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Abstract 

We present and test a new screening methodology to discriminate amongst alternative and competing 

Enhanced Oil Recovery (EOR) techniques to be considered for a given reservoir. Our work is motivated 

by the observation that, even if a considerable variety of EOR techniques have been successfully applied 

to extend oilfield production and lifetime, an EOR project requires extensive laboratory and pilot tests 

prior to field-wide implementation and preliminary assessment of EOR potential in a reservoir is critical 

in the decision-making process. Since similar EOR techniques may be successful in fields sharing some 

global features, as basic discrimination criteria we consider fluid (density and viscosity) and reservoir 

formation (porosity, permeability, depth and temperature) properties. Our approach is observation-driven 

and grounded on an exhaustive data-base which we compile upon considering worldwide EOR field 

experiences. A preliminary reduction of the dimensionality of the parameter space over which EOR 

projects are classified is accomplished through Principal Component Analysis (PCA). A screening of 

target analogs is then obtained by classification of documented EOR projects through a Bayesian 

clustering algorithm. Considering the cluster which comprises the EOR field under evaluation, an inter-

cluster refinement is then accomplished by ordering cluster components on the basis of a weighted 

Euclidean distance from the target field in the (multidimensional) parameter space. Distinctive features 

of our methodology are that (a) all screening analyses are performed on the database projected onto the 

space of principal components, and (b) the fraction of variance associated with each principal component 

is taken as weight of the Euclidean distance we determine. As a test bed, we apply our approach on three 

fields operated by eni. These include light, medium and heavy-oil reservoirs, where Gas, Chemical and 

Thermal EOR projects have been respectively proposed. Our results are (a) conducive to the compilation 



of a broad and extensively usable data-base of EOR settings and (b) consistent with the field observations 

related to the three tested and already planned/implemented EOR methodologies, thus demonstrating the 

effectiveness of our approach. 

1. Introduction 

Enhanced Oil Recovery (EOR) techniques that have been successfully applied to date can be grouped 

into three main categories: (i) thermal methods, (ii) gas and water-alternating-gas (WAG) injection, and 

(iii) chemical injection. Regardless of the technique, the route leading from design to full field-scale 

implementation of an EOR project is always complex and fraught with challenges.  

Careful and detailed preliminary studies must be performed to reduce uncertainty and minimize the risk 

of failure. These analyses comprise laboratory tests, and progress through reservoir characterization and 

simulation, design and implementation of pilot tests, to the final design and implementation of the full 

field project. Moreover all the above mentioned phases involve investments that can be risky if not 

properly supported by a preliminary cost efficient screening phase. Hence, a key element in the decision-

making process is, first and foremost, the assessment of the EOR potential for a target reservoir. This is 

the critical goal accomplished by the practice of EOR screening, which is meant to provide a first metric 

to be employed for risk reduction with modest capital investment. The main problem addressed by 

screening is then the assessment of the most suitable EOR technique for a target reservoir. 

All existing screening methods typically require: (i) a knowledge of target field characteristics, and 

behavior, (ii) a detailed knowledge of previous EOR experiences, and (iii) a thorough understanding of 

the recovery mechanisms upon which EOR techniques are based. Mechanisms driving oil displacement 

are a major distinctive feature amongst EOR techniques. The effectiveness of a given mechanism is 

strictly related to the properties of the reservoir and the oil. These properties are therefore critical 

elements for the assessment of the potential of different and sometimes competing EOR techniques. A 

total of six parameters are typically considered in the literature as representative of a given setting, i.e., 

reservoir porosity, permeability, depth and temperature and oil density and viscosity (Alvarado et al., 

2002, Babushkina et al., 2013, Kamari et al., 2010). Adoption of these parameters is based on correlation 

studies (e.g., Alvarado et al., 2002) aimed at reducing redundancy of information as well as on practical 

considerations, which are related to the relative ease with which these quantities can be evaluated in the 

field. 



There are two basic categories of screening approaches: conventional and advanced methods. 

Conventional methods (Taber et al., 1997a,b, Al Adasani and Bai, 2011) tend to regard a target EOR 

technique as potentially effective on a given field if the field oil and reservoir parameters are comprised 

within prescribed ranges, estimated on the basis of expert opinion and information on previous projects. 

As an example, Fig. 1 illustrates the conventional screening criteria presented by Taber et al. (1997a, b). 

Regions enclosed within the ellipses constitute qualitative representations of the conditions of 

applicability of the main EOR techniques considering only reservoir depth and oil viscosity. The plot 

suggests that deep (i.e., 4000 - 18000 ft) light-oil bearing (viscosities in the range of 0.01 to 10 cp) 

reservoirs may be exploited by means of gas injection EOR. Otherwise, shallow (i.e., 100 - 4000 ft) 

heavy-oil bearing (viscosities in the range of 10 to 100000 cp) reservoirs may be developed by thermal 

projects. Instead, chemical EOR projects are generally applied under intermediate conditions which are 

typical of reservoir depths in the range of 1000-9000 ft and oil viscosities in the range of 1 to 100 cp. As 

highlighted by Alvarado and Manrique (2010), the notable limitation of conventional methods is that 

they only provide "go/no go" criteria, without any additional detailed information about EOR strategies 

developed in similar reservoirs. 

Advanced methods usually aim at identifying successful EOR applications on reservoirs that share some 

analogies (in terms of reservoir and oil properties) with the target field under scrutiny. Recalling that 

diverse EOR techniques are based upon different displacement mechanisms and that the effectiveness of 

each mechanism depends on the physical properties of the field, the underlying concept is that similar 

EOR techniques should be successfully applied to fields sharing similar features. Hence, advanced EOR 

screening methods address the way analogy can be quantified and employed as an EOR screening 

criterion. 

Advanced methods tackle the problem of EOR screening in the framework of multi-dimensional 

statistical analysis. These approaches rely on several data mining and artificial intelligence strategies, 

including neural networks (Surguchev and Li, 2000; Kamari et al., 2014), expert systems (Gharbi, 2000, 

Abbas and Song, 2011), fuzzy inference (Anikin, 2014), or Bayesian Networks (Moreno et al., 2014; 

Zerafat et al., 2011).  

The advanced method presented in details by Alvarado and Manrique (2010) and previously documented 

by Alvarado et al. (2002), Manrique et al. (2003), and Manrique et al. (2009), is basically a representation 

in the form of two-dimensional expert maps of a database of successful EOR projects, indexed by the set 

of the six parameters listed above. These maps are obtained through a multidimensional data projection 



and allow qualitative identification reservoir clusters of EOR projects by visual inspection.  Each 

identified cluster is then regarded as representing a pseudo-typology of reservoir and all fields belonging 

to the same cluster are considered to be similar. The screening strategy developed by Trujillo et al. (2010) 

combines a conventional approach, based on the property ranges suggested by Taber et al. (1997a,b) with 

an advanced approach, in which analogy/similarity is defined by ranking fields included in the available 

database according to a similarity score. The latter is computed as the average of the differences (rescaled 

to the unit support [0,1]) between fluid/reservoir properties of the database and target fields. In the 

method illustrated by Moreno et al. (2014) the search of analogs does not rely solely on average properties 

of oil and reservoir, but also on a more detailed characterization of the target field heterogeneity, using 

available three-dimensional numerical model. With this approach, it is also possible to provide 

predictions of oil displacement and production associated with a given EOR technique by simulating the 

selected development scenario. 

Babushkina et al. (2013) define and investigate analogy by applying a k-means clustering algorithm on 

the six-dimensional space of oil and reservoir properties. The EOR potential of a target field is estimated 

by interpolation of the recovery factors associated with the (eventually different) EOR techniques of 

projects belonging to the same cluster. 

In this work, we introduce a new advanced screening methodology which relies on the combination of 

two modern approaches for analogy assessment. These are respectively based on (a) the grouping of 

fields into clusters through Bayesian hierarchical clustering, and (b) the computation of suitable 

Euclidean distances between fields belonging to the same cluster. These approaches are highly 

compatible and conducive to an effective screening. The selected Bayesian hierarchical clustering 

algorithm enables one to deconstruct the available database of observed field projects and form groups 

of analogous fields according to a rigorous probabilistic criterion. This approach recognizes that all 

elements assigned to a given group after cluster decomposition have the same degree of analogy. As 

such, it has the benefit of circumventing the ambiguities which are typical of distance-based methods 

and related to the definition of the largest distance beyond which analogy should not be considered 

meaningful. Refinement of the identification of analogs is then accomplished by assigning a rigorous and 

consistent measure of similarity to each cluster element and ranking each of these elements/fields 

according to this metric. 

A principal component analysis (PCA) is performed on the elements of the available field case database 

to reduce redundancy of information associated with cross-correlation between the selected properties. 



Additional elements of novelty of our screening approach stem directly from the application of PCA, 

which serves not only for visualization purpose and dimensionality reduction (as, e.g., in Babushkina et 

al., 2013). All screening analyses in our methodology are performed on the database projected onto the 

space of principal components. PCA also plays a key role in the choice of the inter-cluster distance 

metric, as the fraction of variance associated with each principal component is used as a weight to the 

Euclidean distance between cluster elements. 

The work is structured as follows. Section 2 describes the reference database we consider and the 

methodological workflow, focusing on the operations performed on the database at each step. Section 3 

details the blind testing of our screening procedure on three reservoirs operated by eni where the 

successful use of given EOR techniques is documented. Conclusion and remarks are then summarized in 

Section 4. 

2. Materials and Methods 

Figure 2 provides a graphical depiction of the workflow associated with our screening procedure. We 

structure our approach onto three main stages, respectively aimed at (i) building a database of EOR 

projects implemented in the field; (ii) identifying within the database analogs to the target field where 

EOR is envisioned to be implemented; and (iii) analyzing the results in terms of relative benefits of EOR 

techniques applicable to the target field. The first stage relies on an extensive review of successful 

pilot/full-field applications of EOR projects. We collect extensive information mainly from SPE journal 

publications and conference proceedings, Oil and Gas Journal biennial surveys (Koottungal, 2008, 2010, 

2012, 2014) and annual reports published and made available by various oil companies. This first stage 

enabled us to compile a rich database comprising of 250 worldwide cases, where applications of diverse 

EOR techniques, ranging from thermal, chemical and gas/WAG injection strategies have been 

documented. Thermal approaches considered in the database include in-situ-combustion, hot-water and 

steam-injection projects. Chemical EOR projects are either based on polymer, surfactant or Alkali-

Surfactant-Polymer (ASP) flooding. Gas/WAG injection methods differ in terms of (i) the type of 

injected gas (Hydrocarbons, Carbon Dioxide or Nitrogen); (ii) miscibility/immiscibility of the injected 

gas with reservoir fluid. Figure 3 displays the relative occurrence of EOR techniques within the database. 

The proportions of the diverse EOR techniques associated with our collection of data are consistent with 

those associated with data sets analyzed in previous works (see, e.g., Fig. 2 of Al Adasani and Bai, 2011; 

or Fig. 1 of Moreno et al., 2014). Figure 4 depicts the location on a world map of all cases included in 



our database. This plot illustrates the density of EOR techniques per geographic area and can serve as a 

preliminary qualitative screening tool. Each EOR project in the database is indexed by the set of six field 

parameters listed in Section 1, i.e., average reservoir rock porosity, ϕ; permeability, k; depth, D; 

temperature, T; and oil viscosity, μ, and density, API. The set of parameters associated with each target 

reservoir is embedded into the database. Ranges of variation of all parameters are listed in Table 1. 

2.1. Data Pre-processing. 

Our data pre-processing relies on a sequence of preliminary transformations that are applied to the 

database to assist the screening procedure. These transformation are robust standardization (RS) and 

principal component analysis (PCA), which are applied in sequence to the data, as detailed in the 

following. 

2.1.1. Robust Standardization (RS). 

The six selected properties are characterized by remarkably different units and ranges of variation. As 

permeability and viscosity may vary over several orders of magnitudes, we consider a logarithmic 

transformation for our analysis. Data are then subject to standardization. In its common form, this 

transformation centers and rescales data respectively by their sample mean and standard deviation. To 

prevent the effect of outliers, robust standardization is here preferred (Daszykowski et al., 2007). In this 

context, data are centered by their median and rescaled by their median absolute deviation (MAD), i.e., 

robust-standardized value RS  of a given variable   in our database is 

- median( )

MAD( )RS

 


 ;   MAD( ) 1.4826 median median( )      (1) 

2.1.2. Principal Component Analysis (PCA). 

A substantial simplification of the screening problem can be obtained by noting that some of the selected 

variables are cross-correlated. This is clearly visible in some of the diagrams appearing in the lower part 

of the matrix plot of Fig. 5, which depicts scatterplots between pairs of RS-variables in our database. The 

redundancy of information associated with cross-correlation can be effectively removed by applying a 

PCA to our database. Essentially, PCA allows mapping the system from the space of RS-variables to a 

new space of uncorrelated variables (i.e., the principal components, PCs). Each of the PCs is a linear 

combination of the original properties and carries information about a fraction of the multivariate overall 

variability of the system. The effect of PCA in removing cross-correlation is highlighted in the above-

diagonal diagrams depicted in Fig. 5, representing scatterplots between pairs of PCs. As a complement 



to these results, Fig. 6 depicts vectors indicating the contribution of each of the RS-variables to the first 

two PCs. Figure 7 illustrates the fraction of the overall system variance that is explained by each PC. 

These results clearly show that the information content embedded in the first three PCs explains 95% of 

the overall system variability. Hence, we choose to perform all screening operations described in the 

following in the three-dimensional space identified by these PCs, as a tradeoff between completeness of 

information and level of complexity associated with the interpretation of results.  

2.2. Bayesian Hierarchical Clustering Algorithm. 

We start our analogy assessment by employing a clustering algorithm. Clustering is commonly applied 

in classification problems because it allows organizing elements into disjoint groups according to 

prescribed rules that depend on the algorithm of choice. Here, we select a Bayesian Hierarchical 

Clustering (BHC) algorithm (Heller and Ghahramani, 2005). As other hierarchical methods, this 

approach is bottom-up agglomerative. Starting from a setting where each element forms a cluster, the 

algorithm iteratively merges the two most similar clusters. As opposed to traditional clustering methods 

based on distance-based criteria, the notion of similarity is inferred in BHC in a probabilistic context, by 

considering the Bayesian probability that the two clusters should be merged into a unique cluster. This 

probability is evaluated considering the basic assumptions behind BHC, according to which (a) the whole 

database is sampled from a mixture associated with a given distribution model, and (b) elements of the 

same cluster are sampled from the same component contributing to the mixture, each of these components 

being characterized by a given set of parameters. Hence, at each step the algorithm merges the two 

clusters whose elements have the highest probability of being sampled by the same set of distribution 

parameters. We refer to Heller and Ghahramani (2005) and Sirinukunwattana et al. (2013) for the detailed 

formulation on the computation of these probabilities. As shown by these authors, the Bayesian approach 

enables to overcome key limitations which are typically associated with distance-based clustering 

algorithms (including, e.g., the k-means approach adopted by Babushkina et al., 2013), which are 

conditioned by the choice of the distance metrics and require to define a priori the final number of 

clusters. BHC methods allow inferring naturally the final number of cluster, because merging of clusters 

takes place only if the associated Bayesian probability is larger than 0.5. The merging process stops when 

all remaining cluster pairs are associated with a probability of being merged which is below this 

threshold. 

  



2.3. Weighted Euclidean Distance. 

In this step of the screening procedure we focus on those clusters containing one or multiple target fields 

where we wish to provide EOR screening. The inter-cluster distance between group members of the 

available database and targets is used as a similarity measure. As mentioned in Section 2.1, the distance 

is evaluated in the space of the first three principal components, {PC 1, PC 2, PC 3}, through the weighted 

Euclidean metric 

3
2

1

dist ( , ) = ( - )x y i i i
i

w x y

  (2) 

where 1 2 3( , , )x x x x  and 1 2 3( , , )y y y y  are the position vectors of two given points in the space {PC 1, 

PC 2, PC 3} and wi are metric weights. The latter have been set as the fraction of total variance associated 

with each PC 

6

1

Var (PC )
 = 

Var (PC )
i

i

i
w

i



  (3) 

Var (PC )i  being the variance explained by the i-th principal component. 

Babushkina et al. (2013) adopted a confidence index to rank EOR methods linked to elements included 

in the cluster. This index is based on a measure of closeness of the target to each sub-group formed by 

cluster elements sharing the same EOR technique. Our ranking strategy is different because our metric 

is based on a quantitative and intrinsic criterion employed to define the distance weights (3) that are 

typically considered as uniform (e.g., Babushkina et al., 2013) or are determined according to experience. 

The method of Babushkina et al. (2013) attributes a confidence index to a given EOR technique and not 

to the specific applications. As a further remark, we recall that a critical element linked to the 

identification of analogs is the possibility to obtain information about technical details of the associated 

EOR experiences documented in literature. This element is fully addressed by our method, which 

provides quantitative measure of the affinity of the target field to each single project. 

2.4. Impact of Principal Component Analysis on Bayesian Clustering 

We noted that PCA has the advantage of providing quantitative criteria to reduce the dimensionality of 

the system. This, in turn, leads to a clear graphical representation of the results which can be readily 

interpreted and used in applications. Fig. 8 depicts a comparison of the results of BHC decomposition as 

applied to the system of original parameters after robust standardization (Fig. 8a) against those obtained 



by performing the analysis in the PCs coordinates system (Fig. 8b). Clusters distribution in Fig. 8a is 

depicted in the phase space of RS-log permeability versus RS-depth. The choice of this two-dimensional 

space allows for a straightforward comparison with the results obtained with the PCs, because RS-log 

permeability and RS-depth are the variables with the closest alignment with the directions of the first two 

Principal Components (see Fig. 6). A close inspection of Fig. 8 suggests that the distinction between 

diverse clusters is enhanced in the two-dimensional space of our PCs. 

As noted above, each PC in our system bears a diverse relative importance. Therefore, it can be argued 

that performing analog ranking upon relying on a metric defined in the PCs space is more general and 

would lead to final results which are more rigorous, from a theoretical standpoint. While we adopt this 

metric for the evaluation of distances, as noted in Sec. 2.3, we do not employ it at the stage of cluster 

decomposition. Fig. 9a depicts the results of the BHC algorithm applied to the system in the space of 

Weighted-PCs (WPCs). Joint analysis of Figs. 8b and 9 enables us to note that considering the effects of 

the weights on the PCs leads to a marked reduction of the ranges of variation of the variables describing 

our system. This in turn allows for a straightforward identification of a dominant cluster, on the basis of 

Bayesian criteria. The results depicted in Fig. 9b illustrate the relative fraction of EOR technique applied 

within this identified cluster and show that the composition of this group is quite heterogeneous. These 

results suggest that the PC-weights metric would decrease the effectiveness of cluster decomposition as 

a first screening tool. 

3. Application to test cases 

3.1. Description of test cases. 

We validated our screening method by applying it to three target fields at different stages of deployment, 

where the effectiveness of specific EOR processes has been already investigated. The complete set of oil 

and reservoir properties associated with each target is listed in Table 2. The reliability of our methodology 

is assessed through a blind test comparing the results of our screening procedure against the actual EOR 

experiences documented or planned for these fields. 

Target 1 is a light oil bearing sandstone reservoir in North Africa. Hydrocarbons are located in low net-

to-gross ratio fluvial sand units. Production in the field started from day zero with EOR techniques based 

on crestal miscible hydrocarbon gas injection. The field is also developed by way of peripheral water 



injection. Following a preliminary study phase, a water injector well was converted to gas injector in 

2013 to increase the recovery factor, thus implementing a WAG pilot in the field. 

Target 2, is a heavy oil bearing high-permeability shallow sandstone reservoir in South America. Oil 

viscosity at reservoir condition is approximately 2500 cp. The reservoir is currently produced by natural 

depletion. Here, the industrial objective is to apply steam injection in the future to increase the recovery 

factor, which is otherwise very low. 

Target 3 is a medium oil viscosity reservoir in North Africa. The reservoir formation is a mixed 

sandstone/carbonate sedimentary unit, deposited in a marginal to shallow marine environment. Only the 

sandstone facies in the unit are oil bearing. Oil viscosity at reservoir condition is 23 cp. The very low 

bubble-point pressure ensures the virtual absence of free gas in the reservoir during production. The 

initial phase of primary depletion was followed by the implementation of water injection. Following a 

detailed study and design phase, a polymer injection pilot has been implemented in 2014. 

3.2. Screening results. 

The application of the Bayesian Hierarchical clustering algorithm described in Section 2.2 to the 

collection of database elements and targets leads to the identification of 8 clusters. Figure 10 depicts the 

clusters and targets arrangement in the phase space of the first two principal components, PC 1 and PC 

2. As illustrated in the figure, Target 2 belongs to Cluster 1, whereas Targets 1 and 3 belong to Cluster 

2. The analyses detailed in the following are focused on these two groups. Figure 11 depicts the results 

of the screening in terms of percentage of EOR techniques applied within Cluster 1 (Fig. 11a) and Cluster 

2 (Fig. 11b). Figure 12 displays distance-based ranking of cluster elements and associated EOR 

techniques for Targets 1, 2 and 3 (Fig. 12a, 12b and 12c respectively). 

3.2.1. Cluster 1 (Target 2). 

Figure 11a evidences that the vast majority of the elements in this cluster is associated with thermal 

methods, in particular with steam injection (83% of the cases) and, to a smaller extent, with hot water 

injection and combustion (about 5%). Distance-based rankings illustrated in Fig. 12a unambiguously 

show that the analogs which are closest to Target 2 correspond to steam injection projects, the latter being 

the technique proposed for this target, as described in Section 3.1. The first two nearest neighbors are 

both heavy-oil reservoirs, i.e., (a) the Main Tia Juana field, in Venezuela, and (b) the Huanxiling field, 

in China. Thermal methods played a key role in the production history at (a) since the mid-60s, where 

11 Cyclic-Steam-Stimulation (CSS) projects have been implemented from 1964 to 1968, providing a 



production enhancement of about 5 MSTB over a cumulative production of 39 MSTB (Vega Riveros 

and Barrios, 2011). A massive implementation of CSS projects throughout the whole Tia Juana field 

enabled production rate to attain a peak of 160 KSTB/d, followed by a decline to 44 KSTB/d in 1986. 

The overall recovery factor is estimated to be close to 60%. An up-to-date thermal EOR method named 

Toe-to-Heel air injection (THAI) has been recently implemented and has been estimated to increase the 

recovery factor up to 80% (Uribe et al., 2010). Production in the Huanxiling field, in the Liaohe area, 

started in the 70s and thermal recovery via CSS initiated in 1984. A steam-flooding test started in 1998 

and allowed to reach a recovery factor of 30% of the OOIP after 9 years of continuous injection. New 

steam-flooding projects have been initiated in 2008 (Yuqiu and Yali, 2009). 

3.2.2. Cluster 2 (Targets 1 and 3). 

Figure 11b depicts the relative fraction of data associated with diverse EOR techniques associated with 

elements of Cluster 2 and clearly shows that there is a marked dominance of gas/WAG injection EOR 

applications for the elements of this cluster. About 50% of cases is associated with (continuous or WAG) 

miscible HC injection projects and approximately 20% of cases with miscible CO2 injection projects. 

Chemical EOR projects constitute the majority of the remaining fraction, namely polymer (15%) and 

surfactant (3%) injection. 

Target 1.  

Figure 12b shows that the cluster elements which are nearest to the target are characterized by the leading 

EOR technique within the cluster, i.e., miscible HC injection, the only exception being a single case 

where thermal EOR (combustion) has been implemented. These results are consistent with the EOR 

experiences at Target 1 described in Section 3.1. Our weighted-distance criterion ranks as most similar 

cases (a) the Pembina-Nisku “O” pool, and (b) the Rainbow-Keg river “F” pool, both of which are light-

oil reservoir located in Alberta, Canada. As reported by Galas et al. (2012 and references therein), 

miscible gas flooding at (a) started in 1986 through one vertical injector and was completed in the early 

nineties, when the production started to decline. The incremental recovery factor due to gas injection was 

estimated as equal to 40% of the Original Oil In Place (OOIP) in this pool. Tertiary HC miscible flood 

at (b) started in 1996 in the NW lobe and in 2000 on the whole pool. This EOR production scheme is 

still active and economically profitable, extending over 12 injectors and 39 production wells. A total of 

38% of the OOIP, was produced from primary recovery, whereas the incremental recovery factor due to 

HC flooding is currently estimated as providing 15% of the OOIP (Galas et al., 2012). The Combustion 



project amongst the nearest neighbors of Target 1 is associated with Pennel field, in Williston Basin, US. 

This field is characterized by very light oil. As documented in Sheng (2013), the main factors leading to 

a successful in-situ combustion project in light oil reservoirs are (i) high reservoir temperature, (ii) high 

dip and (iii) relatively high oil saturation. All these requirements are fulfilled at Williston Basin, where 

several combustion projects have been implemented in fields providing very low primary recovery 

factors.  

Target 3. 

The results obtained for this blind test highlight the importance of combining clustering with distance-

based ranking for an effective screening. Even as the information obtained from cluster analysis would 

favor the use of a miscible gas injection as the most suited technique for Target 3, the evaluation of 

weighted distances within the cluster leads to a different conclusion. As indicated by the analog ranking 

depicted in Fig. 12c, the whole sub-set of chemical (mostly polymer) EOR projects belonging to Cluster 

2 are concentrated in the nearest neighborhood of Target 3. This conclusion is consistent with the actual 

EOR technique that has been successfully implemented at the site (Section 3.1). Amongst these polymer 

projects, the reservoir which is nearest to the target is the Shuanghe field, in China. This sandstone 

reservoir had a long history of water flooding when the first polymer injection pilot was performed, in 

the early 90s. Chemical EOR has been practiced in China since the mid-80s (e.g., in the Daqing field). 

However, it has to be noted that the Shuanghe pilot required an ad-hoc design, because of the high 

reservoir temperature (about 160 °F), as compared with field conditions characterizing prior polymer 

flooding tests. A new formula of Hydrolyzed polyacrylamide (HPAM) developed to enhance thermal 

stability of the polymer was employed at Shuanghe for the first time, resulting in a 10% increase in oil 

recovery (He et al., 1998). The field is currently treated with Surfactant-polymer flooding. First tests of 

a new high-temperature resistant foam with low interfacial tension provide promising results in 

improving post-chemical-flood recovery (Tang et al., 2014). Reservoir temperature is a critical property 

for chemical EOR applications. As shown by Table 2, temperature at Target 3 is estimated at 170 °F. 

Hence, the experience at Shuanghe can provide useful information for further development of the EOR 

project at the Target. It can be noted that a hydrocarbon Miscible WAG (MWAG) injection project, i.e., 

the Kuparuk river field, in Alaska (US), is ranked as the highest analog to Target 3. Miscible injection at 

Kuparuk river started in 1988 and was expanded to a large scale since 1996, becoming one of the largest 

MWAG projects worldwide (Jensen et al., 2012). Although miscible gas injection is the primary EOR 

approach implemented in this field, chemical EOR methods also constitute a potentially viable 



alternative: laboratory tests and field trials have suggested low-salinity water injection to be a promising 

EOR technique within all of the Alaskan North Slope fields (McGuire et al., 2005, Llano et al., 2013). 

4. Summary and conclusions 

We develop and test a new screening method conducive to the identification of the most suitable EOR 

technology on target reservoirs. Our method relies on the following key components: 

1. A database of thermal (in-situ-combustion, hot-water and steam-injection projects), chemical 

(polymer, surfactant or Alkali-Surfactant-Polymer flooding) and gas/WAG injection 

(miscible/immiscible; Hydrocarbon, Nitrogen, Carbon dioxide) EOR projects operated worldwide and 

collected from an extensive review; 

2. A Principal Component Analysis applied to data and employed not only for dimensionality 

reduction but also for an accurate choice of distance metrics to define similarity between projects; 

3. A two-step algorithm to assess analogy between data and targets, on the basis of oil and reservoir 

properties. 

A blind test of the approach has been performed by considering three field cases where given EOR 

techniques have been selected. The degree of documented success demonstrates the effectiveness of our 

methodology to capture the optimal EOR techniques for the selected fields. We note that the results of 

the blind test are also consistent with the application of conventional screening criteria. This can be seen 

by mapping our three target fields in the space of reservoir depth versus oil viscosity (see Table 1 and 

Fig. 1). The objective of the advanced screening method we propose is not limited to provide a qualitative 

identification of the most suitable EOR technique for a given target field. A major strength of our method 

is that it is conducive to a quantitative assessment of the analogy between target and database fields, 

where EOR techniques have already been implemented. This quantification cannot be achieved by 

conventional screening approaches. In this context, identification of analogs is key to the decision making 

process. The results obtained for Target 3 constitute a stark example of the importance of analogs 

evaluation and highlight also the key importance of our distance-based ranking, as applied subsequently 

to cluster decomposition, to refine the search for analogs. 

The complete collection of documentation related to worldwide EOR experiences is included in our 

database, thus enabling one to acquire from the earliest stages of the project evaluation a technical know-

how on the most promising EOR technique. 
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Tables and Figures 

 

 ϕ (%) k (mD) D (ft) API (°) μ (cp) T (°F) 

Min 3 0.1 200 8 0.1 45 

Max 40 11500 16150 57 5×106 290 

Table 1. Ranges of oil and reservoir properties characterizing the database elements. 

 

 ϕ (%) k (mD) D (ft) API (°) μ (cp) T (°F) 

Target 1 14 200 8760 42 0.23 185 

Target 2 29 3000 1300 8.5 2500 118 

Target 3 22.5 100 5250 16 23 170 

Table 2. Oil and reservoir properties characterizing the test cases. 

 



  

Figure 1. Conventional screening criteria inferred by Taber et al. (1997a,b): colored curves demarcate 
the regions of applicability of the main EOR techniques in the phase space of reservoir depth versus oil 
viscosity. 

   



 

Figure 2. Workflow of the EOR screening procedure. 

  



 

Figure 3. Relative occurrence of EOR techniques across the 250 samples of the database. 
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Figure 4. Database of EOR projects projected onto a world map. Color scale represents the associated 
EOR technique. 

 

  



 

Figure 5. Scatterplots of robust-standardized properties (below diagonal) and Principal Components 
(above diagonal). 
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Figure 6. Effect of Principal Component Analysis: blue arrows are vectors indicating the contribution of 

each of the RS-variables to the first two PCs. Red symbols represent database elements in this space. 



 

Figure 7. Fraction of variance explained by each PC. Space dimensionality can be reduced from 6 to 3 

with no appreciable loss of information. 
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Figure 8. Results of the BHC algorithm applied to (a) the space of the Robust-standardized variables and 

plotted in the phase space (Log k)RS - DRS; (b) the reduced space of PCs. 

  



 

 

Figure 9. (a) BHC algorithm applied to the space of the PCA-weighted principal components W PC1 and 

W PC2; (b) Proportion of EOR techniques associated with elements in Cluster 1. 

  



 

Figure 10. Scatterplot of database elements and targets in the space of the first two PCs. Dots color 

identifies the 8 clusters obtained from the BHC algorithm.  



 

 

Figure 11. Screening results: proportion of EOR techniques associated with elements in (a) Cluster 1 

(i.e., Target 2 analogs) and (b) Cluster 2 (i.e., Targets 1 and 3 analogs). 

  



 

Figure 12. Screening results: distance-based ranking of cluster elements and associated EOR techniques 

for (a) Target 2 (i.e., Cluster 1 elements), (b) Target 1 (i.e., Cluster 2 elements), and (c) Target 3 (i.e., 

Cluster 2 elements). 

 


