [MDS12].

Py = [ g e ) dat 1)

Zt+1

Equation 15 is commonly referred to as firedictive/evolutiostep and Equations 12
with 14 are referred to as thgpdating/correctiorstep [e.g. DdAG01, CGMO07, DJ11].

2.3 Sequential inference of soil water dynamic processes

In geotechnical engineering, the use of inverse modelsquesgtial schemes is still
lagging behind. Explicit analysis of transient processgesiding advanced constitu-
tive models implemented in numerical frameworks is usuptisferred, also due to
the difficulties in obtaining a comprehensive body of stai#dly valuable in situ mea-
surements. The state and the parameters of transient pesceave been inferred by
using gradient based optimization algorithms, with theiplacation ranging, for ex-
ample, from deep staged excavations [e.g. RLF08, TKO9torktory pulse test [e.qg.



GGA*11]. However, in these schemes the different sources ofrtaioty are not ac-
counted for, and no or only limited information on the statd aarameters are being
carried from one measurement time step to the next one. Thesia framework
presented in Section 2.2 is not exploited in these cases.

Sequential data assimilation is a very commonly appliet| fobinstance, in weather
forecasting, hydrological modelling and flood protecti@sessment. For most soil
water dynamic processes the non-linearity in the soil resp@nd transient boundary
conditions, alongside with the non-Gaussianity of theritistions, makes an analyti-
cal solution of the Equations 13-15 untraceable [e.g. CGNR@ZP12]. To overcome
this limitation, [Eve94] developed a recursive data-pesieg algorithm known as the
ensemble Kalman filtefEnKF), which is an extension to the origindhlman filter
[Kal60] and theextended Kalman filtepJaz70]. The EnKF is based onMarkov
chain Monte CarlolMCMC) method, propagating a large ensemble of model states
to approximate the prior state error in time by using the tgxdiatates of the previous
time step, to predict the current ensemble via forward iratiégn of a stochastic dif-
ferential equation describing the model dynamics [e.g. 8;Eve03, Eve09]. More
information, examples and codes can be found on Geir Ev&BaKF-homepage

The EnKF is one of the most commonly used non-linear filterstate and parame-
ters updating in many fields such as hydrological modelllng.[MSGHO05, PCP12,
SNH12], but it has not often been adopted in the assimilaifayeotechnical systems
[e.g. HMHV10, CCZ10].

The particle filter (PF), which is asequential Monte Carl§SMC) method, presents
one alternative to the EnKF. The PF method is very flexiblgjlgdamplementable,
strongly parallelisable and, most importantly, it approates the probability densi-
ties directly via a finite number of samples, often referredsparticles [DAGO01,
AMTCO2]. A large number of different PF methods was devetbjperecent years.
Some tutorials and state-of-the-art reports provide a gatwdduction and allow for
a more complete overview [e.g. DdGO01, DJ11, LW01, AMTCO2,MI3, van09,
CR11]. Some useful resources on SMC and PF methods have begriled by Ar-
naud Doucét

Most PF frameworks are based osequential importance samplir{§1S) andsam-
pling importance resamplin@SIR) algorithm. The SIS is the most basic Monte Carlo
method to approximate the prediction and the updating qtegaations 12-15). It
uses a finite set of random samples with associated weigliseictly represent the
posterior distribution at current time step, and subsetiyepdates this particles in
order to obtain the posterior at the next time step. Howdeemon-linear systems
the sample may tend to degenerate, that is, only a limitedoeurof particles being
around thée'real” state exclusively carry the weights, whilst the remainirgjority
of samples only carry a negligible weight. To increase ttiecti’eness of the filter
and avoid errors accumulation, the SIR algorithms may bd.USH introduces a re-
sampling stage at each time step, in which particles witiwaweight are eliminated

1ENKF sourceshttp://enkf .nersc.no/
2SMC and PF sourcesttp: //www.stats.ox.ac.uk/~doucet/smc_resources.html



and regenerated in zones in which particles carry a highheighich renders the
approximation of the posterior. Other PF methods includeéliany particle filters,
marginalised particle filters, Markov chain particle fitexnd may incorporate some
particle smoothing algorithm [e.g. AMTC02, CGMO07, DJ11kdbential smoothing
makes use of the estimates of the past states and thus tepdsvide a better filter
for the current state.

In recent years the PF method became popular and performbid W assimilation
of the state and parameters of different hydrological satewdynamic processes [e.g.
MHGSO05, MDS12, KdD05, SF09, QLY09, RHV10, MMW" 11, NTSK11, PDD 12,
RVS*t12]. A comparison between the EnKF and PF performance usicmupled
surface-subsurface flow model has been presented by [PCP12]

In geotechnical engineering the use of the PF method is motran. However, Mu-
rakami and co-workers [SMNL2, MSN"13] recently demonstrated that the elastic-
plastic Cam Clay model parameters can be successfullyré@dfansing a coupled
hydro-mechanical Finite Element program in a PF framewbokh on synthetic ob-
servation data for soil element loading tests and the coctitn of a soil embankment,
as well as on real observation data related to the construofithe Kobe Airport Is-
land.

3 A simple SIR particle filter implementation

The posterior (Equation 13) is approximated using a disset of N, samples

N
p(XO:t+1|y1:t+1) _ Z w?—l& ()A(t+1 _ lesc+1) (16)
k=1

wherew! ! are the normalised particle weights
t+1

witt = A (17)

When using the transient prior as importance functiongi(e; ™ |xt, y‘*!) =
p(x*T1|xt), the updated sequential estimates of the importance veeight

t t+1|t+1
= Wpx PlY X 18
a(x™ [xf, y' 1) e P 18)

which represent the key part of the SIS filter [e.g. AMTCO02, GI8D5, DJ11].

The implementation of a simple SIR filter based on [MHGSO05$d¢kematised in
Figure 2. The process can be split into three stages.

Initialisation stage:



Initialisation: ] Simulation & filtering: [
Set up model: M, G, Ny, e, €y, ... Generate set of particles for k=1...N,:
— Xifl — M(xt,ptﬁut) +6;+1 €§(+l NN(O,”S )
Sample initial parameter and compute states: i angl G el a0 -
pY) for k=1..N, where peR™r i =G ") + ey &~ N(0,07,
x) for k=1..N, where xeR" Estimate likelihood:
Sampling initial particle weights: g(ytﬂ‘xiﬂa pi) = _fT1_27r1/2|51y B2
0 7 .
wy=1/Ng for k=1...Ng R r172
®=1/N; s ><exp{72[1+l [7t+1 -yt }

T
| y

Filtering posterior:

v 1t ey 9Tt ph)
Py P = = ]

Resampling: ( | L k) Dorl gy kg pt)

—p[ptH — Gl (xt+, pt)‘g;ﬂ]

Read state xz_“ and weight wi_“ for k=1...N,

Update particle weights:

wi p(y" gt pl)
Doy Wy T )

w99 -G (< gl
Zk:kl w;-[y*“—g;’ l(xt«#lvpt)‘(;} 1]

Initialise CDF and uniform distribution: i
=0 Wk =
=

for k=1..N,
ul ~U(0,1/N) :

Construct CDF of particles:

Ch = Ch1 + ,wltc+1 for k=2..N, Compute effsctive partzicle weights:
f t+1
N~ 1/ 302 (war )

Resampling loop
Ny = |{u] D LRSS 3 wz}
. 0
with )., :=0

Update: x,™ =x!™' and p} = p!

Perturbate resampled parameter estimate:

pi =B+ nl ~ N (0, 5%2)

Figure 2: Schematic description of a simple SIR PF.

In this first stage the process and the observation mddedndg, (Equations 3 and
5) as well as the stochastic model, e.g. the number of pestidamples)V; and
the error functions, are set up. The initial state” is computed based on a set of
parameterp’ representing the prior knowledge, and an initial set ofamif weights
w is assigned to each partidle

Simulation stage:

In the simulation stage, the filtering of the state at 1 is performed. By means of
the state and the observation models;! andy?*! are computed for each particle.
Subsequently the homogeneous likelihood functios estimated to compute the fil-
tering posterior (Equations 13 and 16). Utilising EquadidrY and 18 the weights
are assigned to each the particle. Given that the effectiviicfe sizeN,- is smaller
than a minimum effective particle si?2é,,., representing a resampling threshold below



which degeneration of the samples occurs, the resampligg $6 entered.
Resampling stage:

Different schemes for state and parameters resampling these proposed. Using
one of the systematic schemes [e.g. AMTCO02, DJ11], thegdestare resampled by
relating acumulative distribution functiofCDF) for the particleg, to a uniform CDF,
u. After the update of the particle states and parametersietbempled parameter
estimatep!, is perturbed to obtain

p, =P+, (19)

with n!, ~ N(0,s%07) being a Gaussian noise term, as suggested by [LW01] and
[MHGSO05]. The variance of the parameter particleg, is multiplied by a small
tuning parametes, which determines the exploration radius around eachgbarnd

for which values between 0.005 and 0.025 have been commeaty [MDS12].

4 Examples

Two introductory examples will be discussed in this sectmdemonstrate the work-
ing principle and the efficiency of the simple SIR PF impletagon. In the first
benchmark example synthetic observations are used, wWigilsdcond example refers
to a typical field case where direct measurements are alailab

4.1 Example 1: an analytical benchmark

The first example has been used as benchmark as well as &iralive purpose by
several authors [e.g. KAD05, MHGSO05]. The non-linear stadelel and the obser-
vation function are both one-dimensional and describedhbyfollowing analytical
functions
gt = lmt + al’ilt + beos (1.2t) + €, (20)
2 1+ (at)? *
(IH—I)Q

yt+1 = 20 + €y (21)

wherea = 25 andb = 8 are theparameterse, ~ N(0,0?,) ande, ~ N(0,07)) are

the random noise terms for the state and the observatioaatggly, witho? = 10
andafu = 1. The initial state is taken a8’ = 10 andN, = 500 particles are used.

The initial parameter estimates aré= 30 andb’ = 4.

Figure 3 shows the state, the observation and the inferrethyric response with
time, using a sampling time interval df¢ = 1. The results of the simulation show



that the sequential assimilation technique succeeds iiqiireg quickly and accu-
rately the state, with some negative peaks not being detectd the end of the sim-
ulation. During the time lapse analysed, also the parametmverge close to the real
values {n,i00 = 25.1 andmgi00 = 7.869). The remaining variation of the parameters
depends partly on the tuning parametemhich ensures that the filter were able to
react to any significant variation in the observation.

In this benchmark case, resampling was required in mosedfrtie steps to avoid de-
generacy. Figure 4 exemplary illustrates the resamplihgrse for the last time step
t = 100. The reduction of the variance of the filtering posterionir{b) to (d) due to
resampling allows for a more effective use of the partickesnore detailed descrip-
tion of the filtering and resampling process can be foundristaince in [NTSK11],
[MDS12] and [SMN™12].
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4.2 Example 2: response of pore water pressure below a dike

In the assessment of dikes, different failure mechanisme ttebe analysed. Most of
them are likely to be initiated by the transient pore grouathrvresponse to the time
dependent external forcing conditions. The worst cond#tiare not necessarily as-
sociated to the steady state pore water distribution inliéguim with the maximum
expected water height. Therefore, proper assessment giotieatial failure mech-
anisms requires the analysis of the fully coupled time ddpahhydro-mechanical
response of the water defense structure, including theltikg and the subsoil.

Explicit coupled numerical finite elements analyses candséopmed to this aim, but
the computational effort needed to include uncertaintyhim hodel is still high. A

valuable alternative consists in relying on simplified gtieél solutions of the cou-
pled hydro-mechanical consolidation process, and perfomnnverse analysis able
to sequentially assimilate the parameters of the simplifiedel by comparison with
observation in time. Figure 5 gives a simplified illustratiof the hydro-mechanical
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Figure 5: Simplified description of the hydro-mechanical@nse of a dike subsoil
subjected to cyclic hydraulic boundary conditions

Table 1: Parameters of the simplified consolidation model.

Variable Unit p p’
Thickness of clay layer de [m] 2.0 —
Thickness of sand layer Dy [m] 7.0 6.25
Sat. hydr. conductivity of clay layer K, [ms] 0.00001 —
Sat. hydr. conductivity of sand layerK, [ms] 0.0005 0.005
Compressibility of clay layer a, [MKN™] 0.005 —
Compressibility of sand layer a, [mkN™] 0.0000001 —

processes taking place in the typical foundation subsod dike, with a pervious
aquifer underlying an impervious surficial layer, subjedi®a cyclic variation of the
pore water pressure at the boundary representing the rager Bhe effective simple
analytical solution proposed by Baudin & Barends [BB88]tfuis problem has been
used in this second example.

The adopted analytical solution gives the pore pressutghdition in the two layers
at any given distance from the river bed, and is a functiorhefuariables listed in
Table 1. The response of the system depends on the thiclkorese compressibility
and on the hydraulic conductivity of the two layers, and aapleriod of the forcing
boundary condition. Table 1 summarises the synthetic sopgrty value repre-
senting thaeal state of the systemR (Equation 1) assumed to be represented by the
analytical solution. Prior investigation using Monte @esimulations had shown that
the response of the hydraulic he&z) in the sand layer is most sensitive to varia-
tions in the saturated hydraulic conductivity of the sarny@ids,, while the thickness
of the sand layeiD; has a less dominating role. For the sake of simplicity, i thi
example the random model parameters are limited to this asialles, for which the
initial guess isp® = {Ds, K} = {6.25,0.005}, and the remaining four parameters
are assumed to be known.



We assumed - as this is the case in the field test to which thimipbe refers to - that
a piezometer is installed in the sand layer at a distaneel8.6m from the river bed,
where a direct measurement of the pore water pressure is sleach hour. These
pore pressure measurements are used for sequential diatdass, using the SIR
PF previously described.

The period of the forcing function i = 10d (86 400s), and the measurements are
taken at each houB(00s). The total time was set to 20020 000s), the number of
particles toN, = 400 ands to 0.005. The maximum hydraulic head at the river was
normalised tdhy(z = 0) = 1.0m.

Figure 6 shows the parameter estimate with time. The hyidraohductivity con-
verges very rapidly to the synthetieeal” value, confirming the high potential of
the adopted algorithm in sequential data assimilation. l@ncontrary, the conver-
gence for the thickness of the sand layer is much slower,f@ndricertainty does not
decrease monotonically. Indeed, the two variables wersashavith the purpose of
assessing the performance of the algorithm in identifyimg@meters which have dif-
ferent relative weights on the prediction. The hydraulinaactivity of the pervious
layer, which dominates the response of the system, couldfidly inferred. As for
the thickness of the same layer, a reasonable convergenktElmachieved, in spite
of its minor role in the response of the synthdtige system.
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Figure 6: Estimation of the thickness of sand lay®g, and the saturated hydraulic
conductivity of the sand layeliK;, using a SIR PF. The subscriptsindicate the
syntheticreal soil property values, the superscripthe initial state, ana ands the
sample mean and standard deviation, respectively.



5 Final remarks

In this last chapter, a basic introduction to the inversdyait of time dependent
problems was given. The provided overview is far from beimgiplete review, and
to this aim the reader is referred to the references for éunbading.

The two basic aims of this contribution were: (i) to combine theoretical and numer-
ical developments on random fields, presented in the firstgfahis book, with the
general concepts on inverse analysis illustrated in theique two chapters; and (ii)
to open a window on sequential data assimilation, which aafrigtfully exploited
in the practice, when time dependent problems have to bgsethl The examples
discussed at the end of this chapter are meant just as aduction to the powerful
approaches which can be adopted in these cases. Nonethblssuggest that if
information from measurement and monitoringsipaceof a time dependent system
is accompanied by a thorough analysis of the observed balmavitime, identifica-
tion of the variables and parameters dominating the regpohthe models can be
effectively accomplished by means of rather simple dedatatgorithms.
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