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Abstract 

 

Four types of weighted fusion methods, including pixel-level, least-squares, parametrical and non-parametrical, 

have been classified and theoretically analysed in this study. In particular, the uncertainty propagation of the 

weighted least-squares fusion was analysed and its relation to the Kalman filter was studied. In cooperation with 

different fitting models, these four weighted fusion methods can be applied to a range of measurement challenges. 

The experimental results of this study show that the four weighted fusion methods compose a computationally 

efficient and reliable system for multi-sensor measurement problems, especially for freeform surface 

measurement. A comparison of weighted fusion with residual approximation-based fusion has also been 

conducted by providing the input datasets with different noise levels and sample sizes. The results demonstrated 

that weighted fusion and residual approximation-based fusion are complementary approaches applicable to most 

fusion scenarios. 

 

Keywords: weighted fusion, multi-sensor measurement, surface reconstruction, uncertainty  

 

1. Introduction 

 

Different sensors have different levels of accuracy, speed, resolution and measurement range. By combining the 

data from different sensors, a more holistic synthetic measurement can be achieved in an efficient and accurate 

manner. Such a synthetic measurement method using the integration of multiple sensors is often referred to as 

multi-sensor measurement, and is currently a focus of attention in surface metrology [1]. For example, structured 

surfaces, which can be widely found in mechanical/electrical applications [2], usually need sub-aperture stitching 

to ensure a large measuring range and high spatial resolution. Freeform surfaces [3], widely used in 

mechanical/optical engineering and aesthetics, usually need to be holistically measured with high accuracy, spatial 

resolution and without a prohibitive time cost. Single sensors or instruments, such as structured light scanners or 

coordinate measuring machines, cannot always solve these metrological challenges [4].  

 

Data fusion [5], which is usually a computationally-intensive process, is one of the essential processes in multi-

sensor measurement. Data fusion combines data from several information sources into a common representational 

format, hence the metrological evaluation can benefit from all available sensor information and data [1]. Data 

fusion usually requires a series of pre-processes before fusion, such as denoising, outlier removal, registration and 

interpolation. Among these pre-processes, registration, which associates one dataset to another so that the data 

from different sources are represented in the same coordinate system, is a key challenge for data fusion. Reviews 

about registration techniques can be found elsewhere [6, 7]. In this study, data fusion was carried out by assuming 

all the pre-process work has been completed. In the final data fusion process, pre-processed data from different 
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sources are fused to produce a unified output which has improved properties over those from any individual 

sources.  

 

There has only been limited research into multi-sensor data fusion for surface metrology in recent years. Most 

fusion methods rely on advanced surface fitting techniques under a residual approximation (RA) framework [5]. 

For example, in the research work [8, 9], Gaussian process (GP) RA fusion (GPRA), which approximates the 

residuals between two inputs using a GP model, has been demonstrated to be a successful solution to the fusion of 

heterogeneous data. Other advanced fitting models, such as B-spline and wavelet models [10, 11], may also be 

able to provide satisfactory fusion results based on the RA fusion framework.  

 

In contrast to the RA fusion framework, weighted fusion has been used in most studies but has received less 

attention. It is claimed that weighted fusion can work effectively for homogeneous data, such as data from same 

or similar level accuracy sensors. Pixel-level weighting [12] and weighted least-squares fusion [13] are two of the 

most popular weighted fusion methods and have been widely used in research [14, 15]. In addition, weighted 

fusion may include parametric weighted fusion and non-parametric weighted fusion. These four weighted fusion 

methods share the common fusion idea, i.e. weighting. However, the differences among them have rarely been 

systematically reported, to the authors’ knowledge.  

 

The following sections begin with a theoretical analysis from the classical weighted least-squares fusion and its 

simplified case, i.e. pixel-level weighting. In particular, the uncertainty propagation of weighted least-squares 

fusion is analysed and its relationship with the Kalman filter is studied. Parametric weighted fusion and non-

parametric weighted fusion methods are presented in section 3. Some common reconstruction models based on 

which the fusion can be processed are introduced in section 4 and in section 5 case studies of the proposed fusion 

methods are tested on the measurement of three typical surfaces. By providing the fusion input with different 

noise levels or sample sizes, conclusions about the advantages and disadvantages of weighted fusion methods are 

given. 

 

 

2. Weighted least-squares fusion and pixel-level weighting 

2.1. The methodology 
 

Weighted least-squares (WLS) fusion is a parametric fitting process. WLS fusion constructs a linear system with 

finite control parameters to approximate multiple data inputs with different weights [13]. Linear fitting makes the 

fusion process simple when uncertainty needs to be controlled and fast to compute. WLS fusion is the most 

popular method and is a fundamental approach with well-developed mathematical foundations. WLS will be 

introduced in this section. 

 

Given a linear measuring system,  

 

 𝒛 = 𝐻𝒙 + 𝜺, (1)  

where x is an n-vector comprised of the model parameters to be measured, H is an m-by-n measurement matrix or 

model basis function matrix with 𝑚 > 𝑛, z is an m-vector representing the measurement result, and  is an 

independent and identically distributed normal noise vector with 𝜺~𝑁(𝟎, 𝛴) = 𝑁(𝟎, 𝜎2𝐼). This linear system is 

usually used to approximate measurement problems that do not have systematic error. Given K sample sets from 

different sources, say {𝒛𝑘}𝑘∈𝐾 with noise levels 𝜺𝑘~𝑁(𝟎, 𝜎𝑘
2𝐼), the model parameter vector x can be estimated by 

minimising the weighted squares cost function 
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 ∑ 𝑤𝑘‖𝒛𝑘 − 𝐻𝑘𝒙‖2
𝑘∈𝐾 , (2)  

where 𝑤𝑘  are designed scalar weights. By setting the weights 𝑤𝑘 =
1

𝜎𝑘
2 , the best linear unbiased estimation 

(BLUE) of the model parameters can be achieved with the minimum estimation variance (minimum uncertainty in 

this study) [13].  

 

The minimisation of equation (2) can be achieved by forcing its partial differential equal to 0, i.e. 

 

 ∑ 𝐻𝑘
T𝑊𝑘𝐻𝑘𝒙̂ = ∑ 𝐻𝑘

T 𝑊𝑘𝒛𝑘, (3)  

where 𝑊𝑘 = 𝑤𝑘𝐼 and I is the identity matrix. Equation (3) can be conveniently written in the form:  

 

 𝐻T𝑊𝐻𝒙̂ = 𝐻T𝑊𝒛, (4)  

where 𝐻 = [

𝐻1

𝐻2

⋮
𝐻𝐾

], 𝑊 = diag(𝑤1𝐼, 𝑤2𝐼, … , 𝑤𝐾𝐼) and 𝒛 = [

𝒛1
𝒛2

⋮
𝒛𝐾

]. 

 

Hence, the weighted least-squares fusion produces the BLUE of the model parameter x  

 

 𝒙̂ = (𝐻T𝑊𝐻)
−1

𝐻T𝑊𝒛 = (∑ 𝐻𝑘
T𝑊𝑘𝐻𝑘)

−1
∑ 𝐻𝑘

T𝑊𝑘𝒛𝑘. (5)  

The measurement noise in equation (1) may be correlated, i.e. 𝜺𝑖~𝑁(𝟎, 𝛴𝑖), where𝛴𝑖 is a non-diagonal matrix, and 

equation (5) is also the BLUE of the model parameters for the generalised least-squares problem, provided 𝑊 =
diag(𝛴1

−1, 𝛴2
−1, … , 𝛴𝐾

−1). Based on the fused estimation of the model parameters, the model predictions at the 

original observing positions of the input datasets can be expressed as 

 

 𝒛̂ = 𝐻(𝐻T𝑊𝐻)
−1

𝐻T𝑊𝒛. (6)  

The expectation and the variance of the model prediction are respectively given by: 

 

 𝐸(𝒛̂) = 𝐻(𝐻T𝑊𝐻)
−1

𝐻T𝑊𝐻𝒙 = 𝐻𝒙 = 𝐸(𝒛), (7)  

 𝑉(𝒛̂) = 𝐻(𝐻T𝑊𝐻)
−1

𝐻T𝑊𝑉𝒛𝑊𝐻(𝐻T𝑊𝐻)
−1

𝐻T = 𝐻(𝐻T𝑊𝐻)
−1

𝐻T. (8)  

It is clear that the expectation in equation (7) is unbiased. The principal diagonal elements of the variance-

covariance matrix 𝑉(𝒛̂) correspond to the variance of the prediction 𝒛̂𝑘 and hence the prediction variances are 

usually varying at different observing positions.  

 

In some situations, the input datasets have the same sample size and sampling positions so that the datasets from 

different sensors naturally have point-wise correspondence. For example, two same-resolution range images may 

be captured for the same scene under different illumination conditions. The linear fusion problem in equation (1) 

can be simplified by setting the modelling matrix to an identity matrix, i.e. 𝐻𝑘 = 𝐼 , and hence 𝒛𝑘 = 𝒙 +
𝜺𝑘 , 𝜺𝑘~𝑁(𝟎, 𝜎𝑘

2𝐼). In this case, the fusion estimator 𝒙̂, which is equal to the fusion predictor 𝒛̂ at the same sample 
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positions for each of the input datasets, can be expressed as the following point-wise weighting or pixel-level 

weighting form  

 

 𝒛̂ = 𝒙̂ = (∑ 𝑊𝑘)−1 ∑(𝑊𝑘𝒛𝑘) = ∑
𝑤𝑘

∑ 𝑤𝑘
𝒛𝑘. (9)  

The pixel-level weighting is a weighted fusion of input datasets (pixel-wise) at each sample position. This is a 

very useful method for fusion of range images, in particular when the images have the same sampling resolution 

and are captured from the same scene. For example, Ramasamy et al. [16] applied pixel-level weighted fusion for 

the fusion of multi-scale range images with specific weight designs. 

 

 

2.2. Uncertainty analysis 
 

In this section, the uncertainty propagation of WLS fusion (and pixel-level weighting) is analysed and it is 

demonstrated that WLS fusion can produce improved accuracy reconstruction results.  

 

The estimation and prediction uncertainty of un-weighted linear fusion systems has a simple analytical form [17]. 

However, the uncertainty propagation of weighted least-squares fusion has not been well investigated, although it 

is known that equation (6) is a BLUE [13]. It can be shown from equation (8) that, the variances of the predictions 

(principal diagonal elements of the covariance matrix), or the standard uncertainties, vary at different observing 

positions. An arithmetical mean of the variance values can usually be taken as a typical indicator representing 

general changes of uncertainty or accuracy level. 

 

We consider the uncertainty propagation for a simple (un-weighted) linear fitting problem. Given a dataset 𝒛𝑘 

with the fitting model as in equation (1), i.e. 𝒛𝑘 = 𝐻𝑘𝒙 + 𝜺𝑘, 𝜺𝑘~𝑁(𝟎, 𝜎𝑘
2𝑰), the least-squares estimation   

 

 𝒙̂𝑘 = (𝐻𝑘
T𝐻𝑘)

−1
𝐻𝑘

T𝒛𝑘, (10)  

which results in the maximum Gaussian likelihood [17], provides the BLUE of the model parameters. Then, the 

model prediction can be computed as 

 

 𝒛̂𝑘 = 𝐻𝑘𝒙̂𝑘 = 𝐻𝑘(𝐻𝑘
T𝐻𝑘)

−1
𝐻𝑘

T𝒛𝑘. (11)  

Because a QR factorisation of the modelling matrix has 𝐻𝑘 = 𝑄𝑅 = [𝑄1, 𝑄2] [
𝑅1

𝟎
] = 𝑄1𝑅1 , where 𝑄  is an 

orthogonal matrix, and 𝑅1 is an upper triangular matrix, equation (11) can be simplified to  

 

 𝒛̂𝑘 = 𝑄1𝑄1
T𝒛𝑘. (12)  

Since it is known from equation (10) that 𝐸(𝒙̂𝑘) = 𝒙, the prediction errors at all the observing positions  and their 

variances can be given by  

 

 𝒓̂𝑘 = 𝒛̂𝑘 − 𝐻𝑘𝒙 = 𝑄1𝑄1
T𝜺𝑘, (13)  

 𝑉(𝒓̂𝑘) = 𝜎𝑘
2𝑄1𝑄1

T. (14)  

Because 𝑄1 is a matrix with orthogonal column vectors, the mean squared error (MSE) of the model prediction 

results, can be calculated with the concise expression:   



5 

 

 

 
MSE(𝒛̂𝑘) =

1

𝑚𝑘
𝐸(∑ 𝑟̂𝑖

2𝑚𝑘
𝑖=1 ) =

1

𝑚𝑘
𝑡𝑟(𝑉(𝒓̂𝑘)) =

𝜎𝑘
2

𝑚𝑘
𝑡𝑟(𝑄1

T𝑄1) =
𝑛

𝑚𝑘
𝜎𝑘

2,  
(15)  

where 𝑟̂𝑖 are the entries of the prediction error vector 𝒓̂𝑘 , 𝑚𝑘 is the size of the measurement point set 𝒛𝑘, and n is 

the number of model parameters. The square root of equation (15) corresponds to the mean standard uncertainty 

of the least-squares fitting prediction 𝒛̂𝑘, and is usually smaller than the sampling noise 𝜎𝑘 . 

 

Now, we demonstrate how weighted least-squares fusion reduces the prediction uncertainty. Given two sets of 

independent measurement 𝒛1 and 𝒛2 of sizes 𝑚1 and 𝑚2 with different random measurement uncertainties (𝜎1 and 

𝜎2), by applying the least-squares fitting given by equation (10), we have the squares of the standard uncertainty 

associated with the predictions from each individual sets as 

 

 𝑢2(𝒛̂1) =
𝑛

𝑚1
𝜎1

2, and  

𝑢2(𝒛̂2) =
𝑛

𝑚2
𝜎2

2. 

(16)  

According to equation (6), the typical WLS fused prediction at the original sample positions is 

 

 𝒛̂ = 𝐻(𝐻T𝑊𝐻)
−1

𝐻T𝑊𝒛, (17)  

where 𝒛 = [
𝒛1

𝒛2
] = 𝐻𝒙 + 𝜺 = [

𝐻1

𝐻2
] 𝑥 + [

𝜺1

𝜺2
] , 𝑊 = 𝑉(𝜺)−1 = diag(𝜎1

−2𝐼, 𝜎2
−2𝐼)  and 𝒛̂ = [

𝒛̂1𝑓

𝒛̂2𝑓
] . 𝒛̂1𝑓  and 𝒛̂2𝑓  are 

respectively the fused prediction results observed on the sample positions of dataset 𝒛1 and 𝒛2. With 𝑉(𝜺)−1 =
𝑊, the prediction error 𝒓̂ = 𝒛̂ − 𝐻𝒙 has a variance-covariance matrix given by 

 

 𝑉(𝒓̂) = 𝐻(𝐻T𝑊𝐻)
−1

𝐻T = 𝑊−1 2⁄ 𝑄𝑤1𝑄𝑤1
T𝑊−1 2⁄ , (18)  

where 𝑊−1 2⁄ = diag(𝜎1𝐼, 𝜎2𝐼), and 𝑄𝑤1  is derived from the QR factorisation 𝑊1 2⁄ 𝐻 = [𝑄𝑤1, 𝑄𝑤2] [
𝑅𝑤1

𝟎
] =

𝑄𝑤1𝑅𝑤1. Therefore, the MSE of the prediction results 𝒛̂ can be expressed as 

 

 MSE(𝒛̂) =
1

𝑚1+𝑚2
𝑡𝑟(𝑉(𝒓̂)) =

1

𝑚1+𝑚2
(

1

𝑤1
∑ ∑ 𝑞𝑖,𝑗

2𝑛
𝑗=1

𝑚1
𝑖=1 +

1

𝑤2
∑ ∑ 𝑞𝑖,𝑗

2𝑛
𝑗=1

𝑚1+𝑚2
𝑖=𝑚1+1 ), (19)  

where 𝑞𝑖,𝑗 are the entries of the column-orthonormal matrix 𝑄𝑤1 and satisfied with  

 

 ∑ 𝑞𝑖,𝑗
2𝑚1+𝑚2

𝑖=1 = 1. (20)  

The entries of 𝑄𝑤1 usually rely on the modelling matrix 𝐻 = [
𝐻1

𝐻2
], the weighting matrix 𝑊 and the applied QR 

factorisation algorithm, such as the Gram-Schmidt process [18]. Given an (𝑚1 + 𝑚2)×𝑛 modelling matrix H, for 

a specific column vector, the ratio of the sum of squares of the upper 𝑚1 entries to the lower 𝑚2 entries is defined 

as 𝐶𝐻 . If the observing points of each measurement are uniformly distributed (in random) and have large enough 

sizes, 𝐶𝐻 is expected to be 𝑚1 𝑚2⁄ , i.e. E[𝐶𝐻] = 𝑚1 𝑚2⁄ . Because Gram-Schmidt orthogonalisation is linearly 

operated on column vectors, an orthogonalisation process of H retains the same row properties, which indicates 
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that E[𝐶𝑜𝑡ℎ𝑜(𝐻)] = 𝑚1 𝑚2⁄ . Therefore, 𝑄𝑤1, which is an orthogonalisation of the row-weighted modelling matrix 

𝑊1 2⁄ 𝐻, has the expected value  

 

 
E[𝐶𝑄𝑤1

] =
∑ 𝑞𝑖,𝑗

2𝑚1
𝑖=1

∑ 𝑞𝑖,𝑗
2𝑚1+𝑚2

𝑖=𝑚1+1

=
𝑚1𝑤1

𝑚2𝑤2
. (21)  

Combined with equation (20), we know that  

 

 E[∑ 𝑞𝑖,𝑗
2𝑚1

𝑖=1 ] =
𝑚1𝑤1

𝑚1𝑤1+𝑚2𝑤2
, and 

E [∑ 𝑞𝑖,𝑗
2𝑚1+𝑚2

𝑖=𝑚1+1 ] =
𝑚2𝑤2

𝑚1𝑤1+𝑚2𝑤2
. 

(22)  

Considering 𝑤𝑘 = 𝜎𝑘
−2, it can hence be concluded that the MSE, i.e. the mean squared standard uncertainty in this 

study, of the fusion predictions has the approximation given by   

 

 𝑢2(𝒛̂) = MSE(𝒛̂) ≈
𝑛

𝑚1𝑤1+𝑚2𝑤2
=

𝑛
𝑚1

𝜎1
2 +

𝑚2

𝜎2
2

. (23)  

For the fusion of over two sets of data (say K sets with individual sizes in 𝑚𝑘), it can be deduced using the same 

procedures as above that: 

 

 𝑢2(𝒛̂)𝐾 ≈
𝑛

∑
𝑚𝑘

𝜎𝑘
2𝑘∈𝐾

 . 
(24)  

Compared to equation (16), it can be simply shown that 𝑢2(𝒛̂) < 𝑢2(𝒛̂𝑘). In particular, if 𝑚𝑘 = 𝑚 for 𝑘 ∈ 𝐾 and 

𝐾 = 2, the reduction of the fusion error from the best individual fitting error has 

 

 ∆= min 𝑢2(𝒛̂𝑘) − 𝑢2(𝒛̂) =  
𝑛∙min 𝜎𝑘

4

𝑚(𝜎1
2+𝜎2

2)
, (25)  

which indicates that when 𝜎𝑘 are equal, the error reduction reaches the maximum. If 𝜎𝑘 = 𝜎 for 𝑘 ∈ 𝐾 and 𝐾 = 2, 

the reduction of the fusion error from the best individual fitting error has the form 

 

 ∆= min 𝑢2(𝒛̂𝑘) − 𝑢2(𝒛̂) =  
𝑛𝜎2∙

∑ 𝑚𝑘
∙

min 𝑚𝑘

max 𝑚𝑘
, (26)  

which indicates that when 𝑚𝑘 are equal, the error reduction reaches a maximum. When 𝑚𝑘 are differentiated, the 

error reduction decreases. 

 

 

The following conclusions about WLS fusion can be summarised. (1) WLS fusion can provide improved accuracy 

results with high probability, and the probability is determined by the sample size and the distributions of 

observing points. (2) The larger the size of the sample or the smaller the number of modelling parameters, the 

smaller the fusion uncertainty that can be achieved. (3) If the observing points of individual datasets are not 

distributed in a uniform or random pattern, or the prediction positions are different from the input datasets, the 

prediction uncertainty is undetermined.  
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Figure 1. The performance of the WLS fusion and individual least-squares reconstruction techniques. 

 

Figure 1 presents a WLS fusion result and individual least-squares reconstructions of two datasets with different 

uncertainty from a cubic B-spline curve with the knots [−0.5, −0.4, 0, 0.4, 0.6]. It can be shown that the fused 

curve is close to the higher accuracy dataset with a small amount of shift towards the lower accuracy dataset. With 

the WLS fusion, the prediction uncertainty is reduced (see the confidence intervals of Figure 1). With 2000 runs 

of simulation in which the noise was randomly generated, the mean of the root-mean-squared error (RMSE) of 

each reconstruction method from the design model was calculated. The results show a steady reduction of the 

prediction error by approximately 10 % from that of a lower noise set, which coincides with the results in 

equation (16), (23) and (25). 

 

 

2.3. The relationship with Kalman filters 
 

Kalman filters (KFs) [19] have been known as an effective tool to fuse new data with previously estimated 

parameters when multiple datasets are obtained in a time sequence. With KFs, sequentially-obtained data points 

or sets can be dynamically integrated without requiring all previous data kept in storage. Successful KF 

applications in surface reconstruction can be found elsewhere [20-22]. In this section, we show that WLS fusion 

and KFs lead to the same fusion results.  

 

For a linear measuring system, a KF predicts the posterior distribution of 𝒙̂𝑘 based on a prior estimation 𝒙̂𝑘−1  and 

a current observation 𝒛𝑘. The KF can be written in the form 

 

 𝒙̂𝑘 = 𝒙̂𝑘−1 + 𝐾𝑘(𝒛𝑘 − 𝐻𝑘𝒙̂𝑘−1), (27)  

where 𝐾𝑘 is the so-called Kalman gain and 𝐻𝑘 is the measurement matrix for the kth observation. The terms 𝒛𝑘 −
𝐻𝑘𝒙̂𝑘−1 are known as the a priori prediction residuals, found by subtracting the current (kth) prediction based on 

the (k-1)th estimation from the current observations. The optimal Kalman gain can be found by minimising the 

estimation error, i.e. the trace of the estimation covariance, 𝑡𝑟(𝐸[(𝒙̂𝑘 − 𝒙𝑘)(𝒙̂𝑘 − 𝒙𝑘)𝑇]) [23, 24]. A typical form 

of the optimal Kalman gain can be written as 

 

 𝐾𝑘 = 𝑉𝒙̂𝑘−1
𝐻𝑘

T(𝐻𝑘𝑉𝒙̂𝑘−1
𝐻𝑘

T + 𝑉𝒛𝑘
)

−1
,  (28)  
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where 𝑉𝒛𝑘
 and 𝑉𝒙̂𝑘−1

 are respectively the covariance matrix of the kth measurement and the (k-1)th estimation. 

Hence, the variance-covariance matrix of the kth estimation 𝒙̂𝑘 can be updated as [20]:  

 

 𝑉𝒙̂𝑘
= (𝐼 − 𝐾𝑘𝐻𝑘)𝑉𝒙̂𝑘−1

. (29)  

From equation (28), it can be shown that when the noise of the current measurement is extremely low, i.e. 𝑉𝒛𝑘
→ 𝟎, 

there are 𝐾𝑘 → 𝐻𝑘
−1 (or pseudo inverse 𝐻𝑘

+), which means the fused estimation 𝒙̂𝑘 is mainly determined by 𝒛𝑘 

because it is highly reliable. If a priori estimation has the covariance matrix 𝑉𝒙̂𝑘−1
 approaching zero, 𝒙̂𝑘 is mainly 

determined by the previous estimation 𝒙̂𝑘−1  [25]. With equations (27) to (29), the estimation of the model 

parameters can be recursively updated without referring to all the previous measurement datasets.  

 

Alternatively, the KF model estimation can be computed in a batch mode [20] in the following manner: 

 

 𝒙̂𝑘 = (𝑉𝒙̂0

−1 + 𝐻T𝑉𝒛
−1𝐻)

−1
(𝑉𝒙̂0

−1𝒙0 + 𝐻T𝑉𝒛
−1𝒛), (30)  

 𝑉𝒙̂𝑘
= (𝑉𝒙̂0

−1 + 𝐻T𝑉𝒛
−1𝐻)

−1
, (31)  

where 𝐻 = [

𝐻1

𝐻2

⋮
𝐻𝑘

], 𝑉𝒛
−1 = diag(𝑉𝒛1

−1, 𝑉𝒛2
−1, … , 𝑉𝒛𝑘

−1) and 𝒛 = [

𝒛1
𝒛2

⋮
𝒛𝑘

]. 

 

Normally, 𝒙0 is an a priori estimation based on null observation. This implies that 𝒙0 is equals to 0 and ‖𝑉𝒙0
‖ =

+∞. Hence, equation (30) can be simplified to the WLS fusion form, as in equation (5), where 𝑊 = 𝑉𝒛
−1. In other 

words, KF fusion and WLS fusion are essentially equivalent.  

 

KFs were reported to effectively save computation space as they do not require storage for all the previously 

measured data [20]. By observing equation (5), it is known that WLS fusion has the same advantage because it 

only requires the storage for historical accumulation results. Regarding the computation complexity, KF fusion is 

𝑂(𝑛3𝑚) if new data of size m is point-wise integrated, and WLS fusion (or the KF fusion in batch mode) is 

𝑂(𝑛2𝑚 + 𝑛3), where m is the size of the new dataset and n is the number of model parameters. Therefore, WLS 

fusion (or KF fusion in batch mode) is preferable for high computation speed in a majority of situations when 

𝑚 > 1.  

 

 

3. Parametric and non-parametric weighted fusion 

 

Some advanced fitting or fusion models for surface modelling or reconstruction are parametric models; but the 

model parameters cannot be calculated using the linear method described in equation (5). For example, the 

multilevel B-spline approximation [10] and the least-squares B-spline approximation [26] determine the model 

parameters using an iterative approximation method. For fusion with these advanced parametric models, one can 

simply weight the individually-obtained fitting parameters from each dataset for the model estimation. 

 

For example, given each individual dataset 𝒛𝑘 = 𝐻𝑘𝒙 + 𝜺𝑘 , 𝜺𝑘~𝑁(𝟎, 𝜎𝑘
2𝐼), the model parameters 𝒙̂𝑘  can be 

individually estimated, say 𝒙̂𝑘 = 𝑓(𝒛𝑘, 𝐻𝑘 , 𝜎𝑘). An appropriate weighted mean of the individual parameters can 

be taken as the fusion result, i.e.  
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 𝒙̂ = ∑
𝑤𝑘

∑ 𝑤𝑘
𝒙̂𝑘, (32)  

where 𝑤𝑘 are the weights of the kth estimation. Assuming 𝑚𝑘 = 𝑚 and 𝐻𝑘 = 𝐻 for 𝑘 ∈ 𝐾, and given 𝐻 with the 

QR decomposition 𝐻 = [𝑄1𝑄2] [
𝑅1

0
] = 𝑄1𝑅1, the fusion prediction 𝒛̂ = 𝐻𝒙̂ has the same unbiased expectation as 

that from the individual fitting 

 

 𝐸( 𝒛̂) = 𝐻𝐸 (∑
𝑤𝑘

∑ 𝑤𝑘
𝒙̂𝑘𝑘∈𝐾 ) = 𝐻𝒙, (33)  

and the variance-covariance matrix 

 

 
𝑉( 𝒛̂) = ∑ (

𝑤𝑘

∑ 𝑤𝑘
)

𝟐
𝜎𝑘

2𝐻(𝐻T𝐻)
−1

𝐻T
𝑘=1,…,𝐾 = ∑ (

𝑤𝑘

∑ 𝑤𝑘
)

𝟐
𝜎𝑘

2
𝑘∈𝐾 𝑄1𝑄1

T. (34)  

Similar to equation (19), equation (34) can be analysed with the squared mean standard uncertainty of the fusion 

prediction, thus 

 

 
𝑢2(𝒛̂) = MSE(𝒛̂) =

1

𝑚
tr(𝑉(𝒛̂)) =

𝑛

𝑚
∑ (

𝑤𝑘

∑ 𝑤𝑘
)

𝟐
𝜎𝑘

2
𝑘∈𝐾 , (35)  

which achieves its minimum with the optimal weight design 𝑤𝑘 =
1

𝜎𝑘
2. In fact, this minimised prediction variance 

𝑢min
2 (𝒛̂) =

𝑛

𝑚 ∑1 𝜎𝑘
2⁄
 is equal to that of the WLS method shown in equation (24). Thus the parametric weighted 

fusion also has higher accuracy than that from individual datasets. However, it should be noted that the parametric 

weighting method may only work effectively for the situation when 𝐻𝑘 = 𝐻, i.e. when the input datasets have the 

same sample size and observing position distribution. 

 

Non-parametric models, such as GP models [27], have also been reported recently for surface reconstruction and 

surface quality assessment, for example in form assessment [28]. Non-parametric models do not have model 

parameters but use all input data to linearly predict model values. It is, therefore, meaningless to weight model 

parameters in the same way as with parametric weighting methods. Equation (36) shows a GP model-based linear 

calculation of the prediction values 𝒛̂∗ and their variance-covariance 

 

 𝒛̂∗|𝒛 ~ 𝑁(𝝁∗ + 𝑉∗
T𝑉−1(𝒛 − 𝝁), 𝑉∗∗ − 𝑉∗

T𝑉−1𝑉∗), (36)  

where 𝒛̂∗ is the prediction values of the GP model at 𝒙∗ positions, 𝒛 is an input data vector observed at position 𝒙, 

𝝁 and 𝝁∗and are the mean-line vectors of the GP model at 𝒙 and 𝒙∗  positions, 𝑉  and 𝑉∗∗  are respectively the 

variance-covariance matrix of the GP model at 𝒙 and 𝒙∗ positions, and 𝑉∗ is covariance of the GP model between 

𝒙 and 𝒙∗ positions.  

 

By assuming that K input datasets come from several uncorrelated sensors (this is the normal case in practice), the 

variance-covariance matrix 𝑉  in equation (36) has the form 𝑉 = [
𝑉1 0

⋱
0 𝑉𝐾

]. Then, the expectation of the 

fusion model has the following summation form 
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 E(𝒛̂∗|𝒛) = 𝝁∗ + 𝑉1∗
T 𝑉1

−1(𝒛1 − 𝝁1) + ⋯ + 𝑉𝐾∗
T 𝑉𝐾

−1(𝒛𝐾 − 𝝁𝐾), 

= 𝝁∗ + E(𝒛̂∗|𝒛1) + ⋯ + E(𝒛̂∗|𝒛𝐾).                  

(37)  

To make the expectation unbiased to that from individual models, we modify the results into the following 

unbiased weighted summation 

 

 E(𝒛̂∗|𝒛) = 𝝁∗ + 𝑤1E(𝒛̂∗|𝒛1) + ⋯ + 𝑤𝐾E(𝒛̂∗|𝒛𝐾), subject to ∑ 𝑤𝑘𝐾 = 1. (38)  

In other words, prediction with the non-parametric weighted fusion can be viewed as a weighted summation of 

individual non-parametric model prediction results.  

 

 

4. Advanced fusion models 

 

Engineered surfaces often have designed surface geometry [29]. The underlying design models must be known in 

advance when using the weighted fusion methods described above. However, real-world geometrical products 

normally have unknown models or have violations from the underlying model due to manufacturing imperfections 

[29]. Therefore, fusion of the data from such surfaces needs some common models which can be flexible enough 

to fit an arbitrary shape. 

 

There are a variety of common models applicable to surface metrology, including parametric and non-parametric 

models. Parametric models such as bivariate polynomials, radial basis functions (RBFs), B-splines, wavelets and 

NURBS [17] have been widely used in surface reconstruction. None of the models can cover all types of surfaces. 

For example, RBFs are computationally efficient for scattered data (i.e. data not on a uniform grid), but they are 

difficult to be applied to large datasets due to their global computation characteristic [17]. B-splines and NURBS 

are computationally efficient but require sophisticated optimisation methods, especially when the number of 

control points and the knots are unknown [30]. Non-parametric models, such as GP models [28], have recently 

been proposed for surface reconstruction but they usually have a high computational cost. 

 

In this section, three advanced models with high stability and flexibility are introduced for complex surface fitting 

and fusion. These three models are respectively applicable to WLS fusion, parametric weighting and non-

parametric weighting.  

 

 

4.1. Tensor product B-spline models 
 

A B-spline is a piecewise polynomial function in degree K (CK continuity) for argument 𝑥 ∈ ℝ1. A functional 

surface in 2D form, i.e. 𝑧 = 𝑓(𝑥, 𝑦), can usually be approximated by a superposition of multiple B-splines in the 

following tensor product form 

 

 𝑧 = 𝜑𝒂(𝑥)×𝜙𝒃(𝑦) = ∑ ∑ 𝑎𝑘𝑏𝑙𝜑𝑘(𝑥)𝜙𝑙(𝑦)𝑛𝑏
𝑙=1

𝑛𝑎
𝑘=1 = ∑ ∑ 𝑐𝑘,𝑙𝜓𝑘,𝑙(𝑥, 𝑦)𝑛𝑏

𝑙=1
𝑛𝑎
𝑘=1 , (39)  

where 𝑐𝑘,𝑙 = 𝑎𝑘𝑏𝑙 are modelling parameters, 𝜓𝑘,𝑙(𝑥, 𝑦) = 𝜑𝑘(𝑥)𝜙𝑙(𝑦) is the design basis constructed from the 

tensor product of two sets of orthogonal B-spline basis functions [30, 31], and 𝑛𝑎 and 𝑛𝑏 are respectively the 

number of basis functions in the two orthogonal directions. The shape of the B-spline basis functions is dependent 

on the selection of knots, which determines the modelling accuracy and stability. Generally, regularly distributed 
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knots are preferred choices from a convenience standpoint. Such simple knot settings are flexible enough for most 

smooth freeform surfaces. In matrix form, equation (39) can be written as 

 

 𝒛 = Ψ𝒄, (40)  

where 𝒛 is the size m observation result vector, Ψ is the 𝑚×𝑛𝑎𝑛𝑏 model matrix, with 𝜓𝑘,𝑙 as the column entries, 

and 𝒄 is the 𝑛𝑎𝑛𝑏×1 parameter vector with 𝑐𝑘,𝑙 as the entries. On account of the linear modelling property, B-

spline models can be applicable to WLS fusion methods. 

 

B-spline modelling has been found to have many beneficial characteristics for surface metrology. First, B-spline 

modelling is computationally efficient due to the compact support of the basis functions. B-spline models are also 

flexible enough to represent complex geometry with varying characteristics and sharp changes by appropriately 

designing the knots. For example, by assigning dense knots in areas of high slope [17], complex local geometry 

can be accurately approximated.  

 

 

4.2. Multilevel B-spline models  
 

Multilevel B-spline approximation (MBA) [10, 32] is a computationally efficient model based on multilevel 

regular knot setting B-splines, which has improved flexibility over general B-splines. MBA provides an 

approximation with a sum of multiple model surfaces at different resolution levels, i.e. 

 

 𝒛 = 𝒛0 + 𝒛1 + ⋯ + 𝒛𝐾, (41)  

where 𝒛𝑘 ∈ 𝑆𝑘 and {𝑆𝑘} are a nested sequence of the tensor product B-spline model (see equation (39)) subspaces 

and 𝑆0 ⊂ 𝑆1 ⊂ ⋯ ⊂ 𝑆𝐾. For example, given a set of sample points within a square domain Ω = [0, 𝑚]×[0, 𝑛], a 

hierarchy of control lattices {Φ𝑘}𝑘=0,1,…,𝐾 can be designed overlaid on the domain Ω as with (2𝑘 + 3)×(2𝑘 + 3) 

control points, based on cubic B-splines [30]. In other words, 𝒛𝑘  corresponds to different spatial frequency 

components of the source 𝒛. 

 

In the process of each level control lattice (parameter) estimation, MBA first calculates the neighbour 4×4 control 

parameters for every sample point in a least-squares manner. Then the independently calculated parameters for 

each control point are weighted to obtain the final parameter estimation for the whole (2𝑘 + 3)×(2𝑘 + 3) control 

lattice. Finally, the residuals of the current approximations at the sample data are taken as the input for the 

parameter estimation of the next level control lattice. The MBA iteratively estimates the control parameters of 

each level control lattice until an approximation threshold is achieved. On account of the non-linear parameter 

estimation process, MBA models can cooperate appropriately with the parametric weighted fusion.  

 

MBA models can approximate a discrete surface sample set for smoothing or exact interpolation, by assigning 

different numbers of approximation levels. The more approximation levels are assigned, the higher the modelling 

accuracy that can be achieved until the modelled surface passes exactly through every measured point.  

 

 

4.3. Gaussian process models 
 

Gaussian processes (GPs) are continuous stochastic processes in which any finite sample follows a joint Gaussian 

distribution, i.e.  
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[
𝒛∗

𝒛
] ~ℕ ([

𝝁∗

𝝁 ] , [
𝑉∗∗ 𝑉∗

T

𝑉∗ 𝑉
]), (42)  

the notations of which conform to that of equation (36). In contrast to general parametric models, which are 

usually difficult to calculate due to the problems of under-/over-fit, GP non-parametric models have many 

advantages, such as ease of use and high flexibility. GP models do not have a finite number of model parameters 

to estimate, but use all input data to linearly predict model values as in equation (36).  

 

In the last ten years, GP prediction models have been successfully used in geostatistics [33] and surface metrology 

[28]. As non-parametric models, GP models can work with the proposed non-parametric weighted fusion, i.e. 

weighting individual model prediction results as fusion output. 

 

5. Case studies and discussion 

 

In this section, the four weighted fusion methods presented above are applied to practical measurement challenges, 

including the measurement of a deterministic surface with explicit functions, a freeform surface with CAD deign 

model and a freeform surface with an unknown design model.  

 

 

5.1. F-theta lens 
 

F-theta lenses [34], which are designed to provide a flat field at an image plane, are important devices used in 

laser scanners and printers. The form accuracy of such F-theta lens surfaces is critical to the quality of the image. 

The F-theta lens surfaces in this example have a deterministic shape with the following explicit function:  

 

Figure 2a presents two sets of simple random sample points from the design model within a rectangular patch area. 

Both of the datasets (blue dots for Set 1 and green dots for Set 2) have the same size with 500 points. To imitate a 

practical measuring procedure, different Gaussian noise (different noise levels and the same correlation length) 

[27] were randomly generated and superimposed on the extracted samples. An example of the Gaussian noise can 

be seen in Figure 2b and 2c. Experiments were then carried out for 200 runs in which the sample noise changes 

every time. Hence, the performance of the weighted fusion methods could then be statistically analysed.  

 

 
  

(a) Set 1 (blue), Set 2 (green) and the CAD model (b) An error map of Set 1 (c) An error map of Set 2 

Figure 2. Two example sets of noised sample data extracted from a F-theta lens model (a) and their error maps (b and c) (unit: 

mm). 

 

 
{

𝑧 = −
1

250
𝑥2 +

1

92000
𝑥4 −

1

25
𝑦2

−20 ≤ 𝑥 ≤ 20 mm, −7.5 ≤ 𝑦 ≤ 7.5 mm
. (43)  
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An example view of the reconstruction results from individual datasets and their weighted (WLS) fusion is 

presented in Figure 3, in which the design model and a substitute (regular knots) B-spline model are tested. The 

design model has three natural parameters while the selected B-spline model has 66 control parameters, which 

was demonstrated in this case to provide higher accuracy reconstruction than other options. With the WLS fusion, 

Figure 3 shows a typical example that the fusion provided higher accuracy reconstruction results than the 

individual fitting results. Fitting or fusion with the design model provided higher accuracy than that with a non-

design model.  

 
 Fitting of Set 1 Fitting of Set 2 Fusion of Set 1 and Set2  
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(a) RMSE = 0.0038 (b) RMSE = 0.0039 (c) RMSE = 0.0026 (32% reduction) 
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(d) RMSE = 0.0114 (e) RMSE = 0.0075 (f) RMSE = 0.0057 (24% reduction) 

 
 

Figure 3. An example of the reconstruction error maps from individual fitting and the WLS fusion (unit: mm). 

 

The error of reconstructed surfaces from their design models are usually characterised by parameters. There are 

many well-designed metrics for reconstruction error evaluation, such as root-mean-squared error (RMSE) and 

peak-to-valley values widely used in surface quality assessment [35, 36], universal quality index and structural 

similarity index for image comparison used in image processing [12], and diverse application specific parameters 

[37]. Considering that the popularity and robustness, RMSE is used in this study as the sole metric for the 

reconstruction error evaluation.  

 

Since fusion error is usually smaller than individual fitting error, the reduced amount of fusion error from the 

smallest individual fitting error, i.e. 

 

 ∆𝑒𝑓 = min(𝑒𝑘∈𝐾) − 𝑒𝑓 (38)  

exhibits the fusion effectiveness, where 𝑒𝑓 and 𝑒𝑘 are respectively the reconstruction RMSE of the fusion and 

individual fitting processes. A positive ∆𝑒𝑓 indicates a successful fusion with reduced reconstruction error from 

the best individual fitting results. Figure 3c and 3f show that the fusion with the design model and the B-spline 

model respectively lead to the reduction of error in 32 % and 24 %. Statistics of the experimental results based on 
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more reconstruction models are presented in Figure 4. In Figure 4a, the input datasets have the same level of noise. 

In Figure 4b, one input dataset has noise that is three times that of the other. 

 

 
(a) For noise-equivalent input 

 
(b) For noise-non-equivalent input 

Figure 4. Statistics of reconstruction errors for the F-theta lens measurement with simulated input noise. 

 

The presented five groups of results in Figure 4 correspond respectively to the reconstruction with the design 

model, the selected tensor product B-splines (6×6 parameters), a MBA (11×11 parameters, three levels) model 

and two optimised GP models. The former four groups employed the proposed weighted fusion methods; while 

the last group employed the GPRA fusion technique highlighted in previous research work [8]. Within each group 

of tests, the mean value of the reconstruction errors 𝑒1, 𝑒2, 𝑒𝑓 and ∆𝑒𝑓 are presented, and the standard deviation of 

∆𝑒𝑓 is also given to show the stability of the fusion performance. 

 

The results demonstrate that the use of weighted fusion results in a higher accuracy reconstruction with high 

probability (see the positive ∆𝑒𝑓  and its standard deviation bars). Different fitting models lead to different 

accuracy levels of reconstruction. Reconstruction with the design model can provide the highest reconstruction 

accuracy. Among the substitute models, GP non-parametric reconstruction shows better performance over the 

others due to its high flexibility. As a comparison, however, the GPRA fusion failed with this example as it 

provided a negative mean ∆𝑒𝑓. Also, it should be noted that weighted fusion reduces the reconstruction error 

mostly when the input datasets have equivalent sample noise. 

 

 

5.2. Turbine blade surfaces  
 

Turbine blades used in aeroengines usually have tortile and thin-wall freeform designs which provide optimised 

aero-/thermo-dynamic performance [38]. Inaccuracies in the blade surface shape will cause energy loss or blade 

failure. Figure 5b shows a part of working area of a blade surface with a set of extracted sample points (yellow 

dots). A holistic measurement of the blade requires several scans at different areal locations (see Figure 5a). 
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Hence, fusion of overlapped scanning data for a universal reconstruction is an important task in this holistic 

measuring process.  

 

 
(a) 

 
(b) 

Figure 5. Holistic measurement of a turbine blade with several areal scans (a) and a set of sample points (b). 

 

 
(a) With noise-equivalent input. 

 
(b) With noise-non-equivalent input. 

Figure 6. Statistics of the reconstruction errors for the turbine blade measurement with simulated input noise. 

 

We followed the same procedure (i.e. sample size 500 and different Gaussian noise superimposed) as in section 

4.1 to obtain two sets of input samples. Then the proposed weighted fusion methods above with different 

reconstruction models were applied for error analysis with respect to a designed CAD model. The tested turbine 

blade surface has no explicit design function. Hence, only substitute reconstruction models were tested. In this 

case, the selected B-spline model had 7×10 control parameters and the MBA model had 35×35 parameters (six 

levels), both of which provided the highest reconstruction accuracies. The WLS fusion, parametric and non-

parametric weighted fusion were respectively applied to the B-spline, MBA and GP reconstruction models. With 

200 runs, the reconstruction error of the individual fits and the weighted fusion are presented in Figure 6.  
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Figure 6 demonstrates the same conclusion with the F-theta lens measurement, i.e. weighted fusion methods can 

provide higher accuracy reconstruction results over individual fits with high probability (see the standard 

deviation bars of ∆𝑒𝑓). In particular, weighted fusion has relatively stable performance on accuracy improvement 

when input datasets have equivalent noise. When input sets have non-equivalent levels of noise, the effectiveness 

of weighted fusion degenerates. 

 

Among all the substitute reconstruction models, non-parametric individual fits and fusion with GP models usually 

provides the best reconstructed surfaces when compared to parametric models, such as B-splines and MBAs. The 

GPRA fusion failed again in this example as it provided a negative mean ∆𝑒𝑓. 

 

 

5.3. A freeform artefact 
 

In this section, a freeform artefact with designed high accessibility [39] is used for experimental verification. Two 

sets of measuring results were sequentially obtained by using a structured light scanner (SL) and a Zeiss contact 

coordinate measuring machine (CMM) [39], both with 9635 sample points at the same positions. For visual 

convenience, the freeform artefact and the SL data are presented in Figure 7. Because the CMM has higher 

measuring precision than the SL scanner, the CMM data is regarded as the reference in the later error analysis. In 

other words, the measuring uncertainty of the SL data is much larger than that of the CMM data, i.e. 𝜎𝑆𝐿 ≫ 𝜎𝐶𝑀𝑀.  

 

 
(a) 

 
(b) 

Figure 7. The freeform artefact and the 9635 sample points from a structured light scanner. 

 

The GPRA method has been shown to be a successful approach to fuse the 9635 SL sample points with randomly 

selected 100 CMM sample points [8]. In consideration of computing time and comparability with the former 

research in [8], the proposed weighted fusion methods were tested here by using simple randomly selected 100 SL 

points and 100 CMM points as the reconstruction input. With 200 tests for each fusion method, the statistics of 

the RMS individual fitting errors (𝑒1 for SL data and 𝑒2 for CMM data), fusion error 𝑒𝑓 and the reduction of the 

fusion error ∆𝑒𝑓 were shown as in Figure 8. The selected B-spline model had 5×8 control parameters and the 

MBA model had 67×67 parameters (seven levels), both of which provided the highest reconstruction accuracies. 

In the weighting process with B-splines, MBA and GP models, the inverse of squared individual fitting errors 

1 𝑒𝑘
2⁄  were used as the weights instead of inverse of the squared measuring noise 1 𝜎𝑘

2⁄  *, as described in section 1.  

 

                                                      
* Because σ1 >>σ2, weighting with the inverse of squared noise as proposed will cause the fusion results same as the set 2 

(the CMM set) fitting results, i.e. 𝑒𝑓 = 𝑒2 which means no accuracy improvement with fusion. In the situation when sample 

size is small and fitting (and interpolation) error dominates the reconstruction error over sampling noise, replacement of the 

fusion weights by the inverse of squared RMS fitting errors of individual sets lead to better fusion results.   
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Figure 8. Statistics of the reconstruction errors for the freeform artefact data from a SL and CMM with the same sample size. 

 

The results in this example show that the weighted fusion methods produce slight improvements in reconstruction 

accuracy, which coincides with the conclusions in the two previous examples and the theoretical argument in 

equation (25), i.e. when input datasets have unequal noise levels, the effectiveness of the weighted fusion 

degenerates. In this extreme case with 𝜎1 ≫ 𝜎2, weighted fusion methods are nearly invalid in contrast to the 

GPRA fusion, which provided the highest accuracy improvement to high probability (see the standard deviation 

bars). By analysing the performance trend of the weighted fusion and the GPRA fusion under different input noise 

(equal noise in Figure 4a and Figure 6a, threefold difference of noise in Figure 4b and Figure 6b, and extreme 

difference of noise in Figure 8), it can be summarised that the weighted fusion and the GPRA fusion have 

complementary performance. Weighted fusion effectively works when input datasets have equal noise levels; 

while the GPRA fusion performs best when input datasets have significantly different levels (usually over 

threefold) of measurement noise. 

 

Among the weighted fusion tests (with the B-spline, MBA and GP models), the MBA models with the parametric 

weighting have the best reconstruction accuracy in this example. Combined with the results in the previous two 

examples, it is found that different reconstruction models have their advantages for different surfaces. Looking for 

a universal model flexible enough for all surfaces is still a challenge in metrology. The B-splines model produces 

much larger reconstruction error and standard deviations because the limited number (100) sample points may 

easily lead to poor conditioning [17] of the design matrix with forty (5×8) control parameters.  

 

Because a high-precision instrument usually has slow measuring speed (such as CMMs), the obtained sample size 

of a high-precision instrument is usually smaller than a low-precision instrument within the same sampling 

duration. A further test was carried out to verify the performance of weighted fusion by given two inputs with 

different sample sizes. 1000 SL (low-precision) sampling points were randomly selected for reconstruction and 

fusion with a randomly-selected 100 CMM (high-precision) points to imitate practical fusion cases as in [8, 40]. 

For 200 random tests, the statistics of the reconstruction errors were shown in Figure 9.  

 

Weighted fusion in this example presented nearly no improvement in reconstruction accuracy. By observing the 

magnified standard deviation bars of the error reduction from fusion, it can be shown that the desired error 

reduction was unstable. By comparing with Figure 8, the performance of the weighted fusion was found to further 

degenerate, which coincides with theoretical argument in equation (26), i.e. when the sample sizes of the input 

datasets are different, the effectiveness of weighted fusion degenerates. In contrast, in this extreme case, the 

GPRA fusion presented good effectiveness and stability on accuracy improvement, which verified the conclusions 

in previous research work [8].  

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

B-splines MBA GP GPRA

R
ec

o
n
st

ru
ct

io
n
 R

M
S

E
 (

m
m

)
e1

e2

ef

∆ef

Input:

σ1 >> σ2

S1 = S2 = 100



18 

 

 
Figure 9. Statistics of the reconstruction errors for the freeform artefact data from a SL and CMM with different sample sizes. 

 

 

6. Conclusions  

 

This study summarised four types of weighted fusion methods by giving the theoretical foundations and the 

analysis of uncertainty propagation. In addition, the advantages of WLS fusion over the Kalman filters were 

analysed following which, several advanced reconstruction models which are compatible with the weighted fusion 

methods were introduced. Lastly, three case studies on different measuring specimens were carried out to verify 

the performance of the proposed methods.  

 

All the theoretical and experimental results demonstrated the effectiveness of weighted fusion for accuracy 

improvement in surface reconstruction. In particular, weighted fusion methods behave best when input datasets 

have the same sample sizes and the same levels of noise, in which case residual approximation-based fusion 

methods such as the GPRA have no effect. The effectiveness of weighted fusion degenerates when the noise 

levels and sample sizes of input datasets are very different (over threefold). In extreme situations when the noise 

level of one dataset is far smaller than the other and if the low-precision dataset has a much larger sample size, 

weighted fusion performed effectively no function; while in this situation, the GPRA fusion performed a good 

reconstruction with stable improvement of accuracy. Figure 10 presents the performance statistics of the two 

fusion frameworks in which the fusion error reduction percentages were summarised from the experiments in 

section 4. The experimental conclusions coincide with the theoretical arguments and previous research work.  

 

 

 
Figure 10. The performance of weighted and RA fusion with GP models for different fusion scenarios. 

 

-0.2

0

0.2

0.4

0.6

0.8

1

B-splines MBA GP GPRA

R
ec

o
n
st

ru
ct

io
n
 R

M
S

E
 (

m
m

)

e1

e2

ef

∆ef

Input:

σ1 >> σ2

S1 = 1000, S2 = 100

20× 20× 100× 

-50%

-30%

-10%

10%

30%

50%

Equal

Equal

3 times

Equal

>10 times

Equal

>10 times

10 times

T
h
e 

re
d
u
ct

io
n
 p

er
ce

n
ta

g
e 

o
f 

fu
si

o
n
 e

rr
o
r

Four fusion scenarios with different input noise levels and sample sizes

∆ef% of weighted GP

∆ef% of GPRA

difference of noise levels 
difference of sample sizes 



19 

 

In summary, weighted fusion methods combined with different reconstruction models form a good supplement to 

residual approximation-based fusion methods. The two types of fusion frameworks effectively work for different 

fusion scenarios as described elsewhere [41].  

 

Among the weighted fusion tests analysed above, it was found that different reconstruction models lead to 

different reconstruction errors. However, no universal model can be flexible enough to effectively work for all 

types of surfaces. Looking for universally applicable advanced fitting models is still an important task in surface 

reconstruction and weighted fusion. 
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