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Abstract 

While a huge amount of (epi)genomic data of multiple types is becoming available by 

using Next Generation Sequencing (NGS) technologies, the most important emerging 

problem is the so-called tertiary analysis, concerned with sense making, e.g., 

discovering how different (epi)genomic regions and their products interact and 

cooperate with each other. We propose a paradigm shift in tertiary analysis, based on 

the use of the Genomic Data Model (GDM), a simple data model which links 

genomic feature data to their associated experimental, biological and clinical 

metadata. GDM encompasses all the data formats which have been produced for 

feature extraction from (epi)genomic datasets. We specifically describe the mapping 

to GDM of SAM (Sequence Alignment/Map), VCF (Variant Call Format), 

NARROWPEAK (for called peaks produced by NGS ChIP-seq or DNase-seq 

methods), and BED (Browser Extensible Data) formats, but GDM supports as well all 

the formats describing experimental datasets (e.g., including copy number variations, 

DNA somatic mutations, or gene expressions) and annotations (e.g., regarding 

transcription start sites, genes, enhancers or CpG islands). We downloaded and 

integrated samples of all the above-mentioned data types and formats from multiple 

sources. The GDM is able to homogeneously describe semantically heterogeneous 

data and makes the ground for providing data interoperability, e.g., achieved through 

the GenoMetric Query Language (GMQL), a high-level, declarative query language 

for genomic big data. The combined use of the data model and the query language 

allows comprehensive processing of multiple heterogeneous data, and supports the 

development of domain-specific data-driven computations and bio-molecular 

knowledge discovery. 
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1. Introduction 

Extraordinary advances in genomics are made possible by Next Generation 

Sequencing (NGS), a family of technologies that is progressively reducing the time 

and cost of reading an individual genome
1
; therefore, huge amounts of sequencing 

data of many genomes, in multiple biological and clinical conditions, are continuously 

collected and made publicly available, often organized by worldwide consortia such 

as ENCODE [1], Roadmap Epigenomics [2], TCGA [3] and the 1000 Genomes 

Project [4].  

So far, the bioinformatics research community has been mostly challenged by 

primary analysis (production of sequences in the form of short DNA or RNA 

segments, or ''reads'') and secondary analysis (alignment of reads to a reference 

genome and search for specific features of genome regions, such as variants and peaks 

of binding or expression intensities) [5]. The most important emerging problem is the 

so-called tertiary analysis [6], concerned with sense making, e.g., discovering how 

different (epi)genomic regions and their products interact and cooperate with each 

other. Tertiary analysis requires integrating heterogeneous DNA features, such as 

variations (e.g., a mutation in a given DNA position), or peaks of binding or 

expression (i.e., genomic regions with higher read density), or structural properties of 

                                                 

1
 Recently below the barrier of 1000 US$ for a human genome 

(https://www.genome.gov/sequencingcosts/). 

https://www.genome.gov/sequencingcosts/
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the DNA (e.g., break points, where the DNA is damaged, or junctions, where the 

DNA creates loops). Such data are collected within numerous and heterogeneous files 

(both in formats and semantics); they are usually distributed within different 

repositories, and lack an attribute-based organization for systematically expressing 

features as high-level attributes. Furthermore, they lack a systematic description of 

their metadata, i.e., of their biological and clinical properties, which are greatly 

heterogeneous. Answers to crucial biomedical questions may be hidden within 

already existing open and public collections of heterogeneous data, but the methods 

and tools which are made available for knowledge extraction are still rather poor and 

specialized. 

We propose a paradigm shift in tertiary genomic data management, based on the 

introduction of a simple data model which links genomic features to their associated 

metadata. This model is able to homogeneously describe semantically heterogeneous 

data and makes the ground for providing data interoperability, which can be achieved 

through a high-level, declarative query language for genomic big data. The 

combination of the data model and query language provides the right concepts for 

information extraction from genomic data repositories, and allows the development of 

domain-specific data-driven computations required by tertiary data analysis and bio-

molecular knowledge discovery. 

2. Genomic Data Model 

The Genomic Data Model (GDM) that we propose is based on the notions of datasets 

and samples, and on two abstractions: one for genomic regions, which represent 

portions of the DNA and their features, and one for their metadata. Datasets are 

collections of samples, and each sample consists of two parts: the region data, which 
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describe the characteristics and DNA location of genomic features (e.g., called though 

the processing of raw NGS data after their alignment to a reference genome), and the 

metadata, which describe general properties of the sample. 

2.1 Motivation 

Genomic region/feature data are very valuable for molecular investigation and 

precision medicine; they describe a broad variety of molecular aspects, which are 

individually measured, and provide single views on biomolecular phenomena. Their 

integrated evaluation would provide a systemic view on how they interact and 

cooperate towards the triggering and regulation of biological functions. Yet, they are 

available in a variety of formats which hamper their integration and comprehensive 

assessment.  

GDM provides a schema to genomic feature data of DNA regions; thus, it makes 

such heterogeneous data self-describing, as advocated by Jim Gray [7], and 

interoperable. This is obtained by simple mapping of the data from data files in their 

original format into the GDM format when they are used, without including them into 

a database, so as to preserve the possibility for biologists to work with their usual file-

based tools. The provided data schema has a fixed part, which guarantees the 

comparability of regions produced by different kinds of processing, and a variable 

part reflecting the “feature calling process” that produced the regions and describing 

the region features determined through various processing types. DNA regions are 

sequences of nucleotides
2
, usually represented by strings of letters

3
; GDM identifies 

                                                 

2
 Nucleotides are the individual molecular components of the DNA macromolecule, and are 

of four different types (Adenine, Cytosine, Guanine, and Thymine). 
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them through their genomic coordinates and associates them with a list of one or more 

features (e.g., produced by NGS data secondary analysis). 

Metadata are paramount to characterize the high heterogeneity of genomic feature 

data and guide their correct processing; however, they are collected in a broad variety 

of data structures and formats that constitute barriers to their use and comparison. To 

cope with the lack of agreed standards for metadata, GDM models metadata simply as 

free arbitrary semi-structured attribute-value pairs, where attributes may have multiple 

values (e.g., the Disease attribute can have both “Cancer” and “Diabetes” values). We 

expect metadata to include at least the considered organism, tissue, cell line, 

experimental condition (e.g., antibody target – in the case of NGS ChIP-seq 

experiments, treatment, etc.), experiment type, data processing performed, feature 

calling and analysis method used for the production of the related data; in the case of 

clinical studies, individual's descriptions including phenotypes.  

2.2 Definitions 

A genomic region r is a well-defined portion of the genome identified by the 

quadruple of values < chr, left, right, strand >, called region coordinates, where chr 

represents the DNA chromosome where the region is located, left and right are the 

positions of the two ends of the region along the DNA coordinates
4
; strand indicates 

                                                                                                                                            

3
 DNA can be abstracted as a string of billions of four different letters (A, C, G, T), each 

representing a nucleotide molecule, subdivided in chromosomes (23 in humans), which are 

disconnected intervals of the string. 

4
 Species are associated with their reference genome. DNA samples are aligned to these 

references, hence referred to the same system of coordinates; for humans, several reference 

genomes were progressively defined, the latest is hg20 (also known as GRCh38 or hg38). 
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the DNA strand on which the region is read, as well as the direction of DNA reading
5 

(encoded as either ‘+’ or ‘-’), and can be missing (encoded as ‘*’) when the region is 

not assigned to a specific strand, e.g., in the case of DNA binding regions identified 

through NGS ChIP-seq experiments).  

A sample s is formally modeled as a triple < id; R; M > where: 

- id is the sample identifier of type long 

- R is the set of regions of the sample, built as pairs < c; f > of coordinates c and 

features f. Coordinates are composed of four fixed attributes chr, left, right, 

strand which are respectively typed string, long, long, char. Features are made 

of typed attributes; we assume attribute names of features to be different, and 

their types to be any of Boolean, char, string, int, long, double (GDM types are 

available in several programming languages, including Java and Scala, and 

frameworks for cloud computing, such as Apache Pig
6
, Apache Flink

7
 and 

Apache Spark
8
). The region schema of s is the list of attribute names used for 

the identifier, the coordinates and the features. 

                                                                                                                                            

According to the University of California at Santa Cruz (UCSC) notation, we use 0-based, 

half-open inter-base coordinates, i.e., the considered genomic sequence is [left; right). In this 

coordinate system, left and right ends can be identical (e.g., when they represent a splicing 

junction), or consecutive (e.g., when the region represents a single nucleotide polymorphism). 

5
 DNA is made of two strands rolled-up together in anti-parallel directions, i.e., they are read 

in opposite directions by the biomolecular machinery of the cell. 

6
 https://pig.apache.org/ 

7
 http://flink.apache.org/ 

8
 http://spark.apache.org/ 

https://pig.apache.org/
http://flink.apache.org/
http://spark.apache.org/
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- M is the set of metadata of the sample, built as attribute-value pairs < a; v >, 

where we assume the type of each value v to be string (numerical values can 

then be casted to a numerical type, such as int, long, or double, when used). 

The same attribute name a can appear in multiple pairs of the same sample (in 

which case we say that a is multi-valued). 

A dataset is a collection of samples with the same region schema and with features 

having the same types; sample identifiers are unique within each dataset. Each dataset 

can be thought as grouping related data samples, in case produced within the same 

project (either at a genomic research center or within an international consortium) by 

using the same or equivalent technology and tools, but with different experimental 

conditions, described by metadata. 

2.3 Implementation example 

According to GDM, each dataset can be stored using two data structures (e.g., two 

tables), one for regions and one for metadata. An example of two tables for 

representing a particular experiment, called ChIP-seq, is shown in Fig. 1, where two 

small samples are represented. Sample 1 has 3 regions and 4 metadata attributes, 

sample 2 has 2 regions and 3 metadata attributes; the regions of the two samples are 

within chromosomes 1 and 2 of the DNA, and both are not stranded. The region 

features have an attribute p_value of type double, representing how significant is the 

calling of that genomic region in the ChIP-seq experiment. Note that the id attribute is 

present in both tables; it provides a many-to-many connection between regions and 

metadata of a sample. Note also that the quintuple (id, chr, left, right, strand) is not a 

key of the region table, since a sample can have multiple regions with the same 

coordinates; similarly the pair (id, attribute) is not a key of the metadata table, since 

metadata attributes can be multi-valued.  
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Fig. 1. Regions (top part) and metadata (central part) of a dataset consisting of two 

ChIP-seq samples (bottom part), respectively having three and two regions, and four 

and three metadata. 

 

While the above example is simple, GDM supports the schema encoding of any 

processed data type (e.g., of NGS DNA-seq, RNA-seq, ChIP-seq, ChIA-PET, and 

VCF data file formats), and of any aligned genomic data in general (e.g., in Sequence 

Alignment/Map - SAM format), since all of them share the genomic region concept. 

Note that GDM can also model structural and functional annotations, i.e., regions of 

the genome with known properties (such as genes, with their exons and introns
9
 as 

well as functions). Examples of GDM modeling of different types of aligned genomic 

                                                 

9
 Genes of eukaryotic organisms are mainly composed of two parts: exons, which encode 

gene transcripts (RNA) and proteins, and introns, which are noncoding sections of a gene. 
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data and their formats, together with exemplar instances of these data types, are 

described in the following Section 2.4. 

2.4 Modeling aligned genomic data in GDM 

In order to ease modeling any aligned genomic data in GDM and mapping the variety 

of their multiple formats to GDM, we defined how to simply describe them in terms 

of GDM data schema by using the Extensible Markup Language (XML). Figs. 2-5 

show paradigmatic examples regarding four different genomic data types of high 

relevance, in four typical and highly used tab-delimited text formats. They include: 

- Aligned sequence data (e.g., NGS nucleotide reads aligned to a reference 

genome) in SAM (Sequence Alignment/Map) format [8], as usually outputted 

from aligners (e.g., BWA [9] or Bowtie [10]) that read nucleotide sequences in 

FASTQ files [11] generated by NGS machines and assign the read sequences 

to a position with respect to a known reference genome 

- DNA variation data (e.g., single nucleotide variants, insertions/deletions, 

copy number variants and structural variants), such as those generated through 

the NGS DNA-seq technique, in VCF (Variant Call Format) format [12], as 

typically provided by the 1000 Genomes Project [4] 

- Called peaks (i.e., genomic regions of biomolecular signal enrichment called 

through multiple specific methods and tools, such as MACS [13] or ZIMBA 

[14]) representing genomic features (e.g., DNA hypersensitive sites in open 

chromatin regions, or histone modifications and transcription factor binding 

sites, determined through the NGS techniques of DNase I sequencing (DNase-

seq) [15] or Chromatin Immunoprecipitation followed by sequencing (ChIP-

seq) [16], respectively) in NARROWPEAK format, as typically provided by 

the ENCODE [1] and Roadmap Epigenomics [2] projects 
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- CpG Island annotations (i.e., known DNA regions where a cytosine 

nucleotide is followed by a guanine nucleotide in the linear sequence of bases 

along the 5' -> 3' direction) in a kind of BED (Browser Extensible Data) 

format [17], as provided by the world-wide recognized Genome Informatics 

Group of the University of California at Santa Cruz (UCSC) [18].  

The GDM encoding of these data formats is next progressively discussed in Figs. 

2-5; each of them includes (from top to bottom) a brief description of the represented 

data/format, the structure and fields of the original data format together with two or 

three exemplar data lines, the corresponding XML description of the data in terms of 

GDM data schema, and the related GDM structure and attributes together with two or 

three exemplar lines of the same data. Note that the XML description of the data 

includes, in its gdmSchema tag, the attribute type, which specifies the handle label for 

the specific data format; it allows the binding to a software loader which can be used 

to automatically map the data in their original format (detailed in the XML 

description) to the GDM format when they are used. The high flexibility provided by 

the defined XML description, and the associated loader, can manage and 

accommodate multiple different situations occurring in the heterogeneous data 

structures of the variety of data formats currently used in genomics. For example, Fig. 

2 shows that the region coordinate attributes required in GDM can be mapped to any 

fields (with any names) in the structure of the original data format. Any field in the 

original data format is described by a field XML tag whose position in the XML 

description is equal to the position of the field in the original data format, and the 

value included in the field tag equals the name of the matching attribute in GDM (the 

type attribute of the field tag specifies the data type of the matching attribute in 
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GDM). Thus, it is straightforward to identify any original data field with a normalized 

name (and position, if required) in GDM, which open the way to data interoperability.  

When the original data do not include all required GDM region coordinate 

attributes, but their values can be derived from other original data fields (as usual in 

aligned genomic data), the loader associated with the XML description of the data can 

provide them at data usage time. For example, in the original data in SAM format 

described in Fig. 2, a matching for the GDM right attribute is missing; however, for 

any described genomic region (i.e., data line) the associated loader derives the value 

of the right attribute as the sum of the value of the left attribute (i.e., of the POS 

original data field) and of the length of the sequence string in the SEQ attribute / 

original data field (i.e., as left + length(SEQ)) of the genomic region. (Note that the 

strand attribute missing in the original data is encoded as ‘*’ in GDM, as defined in 

Section 2.2). At data usage time, if required, the loader can also convert values in the 

original data to normalized values in GDM in order to support seamless integration of 

data in different datasets (e.g., see Fig. 4 where the original value ‘.’ for an undefined 

strand is converted to ‘*’; a more significant example, in data from NGS RNA-seq 

techniques, is the conversion of gene expression values from TPM (Transcripts Per 

Million) to FPKM (Fragments Per Kilobase of transcript per Million mapped reads) 

units).  
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Fig. 2. Aligned sequence data (e.g., NGS nucleotide reads aligned to a reference 

genome) in SAM (Sequence Alignment/Map) format and their GDM description and 

schema.  

 

 

Fig. 3. DNA variation data (e.g., single nucleotide variants, insertions/deletions, copy 

number variants and structural variants) in VCF (Variant Call Format) format and 

their GDM description and schema.  
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Fig. 4. Called peaks of biomolecular signal enrichment in NARROWPEAK format 

and their GDM description and schema. 

 

 

Fig. 5. CpG Island annotations in a kind of BED (Browser Extensible Data) format 

and their GDM description and schema. 
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3. Interoperability and integrative querying of 

heterogeneous genomic feature data  

Taking advantage of the GDM characteristics and of the defined XML data 

description, we modeled several different human and mouse genomic feature datasets 

in GDM, after downloading them from multiple public sources, such as the ENCODE 

[1] and Roadmap Epigenomics [2] portals. They comprised processed data in 

BROADPEAK, NARROWPEAK and BED formats from many types of experiments, 

including DNA methylation (methylArray, and methylRRBS), open chromatin 

(DNase-DGF, DNase-seq, and FAIRE-seq), transcription factor binding site and 

histone modification (ChIP-seq), RNA binding protein (RIPGeneST), RNA profiling 

(exonArray, RNA-chip, RNA-PET, and RNA-seq), and other (e.g., 5C, ChIA-PET, 

and repliSeq) essays. We also downloaded all genomic data publicly provided by 

TCGA [3], and modeled them in GDM; they include copy number variation (CNV), 

DNA somatic mutation (DNA-seq), DNA methylation, and gene expression (RNA-

seq, and miRNA-seq) processed data. Furthermore, for each genomic data sample, we 

retrieved also the corresponding experiment and biological or (for TCGA data) 

clinical metadata, and modeled them according to GDM; the metadata free attribute-

value format of GDM allowed associating each data sample with a variable number of 

metadata attributes, ranging from very few to hundreds or even thousands.  

All downloaded and modeled datasets are described in Table 1; we aggregated all 

of them in a single integrative repository, together with known annotation data (also 

modeled in GDM) regarding transcription start sites (TSS) from SwitchGear 

Genomics (http://switchgeargenomics.com/), human and mouse protein-coding and 

http://switchgeargenomics.com/


 - 16 - 

non-protein-coding genes from EMBL-EBI Ensembl (http://www.ensembl.org/) and 

NCBI Reference Sequence (RefSeq) (http://www.ncbi.nlm.nih.gov/refseq/) databases, 

RefSeq exons, Vista enhancers (http://enhancer.lbl.gov/), and CpG islands, all as 

provided by the UCSC database (https://genome.ucsc.edu/cgi-bin/hgTables). Since all 

such heterogeneous datasets are modeled with and mapped to the same simple and 

abstracted GDM, they are made interoperable and can be integratively processed 

easily. 

 

Table 1  

Modeled datasets of processed data from multiple public sources. 

Consortium Dataset 
# of 

samples 

File size 

(MB) 

ENCODE 

HG19_ENCODE_BED 1,933 32,201 

HG19_ENCODE_BROAD 1,970 23,552 

HG19_ENCODE_NARROW 1,999 7,168 

MM9_ENCODE_BROAD 441 2,355 

MM9_ENCODE_NARROW 277 1,162 

ROADMAP 

EPIGENOMICS  

HG19_ROADMAP_EPIGENOMICS_BED 78 595 

HG19_ROADMAP_EPIGENOMICS_BROAD 979 23,244 

TCGA 

HG19_TCGA_Cnv 2,623 117 

HG19_TCGA_Dnamethylation 1,384 29,696 

HG19_TCGA_DnaSeq 6,361 276 

HG19_TCGA_MirnaSeq_Isoform 9,227 3,379 

HG19_TCGA_MirnaSeq_Mirna 9,227 569 

HG19_TCGA_RnaSeq_Exon 2,544 31,744 

HG19_TCGA_RnaSeq_Gene 2,544 3,584 

HG19_TCGA_RnaSeq_Spljxn 2,544 30,720 

HG19_TCGA_RnaSeqV2_Exon 9,217 114,688 

HG19_TCGA_RnaSeqV2_Gene 9,217 20,480 

HG19_TCGA_RnaSeqV2_Isoform 9,217 49,152 

HG19_TCGA_RnaSeqV2_Spljxn 9,217 105,472 

Grand total 19 datasets 80,999 480,154 

http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/refseq/
http://enhancer.lbl.gov/
https://genome.ucsc.edu/cgi-bin/hgTables
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3.1 The GenoMetric Query Language 

We recently proposed the GenoMetric Query Language (GMQL) [19], which has the 

ability of computing distance-related queries over sets of linear intervals, ordered 

along a common coordinate system, and taking into account both individual interval 

attributes and set global characteristics. The GDM fully supports GMQL, since linear 

intervals can be genomic regions modeled by GDM through their genomic 

coordinates and features, and GDM sample metadata describe global characteristics of 

genomic region sets. In this context, a GMQL query (or program) is a sequence of 

GMQL operations with the following structure:  

<variable> = operation(<parameters>) <variables> 

where each variable is a GDM dataset of samples of genomic regions and metadata. 

GMQL operations are either unary (with one input variable), or binary (with two 

input variables), and construct one result variable. Thus, all operations produce a 

result dataset usually consisting of several samples, whose identifiers are either 

inherited by the operands or generated by the operation.  

GMQL operations include classic relational algebraic transformations (i.e., six 

unary operations: SELECT, EXTEND, PROJECT, MERGE, GROUP and ORDER, 

and two binary operations: UNION and DIFFERENCE), and domain-specific 

transformations which significantly extend the expressive power of classic relational 

algebra (i.e., COVER, dealing with replicate data samples of a same experiment; 

MAP, referring known or experimentally determined genomic features to user 

selected reference regions; and (distal) JOIN, selecting region pairs based upon 

distance properties). Each operation separately applies to sample metadata and 

regions. The region-based part of an operation computes the result regions; the 

metadata part of the operation computes the associated metadata, so as to trace the 



 - 18 - 

provenance of each resulting sample. Identifiers preserve the many-to-many mapping 

of regions and metadata, as discussed in Section 2.3. Tracing provenance both of 

initial samples and of their processing through operations is a unique aspect of 

GMQL, which relevantly allows knowing why resulting regions were produced. 

Compared with languages which are currently in use in the bioinformatics 

community, GMQL is declarative (it specifies the structure of the results, leaving 

result computation to each operation implementation) and high-level (one GMQL 

query typically substitutes for a long program which embeds calls to region 

manipulation libraries); its progressive computation of variables resembles other data 

management algebraic languages, such as Pig Latin [20]. GMQL has been 

implemented to be executed both on a single computer and in a cloud computing 

environment [19]; thus, it can well support knowledge discovery across thousands or 

even millions of samples, for what concerns both regions that satisfy biological 

conditions and their relationship to experimental, biological or clinical metadata.  

For all these features, GMQL may inspire a change of paradigm in genomic data 

management, along a direction that was indicated long ago by Edgar F. Codd's 

seminal paper [21] for large data collections in general. In [19], we demonstrated the 

expressive power and flexibility of GMQL through examples of biological interest, 

which include finding binding sites in transcription regulatory regions, associating 

transcriptomics and epigenomics, and finding somatic mutations in exons. The 

combined use of GDM and GMQL shows its assets particularly when it is applied on 

heterogeneous datasets of multiple data types, each containing numerous samples 

with many genomic feature regions, as discussed in the following Section 3.2.  
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3.2 Comprehensive querying of heterogeneous genomic data through GMQL 

Modeling heterogeneous datasets in GDM makes them interoperable and ready for 

common processing and comprehensive querying through GMQL. We demonstrate 

this valuable property provided by GDM, as well as the power and flexibility of 

GMQL, by illustrating some exemplar GMQL queries over heterogeneous data from 

multiple sources modeled in GDM, in a rich set of biological use cases. Reported 

performances refer to the execution of the exemplar queries on a server equipped with 

Intel
®
 Xeon

®
  Processor with CPU E5-2650 at 2.00 GHz, six cores, RAM of 128 GB 

and hard disk of 4x2 TB. 

3.2.1 Example 1: Combining multiple replicate samples in different data formats 

“For all antibody targets of the K562 chronic myelogenous leukemia cell line in 

ENCODE, merge broad and narrow peaks in ChIP-seq replicate samples and 

calculate the average enrichment (signal) for each obtained peak.” 

  

HM_TF_rep_broad = SELECT(dataType == 'ChipSeq' AND view == 'Peaks' AND  

setType == 'exp' AND cell == 'K562') HG19_ENCODE_BROAD; 

HM_TF_rep_narrow = SELECT(dataType == 'ChipSeq' AND view == 'Peaks' AND 

setType == 'exp' AND cell == 'K562') HG19_ENCODE_NARROW; 

HM_TF_rep = UNION HM_TF_rep_broad HM_TF_rep_narrow; 

HM_TF = COVER(1, ANY; GROUP BY cell, antibody_target; AVG(signal)) HM_TF_rep; 

MATERIALIZE HM_TF; 

 

Considering NGS experimental variability, replicates are usually performed and have 

to be taken into account in result evaluation, which can be done in multiple ways with 
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different stringency. Thanks to the use of GDM and GMQL, this example illustrates 

how it can be easily done even when replicate samples are in different formats. All 

ChIP-seq peak samples in BROADPEAK or NARROWPEAK format from the 

ENCODE data collection that regard the K562 chronic myelogenous leukemia cell 

line are selected and included in a single unifying dataset. Then, multiple replicate 

samples, in case existing for an antibody target of the K562 cell line, are combined in 

a single sample including the disjoined DNA regions where at least one peak in the 

replicates exists. The average enrichment of the peaks in the replicates that contribute 

to each obtained region is calculated and assigned to such region.   

When this example query was executed over the HG19_ENCODE_BROAD and 

HG19_ENCODE_NARROW datasets described in Table 1, 130 BROADPEAK and 

130 NARROWPEAK samples regarding 75 and 78 antibody targets, respectively, 

were selected, including a total of 4,566,008 and 4,426,212 peaks, respectively. After 

combining the replicates, 136 samples were obtained, containing a total of 5,121,711 

regions regarding 136 antibody targets of the K562 cell line. Processing required 5.5 

minutes.  

3.2.2 Example 2: Combining ChIP-seq and DNase-seq data in different formats and 

sources  

“Extract broad peaks of ChIP-seq transcription factor binding sites and histone 

modifications from ENCODE samples that intersect DNase-seq open chromatin 

regions from Roadmap Epigenomics in normal H1 embryonic stem cells.” 

 

CHIPSEQ = SELECT(dataType == 'ChipSeq' AND view == 'Peaks' AND setType == 'exp' 

AND cell == 'H1-hESC') HG19_ENCODE_BROAD; 
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DNASESEQ = SELECT(assay == 'DNase.hotspot.broad' AND 

Standardized_Epigenome_name == 'H1 Cells') 

HG19_ROADMAP_EPIGENOMICS_BED; 

DNASESEQ1 = COVER(1, ANY) DNASESEQ; 

CHIPSEQ_IN_DNASESEQ = JOIN(distance < 0, project_right_distinct) DNASESEQ1 

CHIPSEQ; 

MATERIALIZE CHIPSEQ_IN_DNASESEQ; 

 

Combining data available, but in different formats and sources, this example shows 

how to improve the quality of ChiP-seq called peaks by filtering out those peaks that 

are not in open chromatin regions, where only they can be present biologically. For 

the same tissue, available ChIP-seq broad peaks from the ENCODE data collection, 

and DNase-seq open chromatin regions from the Roadmap Epigenomics Project, are 

selected. Multiple DNase-seq replicate samples in case existing are first combined in 

a single sample including all identified open chromatin regions, which are then joined 

with ChIP-seq peaks; only the peaks that at least partially overlap any of these regions 

are finally extracted. The join is performed for each of the selected ChIP-seq samples 

individually, so that each resulting sample is a selected ENCODE ChIP-seq sample, 

but including only the peaks that intersect open chromatin regions.  

By executing this GMQL example query, whose HG19_ENCODE_BROAD and 

HG19_ROADMAP_EPIGENOMICS_BED input datasets are described in Table 1, 

90 ChiP-seq samples regarding 54 antibody targets and 1 DNase-seq sample where 

initially selected, including a total of 3,071,136 peaks and 412,042 regions, 

respectively. ChiP-seq called peaks finally obtained were 2,097,289 in total, regarding 

54 different antibody targets. Processing was performed in 4.5 minutes. 
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3.2.3 Example 3: Combining heterogeneous omics data of patients  

“In TCGA data of breast cancer patients, find the DNA somatic mutations within the 

first 2000 bp
10

 outside of the genes that are expressed and methylated in at least one 

of these patients, and extract the top five patients with the highest number of such 

mutations and their somatic mutations.”  

EXPRESSED_GENE = SELECT(dataType == ‘rnaseqv2’ AND tumor_tag == 'brca') 

HG19_TCGA_RnaSeqV2_Gene; 

METHYLATION = SELECT(dataType == ‘dnamethylation’ AND tumor_tag == 'brca') 

HG19_TCGA_Dnamethylation; 

MUTATION = SELECT(data_type == ‘dnaseq’ AND tumor_tag == 'brca') 

HG19_TCGA_DnaSeq;  

GENE_METHYL = JOIN(left->bcr_sample_barcode == right->bcr_sample_barcode, 

distance < 0, project_left_distinct) EXPRESSED_GENE METHYLATION; 

GENE_METHYL1 = COVER(1, ANY) GENE_METHYL; 

MUTATION_GENE = JOIN(DISTANCE < 2000 AND DISTANCE > 0, left) MUTATION 

GENE_METHYL1; 

MUTATION_GENE_count = AGGREGATE(mutation_count AS COUNT) 

MUTATION_GENE; 

MUTATION_GENE_top = ORDER(DESC mutation_count; TOP 5) 

MUTATION_GENE_count; 

MATERIALIZE MUTATION_GENE_top; 

                                                 

10
 Distances along the DNA are measured in base pairs (bp), i.e., number of nucleotides (or 

bases) present between two points of the DNA.    
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Comprehensively considering genomic, epigenomic and transcriptomic data of cancer 

patients can provide a better view of the patients’ complex biomolecular system, 

which may lead to interesting findings. Leveraging on GDM and GMQL, this 

example presents how to do it focusing on expressed genes, DNA methylations 

(which generally repress gene expression) and the DNA somatic mutations close to 

methylated expressed genes. From the TCGA data collection, first all expressed gene, 

DNA methylation and DNA somatic mutation data of patients affected by breast 

cancer are selected. Then, by joining these heterogeneous data, the expressed genes 

with at least a DNA methylation are identified, and the DNA somatic mutations close 

to these genes are extracted. 

The execution of this GMQL example query, over the 

HG19_TCGA_RnaSeqV2_Gene, HG19_TCGA_Dnamethylation and 

HG19_TCGA_DnaSeq datasets described in Table 1, initially selected 1,218 samples 

of gene expression data, 11 of DNA methylation data, and 993 of DNA somatic 

mutations of TCGA breast cancer patients, containing a total of 24,986,052 expressed 

genes, 4,024,460 methylation sites, and 90,490 DNA mutations, respectively. The 

combination (through a GMQL join operation) of each patient’s gene expression and 

DNA methylation data, modelled with GDM, identified 10 breast cancer patients 

presenting methylated expressed genes, with an average of 11,481 of such genes for 

each identified patient; these patients presented an average age at diagnosis of 57.80, 

an average percent stromal cells of 13.90 %, an average percent tumor nuclei of 69.0 

%, and an average tumor necrosis percent of 0.11 %, versus the average of 58.0, 

22.42 %, 72.34 %, and 6.62 %, respectively, of all the initially considered patients 

with expressed gene data, based on the patients’ clinical data reported in the available 
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sample metadata managed by GDM. Then, the query takes into account all and only 

the expressed genes methylated in at least one of the considered patients and, for each 

TCGA breast cancer patient with DNA somatic mutation data, extracts the mutations 

occurring within the first 2,000 bp outside of these genes (801 patients were found 

with such mutations). Finally, these mutations in each patient are count (their average 

number per patient was 5.5) and the top 5 patients with the highest number of such 

mutations are selected.  

Thanks to the unique and innovative seamless management provided by GDM, the 

MUTATION_GENE_top result dataset includes both genomic somatic mutations and 

clinical metadata of the finally selected patients. The former ones indicate interesting 

mutations that could be associated with breast cancer (which can be further inspected 

using viewers, e.g., genome browsers [22]); the latter ones allow tracking the 

provenance of resulting samples and ease the biomedical interpretation of the results. 

This association between processed genomic data and their biological/clinical 

metadata is not supported by any other system currently available, and represents one 

of the new relevant aspects of GDM and GMQL. Table 2 reports an excerpt of the six 

most relevant metadata attributes and of their values associated with the five finally 

selected patients: the patient’s mutation count and order within the patients with the 

highest number of mutations, the age of the patient at her breast cancer diagnosis, and 

the percentage of stromal cells and tumor nuclei in the evaluated patient’s histological 

sample. 
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Table 2  

Metadata excerpt of the five patients finally selected in Example 3. 

patient 

id 

mutation 

count 
order 

age at 

diagnosis 

percent 

stromal 

cells 

percent 

tumor 

nuclei 

tumor 

necrosis 

percent 

a046 210 1 68 10 80 0 

a23h 199 2 90 25 85 0 

a0a6 150 3 64 24 75 20 

a18g 89 4 81 5 90 0 

a0t5 75 5 39 25 75 0 

 

4. Discussion and conclusions  

New biotechnologies are increasingly providing high amounts of reliable data 

describing a growing number of different biomolecular aspects characterizing the 

cellular status and activity of an individual. Comprehensive processing of these 

valuable data can provide biological system views which are paving the way to 

personalized and precision medicine. Yet, the amount and high heterogeneity of these 

data, and of the formats in which they are produced, hamper their effective use. 

Furthermore, their complexity is manifesting itself also in the heterogeneity and large 

number of underlying samples, conditions, etc. that these data represent. GDM 

provides interoperability across tens of processed data formats, while GMQL supports 

their high-level query processing. Hundreds of datasets and thousands of samples of 

heterogeneous processed data, as those provided by large consortia such as ENCODE, 

Roadmap Epigenomics or TCGA, can be made interoperable and comprehensively 

evaluated thanks to GDM and GMQL. 

The far majority of genomic data are available in tab-delimited ASCII text formats 

or in their serialized binary version. The defined GDM, XML description of the data 
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and associated software loaders support seamless data interoperability and integration. 

In particular, the GDM provides a unifying modelling and mapping of the many and 

heterogeneous genomic data and formats; the XML description of the data allows 

changing data attribute names to uniform them in different GDM datasets when they 

represent the same data, while the associated software loaders allow to add necessary 

data attributes and to convert data attribute content when required (e.g., region 

coordinates from 1-based to 0-based system if needed, or feature attributes to make 

them comparable to equivalent attributes with the same name in other GDM datasets).  

Data mapping and conversion/normalization at data usage time allows not 

interfering with the data stored in their original format, thus preserving their 

availability and usability for the plethora of tools currently used by biologists and 

bioinformaticians; yet, it can slow the usage/reading time of such data which are 

usually big. When an integrative repository is built for the management and querying 

of these data through GMQL, as we did, data conversion/normalization can be 

performed while integrating the data in the repository, through classic extraction, 

transformation and loading (ETL) operations typically performed in data warehouse 

construction [23]. 

As shown with the examples in Section 2.4, GDM provides interoperability across 

tens of processed data formats; thousands or even millions of processed experimental 

samples, which are becoming available [24], can be modeled and managed through 

the GDM. We consider the GDM a paradigm shift, because a single model describes, 

through simple concepts, all types of (epi)genomic feature data (binding peaks, 

histone modifications, methylations, expressions, mutations, DNA sequences, loops, 

break points, etc.) and allows the seamless integration of heterogeneous genomic, 

epigenomic, transcriptomic and gene activity regulation data.  
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At http://www.bioinformatics.deib.polimi.it/GMQL/queries/ the power of GDM 

and GMQL can be tested through a set of predefined GMQL queries on ENCODE 

and Roadmap Epigenomics data modeled with GDM; query results can be 

automatically shown on the Integrated Genome Browser [22], and can be downloaded 

to be post-processed with data analysis tools (e.g., supporting data mining or machine 

learning algorithms) and visualized, e.g., through heat maps.  

Both GDM and GMQL are part of our genomic computing new holistic approach to 

genomic big data modeling and querying 

(http://www.bioinformatics.deib.polimi.it/genomic_computing/), which was recently 

awarded an ERC Advanced Grant (Data-Driven Genomic Computing - GeCo, 2016-

2021). Our current work is along three dimensions: i) From a technological point of 

view, we are completing our third implementation of GMQL version 2.0, each 

supported by a different execution engine (Apache Flink, Apache Spark, and 

SciDB
11

); the Apache Spark implementation of the system was installed at CINECA, 

an interuniversity consortium within Italy, and can be freely used at 

http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/. ii) From the data 

integration point of view, we are currently working on improving metadata 

interoperability across datasets provided by international consortia, starting with 

ENCODE [25] and TCGA [26]. In particular, for what concerns ENCODE, we 

developed a method for matching metadata entries (both attribute names and values) 

to the well-established Unified Medical Language System (UMLS) ontologies [25]; 

we plan to generalize the method and apply it across various data collections. iii) For 

what concerns biological research, we are currently integrating data about the 

                                                 

11
 http://www.scidb.org/ 

http://www.bioinformatics.deib.polimi.it/GMQL/queries/
http://www.bioinformatics.deib.polimi.it/genomic_computing/
http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/
http://www.scidb.org/
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tridimensional structure of the genome [27], mapped to GDM, and investigating, by 

using public TCGA datasets modeled and made interoperable through GDM, the 

relationships between the disruption of the boundaries of genomic topologically 

associating domains (TADs) and various types of cancer, along the direction of [28]. 
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