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Inverse analysis for time dependent problems is discussed in this chapter. When time
dependent processes are analysed, further uncertainties come from initial conditions
as well as from time dependent boundary conditions and loads, in addition to model
parameters. Inverse modelling techniques have been specifically developed for this
class of problems, which exploit the availability of a set ofmeasurement and/or mon-
itoring data at given locations at subsequent time instants. Sequential Bayesian data
assimilation is introduced, and a brief review of filtering techniques is given. In fil-
tering the problem unknown is the time evolution of the probability density function
of the system state, described by means of appropriate time dependent variables and
time invariant parameters, conditioned to all previous observations. Particle filtering
is chosen to conceptually illustrate the methodology, by means of two simple introduc-
tory examples.

1 Introduction

Many engineering systems, and most often geotechnical systems, show time depen-
dent response, due to time dependent loads and boundary conditions, as well as to
multiphysics coupling. To assess time dependent,dynamic, systems and to predict
their evolution in time, a proper model to describe the behaviour of the soil has to
be conceived and calibrated, the initial state has to be known, and the time evolution
of boundary conditions and of loads has to be described. Thisadds further uncer-
tainty to the comprehensivemodelwe use to describe the physical system. Moreover,
small scale laboratory tests can usually give only partial information on the material
properties, which have to be upscaled to properly describe the response of the sys-
tem at the field scale. This is true, in general, for any geotechnical property, but even
more for the hydraulic behaviour of soils, which typically shows high non-linearities
due to multiphysics coupling, and which is usually stronglyaffected by scale effects
and heterogeneity. Without loss in generality, in this chapter reference is made to
the hydraulic behaviour, although the derivations can be equally applied to any other



multiphysics process.

Iterative adjustment of the model parameters, including the soil property values, the
initial conditions of the system, and the time dependent boundary conditions, is a
powerful tool to infer the future state of a system, given thehistory of its observed
previous response.Sequential data assimilationutilises inverse modelling to estimate
the state of the dynamic system at each time a measurement or an observation from
the system becomes available. In this context, we speak about measurementwhen
a variable describing the state of the system is measured directly (e.g. pore water
pressure), and aboutobservation, when the state variable is inferred by measuring a
related quantity, like water content or porosity from electro-magnetic sensors.

When looking at a general time dependent physical system, neither its “real (true)
state”, x̂, nor the“real (true) observation”, ŷ, at the current time,t+1, are known in
reality. The true state is a function of the true history of the statêx|0→t+1, the true and
time invariant soil parameterŝp = {p̂1, p̂2, ...} and the true history of the boundary
conditionsû|0→t+1, while the true observation is a function of the true state ofthe
system at that time

x̂t+1(x̂|0→t+1, p̂, û|0→t+1) (1)

ŷt+1(x̂t+1) (2)

with x̂ ∈ RNx̂ , whereNx̂ is the dimension of the vector describing the system state
at a given location, and̂y ∈ RNŷ is the observation vector of dimensionNŷ.

In order to analyse and infer the response of a time dependentsystems, two types of
models are required; (a) a modelM of some form describing the transient processes
affecting the state, and (b) a modelG relating some observation of the processes to the
system state.

(a) The state of a dynamic system is commonly assessed using adiscrete-time ap-
proach. Thepredicted state(s), x, may be defined as a first order Markov pro-
cess, that is, the system state at the current time,t+ 1, is only a function of the
state at the previous time stept. Hence

xt+1 = M(xt,p,ut) + ǫt+1
x (3)

whereM is the model operator describing the non-linear physical process as
a function of the statext at time t, the time invariant model parametersp ∈
RNp and the prescribed model boundary conditionsut at timet. The Gaussian
(white) noise termǫx ∼ N (0, σ2

ǫx) (see Chapter 1, [Fen14]) is adding stochastic
diffusion and has a mean of zero and a variance ofσ2

ǫx .

The state can be also written as an augmented state variable

zt+1 = (xt+1,pt+1) (4)

[e.g. RHV10, MDS12]. As the parameters in Equations 3 are time invariant,
this augmented state variable may be used to describe the estimation of the
parametersp with respect to the state at timet+ 1.



(b) The observation att+ 1 can be computed by

yt+1 = G(xt+1,p) + ǫt+1
y (5)

whereG is the measurement function of the system response andǫy ∼ N (0, σ2
ǫy )

is the Gaussian noise term of the observation.

For most time dependent non-linear soil processes, the inference of the state, as well
as of the soil property values, from direct inversion using closed-from analytical
frameworks is virtually impossible, as already discussed in the previous chapters
[Led14, Cal14]. The local gradient-based search algorithms, previously introduced to
iteratively determine the local minimum within a maximum likelihood and weighted
least square framework, become more likely to fail in findingthe global minimum
with increasing non-linearity of the system. Indeed, thesealgorithms are not designed
to handle highly multivariate problems with multiple localoptima in parameter space
and multiple domains of attraction, and they become less andless effective with in-
creasing domain size or in the presence of discontinuous responses [VSW+08]. More
robust global optimisation algorithms have been developed, that use multiple searches
from different starting points within the parameter space,to reduce the risk of attrac-
tion towards a single local domain. The classical inferencemethods for non-linear
dynamic systems are theKalman filtersand its variants, which have been have been
successfully applied to many non-linear problems. An alternative sequential Monte
Carlo method, theparticle filter, has been chosen here to introduce the potentials and
the limitations of global optimisation methods for time dependent processes. After
a brief general introduction to sequential Bayesian data assimilation, a review of se-
quential inference is given. The Particle Filter is then briefly illustrated, and discussed
by means of two introductory examples.

2 Inverse modelling

2.1 Bayesian basics

A background on Bayesian theory is provided in Chapter 1 [Fen14] or in specific
monographs [e.g. BT92, Gre05] and thus will be summarised here only briefly. The
basic form of Bayes’ theorem in a continuous version is

P [Ei|A] =
P [A|Ei]P [Ei]

P [A]
(6)

whereEi is the event, i.e. the state to be predicted,A is the occurrence, i.e. the
observed data/measurments,P [Ei] is the prior distribution or expectation defining
the prior knowledge of the eventi (

∫

P [Ei] = 1), P [A|Ei] ∝ P [Ei|A]P [A] is the
likelihood function (

∫

P [A|E] 6= 1), P [Ei|A] is the posterior distribution estimating



the eventEi given the observed dataA (
∫

P [E|A] = 1) andP [A] represents the
marginal distribution ofA (

∫

P [A] = 1), i.e. the normalisation factor

P [A] = P [A|E]P [E] + P [E|Ac]P [Ac]

= P

[

n
⋃

i=1

(A ∩ Ei)

]

=

n
∑

i=1

P [A ∩ Ei] =

n
∑

i=1

P [A|Ei]P [Ei] (7)

Inserting Equation 7 into Equation 6 the posterior distribution can be written as

P [Ei|A] =
P [A|Ei]P [Ei]

∑n
i=1

P [A|Ei]P [Ei]
(8)

A simple example will illustrate how a Bayesian scheme can beapplied. Let us as-
sume that the volumetric water contentθ has to be inferred to describe the state of an
unsaturated soil, and that, based on previous experience, laboratory tests, or database,
we know thatθ ∼ N (µθ, σ

2
θ) with a variance ofσ2

θ = 0.0009. A set of new direct
laboratory measurements ofθ from soil samples retrieved in the field becomes avail-
able, which allows updating our prior knowledge on the meanµθ. Given the prior of
the meanµθ = Θ ∼ N (µΘ, σ

2
Θ)

f(Θ) =
√

2πσ2
Θ

exp

{

−
(µΘ −Θ)

2

2σ2
Θ

}

(9)

the likelihood of the mean given one measurementθ is proportional to the likelihood
of the sample mean̄θ for a set ofNs independent measurements.

p(θ|Θ) =
√

2πσ2
θ exp

{

−
(θ −Θ)

2

2σ2
θ

}

∝ Ns

√

2πσ2
θ exp

{

−

(

θ̄ −Θ
)2

2σ2
θ/Ns

}

(10)

Therefore, the likelihood is normally distributed with a meanΘ, a varianceσ2
θ/Ns

and the shape being controlled by the sample size. The posterior distribution is then
obtained via multiplication of the prior and likelihood function

p(Θ|θ) ∝ exp

{

−

(

θ̄ −Θ
)2

2σ2
θ/Ns

−
(µΘ −Θ)2

2σ2
Θ

}

(11)

wherep(Θ|θ) ∼ N (µ̃, σ̃)with a meañµ =
Θσ2

θ/Ns+σ2
Θθ̄

σ2
Θ
+σ2

θ
/Ns

and variancẽσ =
σ2
Θσ2

θ/Ns

σ2
Θ
+σ2

θ
/Ns

.

It’s worth noting that the example can be extended to the caseof unknown mean and
variance, given that the state variable can be described by anormal or log-normal
distribution.

The quality of the prior information and the advantage provided by the new measure-
ments are illustrated in Figure 1, whereNs is the number of samples available. Given
f(Θ) ∼ N (0.42, 0.0009) andp(θ|Θ) ∼ N (0.33, 0.182/Ns) taking only three sam-
ples the likelihood is low, and the prior distribution dominates the posterior (Figure
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Figure 1: Example of Bayesian inference of normally distributed mean estimateµθ of
a sampleθ.

1(a)). With increasing sample size, the confidence in the observation increases and the
prior information becomes less significant for the posterior prediction (Figure 1(b-c)),
The difference between the prior and the posterior distributions indicates that the prior
information was poor in this case.

Two simplifying assumptions were implicitly introduced inthe previous derivation:
(i) that the water content does not change in time, and (ii) that it can be sampled by
means of direct measurement. In a more realistic scenario, (i) the water content in the
field will be time dependent, as it is the result of soil-atmosphere interaction and of the
position of the groundwater table, and (ii) non-invasive observations, often based on
electromagnetic techniques, are usually preferred to track the physical process. There-
fore, the information available usually refers to a sequential distribution of states, and
a model, including its own uncertainty (Equation 5), has to be introduced to translate
the observations into water content sampling. To deal with information referring to a
time dependent sequence of states, the Bayesian scheme can be extended over time.

2.2 Sequential Bayesian Data Assimilation

Given the initial jointprobability density function(PDF) of the statep(x0|y0) ≡
f(x0), wherey0 indicates no observation, the aim of this assimilation process is to
sequentially infer the posterior statep(x0:t+1|y1:t+1) at present time conditioned by
any observation which became available in time. This characterisation of the distri-
bution state of the hidden Markov tracking process is referred to asfiltering [DJ11].



Given the stateE = z (Equation 4), and the observationA = y (Equation 5), Equation
8 gives the conditional posterior PDF at timet+ 1

pZ|Y(z0:t+1|y1:t+1) =
pY|Z(y

1:t+1|z0:t+1)pZ(z
0:t+1)

pY(y1:t+1)
(12)

wherepY|Z(y
1:t+1|z0:t+1) is the likelihood,pZ(z0:t+1) is the prior andpY(y1:t+1)

is scaling the numerator to satisfy
∫

pZ|Y(z0:t+1|y1:t+1) = 1. For simplicity the
subscriptsZ andY, indicating the random nature ofz andy, will be omitted from
here on.

The above posterior distribution (Equation 12) joins information of all past states and
is commonly referred to asoptimal filtering problem[e.g. DJ11]. Recursion of Equa-
tion 12 satisfying the marginal filtering posterior distributionp(zt+1|y1:t+1), holding
only information of the current state, can be written as

p(zt+1|y1:t+1) =
g(yt+1|zt+1)p(zt+1|y1:t)

p(yt+1|y1:t)
(13)

whereg is the homogeneous likelihood (state and observation densities are time inde-
pendent) and the prior distribution is estimated as

p(zt+1|y1:t) =

∫

zt

f(zt+1|zt,y1:t)p(zt|y1:t) dzt =
∫

zt

f(zt+1|zt)p(zt|y1:t) dzt

(14)
also known asChapman-Kolmogorov equation, which simplifies to the second term
due to the first order Markov process [DJ11, MDS12]. The likelihoodg is commonly
described by a Gaussian with zero mean and a given variance. The normalisation
factor may be predicted using the augmented state as intermediate variables [MDS12].

p(zt+1|y1:t) =

∫

zt+1

g(yt+1|zt+1)p(zt+1|y1:t) dzt+1 (15)

Equation 15 is commonly referred to as thepredictive/evolutionstep and Equations 12
with 14 are referred to as theupdating/correctionstep [e.g. DdG01, CGM07, DJ11].

2.3 Sequential inference of soil water dynamic processes

In geotechnical engineering, the use of inverse models in sequential schemes is still
lagging behind. Explicit analysis of transient processes by using advanced constitu-
tive models implemented in numerical frameworks is usuallypreferred, also due to
the difficulties in obtaining a comprehensive body of statistically valuable in situ mea-
surements. The state and the parameters of transient processes have been inferred by
using gradient based optimization algorithms, with their application ranging, for ex-
ample, from deep staged excavations [e.g. RLF08, TK09] to laboratory pulse test [e.g.



GGA+11]. However, in these schemes the different sources of uncertainty are not ac-
counted for, and no or only limited information on the state and parameters are being
carried from one measurement time step to the next one. The Bayesian framework
presented in Section 2.2 is not exploited in these cases.

Sequential data assimilation is a very commonly applied tool, for instance, in weather
forecasting, hydrological modelling and flood protection assessment. For most soil
water dynamic processes the non-linearity in the soil response and transient boundary
conditions, alongside with the non-Gaussianity of the distributions, makes an analyti-
cal solution of the Equations 13-15 untraceable [e.g. CGM07, PCP12]. To overcome
this limitation, [Eve94] developed a recursive data-processing algorithm known as the
ensemble Kalman filter(EnKF), which is an extension to the originalKalman filter
[Kal60] and theextended Kalman filter[Jaz70]. The EnKF is based on aMarkov
chain Monte Carlo(MCMC) method, propagating a large ensemble of model states
to approximate the prior state error in time by using the updated states of the previous
time step, to predict the current ensemble via forward integration of a stochastic dif-
ferential equation describing the model dynamics [e.g. BvE98, Eve03, Eve09]. More
information, examples and codes can be found on Geir Evensen’s EnKF-homepage1.

The EnKF is one of the most commonly used non-linear filter forstate and parame-
ters updating in many fields such as hydrological modelling [e.g. MSGH05, PCP12,
SNH12], but it has not often been adopted in the assimilationof geotechnical systems
[e.g. HMHV10, CCZ10].

Theparticle filter (PF), which is asequential Monte Carlo(SMC) method, presents
one alternative to the EnKF. The PF method is very flexible, easily implementable,
strongly parallelisable and, most importantly, it approximates the probability densi-
ties directly via a finite number of samples, often referred to asparticles [DdG01,
AMTC02]. A large number of different PF methods was developed in recent years.
Some tutorials and state-of-the-art reports provide a goodintroduction and allow for
a more complete overview [e.g. DdG01, DJ11, LW01, AMTC02, CGM07, van09,
CR11]. Some useful resources on SMC and PF methods have been compiled by Ar-
naud Doucet2.

Most PF frameworks are based on asequential importance sampling(SIS) andsam-
pling importance resampling(SIR) algorithm. The SIS is the most basic Monte Carlo
method to approximate the prediction and the updating steps(Equations 12-15). It
uses a finite set of random samples with associated weights todirectly represent the
posterior distribution at current time step, and subsequently updates this particles in
order to obtain the posterior at the next time step. However,for non-linear systems
the sample may tend to degenerate, that is, only a limited number of particles being
around the“real” state exclusively carry the weights, whilst the remaining majority
of samples only carry a negligible weight. To increase the effectiveness of the filter
and avoid errors accumulation, the SIR algorithms may be used. SIR introduces a re-
sampling stage at each time step, in which particles with a low weight are eliminated

1EnKF sources:http://enkf.nersc.no/
2SMC and PF sources:http://www.stats.ox.ac.uk/~doucet/smc_resources.html



and regenerated in zones in which particles carry a high weight, which renders the
approximation of the posterior. Other PF methods include auxiliary particle filters,
marginalised particle filters, Markov chain particle filters and may incorporate some
particle smoothing algorithm [e.g. AMTC02, CGM07, DJ11]. Sequential smoothing
makes use of the estimates of the past states and thus tends toprovide a better filter
for the current state.

In recent years the PF method became popular and performed well in the assimilation
of the state and parameters of different hydrological soil water dynamic processes [e.g.
MHGS05, MDS12, KdD05, SF09, QLY+09, RHV10, MMW+11, NTSK11, PDD+12,
RVS+12]. A comparison between the EnKF and PF performance using acoupled
surface-subsurface flow model has been presented by [PCP12].

In geotechnical engineering the use of the PF method is not common. However, Mu-
rakami and co-workers [SMN+12, MSN+13] recently demonstrated that the elastic-
plastic Cam Clay model parameters can be successfully inferred using a coupled
hydro-mechanical Finite Element program in a PF framework,both on synthetic ob-
servation data for soil element loading tests and the construction of a soil embankment,
as well as on real observation data related to the construction of the Kobe Airport Is-
land.

3 A simple SIR particle filter implementation

The posterior (Equation 13) is approximated using a discrete set ofNs samples

p(x0:t+1|y1:t+1) =

Ns
∑

k=1

wt+1

k δ
(

x̂t+1 − xt+1

k

)

(16)

wherewt+1

k are the normalised particle weights

wt+1

k =
wt+1

k∗

∑Ns

k=1
wt+1

k∗

(17)

When using the transient prior as importance function, i.e.q(xt+1

k |xt
k,y

t+1) =
p(xt+1|xt

k), the updated sequential estimates of the importance weights are

wt+1

k∗ ∝ wt
k∗

p(yt+1|xt+1

k )p(xt+1|xt
k)

q(xt+1

k |xt
k,y

t+1)
= wt

k∗ p(yt+1|xt+1

k ) (18)

which represent the key part of the SIS filter [e.g. AMTC02, MHGS05, DJ11].

The implementation of a simple SIR filter based on [MHGS05] isschematised in
Figure 2. The process can be split into three stages.

Initialisation stage:



Figure 2: Schematic description of a simple SIR PF.

In this first stage the process and the observation model,M andG, (Equations 3 and
5) as well as the stochastic model, e.g. the number of particles (samples)Ns and
the error functionsǫ, are set up. The initial statex0 is computed based on a set of
parametersp0 representing the prior knowledge, and an initial set of uniform weights
w0

k is assigned to each particlek.

Simulation stage:

In the simulation stage, the filtering of the state att + 1 is performed. By means of
the state and the observation models,xt+1 andyt+1 are computed for each particle.
Subsequently the homogeneous likelihood functiong is estimated to compute the fil-
tering posterior (Equations 13 and 16). Utilising Equations 17 and 18 the weights
are assigned to each the particle. Given that the effective particle sizeNs∗ is smaller
than a minimum effective particle sizeNsr, representing a resampling threshold below



which degeneration of the samples occurs, the resampling stage is entered.

Resampling stage:

Different schemes for state and parameters resampling havebeen proposed. Using
one of the systematic schemes [e.g. AMTC02, DJ11], the particles are resampled by
relating acumulative distribution function(CDF) for the particle,c, to a uniform CDF,
u. After the update of the particle states and parameters, theresampled parameter
estimatẽpt

k is perturbed to obtain

pt+1

k = p̃t
k + ηtp (19)

with ηtp ∼ N (0, s2σ2
p) being a Gaussian noise term, as suggested by [LW01] and

[MHGS05]. The variance of the parameter particles,σ2
p, is multiplied by a small

tuning parameters, which determines the exploration radius around each particle, and
for which values between 0.005 and 0.025 have been commonly used [MDS12].

4 Examples

Two introductory examples will be discussed in this sectionto demonstrate the work-
ing principle and the efficiency of the simple SIR PF implementation. In the first
benchmark example synthetic observations are used, while the second example refers
to a typical field case where direct measurements are available.

4.1 Example 1: an analytical benchmark

The first example has been used as benchmark as well as for illustrative purpose by
several authors [e.g. KdD05, MHGS05]. The non-linear statemodel and the obser-
vation function are both one-dimensional and described by the following analytical
functions

xt+1 =
1

2
xt + a

xt

1 + (xt)2
+ b cos (1.2t) + ǫx (20)

yt+1 =
(xt+1)2

20
+ ǫy (21)

wherea = 25 andb = 8 are theparameters, ǫx ∼ N (0, σ2
ǫx) andǫy ∼ N (0, σ2

ǫy ) are
the random noise terms for the state and the observation respectively, withσ2

ǫx = 10
andσ2

ǫy = 1. The initial state is taken asx0 = 10 andNs = 500 particles are used.
The initial parameter estimates area0 = 30 andb0 = 4.

Figure 3 shows the state, the observation and the inferred parametric response with
time, using a sampling time interval of∆t = 1. The results of the simulation show



that the sequential assimilation technique succeeds in predicting quickly and accu-
rately the state, with some negative peaks not being detected until the end of the sim-
ulation. During the time lapse analysed, also the parameters converge close to the real
values (ma100 = 25.1 andmb100 = 7.869). The remaining variation of the parameters
depends partly on the tuning parameters, which ensures that the filter were able to
react to any significant variation in the observation.

In this benchmark case, resampling was required in most of the time steps to avoid de-
generacy. Figure 4 exemplary illustrates the resampling scheme for the last time step
t = 100. The reduction of the variance of the filtering posterior from (b) to (d) due to
resampling allows for a more effective use of the particles.A more detailed descrip-
tion of the filtering and resampling process can be found for instance in [NTSK11],
[MDS12] and [SMN+12].
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Figure 3: Sequential assimilation of state and parameters using a SIR PF with 500
particles showing the statex and observationy response as well as the evolution of
the parametersa andb with time t. Subscriptsr indicate the synthetic“real” values,
m the sample mean and 90% the 90% bounds, respectively.
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and state. Subscriptsr indicate the synthetic“real” values, subscriptsp the particles
andm the sample mean, respectively.

4.2 Example 2: response of pore water pressure below a dike

In the assessment of dikes, different failure mechanisms have to be analysed. Most of
them are likely to be initiated by the transient pore groundwater response to the time
dependent external forcing conditions. The worst conditions are not necessarily as-
sociated to the steady state pore water distribution in equilibrium with the maximum
expected water height. Therefore, proper assessment of thepotential failure mech-
anisms requires the analysis of the fully coupled time dependent hydro-mechanical
response of the water defense structure, including the dikebody and the subsoil.

Explicit coupled numerical finite elements analyses can be performed to this aim, but
the computational effort needed to include uncertainty in the model is still high. A
valuable alternative consists in relying on simplified analytical solutions of the cou-
pled hydro-mechanical consolidation process, and performan inverse analysis able
to sequentially assimilate the parameters of the simplifiedmodel by comparison with
observation in time. Figure 5 gives a simplified illustration of the hydro-mechanical
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Figure 5: Simplified description of the hydro-mechanical response of a dike subsoil
subjected to cyclic hydraulic boundary conditions

Table 1: Parameters of the simplified consolidation model.

Variable Unit p̂ p0

Thickness of clay layer dc [m] 2.0 −
Thickness of sand layer Ds [m] 7.0 6.25
Sat. hydr. conductivity of clay layer Kc [m s-1] 0.00001 −
Sat. hydr. conductivity of sand layerKs [m s-1] 0.0005 0.005
Compressibility of clay layer αc [m kN-2] 0.005 −
Compressibility of sand layer αs [m kN-2] 0.0000001 −

processes taking place in the typical foundation subsoil ofa dike, with a pervious
aquifer underlying an impervious surficial layer, subjected to a cyclic variation of the
pore water pressure at the boundary representing the river bed. The effective simple
analytical solution proposed by Baudin & Barends [BB88] forthis problem has been
used in this second example.

The adopted analytical solution gives the pore pressure distribution in the two layers
at any given distance from the river bed, and is a function of the variables listed in
Table 1. The response of the system depends on the thickness,on the compressibility
and on the hydraulic conductivity of the two layers, and on the period of the forcing
boundary condition. Table 1 summarises the synthetic soil property valueŝp repre-
senting thereal state of the system̂x (Equation 1) assumed to be represented by the
analytical solution. Prior investigation using Monte Carlo simulations had shown that
the response of the hydraulic headH(x) in the sand layer is most sensitive to varia-
tions in the saturated hydraulic conductivity of the sand layerKs, while the thickness
of the sand layerDs has a less dominating role. For the sake of simplicity, in this
example the random model parameters are limited to this two variables, for which the
initial guess isp0 = {Ds,Ks} = {6.25, 0.005}, and the remaining four parameters
are assumed to be known.



We assumed - as this is the case in the field test to which this example refers to - that
a piezometer is installed in the sand layer at a distancex = 18.6m from the river bed,
where a direct measurement of the pore water pressure is taken at each hour. These
pore pressure measurements are used for sequential data assimilation, using the SIR
PF previously described.

The period of the forcing function isT = 10d (86 400s), and the measurements are
taken at each hour (3 600s). The total time was set to 200h (720 000s), the number of
particles toNs = 400 ands to 0.005. The maximum hydraulic head at the river was
normalised toh0(x = 0) = 1.0m.

Figure 6 shows the parameter estimate with time. The hydraulic conductivity con-
verges very rapidly to the synthetic“real” value, confirming the high potential of
the adopted algorithm in sequential data assimilation. On the contrary, the conver-
gence for the thickness of the sand layer is much slower, and the uncertainty does not
decrease monotonically. Indeed, the two variables were chosen with the purpose of
assessing the performance of the algorithm in identifying parameters which have dif-
ferent relative weights on the prediction. The hydraulic conductivity of the pervious
layer, which dominates the response of the system, could be rapidly inferred. As for
the thickness of the same layer, a reasonable convergence could be achieved, in spite
of its minor role in the response of the synthetictruesystem.
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Figure 6: Estimation of the thickness of sand layer,Ds, and the saturated hydraulic
conductivity of the sand layer,Ks, using a SIR PF. The subscriptsr indicate the
syntheticreal soil property values, the superscript0 the initial state, andm ands the
sample mean and standard deviation, respectively.



5 Final remarks

In this last chapter, a basic introduction to the inverse analysis of time dependent
problems was given. The provided overview is far from being acomplete review, and
to this aim the reader is referred to the references for further reading.

The two basic aims of this contribution were: (i) to combine the theoretical and numer-
ical developments on random fields, presented in the first part of this book, with the
general concepts on inverse analysis illustrated in the previous two chapters; and (ii)
to open a window on sequential data assimilation, which can be fruitfully exploited
in the practice, when time dependent problems have to be analysed. The examples
discussed at the end of this chapter are meant just as an introduction to the powerful
approaches which can be adopted in these cases. Nonetheless, they suggest that if
information from measurement and monitoring inspaceof a time dependent system
is accompanied by a thorough analysis of the observed behaviour in time, identifica-
tion of the variables and parameters dominating the response of the models can be
effectively accomplished by means of rather simple dedicated algorithms.

References

[AMTC02] M. S. Arulampalam, S. Maskell, N. Gordon T., and Clapp. A tutorial on
particle filters for on-line non-linear/non-Gaussian Bayesian tracking.
Transactions on Signal Processing, 50(2):174–188, 2002.

[BB88] C. M. H. L. G. Baudin and F .B. J. Barends. Getijderespons in grond-
water onder Nederlandes dijken.H2O, 21(1):2–5, 1988.

[BT92] G. E. P. Box and G. C. Tiao.Bayesian Inference in Statistical Analysis.
Wiley Classics Library. John Wiley & Sons, Inc., New York, US, 1992.

[BvE98] G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis Scheme in the
Ensemble Kalman Filter.Monthly Weather Review, 126(6):1719–1724,
1998.

[Cal14] M. Calvello. Calibration of soil constitutive laws by inverse analy-
sis, chapter Review of Probability Theory. ALERT Doctoral School.
ALERT Geomaterials, 2014.

[CCZ10] H. Chang, Y. Chen, and D. Zhang. Data assimilation ofcoupled fluid
flow and geomechanics using the ensemble Kalman filter.SPE Journal,
15(2):382–394, 2010.
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