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ABSTRACT. In this paper we present some results on a family of geometric flows intro-
duced by J. P. Bourguignon in [3] that generalize the Ricci flow. For suitable values of 
the scalar parameter involved in these flows, we prove short time existence and provide 
curvature estimates. We also state some results on the associated solitons.

1. INTRODUCTION

In this paper we consider an n–dimensional, compact, smooth, Riemannian manifold
M (without boundary) whose metric g = g(t) is evolving according to the flow equation

∂

∂t
g = −2 Ric + 2ρRg = −2(Ric− ρRg) (1.1)

where Ric is the Ricci tensor of the manifold, R its scalar curvature and ρ is a real con-
stant. This family of geometric flows contains, as a special case, the Ricci flow, setting
ρ = 0. Moreover, by a suitable rescaling in time, when ρ is nonpositive, they can be
seen as an interpolation between the Ricci flow and the Yamabe flow (see [4, 27, 30], for
instance), obtained as a limit when ρ→ −∞.

It should be noticed that for special values of the constant ρ the tensor Ric − ρRg
appearing on the right hand side of the evolution equation is of special interest, in par-
ticular,

• ρ = 1/2, the Einstein tensor Ric− R
2
g,

• ρ = 1/n, the traceless Ricci tensor Ric− R
n
g,
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• ρ = 1/2(n− 1), the Schouten tensor Ric− R
2(n−1)

g,
• ρ = 0, the Ricci tensor Ric.

In dimension two, the first three tensors are zero hence the flow is static, and in higher
dimension the values of ρ are strictly ordered as above, in descending order.

Apart these special values of ρ, for which we will call the associated flows as the name
of the corresponding tensor, in general we will refer to the evolution equation defined
by the PDE system (1.1) as the Ricci–Bourguignon flow (or shortly RB flow).

The study of these flows was proposed by Jean–Pierre Bourguignon in [3, Ques-
tion 3.24], building on some unpublished work of Lichnerowicz in the sixties and a pa-
per of Aubin [1]. In 2003, Fischer [16] studied a conformal version of this problem where
the scalar curvature is constrained along the flow. In 2011, Lu, Qing and Zheng [23] also
proved some results on the conformal Ricci–Bourguignon flow.

We will see in the next section that when ρ is larger than 1/2(n − 1) the principal
symbol of the operator in the right hand side of the second order quasilinear parabolic
PDE (1.1) has negative eigenvalues, not allowing even a short time existence result for
the flow for general initial data (manifold M and initial metric g0). On the contrary,
the main task of Section 2 will be to show that for any ρ < 1/2(n − 1), every initial
compact Riemannian manifold (M, g0) has a unique smooth solution g(t) solving the
flow equation (1.1), with g(0) = g0, at least in a positive time interval.

However, the problem of knowing whether the “critical” Schouten flow
∂

∂t
g = −2 Ric +

R

n− 1
g

g(0) = g0

(1.2)

when ρ = 1/2(n − 1), admits or not a short time solution for general initial manifolds
and metrics remains open, when n ≥ 3.

We will see that if ρ ≤ 1/2(n − 1), the principal symbol of the elliptic operator is
nonnegative definite and it actually contains some zero eigenvalues due to the diffeo-
morphism invariance of the geometric flow. When ρ < 1/2(n−1), these zero eigenvalues
are the only ones, all the others are indeed positive, hence, they can be dealt with (as it
is customary by now) by means of the so–called DeTurck’s trick [13, 14]. In the case of
the Schouten flow ρ = 1/2(n − 1) instead, the principal symbol contains an extra zero
eigenvalue besides the ones due to the diffeomorphism invariance, preventing this ar-
gument to be sufficient to conclude and to give a general short time existence result.
We mention that the presence of this extra zero eigenvalue should be expected, as the
Cotton tensor, which is obtained from the Schouten tensor as follows

Cijk = ∇kRij −∇jRik = ∇kRij −∇jRik −
1

2(n− 1)

(
∇kRgij −∇jRgik

)
,

satisfies the following invariance under the conformal change of metric g̃ = e2ug,

e3uC̃ijk = Cijk + (n− 2)Wijkl∇lu



3

see [7, Equation 3.35]. Recently, Delay [12], following the work of Fischer and Marsden,
gave some evidence on the fact that the DeTurck’s trick should fail for the Schouten
tensor.

In Section 3, we will compute the evolution equations for the curvature.
In Section 4, by means of the maximum principle, we derive, from the evolution of

the curvature, some conditions on the curvature which are preserved by the RB flow. In
particular, we show that the Hamilton–Ivey estimate
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1.1. Notation and preliminaries.
The Riemann curvature operator of an n–dimensional Riemannian manifold (M, g) is
defined as in [17] by

Riem(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z ,

and we will denote with dµg the canonical volume measure associated to the metric g.
In a local coordinate system the components of the (3, 1)–Riemann curvature tensor are
given by Rl

ijk
∂
∂xl

= Riem
(
∂
∂xi
, ∂
∂xj

)
∂
∂xk

and we denote by Rijkl = glmRm
ijk its (4, 0)–version.

With this choice, for the sphere Sn we have Riem(v, w, v, w) = Rijklv
iwjvkwl > 0.

The Ricci tensor is obtained as the contraction Rik = gjlRijkl and R = gikRik will
denote the scalar curvature.

The so–called Weyl tensor is then defined by the decomposition formula (see [17,
Chapter 3, Section K]) of the Riemann tensor in dimension n ≥ 3,

Wijkl = Rijkl+
R

(n− 1)(n− 2)
(gikgjl−gilgjk)−

1

n− 2
(Rikgjl−Rilgjk+Rjlgik−Rjkgil) . (1.3)

The tensor W satisfies all the symmetries of the curvature tensor and all its traces with
the metric are zero, as it can be easily seen from the above formula.
In dimension three, W is identically zero for every Riemannian manifold (M, g), and it
becomes relevant instead when n ≥ 4 since it vanishes if and only if (M, g) is locally
conformally flat. This latter condition means that around every point p ∈ M there is
a conformal deformation g̃ij = efgij of the original metric g, such that the new metric
is flat, namely, the Riemann tensor associated to g̃ is zero in Up (here f : Up → R is a
smooth function defined in a open neighborhood Up of p).

2. SHORT TIME EXISTENCE

Theorem 2.1. Let ρ < 1/2(n − 1). Then, the evolution equation (1.1) has a unique solution
for a positive time interval on any smooth, n–dimensional, compact Riemannian manifold M
(without boundary) with any initial metric g0.
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Proof. We first compute the linearized operator DLg0 of the operator L = −2(Ric− ρRg)
at a metric g0. The Ricci tensor and the scalar curvature have the following lineariza-
tions, see [2, Theorem 1.174] or [28], where we use the metric g0 to lower and raise
indices and to take traces,

DRicg0(h)ik =
1

2

(
−∆hik −∇i∇k tr(h) +∇i∇thtk +∇k∇thit

)
+ LOT,

DRg0(h) = −∆(trh) +∇s∇thst + LOT,

here LOT stands for lower order terms.
Then, the linearization of L at g0 is given by

DLg0(h)ik = −2
(
DRicg0(h)ik − ρDRg0(h)(g0)ik

)
+ 2ρRg0hik

= ∆hik +∇i∇k tr(h)−∇i∇thtk −∇k∇thit − 2ρ
(
∆(trh)−∇s∇thst

)
+ LOT,

for every bilinear form h ∈ Γ(S2M). Now, we obtain the principal symbol of the lin-
earized operator in the direction of an arbitrary cotangent vector ξ by replacing each
covariant derivative ∇α, appearing in the higher order terms, with the corresponding
component ξα,

σξ(DLg0)(h)ik = ξtξthik + ξiξk trg0(h)− ξiξthkt − ξkξthit
−2ρξtξt trg0(h)(g0)ik + 2ρξtξshts(g0)ik .

As usual, since the symbol is homogeneous we can assume that |ξ|g0 = 1 and we per-
form all the computations in an orthonormal basis {ei}i=1,...,n of TpM such that ξ =
g0(e1, ·), that is ξi = 0 for i 6= 1.
Hence, we obtain,

σξ(DLg0)(h)ik = hik + δi1δk1 trg0(h)− δi1hk1 − δk1hi1 − 2ρ trg0(h)δik + 2ρh11δik.

that can be represented, in the coordinates system

(h11, h22, . . . , hnn, h12, . . . , h1n, h23, h24, . . . , hn−1,n)

for any h ∈ Γ(S2M), by the following matrix

σξ(DLg0) =



0 1− 2ρ . . . 1− 2ρ
... A[n− 1]
0

0 0

0 0 0

0 0 Id(n−1)(n−2)/2


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where A[n− 1] is the (n− 1)× (n− 1) matrix given by

A[n− 1] =


1− 2ρ −2ρ . . . −2ρ
−2ρ 1− 2ρ . . . −2ρ

...
... . . . ...

−2ρ −2ρ . . . 1− 2ρ

 .

We can see that there are at least n null eigenvalues, as it should be expected by the
diffeomorphisms invariance of the operator L, and (n − 1)(n − 2)/2 eigenvalues equal
to 1. The remaining n− 1 eigenvalues can be computed by the following lemma which
is easily proved by induction on the dimension of A.

Lemma 2.2. Let A[m] be the m×m matrix

A[m] =


1− 2ρ −2ρ . . . −2ρ
−2ρ 1− 2ρ . . . −2ρ

...
... . . . ...

−2ρ −2ρ . . . 1− 2ρ

 . (2.1)

Then, there holds

det(A[m]− λIdm) = (1− λ)(m−1)(1− 2mρ− λ) .

Using this lemma, we conclude that the eigenvalues of the principal symbol of DLg0
are 0 with multiplicity n, 1 with multiplicity (n+1)(n−2)

2
and 1−2(n−1)ρwith multiplicity

1.
Now we apply the so–called DeTurck’s trick [13, 14] to show that the RB flow is equiv-

alent to a Cauchy problem for a strictly parabolic operator, modulo the action of the
diffeomorphism group of M . Let V : Γ(S2M) → Γ(TM) be “DeTurck’s” vector field
defined by

V j(g) = −gjk0 gpq∇p

(1

2
trg(g0)gqk − (g0)qk

)
= −1

2
gjk0 g

pq
(
∇k(g0)pq −∇p(g0)qk −∇q(g0)pk

)
,

(2.2)
where g0 is a fixed Riemannian metric on M and gjk0 are the components of the inverse
matrix of g0.
The DeTurck’s trick (see [13, 14] for details) states that in order to show the smooth
existence part of the theorem, we only need to check that the operator D(L −LV )g0 is
strongly elliptic, where LV is the Lie derivative operator in the direction of V .
The principal symbol of this latter operator, with the same notations used above, is well
known and is given by

σξ(DLV )g0(h)ik = δi1δk1 trg0(h)− δi1hk1 − δk1hi1.

Then, we can easily see that the linearized DeTurck–Ricci–Bourguignon operator has
principal symbol in the direction ξ, with respect to an orthonormal basis {ξ[, e2, . . . , en},
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given by

σξ((D(L−LV )g0) =



1 −2ρ . . . −2ρ
... A[n− 1]
0

0 0

0 Id(n−1) 0

0 0 Id(n−1)(n−2)/2


,

expressed in the coordinates system

(h11, h22, . . . , hnn, h12, h13, . . . , h1n, h23, h24, . . . , hn−1,n)

for any h ∈ Γ(S2M).
Using Lemma 2.2 again, this matrix has n(n+1)

2
− 1 eigenvalues equals to 1 and 1 eigen-

value equal to 1− 2(n− 1)ρ. Therefore, by the DeTurck’s trick, a sufficient condition for
the existence of a solution is that ρ < 1

2(n−1)
.

The uniqueness part of the theorem is proven in the same way as for the Ricci flow
(see [20]). The RB flow is equivalent, via the one parameter group of diffeomorphisms
generated by DeTurck’s vector field, to the DeTurck–RB flow which is strictly parabolic.
On the other hand, the one parameter group of diffeomorphisms satisfies the harmonic
map flow introduced by Eells and Sampson in [15], which is also parabolic. These two
facts allow to state the uniqueness of the solution for the RB flow (see [11, Chapter 3,
Section 4] for more details).

3. EVOLUTION OF THE CURVATURE

As the metric tensor evolves as

∂

∂t
gij = −2(Rij − ρRgij) ,

it is easy to see, differentiating the identity gijgjl = δli, that

∂

∂t
gjl = 2(Ricjl − ρRgjl) . (3.1)

It follows that the canonical volume measure µ satisfies

dµ

dt
=
∂

∂t

√
det gij L n =

√
det gijg

ij ∂
∂t
gij

2
L n = (nρ− 1)R

√
det gij L n = (nρ− 1)Rµ .
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Computing in a normal coordinates system, the evolution equation for the Christoffel
symbols is given by

∂

∂t
Γijk =

1

2
gil
{
∂

∂xj

(
∂

∂t
gkl

)
+

∂

∂xk

(
∂

∂t
gjl

)
− ∂

∂xl

(
∂

∂t
gjk

)}
+

1

2

∂

∂t
gil
{
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}
=

1

2
gil
{
∇j

(
∂

∂t
gkl

)
+∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}
= − gil {∇j(Rkl − ρRgkl) +∇k(Rjl − ρRgjl)−∇l(Rjk − ρRgjk)}
= −∇jR

i
k −∇kR

i
j −∇iRjk + ρ(∇jRδ

i
k +∇kRδ

i
j +∇iRgjk) .

Proposition 3.1. Along the RB flow on a n–dimensional Riemannian manifold (M, g), the cur-
vature tensor, the Ricci tensor and the scalar curvature satisfy the following evolution equations

∂

∂t
Rijkl = ∆Rijkl + 2(Bijkl − Bijlk − Biljk + Bikjl) (3.2)

− gpq
(
RpjklRqi + RipklRqj + RijplRqk + RijkpRql

)
− ρ
(
∇i∇kR gjl −∇i∇lR gjk −∇j∇kR gil +∇j∇lR gik

)
+ 2ρR Rijkl ,

where the tensor B is defined as Bijkl = gpqgrsRipjrRkqls.

∂

∂t
Rik = ∆Rik + 2gpqgrsRpirkRqs − 2gpqRpiRqk (3.3)

−(n− 2)ρ∇i∇kR− ρ∆R gik ,

∂

∂t
R =

(
1− 2(n− 1)ρ

)
∆R + 2|Ric|2 − 2ρR2 . (3.4)

Proof. The following computation is analogous to the one for the Ricci flow performed
by Hamilton [18].
By the first variation formula for the (4, 0)–Riemann tensor (see [2, Theorem 1.174]
or [28]), we have in general

∂

∂t
Riem(X, Y,W,Z) =

1

2

(
h(Riem(X, Y )W,Z)− h(Riem(X, Y )Z,W )

)
− 1

2

(
−∇2

Y,Wh(X,Z)−∇2
X,Zh(Y,W ) +∇2

X,Wh(Y, Z) +∇2
Y,Zh(X,W )

)
,
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where X, Y,W,Z ∈ Γ(TM) are vector fields and h = ∂
∂t
g.

Along the RB flow h = −2(Ric− ρRg), therefore
∂

∂t
Riem(X,Y,W,Z) = −Ric(Riem(X, Y )W,Z) + Ric(Riem(X, Y )Z,W )

−∇2
Y,WRic(X,Z)−∇2

X,ZRic(Y,W ) +∇2
X,WRic(Y, Z) +∇2

Y,ZRic(X,W )

− ρ
(
−∇2

Y,WRg(X,Z)−∇2
X,ZRg(Y,W ) +∇2

X,WRg(Y, Z) +∇2
Y,ZRg(X,W )

)
+ 2ρRRiem(X, Y,W,Z) .

Using the second Bianchi identity and the commutation formula for second covariant
derivatives, we obtain the following equation for the Laplacian of the Riemann tensor,

∆Riem(X, Y,W,X) = −∇2
Y,WRic(X,Z)−∇2

X,ZRic(Y,W )

+∇2
X,WRic(Y, Z) +∇2

Y,ZRic(X,W )

−Ric(Riem(W,Z)Y,X) + Ric(Riem(W,Z)X, Y )

−2
(
B(X, Y,W,Z)− B(X, Y, Z,W )

+B(X,W, Y, Z)− B(X,Z, Y,W )
)
.

Plugging it in the evolution equation, we obtain
∂

∂t
Riem(X, Y,W,Z) = ∆Riem(X, Y,W,Z)− ρ

(
∇2R 7 g)(X, Y,W,Z)

+2
(
B(X, Y,W,Z)− B(X, Y, Z,W )

+B(X,W, Y, Z)− B(X,Z, Y,W )
)

−Ric(Riem(X, Y )W,Z) + Ric(Riem(X, Y )Z,W )

−Ric(Riem(W,Z)X, Y ) + Ric(Riem(W,Z)Y,X)

+2ρRRiem(X, Y,W,Z) ,

which is formula (3.2) once written in coordinates. Here the symbol 7 denotes the
Kulkarni–Nomizu product of two symmetric bilinear forms p and q, defined by

(p7 q)(X, Y, Z, T ) = p(X,Z)q(Y, T ) + p(Y, T )q(X,Z)− p(X,T )q(Y, Z)− p(Y, Z)q(X,T ) ,

for every tangent vectors fields X, Y, Z, T ∈ Γ(TM).
Taking into account the evolution equation for the inverse of the metric (3.1), con-

tracting equation (3.2) and using again the second Bianchi identity, formula (3.3) fol-
lows (see [18] for details). Contracting again one gets the evolution equation (3.4) for
the scalar curvature.

3.1. The Uhlenbeck’s trick and the evolution of the curvature operator.
In this subsection we want to study the evolution equation of the curvature operator, as
it was done for the Ricci flow by Hamilton in [19].
First of all, we simplify the expression of the reaction term in equation (3.2) by means
of the so called Uhlenbeck’s trick [19]. Briefly, we will relate the curvature tensor of the
evolving metric to an evolving tensor of an abstract bundle with the same symmetries
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of the curvature (see Proposition 3.4) and a nicer evolution equation; afterwards we will
find a suitable orthonormal moving frame of (TM, g(t)) and write the evolution equa-
tion of the coordinates of the Riemann tensor with respect to this frame. The result will
be a system of scalar evolution equations and no more a tensorial equation, (see [11] for
more details on this method in the case of Ricci flow).

Let
(
M, g(t)

)
t∈[0,T )

be the solution of the RB flow with initial data g0 and consider
on the tangent bundle TM the family of endomorphisms

{
ϕ(t)

}
t∈[0,T )

defined by the
following evolution equation{

∂
∂t
ϕ(t) = Ric#

g(t) ◦ ϕ(t)− ρRg(t)ϕ(t) ,

ϕ(0) = IdTM ,
(3.5)

where Ric#
g(t) is the endomorphism of the tangent bundle canonically associated to the

Ricci tensor by raising an index.
For every point p of the manifold M , the evolution equation (3.5) represents a system

of linear ODEs on the fiber TpM , therefore a unique solution exists as long as the RB
flow exists. Moreover, if we let (h(t))t∈[0,T ) be the family of bundle metrics defined by
h(t) = ϕ(t)∗(g(t)), where ϕ(t) satisfies system (3.5), then h(t) = g0 for every t ∈ [0, T ).
As

∀t ∈ [0, T ), ϕ(t) : (TM, g0)→ (TM, g(t))

is a bundle isometry, the pull–back via ϕ(t) of the Levi–Civita connection associated to
g(t) is a connection on TM compatible with the metric g0. In the following, we will
denote by (V, h) the vector bundle (TM, g0) in order to stress out the fact that we are
not considering the Levi–Civita connection associated to g0, but the family of time–
dependent connections D(t) defined via the bundle isometries ϕ(t).

The following lemma states some basic properties of these pull–back connections.

Lemma 3.2. (see [11, Chapter 6, Section 2] Let D(t) : Γ(TM) × Γ(V ) → Γ(V ) be the pull–
back connection defined by

D(t)Xζ = ϕ(t)∗
(
∇g(t)
X

(
ϕ(t)(ζ)

))
,

∀t ∈ [0, T ) ,∀X ∈ Γ(TM),∀ζ ∈ Γ(V ), where ∇g(t) is the Levi–Civita connection of g(t).
Let again D(t) be the canonical extension to the tensor powers of V and T be a covariant tensor
on M . Then, for every t ∈ [0, T ) and X ∈ Γ(TM) there holds

D(t)X
(
ϕ(t)∗(T )

)
= ϕ(t)∗

(
∇g(t)
X T

)
.

In particular, D(t)Xh = ϕ∗(∇g(t)
X g(t)) = 0, so every connection of the family D(t) is compatible

with the bundle metric h on V .
Let D2 : Γ(TM)× Γ(TM)× Γ(V )→ Γ(V ) be the second covariant derivative defined by

D2
X,Y (ζ) = DX(DY ζ)−D∇g(t)

X Y
ζ , ∀X, Y ∈ Γ(TM) ,∀ζ ∈ Γ(V ) ,
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and the rough Laplacian defined by ∆D = trg(D
2). Then, for every covariant tensor T on M ,

there hold

D2
X,Y

(
ϕ∗(T )

)
= ϕ∗(∇2

X,Y T ) ∀X, Y ∈ Γ(TM) , (3.6)

∆D

(
ϕ∗(T )

)
= ϕ∗(∆gT ) . (3.7)

Remark 3.3. Let R ∈ End(Λ2M) be the Riemann curvature operator defined by

〈R(X ∧ Y ),W ∧ Z〉 = Riem(X, Y,W,Z) , (3.8)

where 〈 , 〉 is the linear extension of g to the exterior powers of TM .
In the following, we use a convention on the Lie algebra structure of Λ2M which is
different from the original one chosen by Hamilton in [19]. More precisely, with his
convention the eigenvalues of the curvature operator are twice the sectional curvatures,
whereas with our convention the curvature operator has the sectional curvatures as
eigenvalues. In particular, every formula differs from the corresponding one in the
usual theory of the Ricci flow by a factor 2 (see also [11, Chapter 6, Section 3] for the
details). We recall that R can be considered as an element of Γ(S2(Λ2M)), and the fol-
lowing equations hold true

R = 2
∑
i<k

R
(ik)
(ik) ;

(R2)ijkl = Bijkl − Bijlk ;

(R#R)ijkl = Bikjl − Biljk .

where B is defined as in Proposition 3.1. For more details on the structure of the curva-
ture operator we refer again the reader to [11, Chapter 6, Section 3].

We now consider the pull–back of the Riemann curvature tensor and the curvature
operator.

Proposition 3.4. Let Piem be the pull–back of the Riemann curvature tensor via the family of
bundle isometries {ϕ(t)}t∈[0,T ). The following statements hold true:

(1) Piem has the same symmetry properties as Riem, i.e. it can be seen as an element of
Γ(S2(Λ2V )) and it satisfies the first Bianchi identity;

(2) For every p ∈M and t ∈ [0, T ) the algebraic curvature operator P(p, t) ∈ End(Λ2Vp)
(see Remark 3.7), defined by ϕ ◦ P = R ◦ ϕ has the same eigenvalues as R(p, t). In par-
ticular, P is positive (nonnegative) definite if and only if R is positive (nonnegative)
definite;

(3) Pic(t) = trh
(
Piem(t)

)
= ϕ(t)∗(Ricg(t));

(4) P = trh(Pic(t)) = Rg(t);
(5) B(Piem) = ϕ∗

(
B(Riem)

)
, where B is defined in the same way as in Proposition 3.1 for

a generic element of S2(Λ2V ).

Finally, we can compute the evolution of Piem and P.
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Proposition 3.5. The tensors Piem and P satisfy respectively the following evolution equations
∂

∂t
(Piem)abcd = ∆D(Piem)abcd − ρ(ϕ∗(∇2R) 7 h)abcd (3.9)

+2
(
B(Piem)abcd − B(Piem)abdc + B(Piem)acbd − B(Piem)adbc

)
−2ρP Piemabcd ,

∂

∂t
P = ∆DP− 2ρϕ∗(∇2 trh(P)) 7 h+ 2P2 + 2P# − 4ρ trh(P)P, (3.10)

where trh(P(t)) = trg(t)(R(t)) = 1
2
R(t).

Remark 3.6. On the right hand side of equation (3.9) the term ϕ∗(∇2R) appears (i.e. the
pull–back of the Hessian of the scalar curvature, seen as a symmetric 2–form on the
tangent bundle) and it cannot be expressed in terms of the connection D(t).

Proof. Let ζ1, . . . , ζ4 be sections of V ; then combining the evolution equations of the Rie-
mann tensor (3.2) and of the bundle isometry ϕ (3.5), we obtain

∂

∂t
(Piem)(ζ1, ζ2, ζ3, ζ4) =

ϕ∗
(∂
∂t

Riem
)

(ζ1, ζ2, ζ3, ζ4) + Riem
(∂ϕ
∂t

(ζ1), ϕ(ζ2), ϕ(ζ3), ϕ(ζ4)
)

+Riem
(
ϕ(ζ1),

∂ϕ

∂t
(ζ2), ϕ(ζ3), ϕ(ζ4)

)
+ Riem

(
ϕ(ζ1), ϕ(ζ2),

∂ϕ

∂t
(ζ3), ϕ(ζ4)

)
+Riem

(
ϕ(ζ1), ϕ(ζ2), ϕ(ζ3),

∂ϕ

∂t
(ζ4)

)
= ϕ∗(∆gRiem)(ζ1, ζ2, ζ3, ζ4)− ρϕ∗(∇2R 7 g)(ζ1, ζ2, ζ3, ζ4)

+2ϕ∗
(
B(Riem)(ζ1, ζ2, ζ3, ζ4)− B(Riem)(ζ1, ζ2, ζ4, ζ3)− B(Riem)(ζ1, ζ4, ζ2, ζ3)

+ B(Riem)(ζ1, ζ3, ζ2, ζ4)
)

+ 2ρRϕ∗(Riem)(ζ1, ζ2, ζ3, ζ4)

−Riem
(

Ric# ◦ ϕ(ζ1), ϕ(ζ2), ϕ(ζ3), ϕ(ζ4)
)
− Riem

(
ϕ(ζ1),Ric# ◦ ϕ(ζ2), ϕ(ζ3), ϕ(ζ4)

)
−Riem

(
ϕ(ζ1), ϕ(ζ2),Ric# ◦ ϕ(ζ3), ϕ(ζ4)

)
− Riem

(
ϕ(ζ1), ϕ(ζ2), ϕ(ζ3),Ric# ◦ ϕ(ζ4)

)
+Riem

((
Ric# ◦ ϕ− ρRϕ

)
(ζ1), ϕ(ζ2), ϕ(ζ3), ϕ(ζ4)

)
+Riem

(
ϕ(ζ1),

(
Ric# ◦ ϕ− ρRϕ

)
(ζ2), ϕ(ζ3), ϕ(ζ4)

)
+Riem

(
ϕ(ζ1), ϕ(ζ2),

(
Ric# ◦ ϕ− ρRϕ

)
(ζ3), ϕ(ζ4)

)
+Riem

(
ϕ(ζ1), ϕ(ζ2), ϕ(ζ3),

(
Ric# ◦ ϕ− ρRϕ

)
(ζ4)

)
= ∆D(Piem)(ζ1, ζ2, ζ3, ζ4)− ρ(ϕ∗(∇2R) 7 h)(ζ1, ζ2, ζ3, ζ4)

+2ϕ∗
(
B(Piem)(ζ1, ζ2, ζ3, ζ4)− B(Piem)(ζ1, ζ2, ζ4, ζ3)− B(Piem)(ζ1, ζ4, ζ2, ζ3)

+ B(Piem)(ζ1, ζ3, ζ2, ζ4)
)
− 2ρPPiem(ζ1, ζ2, ζ3, ζ4) ,
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where we used several identities stated above. For ζ1, . . . , ζ4 belonging to a local frame
we get the desired equation (3.9).
Combining the evolution equation for Piem with the formulas stated in Remark 3.3, we
find the evolution equation of P.

Remark 3.7. It must be noticed that, even though for every p ∈ M and t ∈ [0, T ), P(p, t)
belongs to the set of algebraic curvature operators Cb(Vp), in general it does not coincide
with the curvature operator of the pull–back connection D(t). In the present literature
the pull–back tensor is always denoted by Riem and this abuse of notation is somehow
misleading, suggesting the wrong impression that Piem(t) = ϕ(t)∗(Riemg(t)) is equal
to Riemϕ(t)∗(g(t)) = Riemh, but this is not longer true for general isomorphisms of the
tangent bundle (however it is true for ϕ ∈ Diff(M)).

By the Uhlenbeck’s trick the evolution equation (3.10) for P allows a simpler use of the
maximum principle for tensor as the reaction term is nicer and the metric on S2(Λ2V ) is
independent of time. Moreover, the subsets of S2(Λ2V ) preserved by such PDE corre-
spond to curvature conditions preserved under the RB flow.

4. PRESERVED CURVATURE CONDITIONS

In this section we will use the maximum principle in various formulations in order to
find curvature conditions which are preserved by the RB flow.

We begin by considering the evolution equation for the scalar curvature (3.4), which
behaves as under the Ricci flow.

Proposition 4.1. Let (M, g(t))t∈[0,T ) be a compact maximal solution of the RB flow (1.1). If
ρ ≤ 1

2(n−1)
, the minimum of the scalar curvature is nondecreasing along the flow. In particular

if R(g(0)) ≥ α, for some α ∈ R, then Rg(t) ≥ α for every t ∈ [0, T ). Moreover if α > 0 then
T ≤ n

2(1−nρ)α
.

Proof. As ρ ≤ 1
2(n−1)

≤ 1
n

, for any n > 1, it follows that

∂

∂t
R =

(
1− 2(n− 1)ρ

)
∆R + 2|Ric|2 − 2ρR2

≥
(
1− 2(n− 1)ρ

)
∆R + 2R2/n− 2ρR2

≥
(
1− 2(n− 1)ρ

)
∆R ,

hence, by the maximum principle, the minimum of the scalar curvature is nondecreas-
ing along the RB flow on a compact manifold. In particular, for every α ∈ R, the condi-
tion R ≥ α is preserved.
Finally, integrating the inequality

∂

∂t
Rmin ≥ 2

( 1

n
− ρ
)

R2
min ,
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that holds almost everywhere for t ∈ [0, T ) (by the Hamilton’s trick (see [21], [24,
Lemma 2.1.3])), we obtain

Rmin(t) ≥ nα

n− 2(1− nρ)αt
, (4.1)

that, for α > 0, gives the estimate on the maximal time of existence.

Remark 4.2. In the special case of the Schouten flow (when ρ = 1
2(n−1)

), actually there
holds

∂

∂t
R ≥ n− 2

n(n− 1)
R2 ,

at every point of the manifold, which implies that the scalar curvature is pointwise
nondecreasing and diverges in finite time.

Remark 4.3. By means of the strong maximum principle, it follows that if the initial
manifold has nonnegative scalar curvature then either the manifold is Einstein (Ric = 0)
or the scalar curvature becomes positive for every positive time under any RB flow with
ρ ≤ 1

2(n−1)
.

Proposition 4.4. Let (M, g(t))t∈(−∞,0] be a compact, n–dimensional, ancient solution of the RB
flow (1.1). If ρ ≤ 1

2(n−1)
then, either R > 0 or Ric ≡ 0 on M × (−∞, 0].

Proof. As g(t) is an ancient solution, for every t0 < t1 ≤ 0, we can define g̃(s) = g(s+ t0),
which is a solution of the RB flow for s ∈ [0, t1 − t0]. Then, we have R̃min(0) = Rmin(t0),
hence, from formula (4.1)

R̃min(s) ≥ n

nR̃−1
min(0)− 2(1− nρ)s

,

for every s ∈ (0, t1 − t0]. In particular, we have

Rmin(t1) = R̃min(t1 − t0) ≥ n

nR−1
min(t0)− 2(1− nρ)(t1 − t0)

.

If Rmin(t0) ≥ 0, by Proposition 4.1, it follows that Rmin(t1) ≥ 0, so we can assume that
Rmin(t0) < 0, hence

Rmin(t1) ≥ n

nR−1
min(t0)− 2(1− nρ)(t1 − t0)

> − n

2(1− nρ)(t1 − t0)
,

for every t1 < t0, and sending t0 to −∞, we still conclude that Rmin(t1) ≥ 0. Since this
holds for every t1 ≤ 0 the previous remark implies the result. �

4.1. Maximum principle for uniformly elliptic operators.
Let M be a smooth compact manifold, g(t), t ∈ [0, T ), a family of Riemannian metrics
on M and (E, h(t)) t ∈ [0, T ), be a real vector bundle on M , endowed with a (possibly
time–dependent) bundle metric. Let D(t) : Γ(TM)× Γ(E)→ Γ(E) be a family of linear
connections on E compatible at each time with the bundle metric h(t). We have already
seen in Section 3.1 how to define the second covariant derivative, using also the Levi-
Civita connections ∇g(t) associated to the Riemannian metrics on M .
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Definition 4.5. A second–order linear operator L on Γ(E) can be written in a local frame
field {ei}i=1,...,n of TM

L = aijD2
eiej
− biDei (4.2)

where a = aijei ⊗ ej ∈ Γ(S2(TM)) is a symmetric (0, 2)–tensor and b = biei is a smooth
vector field. We say that L is uniformly elliptic if a is uniformly positive definite.

Remark 4.6. In the previous definition, both the coefficients and the connections are in
general time–dependent and we say that L is uniformly elliptic if it is so for every t ∈
[0, T ) uniformly in time.

Weinberger in [29] proved the maximum principle for systems of solutions of a time–
dependent heat equation in the Euclidean space; Hamilton in [19] treated the general
case of a vector bundle over an evolving Riemannian manifold. Here we present a
slight generalization of Hamilton’s theorem for parabolic equations with uniformly el-
liptic operator (see [26, Theorem 2.2] for the ”static” version proved by Savas–Halilaj
and Smoczyk).
As before, (M, g(t)) is a smooth compact manifold equipped with a family of Riemann-
ian metrics; we consider a real vector bundle E over M , equipped with a fixed bundle
metric h and a family of time–dependent connections D(t) compatible at every time
with h.

Definition 4.7. Let S ⊂ E be a sub-bundle and denote Sp = S ∩Ep for every p ∈M . We
say that S is invariant under parallel translation w.r.t. D, if for every curve γ : [0, l] → M
and vector v ∈ Sγ(0), the unique parallel (w.r.t. D) section v(s) ∈ Eγ(s) along γ(s) with
v(0) = v is contained in S.

Theorem 4.8 (Vectorial Maximum Principle). Let u : [0, T )→ Γ(E) be a smooth solution of
the following parabolic equation

∂

∂t
u = Lu+ F (u, t) , (4.3)

where L is a uniformly elliptic operator as defined in (4.2) and F : E × [0, T ) → E is a
continuous map, locally Lipschitz in the E factor, which is also fiber–preserving, i.e. F (v, t) ∈
Ep for every p ∈M , v ∈ Ep, t ∈ [0, T ).
Let K ⊂ E be a closed sub-bundle (for the metric h), invariant under parallel translation w.r.t.
D(t), for every t ∈ [0, T ), and convex in the fibers, i.e. Kp = K ∩Ep is convex for every p ∈M .
Suppose that K is preserved by the ODE associated to (4.3), i.e. for every p ∈ M and U0 ∈ Kp,
the solution U(t) of {

dU
dt

= Fp(U(t), t) ,
U(0) = U0 .

(4.4)

remains in Kp. Then, if u is contained in K at time 0, u remains in K, i.e. u(p, t) ∈ Kp for
every p ∈M , t ∈ [0, T ), as long as the solution of the ODE exists.
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Proof. (Sketch) We can follow exactly the detailed proof written in [10, Chapter 10, Sec-
tion 3], provided that we generalize [10, Lemma 10.34] to the analogue one for uni-
formly elliptic operator (see again [26, Lemma 2.2]): ifK ⊂ E satisfies all the hypothesis
of Theorem 4.8 and u ∈ Γ(E) is a smooth section of E, then

u(p) ∈ Kp ∀p ∈M =⇒ L(u)p ∈ Cu(p)Kp ∀p ∈M ,

where Cu(p)Kp is the tangent cone of the convex set Kp at u(p).

There is a further generalization of this maximum principle which allows the subset
K to be time–dependent.

Theorem 4.9 (Vectorial Maximum Principle, Time–dependent Set). Let u : [0, T )→ Γ(E)
be a smooth solution of the parabolic equation (4.3), with the notations of the previous Theorem.
For every t ∈ [0, T ), let K(t) ⊂ E be a closed sub-bundle (for the metric h), invariant under
parallel translation w.r.t. D(t), convex in the fibers and such that the space–time track

T = {(v, t) ∈ E × R : v ∈ K(t), t ∈ [0, T )}
is closed in E × [0, T ). Suppose that, for every t0 ∈ [0, T ), K(t0) is preserved by the ODE
associated, i.e. for any p ∈ M , any solution U(t) of the ODE that starts in K(t0)p remains in
K(t)p, as long as it exists. Then, if u(0) is contained in K(0), u(p, t) ∈ K(t)p for ever p ∈ M ,
t ∈ [0, T ), as long as the solution of the ODE exists.

The proof of this Theorem is basically a refinement of the arguments used in the others
maximum principles (see [10, Chapter 10]).

As remarked before, the evolution equation (3.2) of the Riemann tensor has some
mixed product of type Riem ∗ Ric which makes difficult to understand the behavior of
the reaction term. On the other hand, if we perform the Uhlenbeck’s trick, the evolution
equation (3.9) becomes a little nicer and can be used to understand how the RB flow
affects the geometry.
More precisely, we use the evolution equation (3.10) for the pull–back of the Riemann
curvature operator P ∈ Γ(S2(Λ2V ∗)) to prove that the cone of nonnegative curvature
operators is preserved by the RB flow.

Proposition 4.10. Let (M, g(t))t∈[0,T ) be a compact solution of the RB flow (1.1) with ρ < 1
2(n−1)

and such that the initial data g0 has nonnegative curvature operator. Then Rg(t) ≥ 0 for every
t ∈ [0, T ).

Proof. We recall the evolution equation (3.10) for P = ϕ∗R

∂

∂t
P = ∆DP− 2ρϕ∗(∇2 trh(P)) 7 h+ 2P2 + 2P# − 4ρ trh(P)P,

where trh(P(t)) = 1/2R(t) is half of the scalar curvature of the metric g(t). By proposi-
tion 3.4, it suffices to show that the non negativity of P is preserved by equation (3.10).
We want to apply the vectorial maximum principle 4.8, therefore we must show that

L(Q) = ∆DQ− 2ρϕ∗(∇2 trh(Q)) 7 h
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is a uniformly elliptic operator on the bundle (Γ(S2(Λ2V ∗)), h,D(t)).
As L is a linear second order operator, we compute as usual its principal symbol in
the arbitrary direction ξ. In order to simplify the computations, we choose opportune
frames at every point p ∈ M and time t ∈ [0, T ). Then, let {ei}i=1,...,n be an orthonormal
basis of (Vp, hp) such that ξ = hp(e1, ·). According to the Uhlenbeck’s trick (Section 3.1)
and the convention on algebraic curvature operators (Section 3.1) we have that {fi =
ϕ(t)p(ei)}i1,...,n is an orthonormal basis of TpM with respect to g(t)p, the components of
ϕ(t)p with these choices are ϕai = δai and {ei ∧ ej}i<j is an orthonormal basis of Λ2Vp.
Hence, the principal symbol of the operator L written in these frames is

σξ(LQ)(ij)(kl) = ξpξpQ(ij)(kl) − 2ρδai δ
b
jδ
c
kδ
d
l trh(Q)(ξ ⊗ ξ 7 h)(ab)(cd)

= |ξ|2Q(ij)(kl) − 2ρ trh(Q)(ξ ⊗ ξ 7 h)(ij)(kl)

= Q(ij)(kl) − 2ρ
(∑
p<q

Q(pq)(pq)

)
δ1
i δ

1
kδjl ,

where we used that |ξ| = 1, i < j and k < l in the last passage. Now it is easy to see that
the matrix representing the symbol has the following form

σξ(L) =



A[n− 1]

−2ρ . . . 2ρ
... . . . ...
−2ρ . . . −2ρ

0

0 Id(n−1)(n−2)/2 0

0 0 IdN(N−1)/2


,

where we have ordered the components as follows: first the n − 1 ones of the form
(1j)(1j) with j > 1, then the (n − 1)(n − 2)/2 ones of the form (ij)(ij) with 1 < i < j,
and last the N(N − 1)/2 ”non diagonal” ones, with N = n(n− 1)/2 and A is the matrix
defined in (2.1).
By lemma 2.2 the eigenvalues of the symbol are 1 with multiplicity N(N + 1)/2− 1 and
1− 2(n− 1)ρ with multiplicity 1, since ρ < 1/2(n− 1) the operator L is uniformly ellip-
tic.
In the second part of the proof we consider the reaction term F (Q) = 2(Q2 + Q# −
2ρ trh(Q)Q). Clearly F is continuous, locally Lipschitz and fiber–preserving. Let Ω ∈
Γ(S2(Λ2V ∗)) be the set of nonnegative algebraic curvature operators, where we have
identified S2(Λ2V ∗) ' EndSA(Λ2V ) via the metric h. We observe that Ω = {Q : λN(Qp) ≥
0}, whereN = n(n−1)/2 and λN is the least eigenvalue ofQp. Hence Ω is clearly closed,
by [10, Lemma 10.11] it is invariant under parallel translation with respect to every con-
nection D(t) and it is convex, provided that the function Q 7→ λN(Qp) is concave. We
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can rewrite
λN(Qp) = inf

{v∈Λ2Vp:|v|h=1}
h(Qp(v), v) ;

so it is easy to conclude, by bilinearity of the metric h and concavity of inf, that the
function defining Ω is actually concave and so its superlevels are convex. In order to
finish the proof we have to show that the ODE dQ/dt = F (Q) preserves Ω. Now, by
standard facts in convex analysis, we only need to prove that

Fp(Qp) ∈ TQpΩp for every p ∈M such that Qp ∈ ∂Ωp ,

where ∂Ωp = {Qp ∈ Ωp : ∃v ∈ Λ2Vp Qp(v, v) = 0} and the tangent cone is

TQpΩp = {Sp ∈ S2(Λ2V ∗p ) : Sp(v, v) ≥ 0 for every v ∈ Λ2Vp such that Qp(v, v) = 0}

Let v ∈ Λ2Vp and {θα} be respectively a null eigenvector of Qp and an orthonormal basis
of Λ2Vp that diagonalizes Qp. Clearly

v = vαθα , (Qp)αβ = λαδαβ .

with λα ≥ 0. Then

(Q2
p)αβ = λ2

αδαβ , (Q#
p )αβ =

1

2
(cγνα )2λγλνδαβ

and

Fp(Qp)(v, v) = λ2
α(vα)2 +

1

2
(cγνα )2λγλν(v

α)2 ≥ 0

and this completes the proof.

4.2. The evolution of the Weyl tensor.
By means of the evolution equations found for the curvatures, we are able to write the
equation satisfied by the Weyl tensor along the RB flow (1.1). In [6] the authors compute
the evolution equation of the Weyl tensor during the Ricci flow (see [6, Proposition 1.1])
and we use most of their computations here.

Proposition 4.11. During the RB flow of an n–dimensional Riemannian manifold (M, g) the
Weyl tensor satisfies the following evolution equation

∂

∂t
Wijkl = ∆Wijkl + 2(B(W)ijkl − B(W)ijlk − B(W)iljk + B(W)ikjl) (4.5)

+2ρRWijkl − gpq
(
WpjklRqi + WipklRqj + WijplRqk + WijkpRql

)
+

2

(n− 2)2
(Ric2 7 g)ijkl +

1

(n− 2)
(Ric 7 Ric)ijkl

− 2R

(n− 2)2
(Ric 7 g)ijkl +

R2 − |Ric|2

(n− 1)(n− 2)2
(g 7 g)ijkl ,

where B(W )ijkl = gpqgrsWipjrWkqls.
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Proof. By recalling the decomposition formula for the Weyl tensor (1.3) we have

∂

∂t
W =

∂

∂t
Riem +

1

2(n− 1)(n− 2)

( ∂
∂t

Rg 7 g + 2
∂

∂t
g 7 g

)
− 1

n− 2

( ∂
∂t

Ric 7 g + Ric 7
∂

∂t
g
)

=LII + L0 ,

where LII is the second order term in the curvatures and L the 0–th one. We deal first
with the higher order term; plugging in the evolution equations of Riem,Ric and R
(Proposition 3.1) we get

LII = ∆Riem− ρ(∇2R 7 g) +
1− 2(n− 1)ρ

2(n− 1)(n− 2)
∆Rg 7 g

− 1

n− 2
(∆Ric 7 g − (n− 2)ρ∇2R 7 g − ρ∆R 7 g)

= ∆Riem +
1− 2(n− 1)ρ+ 2(n− 1)ρ

2(n− 1)(n− 2)
∆Rg 7 g − 1

n− 2
∆Ric 7 g

= ∆W .

Then we consider the lower order terms

(L0)ijkl = 2(B(Riem)ijkl −B(Riem)ijlk −B(Riem)iljk +B(Riem)ikjl)

−gpq
(
RpjklRqi + RipklRqj + RijplRqk + RijkpRql

)
+2ρR

(
W − 1

2(n− 1)(n− 2)
Rg 7 g +

1

n− 2
Ric 7 g

)
ijkl

+
1

2(n− 1)(n− 2)
(2|Ric|2g 7 g − 2ρR2g 7 g − 4RRic 7 g + 4ρR2g 7 g)ijkl

− 1

n− 2
[2(Riem ∗ Ric) 7 g − 2Ric2 7 g − 2Ric 7 Ric + 2ρRRic 7 g]ijkl

= 2(B(Riem)ijkl −B(Riem)ijlk −B(Riem)iljk +B(Riem)ikjl)

−gpq
(
RpjklRqi + RipklRqj + RijplRqk + RijkpRql

)
+ 2ρRWijkl

− 2

n− 2
[(Riem ∗ Ric) 7 g − Ric2 7 g − Ric 7 Ric]ijkl

− 2R

(n− 1)(n− 2)
(Ric 7 g)ijkl +

|Ric|2

(n− 1)(n− 2)
(g 7 g)ijkl ,

where (Riem ∗ Ric)ab = RapbqRstg
psgqt and (Ric2)ab = RapRbqg

pq.
Now we deal separately with every term containing the full curvature Riem, using its
decomposition formula, expanding the Kulkarni–Nomizu products and then contract-
ing again. We have that

[(g 7 g) ∗ Ric]ab = 2[Rg − Ric]ab , [(Ric 7 g) ∗ Ric]ab = [−2Ric2 + RRic + |Ric|2g]ab .
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Hence

(Riem ∗ Ric) 7 g = (W ∗ Ric) 7 g − 2

n− 2
Ric2 7 g (4.6)

+
nR

(n− 1)(n− 2)
Ric 7 g +

(n− 1)|Ric|2 − R2

(n− 1)(n− 2)
g 7 g .

Then

RqiRpjklg
pq = Rqi

(
Wpjkl −

R

(n− 1)(n− 2)
(gpkgjl − gplgjk)

)
gpq

+
1

n− 2
Rqi(Rpkgjl + Rjlgpk − Rplgjk − Rjkgpl)g

pq

= RqiWpjklg
pq − R

(n− 1)(n− 2)
(Rikgjl − Rilgjk)

+
1

n− 2
(R2

ikgjl − R2
ilgjk + RikRjl − RilRjk) .

Interchanging the index and using the symmetry properties we get

gpq
(
RpjklRqi + RipklRqj + RijplRqk + RijkpRql

)
(4.7)

= gpq
(
WpjklRqi + WipklRqj + WijplRqk + WijkpRql

)
+

2

n− 2
(Ric2 7 g)ijkl +

2

n− 2
(Ric 7 Ric)ijkl −

2R

(n− 1)(n− 2)
(Ric 7 g)ijkl .

Finally the ”B”–terms:

B(Riem)abcd =
(

W − R

2(n− 1)(n− 2)
g 7 g +

1

n− 2
Ric 7 g

)
apbq(

W − R

2(n− 1)(n− 2)
g 7 g +

1

n− 2
Ric 7 g

)
csdt

gpsgqt(
Wapbq(g 7 g)csdt + (g 7 g)apbqWcsdt

)
gpsgqt = −2Wadbc − 2Wcbda(

Wapbq (Ric 7 g)csdt + (Ric 7 g)apbqWcsdt

)
gpsgqt = (W ∗ Ric)abgcd + (W ∗ Ric)cdgab

− (WcbdpRaq + WcpdaRbq + WadbpRcq + WapbdRdq)g
pq

(g 7 g)apbd(g 7 g)csdtg
psgqt = 4

(
(n− 2)gabgcd + gacgbd

)
(
(Ric 7 g)apbq(g 7 g)csdt + (Ric 7 g)csdt(g 7 g)apbq

)
gpsgqt

= 2
(
(n− 4)Rabgcd + (n− 4)Rcdgab + 2Racgbd + 2Rbdgac

)
(Ric 7 g)abpq (Ric 7 g)csdtg

psgqt = −2R2
abgcd − 2R2

cdgab + R2
acgbd + R2

bdgac

+ (n− 4)RabRcd + 2RacRbd + R(Rabgcd + Rcdgab) + |Ric|2gabgcd
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Now, adding the same type quantities for the different index permutations and using
the symmetry properties of W we obtain

B(Riem)ijkl −B(Riem)ijlk −B(Riem)iljk +B(Riem)ikjl (4.8)
=B(W)ijkl −B(W)ijlk −B(W)iljk +B(W)ikjl

+
1

n− 2

(
(W ∗ Ric) 7 g

)
ijkl
− 1

(n− 2)2
(Ric2 7 g)ijkl +

1

2(n− 2)
(Ric 7 Ric)ijkl

+
R

(n− 1)(n− 2)2
(Ric 7 g)ijkl +

( |Ric|2

2(n− 2)2
− R2

2(n− 1)(n− 2)2

)
(g 7 g)ijkl .

We are ready to complete the computation of the 0–th order term in the evolution equa-
tion, using the previous formulas (4.6), (4.7), (4.8)

(L0)ijkl = 2(B(W)ijkl −B(W)ijlk −B(W)iljk +B(W)ikjl) + 2ρRWijkl

−gpq
(
WpjklRqi + WipklRqj + WijplRqk + WijkpRql

)
+

2

(n− 2)2
(Ric2 7 g)ijkl +

1

(n− 2)
(Ric 7 Ric)ijkl

− 2R

(n− 2)2
(Ric 7 g)ijkl +

R2 − |Ric|2

(n− 1)(n− 2)2
(g 7 g)ijkl

4.3. Conditions preserved in dimension three.
In general dimension, it is very hard to find other curvature conditions preserved by
the flow, and this is due principally to the complex structure of the reaction terms; for
example in the evolution equation satisfied by the Ricci tensor (3.3), the reaction terms
involve the full curvature tensor. Therefore it is easier to restrict our attention to the
three–dimensional case, in which the Weyl part of the Riemann tensor vanishes and all
the geometric informations are encoded in the Ricci tensor.

In the special case of dimension three, we can use also the evolution equation (3.10)
of the pull–back of the curvature operator to obtain more refined conditions preserved,
because we can rewrite the ODE associated to the evolution of P as a system of ODEs
in the eigenvalues of P that, by Proposition 3.4, are nothing but the sectional curvatures
of R. This point of view has been introduced for the Ricci flow by Hamilton in [21] and
can be easily generalized to the RB flow as follows.

Lemma 4.12. If n = 3, then Pp has 3 eigenvalues λ, µ, ν and the ODE fiberwise associated to
equation (3.10) can be written as the following system

dλ
dt

= 2λ2 + 2µν − 4ρλ(λ+ µ+ ν) ,
dµ
dt

= 2µ2 + 2λν − 4ρµ(λ+ µ+ ν) ,
dν
dt

= 2ν2 + 2λµ− 4ρν(λ+ µ+ ν) .
(4.9)

In particular, if we assume λ(0) ≥ µ(0) ≥ ν(0), then λ(t) ≥ µ(t) ≥ ν(t) as long as the solution
of the system exists.
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Proof. We can pointwise identify Vp with an orthonormal frame of R3 with the standard
basis. Then Λ2Vp ' so(3) with the standard structure constants and if an algebraic
operator Qp is diagonal, both Q2

p and Q#
p are diagonal with respect to the same basis

(for the detailed computation of this fact, see [11, Chapter 6.4]). Hence the ODE d
dt
Qp =

Fp(Qp) associated fiberwise to (3.10) preserves the eigenvalues of Qp, that is, if Qp(0) is
diagonal with respect to an orthonormal basis, Qp(t) stays diagonal with respect to the
same basis and the ODE can be rewritten as the system (4.9) in the eigenvalues.
To prove the last statement, we observe that

d

dt
(λ− µ) = 2(λ− µ)

(
(1− 2ρ)(λ+ µ)− (1 + 2ρ)ν

)
d

dt
(µ− ν) = 2(µ− ν)

(
(1− 2ρ)(µ+ ν)− (1 + 2ρ)λ

)
Remark 4.13. We already proved that the differential operator in the evolution equation
of P is uniformly elliptic if ρ < 1/2(n− 1), that is ρ < 1/4 in dimension three. Therefore
any geometric condition expressed in terms of the eigenvalues is preserved along the
RB flow if the cone identified by the condition is closed, convex and preserved by the
system (4.9).

By using this method, we can prove

Proposition 4.14. Let (M, g(t))t∈[0,T ) be a compact, three–dimensional, solution of the RB
flow (1.1). If ρ < 1/4, then

(i) nonnegative Ricci curvature is preserved along the flow;
(ii) nonnegative sectional curvature is preserved along the flow;

(iii) the pinching inequality Ric ≥ εRg is preserved along the flow for any ε ≤ 1/3.

Proof. (i) If Ric(g(0)) ≥ 0, then Ricg(t) ≥ 0.
The eigenvalues of Ric are the pairwise sums of the sectional curvatures, hence the
condition is identified by the cone

Kp = {Qp : (µ+ ν)(Qp) ≥ 0} .
The closedness is obvious; in order to see that Kp is convex, we observe that the greatest
eigenvalue can be characterized by λ(Qp) = max{Qp(v, v) : v ∈ Vp|v|h = 1}, hence it is
convex. Then the function Qp 7→ µ(Qp) + ν(Qp) = tr(Qp) − λ(Qp) is concave and this
implies that its superlevels are convex. By system (4.9) we obtain

d

dt
(µ+ ν) = 2µ2 + 2ν2 + 2λ(µ+ ν)− 4ρ(µ+ ν) tr(Qp) .

There is the stationary solution corresponding to µ(0) = 0 = ν(0). Otherwise, whenever
µ(t0) + ν(t0) = 0 with µ(t0) 6= 0 and ν(t0) 6= 0, d

dt
(µ+ ν)(t0) = 2(µ2 + ν2)(t0) > 0, then K

is preserved.
(ii) If Sec(g(0)) ≥ 0, then Secg(t) ≥ 0.
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This condition is the non negativity of P, identified by the cone Kp = {Qp : ν(Qp) ≥ 0},
which is convex as superlevel of a concave function. We suppose that ν(t0) = 0, then

d

dt
ν(t0) = 2λ(t0)µ(t0) ≥ 0

because the order between the eigenvalues is preserved and therefore λ(t0) ≥ µ(t0) ≥ 0.
(iii) For every ε ∈ (0, 1/3], if Ric(g(0))− εR(g(0))g(0) ≥ 0, then Ricg(t) − εRg(t)g(t) ≥ 0.
Translating in terms of eigenvalues of P, the condition means µ(Qp)+ν(Qp)−2ε tr(Qp) ≥
0, that is λ(Qp) ≤ 1−2ε

2ε
(µ(Qp) + ν(Qp)), then the right cone is

Kp = {Qp : λ(Qp)− C(ε)(µ(Qp) + ν(Qp)) ≤ 0} ,

where C(ε) = 1−2ε
2ε
∈ [1/2,+∞). The defining function is the sum of two convex func-

tion, hence its sublevels are convex. Now, for C = 1/2, that corresponds to ε = 1/3,
we have λ(0) = µ(0) = ν(0) at each point of M , that is the initial metric g(0) is constant
sectional curvature and this condition is preserved along the flow.
For C > 1/2, we suppose λ(t0) = C(µ(t0) + ν(t0)), then

d

dt
(λ− C(µ+ ν))(t0) = 2

[
λ2 + µν − C(µ2 + ν2 + λ(µ+ ν))− 2ρ tr(Qp)(λ− C(µ+ ν))

]
(t0)

= 2
[
C2(µ(t0) + ν(t0))2 + µ(t0)ν(t0)− C(µ(t0)2 + ν(t0)2)− C2(µ(t0) + ν(t0))2

]
≤ (1− 2C)(µ(t0)2 + ν(t0)2) ≤ 0 .

4.4. Hamilton–Ivey estimate.
A remarkable property of the three–dimensional Ricci flow is the pinching estimate,
independently proved by Hamilton in [20] and Ivey in [22], which says that positive
sectional curvature dominates negative sectional curvature during the Ricci flow, that
is, if the initial metric g0 has a negative sectional curvature somewhere, the Ricci flow
starting at g0 evolves the scalar curvature towards the positive semiaxis in future times,
that means that there will be a greater (in absolute value) positive sectional curvature.
We have generalized the pinching estimate and some consequences for positive values
of the parameter ρ. In the same notation used before, let λ ≥ µ ≥ ν be the ordered
eigenvalues of the curvature operator.

Theorem 4.15 (Hamilton-Ivey Estimate). Let (M, g(t)) be a solution of the RB on a compact
three–manifold such that the initial metric satisfies the normalizing assumption minp∈M νp(0) ≥
−1. If ρ ∈ [0, 1/6), then at any point (p, t) where νp(t) < 0 the scalar curvature satisfies

R ≥ |ν|
(

log(|ν|) + log(1 + 2(1− 6ρ)t)− 3
)

(4.10)

Proof. We want to apply the Maximum Principle for time–dependent sets theorem 4.9,
hence we need to express condition (4.10) in terms of a family of closed, convex, invari-
ant subsets of S2(Λ2V ∗), where (V, h(t), D(t)) is the usual bundle isomorphism of the
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tangent bundle defined via Uhlenbeck’s trick (Section 3.1). Moreover, by [10, Lemma 10.11],
we already know that, for any t ∈ [0, T ), the set

Kp(t) =

{
Qp : tr(Qp) ≥ − 3

1+2(1−6ρ)t
and if ν(Qp) ≤ − 1

1+2(1−6ρ)t

then tr(Qp) ≥ |ν(Qp)|
(

log(|ν(Qp)|) + log(1 + 2(1− 6ρ)t)− 3
) }

defines a closed invariant subset of S2(Λ2V ∗). Since, for ρ ∈ [0, 1/6), K(t) depends
continuously on time, the space–time track of K(t) is closed in S2(Λ2V ∗).
Now we show that Kp(t) is convex for every p ∈ M and t ∈ [0, T ). Following [11,
Lemma 9.5], we consider the map

Φ : S2(Λ2V ∗p )→ R2 , Φ(Qp) = (|ν(Qp)|, tr(Qp))

Clearly, we have that Qp ∈ Kp(t) if and only if Φ(Qp) ∈ A(t), where

A(t) =

{
(x, y) ∈ R2 : y ≥ − 3

1+2(1−6ρ)t
; y ≥ −3x ;

if x ≥ 1
1+2(1−6ρ)t

then y ≥ x
(

log x+ log(1 + 2(1− 6ρ)t)− 3
) }

is a convex subset of R2. Then in order to show that Kp(t) is convex is sufficient to show
that the segment between any two algebraic operators in Kp(t) is sent by the map Φ into
A(t).
Therefore let Qp, Q

′
p ∈ Kp(t), s ∈ [0, 1] and Qp(s) = sQp + (1 − s)Q′p. About the first

defining condition for A(t), the trace is a linear functional, hence it is obviously fulfilled
by Qp(s), while the second condition is satisfied by any algebraic operator.
The third condition is a bit tricky. If ν(Qp), ν(Q′p) > − 1

1+(1−6ρ)t
then the condition is

empty for every point of the segment because ν is a concave function. By continuity we
can assume w.l.o.g. that ν(Qp(s)) ≤ − 1

1+(1−6ρ)t
, for every s ∈ [0, 1], hence x(Qp(s)) =

−ν(Qp(s)) is a convex function and x(Qp(s)) ≤ sx(Qp)+(1−s)x(Q′p). On the other hand
the second condition implies that x(Qp(s)) ≥ −y(Qp(s))/3 = −1

3
(sy(Qp) + (1− s)y(Q′p)).

Then Φ(Qp(s)) belongs to the trapezium of vertices

Φ(Qp),
(
− 1

3
y(Qp), y(Qp)

)
, Φ(Q′p),

(
− 1

3
y(Q′p), y(Q′p)

)
,

contained in A(t), as its vertices are and A(t) is convex.
Now we prove that K(t) is preserved by the system (4.9). By taking the sum of the three
equations in the system (see also Remark 4.13) we get

d

dt
tr(Qp) ≥

4

3
(1− 3ρ) tr(Qp)

2 .

By hypothesis, ν(Qp)(0) ≥ −1, hence tr(Qp)(0) ≥ −3 for every p ∈M and by integrating
the previous inequality,

tr(Qp)(t) ≥ −
3

1 + 4(1− 3ρ)t
≥ − 3

1 + 2(1− 6ρ)t
,

which holds for any ρ ∈ [0, 1/6).
In order to prove that the second inequality is preserved too, we consider, for every
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p ∈M such that ν(Qp)(0) < 0, the function

f(t) =
tr(Qp)

−ν(Qp)
− log(−ν(Qp))− log(1 + 2(1− 6ρ)t) (4.11)

and we compute its derivative along the flow.

d

dt
f =

1

ν2

[
(−2ν)

(
λ2 + µ2 + ν2 + λµ+ λν + µν − 2ρ(λ+ µ+ ν)2

)
+ 2(λ+ µ+ ν)

(
ν2 + λµ− 2ρν(λ+ µ+ ν)

)]
− 2

ν

(
ν2 + λµ− 2ρν(λ+ µ+ ν)

)
− 2(1− 6ρ)

1 + 2(1− 6ρ)t

=
2

ν2

[
− ν(λ2 + µ2 + λµ) + λµ(λ+ µ)− ν3 + 2ρν2(λ+ µ+ ν)

]
− 2(1− 6ρ)

1 + 2(1− 6ρ)t

As in the case of the Ricci flow, it is easy to see that the quantity −ν(λ2 + µ2 + λµ) +
λµ(λ+ µ) is always nonnegative if ν < 0. In fact, if µ > 0 it is obvious, whereas if µ ≤ 0
one has

−ν(λ2 + µ2 + λµ) + λµ(λ+ µ) = (µ− ν)(λ2 + µ2 + λµ)− µ3 ≥ 0 .

Hence we get
d

dt
f(t) ≥ −2ν + 4ρ(λ+ µ+ ν)− 2(1− 6ρ)

1 + 2(1− 6ρ)t
(4.12)

If ρ ≥ 0, since λ+ µ+ ν ≥ 3ν, we obtain
d

dt
f ≥ −2(1− 6ρ)

(
ν +

1

1 + 2(1− 6ρ)t

)
≥ 0

whenever ν ≤ − 1
1+2(1−6ρ)t

and ρ ≤ 1/6.
Hence, if (λ, µ, ν) is a solution of system (4.9) in [0, T ) with (λ(0), µ(0), ν(0)) ∈ Kp(0),
we suppose that there is t1 > 0 such that ν(t1) < − 1

1+2(1−6ρ)t1
. Then, either ν(t) <

− 1
1+2(1−6ρ)t

for any t ∈ [0, t1], either there exists t0 < t1 such that ν(t0) = − 1
1+2(1−6ρ)t0

and ν(t) < − 1
1+2(1−6ρ)t

for any t ∈ (t0, t1]. In the first case, by hypothesis we obtain
f(0) ≥ −3 and d

dt
f(t) ≥ 0 for any t ∈ [0, t1], therefore f(t1) ≥ −3; in the second case

f(t0) = (λ+µ+ν)(t0)
−ν(t0)

≥ −3 and d
dt
f(t) ≥ 0 for any t ∈ [t0, t1], therefore again f(t1) ≥ −3,

which is equivalent to the second inequality.

Remark 4.16. The extra term 4ρ(λ + µ + ν) on the key-equation (4.12) requires strong
assumptions on the parameter ρ since we have no information on the sign of the trace.
However, combining equation (4.12) with Proposition 4.4, we can enlarge the range of
ρ to [0, 1/4), simply by dropping the extra term, nonnegative for ancient solutions and
therefore conclude that an ancient solution to the RB flow on a compact three–manifold
with bounded scalar curvature has nonnegative sectional curvature for any value of
ρ ∈ [0, 1/4) (see [11, Corollary 9.8]).
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Proposition 4.17. Let (M, g(t)) t∈(−∞,0] be a compact, three–dimensional, ancient solution of
the RB flow (1.1) with uniformly bounded scalar curvature. If ρ ∈ [0, 1/4) then the sectional
curvature is nonnegative.

5. CURVATURE ESTIMATES

5.1. Technical lemmas.
Before proving the curvature estimates for the RB flow, we need some technical results.
First of all, we prove the proposition:

Proposition 5.1. Let k ∈ N, p ∈ [1,+∞] and q ∈ [1,+∞). There exists a constantC(n, k, p, q)
such that for all 0 ≤ j ≤ k and all tensor T

‖T‖
H

rj
j
≤ C‖T‖1− j

k
p ‖T‖

j
k

Hq
k
,

where 1
rj

=
1− j

k

p
+

j
k

q
.

To prove this proposition, we need several lemmas.

Lemma 5.2. Let p ∈ [1,+∞], q ∈ [1,+∞) and r ∈ [2,+∞) such that 1
r

= 1
2p

+ 1
2q

. There
exists a constant C(n, r) such that for all tensor T

‖∇T‖2
r ≤ C‖T‖p‖∇2T‖q .

Proof.

‖∇T‖rr =

∫
M

〈
∇T, |∇T |r−2∇T

〉
dµg

= −
∫
M

〈
T,∇

(
|∇T |r−2∇T

)〉
dµg

= −
∫
M

〈
T, (r − 2)∇2T |∇T |r−3∇T

〉
dµg −

∫
M

〈
T, |∇T |r−2∇2T

〉
dµg

≤ C

∫
M

|T ||∇2T ||∇T |r−2 dµg

≤ C‖T‖p‖∇2T‖q‖∇T‖r−2
r ,

using Hölder’s inequality with r−2
r

+ 1
p

+ 1
q

= 1. This ends the proof of this lemma. �

Lemma 5.3. Let k ∈ N, p ∈ [1,+∞] and q ∈ [1,+∞). There exists a constant C(n, k, p, q))
such that for all tensor T

‖T‖2
Hr

k+1
≤ C‖T‖Hp

k
‖T‖Hq

k+2
,

where 1
r

= 1
2p

+ 1
2q

.

Proof. We apply Lemma 5.2 to ∇kT :

‖∇k+1T‖2
r ≤ C‖∇kT‖p‖T‖Hq

k+2
≤ C‖T‖Hp

k
‖T‖Hq

k+2
.
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On the other side, using Hölder’s inequality

‖T‖2
r ≤ ‖T‖p‖T‖q ≤ ‖T‖Hp

k
‖T‖Hq

k+2
.

Combining both inequalities gives the result. �

Lemma 5.4 (Hamilton [18], Cor. 12.5). Let k ∈ N. If f : {0, . . . , k} → R satisfies for all
0 < j < k

f(j) ≤ Cf(j − 1)
1
2f(j + 1)

1
2 ,

where C is a positive constant, then for all 0 ≤ j ≤ k

f(j) ≤ Cj(k−j)f(0)1− j
k f(k)

j
k .

Proof of Proposition 5.1. We apply Lemma 5.4 with f(j) = ‖T‖
H

rj
j

. Since 1
rj

= 1
2rj−1

+ 1
2rj+1

,
Lemma 5.3 shows that there exists C(n, k, p, q) such that

f(j) ≤ Cf(j − 1)
1
2f(j + 1)

1
2 ,

and then Lemma 5.4 gives Proposition 5.1.

Lemma 5.5. For all tensors of the form S ∗ T , there exists C depending on the dimension and
the coefficients in the expression such that

|S ∗ T | ≤ C|S||T | .

Proof. By Cauchy–Schwarz inequality,
(
gαβTαβ

)2 ≤ nTαβT
αβ . Then

|S ∗ T | ≤ C(n)|S ⊗ T ⊗ g⊗j ⊗ (g−1)⊗k ≤ C(n)n
j+k
2 |S||T | .

Let k ∈ N, and set, for a tensor T , Fg(T ) =
∑

r+s=k, r,s≥0

∇rT ∗ ∇sT ∗ ∇kT .

Lemma 5.6. Let k ∈ N. Let p ∈ [2,+∞] and q ∈ [2,+∞) such that 1
p

+ 2
q

= 1. There exists
C(n, k, p, q, F ) such that for all tensor T ,∫

M

|Fg(T )| dµg ≤ C‖T‖p‖T‖2
Hq

k
.

Proof. Let us consider one term in Fg(T ) that can be written ∇rT ∗ ∇sT ∗ ∇kT , r, s ≥ 0.
Using Lemma 5.5 and Hölder’s inequality we have∫

M

|∇rT ∗ ∇sT ∗ ∇kT | dµg ≤ C ′
∫
M

|∇rT ||∇sT ||∇kT | dµg

≤ C ′‖∇rT‖r1‖∇sT‖r2‖∇kT‖q
≤ C ′‖T‖Hr1

r
‖T‖Hr2

s
‖T‖Hq

k
,

where 1
ri

=
1− r

k

p
+

r
k

q
. Clearly 1

r1
+ 1

r2
= 1. Using Lemma 5.2 we get∫

M

|∇rT ∗ ∇sT ∗ ∇kT | dµg ≤ C‖T‖p‖T‖2
Hq

k
.
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The result follows since Fg(T ) is a linear combination of such terms.

5.2. Curvature estimates.
In this section we prove the following theorem:

Theorem 5.7. Assume ρ < 1
2(n−1)

. If g(t) is a compact solution of the RB flow for t ∈ [0, T )

such that
sup

(x,t)∈M×[0,T )

|Riem(x, t)| ≤ K ,

then for all k ∈ N there exists a constant C(n, ρ, k,K, T ) such that for all t ∈ (0, T ]

‖∇kRiemgt‖2
2 ≤

C

t
1
2

sup
t∈[0,T )

∫
M

|Riemgt |2 dµg .

Proof. We prove the theorem by induction on k. A direct computation gives

∂

∂t
|Riem|2 = ∆(|Riem|2)− 2|∇Riem|2 − 8ρRij∇i∇jR + Riem ∗ Riem ∗ Riem

∂

∂t
R2 = (1− 2(n− 1)ρ)∆(R2)− 2(1− 2(n− 1)ρ)|∇R|2 + 4R|Ric|2 − 4ρR3 .

It follows that
∂

∂t

∫
M

|Riem|2 dµg = −2

∫
M

|∇Riem|2 dµg − 8ρ

∫
M

Rij∇i∇jR dµg

+

∫
M

Riem ∗ Riem ∗ Riem dµg

∂

∂t

∫
M

R2 dµg = −2(1− 2(n− 1)ρ)

∫
M

|∇R|2 dµg +

∫
M

Riem ∗ Riem ∗ Riem dµg .

Now we want to compute
∫
M

Rij∇i∇jR dµg. Using Bianchi identity we have:∫
M

Rij∇i∇jR dµg = −1

2

∫
M

|∇R|2 dµg .

We conclude that
∂

∂t

∫
M

|Riem|2 dµg = −2

∫
M

|∇Riem|2 dµg + 4ρ

∫
M

|∇R|2 dµg

+

∫
M

Riem ∗ Riem ∗ Riem dµg

∂

∂t

∫
M

R2 dµg = −2(1− 2(n− 1)ρ)

∫
M

|∇R|2 dµg +

∫
M

Riem ∗ Riem ∗ Riem dµg .

Consider

Ak :=

∫
M

|∇kRiem|2 dµg +
4|ρ|

(1− 2(n− 1)ρ)

∫
M

|∇kR|2 dµg
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and set β := min(1, 1− 2(n− 1)ρ). We have by a direct computation:

∂

∂t
A0 + βA1 = (−2 + β)

∫
M

|∇Riem|2 dµg +

(
4ρ− 8|ρ|+ 4|ρ|β

(1− 2(n− 1)ρ)

)∫
M

|∇R|2 dµg

+

∫
M

Riem ∗ Riem ∗ Riem dµg .

Note that −2 + β ≤ 0 and 4ρ − 8|ρ| + 4|ρ|β
(1−2(n−1)ρ)

≤ 0. Using the assumption on the
boundedness of |Riem|we have:

∂

∂t
A0 + βA1 ≤ C‖Riem‖2

2 .

Consider f1(t) := A0 + βtA1. We have

f ′1(t) = A′0 + βA1 + βtA′1 ≤ C‖Riem‖2
2 + Cβt‖Riem‖2

2 ≤ C(1 + t)‖Riem‖2
2 .

It follows, integrating this inequality∫
M

|∇Riem|2 dµg ≤ A1 ≤
1

βt
f1(t) ≤ C

t
‖Riem‖2

2 .

This is what we wanted to prove for k = 1.
More generally, we want to control all the derivatives of the curvature. Assume that

the conclusion of the theorem is true up to (k − 1). As we did before, a straightforward
computation gives:

∂

∂t

∫
M

|∇kRiem|2 dµg = −2

∫
M

|∇k+1Riem|2 dµg + 4ρ

∫
M

|∇k+1R|2 dµg

+
∑

r+s=k, r,s≥0

∫
M

∇rRiem ∗ ∇sRiem ∗ ∇kRiem dµg

∂

∂t

∫
M

|∇kR|2 dµg = −2(1− 2(n− 1)ρ)

∫
M

|∇k+1R|2 dµg

+
∑

r+s=k, r,s≥0

∫
M

∇rRiem ∗ ∇sRiem ∗ ∇kRiem dµg .

We need to estimate
∑

r+s=k, r,s≥0

∫
M
∇rRiem ∗ ∇sRiem ∗ ∇kRiem dµg. For this we use

Lemma 5.6 with p = +∞ and q = 2:∑
r+s=k, r,s≥0

∫
M

∇rRiem ∗ ∇sRiem ∗ ∇kRiem dµg ≤ C‖Riem‖∞‖Riem‖2
H2

k
.
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Using Lemma 5.2 we get∑
r+s=k, r,s≥0

∫
M

∇rRiem ∗ ∇sRiem ∗ ∇kRiem dµg ≤C‖Riem‖∞‖∇kRiem‖2
2

+ C‖Riem‖∞‖Riem‖2
2

≤C‖Riem‖∞‖Riem‖2‖∇k+1kRiem‖2

+ C‖Riem‖∞‖Riem‖2
2

≤ 1

2
‖∇k+1kRiem‖2

2

+ C(‖Riem‖2
∞ + ‖Riem‖∞)‖Riem‖2

2 .

Similarly as before, and using this last estimate, we have

∂

∂t
Ak + βAk+1 ≤ C‖Riem‖2

2 .

Now define fk(t) :=
k∑
j=0

βjtj

j!
Aj . We have

f ′k(t) =
k−1∑
j=0

βjtj

j!

(
A′j + βAj+1

)
+
βktk

k!
A′k

≤ C‖Riem‖2
2

k∑
j=0

βjtj

j!
≤ C(1 + t)k‖Riem‖2

2 .

Now, integrating this inequality,∫
M

|∇kRiem|2 dµg ≤ Ak ≤
k!

βktk
fk(t) ≤

C

tk
‖Riem‖2

2 ,

and this ends the proof of the theorem.

5.3. Long time existence.
In this section we will prove the following result.

Theorem 5.8. Assume ρ < 1
2(n−1)

. If g(t) is a compact solution of the RB flow on a maximal
time interval [0, T ), T < +∞, then

lim sup
t→T

max
M
|Riem( · , t)| = +∞ .

Proof. If the Riemann tensor is uniformly bounded as t→ T , by using the interpolation
inequalities in Lemma 5.3, from Theorem 5.7 we immediately get the estimates∫

M

|∇kRiem|p dµg ≤ Ck,p ,
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for all k ∈ N and p < +∞. Now, let Ek := |∇kRiem|2. Then, for all p < +∞we have∫
M

(
|Ek|p + |∇Ek|p

)
dµg ≤ C ′k,p .

Thus, by Sobolev inequality, if p > k, one has

max
M
|Ek|p ≤ Ct

∫
M

(
|Ek|p + |∇Ek|p

)
dµg .

Notice that the constant Ct depends on the metric g(t), but it does not depend on the
derivatives of g(t). Moreover, from [18, Lemma 14.2], it follows that the metrics are
all equivalent. Hence, the constant Ct is uniformly bounded as t → T and, from the
previous estimates, it follows that, if |Riem| ≤ C on M × [0, T )], for every k ∈ N one has

max
M
|∇kRiem| ≤ Ck ,

where the constant Ck depends only on the initial value of the metric and the constant
C.

Arguing now as in [18, Section 14], it follows that the metrics g(t) converge to some
limit metric g(T ) in the C∞ topology (with all their time/space ordinary partial deriva-
tives, once written in local coordinates), hence, we can restart the flow with this initial
metric g(T ), obtaining a smooth flow in some larger time interval [0, T + δ), in contra-
diction with the fact that T was the maximal time of smooth existence. This completes
the proof of Theorem 5.8.

6. THE SOLITONS

We pass now to the analysis of gradient ρ–Einstein solitons. All the results of this
section can be found in [8] and [9]. We say that a gradient ρ–Einstein soliton is a Rie-
mannian manifold (M, g), n ≥ 3, endowed with a smooth function f : M → R, such
that the metric g satisfies the equation

Ric +∇2f = ρR g + λg , (6.1)

for some constants ρ, λ ∈ R, ρ 6= 0. The soliton is trivial whenever ∇f is parallel. As
usual, the ρ–Einstein soliton is steady for λ = 0, shrinking for λ > 0 and expanding for
λ < 0. The function f is called a ρ–Einstein potential of the gradient ρ–Einstein soliton.

Corresponding to special values of the parameter ρ, we refer to the ρ–Einstein solitons
with different names, according to the Riemannian tensor which rules the flow. Hence,
for ρ = 1/2 we will have Einstein solitons, for ρ = 1/n traceless Ricci solitons and for
ρ = 1/2(n− 1) Schouten solitons.

In this section we will collect some facts concerning gradient ρ–Einstein solitons. First
of all, it is easy to show that gradient ρ–Einstein solitons give rise to solutions to the RB
flow (1.1).

Theorem 6.1 ([9]). If (M, g0, f0) is a complete gradient ρ–Einstein soliton with Einstein con-
stant λ, then there exist

i. a family of metrics g(t), solution to the RB flow (1.1), with g(0) = g0,
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ii. a family of diffeomorphisms φ(t) : M →M , with φ(0) = idM ,
iii. a family of functions f(t) : M → R with f(0) = f0,

all three defined for every t such that τ(t) := −2λ + 1 > 0. These families have the following
properties:

1. the family φ(t) is generated by the vector-fields

X(t)(x) =
1

τ(t)
(∇g0f0)(φ(t)(x)) (6.2)

i.e.
∂

∂t
φ(t)(x) =

1

τ(t)
(∇g0f0)(φ(t)(x)) , (6.3)

2. the metric g(t) is given by pullback through φ and rescaling, i.e.

g(t) = τ(t)φ(t)∗g0 (6.4)

3. the function f(t) is given as well by pullback, i.e.

f(t) = f0 ◦ φ(t) . (6.5)

Proof. We set τ(t) = −2λt + 1. As ∇g0f0 is a complete vector-field, there exists a 1–
parameter family of diffeomorphisms φ(t, · ) : M →M generated by the time dependent
family of vector fields X(t, · ) := 1

τ(t)
∇g0f0(φ(t, · )), for every t such that τ(t) > 0. We

also set f(t, ·) = (f0 ◦ φ)(t, · ) and g(t) = τ(t)φ(t)∗g0. We compute

∂

∂t
g(t) = − 2λ

τ(t)
g(t) + τ(t)

∂

∂t
φ(t, ·)∗g0 .

By the definition of the Lie derivative, we have that ∂
∂t
φ(t, ·)∗g0 = L(φ(t)−1)∗

∂
∂t
φ(t,·)φ(t, ·)∗g0 .

On the other hand, equation (6.3) implies that

∂φ

∂t
(t, · ) =

1

τ(t)
(∇g0f0)(·) =

1

τ(t)
φ(t, · )∗∇g(t)f(t, · ) ,

where we used the fact that φ(t, ·)∗∇g0f0 = ∇φ(t,·)∗g0φ(t, ·)∗f0 = ∇g(t)f(t, ·). Combining
these two facts, we have that

∂

∂t
g(t) = − 2λ

τ(t)
g(t) +

1

τ(t)
L∇g(t)f(t,·)g(t) .

Having this at hand, we compute

−Ricg(t) = φ(t, ·)∗(−Ric(g0)) = φ(t, ·)∗
(

1

2
L∇g0f0g0 − λ g0 − ρR(g0) g0

)
=

1

2

(
1

τ(t)
L∇g(t)f(t,·)g(t) − 2

τ(t)
λ g(t)

)
− ρ

τ(t)
R(τ(t)−1g(t)) g(t)

=
1

2

∂

∂t
g(t) − ρ

τ(t)
R(τ(t)−1g(t)) g(t)
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and we observe that R(τ(t)−1g(t)) = τ(t) Rg(t). In other words, we have obtained
∂

∂t
g(t) = −2 [ Ricg(t) − ρRg(t) g(t) ] ,

and the proof is complete.

Concerning the regularity of this structures we have the following result.

Theorem 6.2 ([9]). A gradient ρ–Einstein soliton is real analytic, provided ρ 6= 1/n.

We say that a smooth function f : M → R is rectifiable in an open set U ⊂ M if and
only if |∇f|U | is constant along every regular connected component of the level sets of
f|U . In particular, it can be seen that f|U only depends on the signed distance r to the
regular connected component of some of its level sets. If U = M , we simply say that f
is rectifiable. Consequently, a gradient soliton is called rectifiable if and only if it admits
a rectifiable potential function. The rectifiability turns out to be one of main property of
the ρ–Einstein solitons, as we will show in the following theorem.

Theorem 6.3 ([8]). Every gradient ρ–Einstein soliton is rectifiable.

Moreover it can be proved that, locally, the solitons can be foliated by hypersurfaces
with constant mean curvature and constant induced scalar curvature, about a regular
connected component of a level set of the potential f . It is worth noticing that Theo-
rem 6.3 fails to be true in the case of gradient Ricci solitons. In fact, even though all of
the easiest nontrivial examples – such as the Gaussian soliton and the round cylinder
in the shrinking case, or the Hamilton’s cigar (also known in the physics literature as
Witten’s black hole) and the Bryant soliton in the steady case – are rectifiable, it is easy
to check, for instance, that the Riemannian product of rectifiable steady gradient Ricci
solitons gives rise to a new steady soliton, which is generically not rectifiable.

Finally, we list here some classification results. First of all in the compact case we have
the following

Theorem 6.4 ([8]). Let (M, g), n ≥ 3, be compact gradient ρ–Einstein soliton. Then, the
following cases occur.

(i) If ρ ≤ 1/2(n− 1), then either λ > 0 and R > 0 or the soliton is trivial.
(i-bis) If ρ = 1/2(n− 1), then the soliton is trivial.

(ii) If 1/2(n− 1) < ρ < 1/n, then either λ < 0 and R < 0 or the soliton is trivial.
(iii) If 1/n ≤ ρ, the soliton is trivial.

In particular, for solitons corresponding to these special values of ρ, we get

Corollary 6.5. Every compact gradient Einstein, Schouten or traceless Ricci soliton is trivial.

In the general (also noncompact) case the following results were proved.

Theorem 6.6 ([8]). Let (M, g) be a three–dimensional gradient ρ–Einstein soliton with ρ < 0
and λ ≤ 0 or ρ ≥ 1/2 and λ ≥ 0. If (M, g) has positive sectional curvature, then it is rotationally
symmetric.
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Theorem 6.7 ([8]). Let (M, g) be a complete n–dimensional, n ≥ 4, locally conformally flat
gradient ρ–Einstein soliton with ρ < 0 and λ ≤ 0 or ρ ≥ 1/2 and λ ≥ 0. If (M, g) has positive
sectional curvature, then it is rotationally symmetric.

We say that a Riemannian manifold is rigid if, for some k ∈ {0, . . . , (n−1)}, its univer-
sal cover, endowed with the lifted metric and the lifted potential function, is isometric to
the Riemannian productNk×Rn−k, whereNk is a k–dimensional Einstein manifold and
f = λ

2
|x|2 on the Euclidean factor. We also recall that g has nonnegative radial sectional

curvature if Riem(E,∇f, E,∇f) ≥ 0 for every vector field E orthogonal to∇f .

Theorem 6.8 ([9]). Let (M, g) be a complete, noncompact, gradient shrinking ρ–Einstein soli-
ton with 0 < ρ ≤ 1/2(n−1). If g has bounded curvature, nonnegative radial sectional curvature,
and nonnegative Ricci curvature, then (M, g) is rigid.

In particular, every complete, noncompact, gradient shrinking ρ–Einstein soliton with
0 < ρ ≤ 1/2(n− 1) and nonnegative sectional curvature is rigid.

Among all the ρ–Einstein solitons, a class of particular interest is given by gradient
Schouten solitons, namely Riemannian manifolds satisfying

Ric +∇2f =
R

2(n− 1)
g + λ g ,

for some smooth function f and some constant λ ∈ R. In the steady case, we can
prove the following triviality result, which holds true in every dimension without any
curvature assumption.

Theorem 6.9 ([8]). Every complete gradient steady Schouten soliton is trivial, hence Ricci flat.

In particular, every complete three–dimensional gradient steady Schouten soliton
is isometric to a quotient of R3. In analogy with Perelman’s classification of three-
dimensional gradient shrinking Ricci solitons [25], subsequently proved without any
curvature assumption in [5], we have the following theorem.

Theorem 6.10 ([8]). Let (M, g) be a complete three–dimensional gradient shrinking Schouten
soliton. Then, it is isometric to a finite quotient of either S3, or R3 or R× S2.
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