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This work investigates a Hamiltonian structure-preserving control that uses the acceleration of solar radiation

pressure for the stabilization of unstable periodic orbits in the circular restricted three-body problem. This control

aims to stabilize the libration-point orbits in the sense of Lyapunov by achieving simple stability. It also preserves the

Hamiltonian nature of the controlled system. The Hamiltonian structure-preserving control is then extended to a

general case in which complex and conjugate eigenvalues occur at high-amplitude orbits. High-amplitude orbits are

currently of interest to the European Space Agency for future libration-point orbit missions because they require a

lower insertionΔv compared to low-amplitude orbits. Based on the design of the feedback control, the purpose of this

work is to verify when the use of solar radiation pressure is feasible and to determine the structural requirements and

the spacecraft’s pointing accuracy.

Nomenclature

A = area, m2

asx = x component of solar radiation pressure acceleration
asy = y component of solar radiation pressure acceleration
asz = z component of solar radiation pressure acceleration
ac = Hamiltonian structure-preserving control accelera-

tion
as = solar radiation pressure acceleration
Df = matrix of the linearized dynamics
Dfc = matrix of the controlled linearized dynamics
G1;2;3 = control gains of the Hamiltonian structure-preserving

control law
I = identity matrix
L1;2 = libration points 1 and 2
M = monodromy matrix
N̂ = unitary vector normal to the reflective area
r = spacecraft vector position in the rotating system
rEarth−p = spacecraft–Earth distance in the rotating system
rSun−p = spacecraft–sun distance in the rotating system
_r = spacecraft vector velocity in the rotating system
T = Hamiltonian structure-preserving control matrix
T = orbital period
t = actual integration time
t0 = initial time
uk = normalized control eigenvectors
uk ⋅ uTk = projection tensor
V = total potential
Vrr = double derivatives of the total potential
Vx = x component of total potential
Vy = y component of total potential
Vz = z component of total potential
Vc
rr = double derivatives of the controlled total potential

X = spacecraft state vector in the rotating system
x = x component of the spacecraft position in the rotating

system
x̂k = eigenvectors of the linearized equations of motion

_x = x component of the spacecraft velocity in the rotating
system

y = y component of the spacecraft position in the rotating
system

_y = y component of the spacecraft velocity in the rotating
system

z = z component of the spacecraft position in the rotating
system

_z = z component of the spacecraft velocity in the rotating
system

α = reflective area’s in-plane angle, deg
β = lightness parameter
Δv = variation in the spacecraft velocity
δ = reflective area’s out-of-plane angle, deg
δr = position error between the actual spacecraft position

and the target orbit
δ _r = velocity error between the actual spacecraft position

and the target orbit
λk = eigenvalues of the linearized equations of motion
μ = mass parameter of the system
μEarth = mass parameter of the Earth
μSun = mass parameter of the sun
Φ = state transition matrix
Φ = spacecraft–sun vector’s in-plane angle, deg
Ψ = spacecraft–sun vector’s out-of-plane angle, deg

I. Introduction

I N CELESTIAL mechanics, the motion of a spacecraft under themutual gravitational influence of the sun and the Earth�moon is
known as the restricted three-body problem. In this problem, five
equilibrium solutions of the equations of motion can be found.
These equilibrium points, known as libration points, are defined
with respect to the coordinate system rotating with the sun–
(Earth�moon) [1,2]. Currently, the libration points selected for
space applications are the collinear points that are aligned with the
sun–(Earth�moon). In particular,L1 is located between the sun and
theEarth�moon andL2, where the Earth is located between the sun
andL2. Spacecraft are usually placed in libration-point orbits (LPOs)
that are in the vicinity of the equilibrium points L1;2 rather than at the
equilibrium points because of the large Δv required to position a
spacecraft at L1;2. Moreover, the Earth–spacecraft communication
link is complicated by the sun–Earth and L1 alignment. Libration-
point orbits are periodic or quasi-periodic orbits that are relatively
inexpensive to reach via a direct launch from Earth. Orbits aroundL1
are usually preferred platformswhen studying the sun,whereas orbits
near L2 are selected for deep-space observations [3].
In 1968, Farquhar proposed to exploit LPOs around the

Lagrangian points of the Earth–moon system as a communication

Received 4 May 2016; revision received 11 November 2016; accepted for
publication 15 December 2016; published online XX epubMonth XXXX.
Copyright © 2016 by S. Soldini et al. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. All requests for copying
and permission to reprint should be submitted to CCC atwww.copyright.com;
employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your
request. See also AIAA Rights and Permissions www.aiaa.org/randp.
*Ph.D. Candidate, FEE/Astronautics Research Group; s.soldini@soton.

ac.uk.
†Lecturer, FEE/Astronautics2 Research Group; c.colombo@soton.ac.uk.
‡Associate Professor, FEE/Astronautics Research Group; sjiw@soton.

ac.uk.

1

3

4

5

6

7

1

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. , No. ,



relay on the far side of themoon [4]. The interest of the space agencies
in LPOs started after the success of the ISEE-3 mission. There are
numerous examples of LPO missions founded by the various space
agencies. SOHO currently studies the sun’s outer corona [5], and the
Herschel mission was designed to investigate the formation of
galaxies [6]. The European Space Agency (ESA) succeeded in
launching theGaia space telescope in 2013 [7],whereasNASA/ESA/
CSA’s James Webb Space Telescope will provide astronomical
measurements to understand the formation of our universe. A
concurrent mission by ESA, called Euclid, will map the geometry of
the dark universe [8].
Distant prograde orbits (DPOs) are, instead, planar periodic orbits

around the Earth in the sun–Earth system, which are also known as
family g [9]. DPOs are unstable but can be exploited to perform
orbital transfer within the sun–Earth system. They have been used by
various missions, such as NASA’sWind mission, to transfer between
LPOs around L1 and L2, showing that transfer composed by DPO
arcs requires a low transferΔv [10]. Lara and Russell [11] suggested
the use of distant orbits around the smaller body for studying the
planetary satellites of a general system: for example, to study an
asteroid in a sun–asteroid system [12] or moons in a planet–moon
system. The advantage of distant orbits is the possibility to make
observations of the smaller body without interacting with its highly
perturbed environment. Note that, althoughDPOs can be either stable
or unstable for the sun–(Earth�moon) system, they are always
unstable in the case of Deimos (i.e., the Mars–Deimos system) [13].
This evidences the importance of performing station keeping for
spacecraft in DPOs for a general mission scenario.
However, a spacecraft placed at LPOs and DPOs will naturally

move away from the nominal trajectory because of small
perturbations. Such natural perturbations cause instabilities to LPOs
and DPOs; therefore, yearly station-keeping maneuvers are required
to counteract their effects [14]. This paper investigates a Hamiltonian
structure-preserving (HSP) propellant-free control that exploits the
natural perturbed environment of the restricted three-body problem.
When looking at the sun–Earth system, one of the major
perturbations after the gravitational effects is the solar radiation
pressure (SRP). A recent idea was to design control strategies based
on the exploitation of SRP to allow a significant reduction in the
amount of the required onboard propellant. The SRP acceleration
magnitude is a function of the spacecraft’s area-to-mass ratio, the
spacecraft’s orientation angles, and the material reflectivity
properties. Thus, reflective deployable structures can potentially
control the spacecraft through SRP acceleration to perform station
keeping. Indeed, the first concept of SRP stabilization was proposed
for attitude control in 1959 [15], and geosynchronous satellites such
as OTS, TELECOM 1, and INMARSAT 2 have successfully
implemented control strategies based on SRP. For attitude control, an
asymmetrical offset of solar array wings from the nominal sun-
pointing orientation can be maintained to generate the “windmill”
torques [15].
In the framework of control theory for LPOs, the existing control

strategies are distinguished between linear and nonlinear controllers,
where some of them have also been extended to SRP applications.
Among the nonlinear controls, Xin et al. [16] developed a suboptimal
control known as the θ-D technique, which established the control
stability by using Lyapunov theory. Shahid andKumar [17] proposed
a sliding-mode control for formation flight, enhanced by SRP, where
both the orientation angle and the area were control parameters.
Gómez et al. [18,19] used the invariant manifold theory by exploiting
the Floquet modes to design the control law. Howell and Pernicka
[20] developed the target point technique where, as for the FM
approach, ΔV is computed to keep the spacecraft near the nominal
trajectory. Both the techniques were compared by Keeter [21] and
then extended to SRP applications by McInnes [22] for the target
point method and by Farrés and Jorba [23–24], CeriottaandFarrés
[25], and Farrés and Jorba[26] for the Floquet mode method. In both
cases, the only control parameter was the sail orientation angle,
whereas the area was kept constant. Scheeres et al. [27] proposed a
HSP control that stabilized the system in the sense of Lyapunov and
applied it with low-thrust propulsion in formation-flight applications.

Scheeres et al.’s control lawwas then extended byXu andXu [28] for
SRP applications where both the area and the in-plane orientation
angle were included as control parameters. Finally, the linear
quadratic regulator technique in solar sail applications was first
developed by Bookless and McInnes [29] and then by Ceriotti and
Farrés [25] where, in both cases, the sail’s area and orientation angles
were the control parameters.
In this paper, the aim is to exploit the invariant manifold theory to

select and design a control law compatible with SRP propulsion for
spacecraft in high-amplitude DPOs. Thus, the HSP is then selected as
a candidate for SRP propulsion because it has been shown to work
with nonlinearities. The HSP control law proposed by Scheeres et al.
[27] works in the case of low-amplitudes orbits, whereas it fails to
control spacecraft placed in high-amplitude DPOs. This behavior is
due to the fact that, when studying the Lyapunov stability, the further
the spacecraft is away from the equilibrium point, the more the
stability along the orbit changes. In this particular case, aHSP control
law based on the work of Scheeres et al. [27] and Xu and Xu [28] is
proposed, but it is extended to a general case, in which complex and
conjugate eigenvalues (i.e., stable–unstable foci) occur. Note that the
orbit’s amplitude in the y axis Ay is the important parameter that
determines the occurrence of complex and conjugate eigen-
value pairs.
Once the HSP control acceleration is generalized independently to

the size of the periodic orbit’s amplitude, it is then investigated if this
required control acceleration can be achieved by actuators on board
the spacecraft that control the effect of SRP. These actuators could
control the reflectivity of the spacecraft, the reflective area
illuminated by the sun, or by changing the spacecraft orientation.
Finally, the HSP control law designed for high-amplitude DPOs is
then tested for harnessing SRP.
This paper is organized as follows: Sec. II presents the equations of

motion, whereas in Sec. III, the HSP control law is shown for low-
amplitude orbits and is extended to high-amplitude orbits. Then, the
conditions for the gains selection is demonstrated in Sec. IV. The SRP
actuator model is shown in Sec. V, whereas a note on the Lyapunov
stability is presented in Sec. VI. Finally, the HSP control is applied to
SRP propulsion for LPOs (i.e, SOHOmission) andDPOs (i.e, family
a and family g) missions, as shown in Sec. VII.

II. Dynamical Model

The spacecraft’s dynamics is described by the circular restricted
three-body problem under the influence of solar radiation pressure.
The equations of motion arewritten with respect to the rotating frame
in dimensionless coordinates and units:

8<
:
�x − 2ω0 _y � Vx � asx
�y� 2ω0 _x � Vy � asy
�z � Vz � asz

(1)

where x, y, z and _x, _y, _z are, respectively, the spacecraft positions and
velocities in the rotating frame. The spacecraft’s mass is assumed to
be infinitesimal with respect to the sun–(Earth�moon) masses.
Both the sun and the Earth�moon are assumed to be point masses,
and their motion is described by a circular orbit around their center of
mass. In Eq. (1), V is the total potential:

V � 1
2
�x2 � y2� � μSun

rSun−p
� μEarth

rEarth−p
(2)

which includes the potential effects of the rotating system (first term
in the right-hand side) and the sun and the Earth�moon gravitation
with normalized angular velocityω0, which is equal to one.When the
effect of the sun radiation is included, the SRP acts as a repulsive
force with respect to the sun’s gravitational force [1,30]. In Eq. (1),
asx, asy, and asz represent the SRP acceleration components of as,
which is defined as follows [23]:
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as � β
μSun
r2Sun−p

⋅
�
rSun−p
jrSun−pj

; N̂

�
2

⋅ N̂

N̂ �

8>><
>>:
cos�Φ� α� ⋅ cos�Ψ� δ�
sin�Φ� α� ⋅ cos�Ψ� δ�

sin�Ψ� δ�

9>>=
>>; (3)

where β is the lightness parameter that assumes values from zero (no
SRP effect) to one (SRP force is equal to the sun gravitational force§).
The lightness parameter, β � σ�∕σ, is a function of the mass-to-area
ratio σ and the sun luminosity of σ� � 1.53 g∕m2 [31].
The lightness parameter is a function of the reflectivity coefficient

cR and the area-to-mass ratio through the following:

β � Psrp−1AU
r2Earth−Sun
μSun

A

m
cR (4)

where Psrp−1AU is the solar pressure at 1 AU.
Figure 1 shows N̂, which is the normal to the reflective surface,

where the angles Φ and Ψ describe the spacecraft–sun vector with
respect to the rotating system {x, y, z}. Instead, α and δ are the angles
between the spacecraft–sunvector and N̂ projected to the x − y plane
and y − z plane, respectively, and they can assume values between
−π∕2 and π∕2 [23,32].
In Eqs. (2–3), rSun−p and rEarth−p are defined such that

rSun−p �
��������������������������������������������
�x − xSun�2 � y2 � z2

q
rEarth−p �

�����������������������������������������������
�x − xEarth�2 � y2 � z2

q
(5)

where xSun � −μ is the position of the larger primary (i.e., sun) and
xEarth � 1 − μ is the position of the smaller primary (i.e.,
Earth�moon); moreover, the dimensionless masses of the
primaries are defined as μEarth � μ and μSun � 1 − μ. For the
sun–(Earth�moon) model, the value of μ, which is the mass
parameter of the system, is in nondimensional units [33].
Equation (1) refers to the general case; however, for a planar case,

only the first two equations inEq. (1) hold and their dependence to the
z components is cancelled. If the SRP is not included in the model,
then the dependence to asx, asy, and asz is cancelled too. Finally,
there are special cases in which the SRP is included in the system, but

its effect is zero and it occurs when rSun−p∕jrSun−pj and N̂ are
perpendicular vectors: in other words, when α or δ are equal to�π∕2.

III. Design of Control Law that Preserves the
Hamiltonian Structure of the System

The Hamiltonian structure-preserving control uses the eigen-
structure of the linearized equations of motion, evaluated along the
orbit, to design a control law that ensures Lyapunov stability [34]. As
shown by Scheeres et al. [27], this controller aims to compensate the
stable and unstable components of the system by projecting the state
position error (between the current and the target orbit) along the
eigenvectors direction. This creates an artificial center manifold that
keeps the trajectory close to the target orbit, as the eigenvalues of the
linearized dynamics are placed along the imaginary axis. Thus, the
local stability (simple Lyapunov stability of the linearized equations
of motion evaluated along the orbit) impacts onto the LPO stability
(stability at each orbital period) by affecting the eigenvalues of the
monodromy matrixM that is the state transitional matrixΦ�T; t0� of
the system evaluated after one orbital period T, where t0 is the initial
time. For Lyapunov stability, the controller should place the
eigenvalues ofM on the unitary circle of the complex plane [35]; see
Fig. 2. Thanks to the effect of the control, matrixM is still symplectic
becauseMTΩM � Ω with

Ω �
�
0 I

−I 0

�

but the existence of a Jacobi integral is no longer guaranteed because
the central two real solutions equal to one are removed.Moreover, the
fact that themonodromymatrix is symplectic also guarantees that the
system is still autonomous and Hamiltonian [27]. Note that the effect
of the control does not preserve the Hamiltonian of the original
dynamical system; however, after the effect of the control law, the
controlled system has a new Hamiltonian structure. Scheeres
demonstrated that the study of local stability is connected to the
periodic orbit stability. This will be summarized in the following
because it is useful to introduce the extension of the controller
proposed in this work. At first, the equations of motion are linearized
around the equilibrium point. The variational equations of Eq. (1)
are [30]

d

dt

�
δr
δ _r

�
�
�

0 I
Vrr 2ω0J

��
δr
δ _r

�
; where J �

�
0 1

−1 0

�
(6)

Vrr is the Hessian matrix of the potential acceleration in Eq. (2),
and 2ω0J is the term associated to the Coriolis acceleration. In
Eq. (6), δr and δ_r are the state position and velocity errors,
respectively. The eigenvalues of the linearized dynamics evaluated
along the LPO are the solutions of the characteristic equation
D�λ� � jDf − λIj � 0, where the characteristic polynomial is

Λ2 � bΛ� c � 0 where

8<
:
b � 4ω20 − Vxx − Vyy

c � VxxVyy − V2xy
Δ � b2 − 4c

(7)

As exploited by Scheeres, the solutions of Eq. (7) are affected by
the sign of Δ. When Δ > 0, the system admits two real and unequal
roots, whereas when Δ < 0, there are two complex and conjugate

Fig. 1 Definitions15 of α, Ψ, δ, andΦ angles.

Fig. 2 Eigenvalues of the monodromy matrix with (filled crosses) and
without (empty crosses) the effect of the HSP controller.§β � 1 is just a theoretical value; it is not achievable for real applications.
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solutions. The change in the eigenvalues stability is evident for high-
amplitude orbits where it is possible to identify two cases along the
trajectory where the eigenvalues are couples of real and pure
imaginary numbers (saddle × center equilibrium; i.e., the black lines
in Figs. 3a and 3b, when b < 0, Δ > 0, and c < 0) or where the
eigenvalues are couples of complex numbers and conjugate pairs
(stable × unstable foci; i.e., the lines in Figs. 3a and 3b, when b < 0,
Δ < 0, and c < 0). For example, in the case of family g, the
appearance of foci happens above Ay � 0.02 dimensionless units.
Above Ay � 0.02, family g shows the appearance of the foci when
the upper and lower curly parts of the orbit appear.
The general solution of Eq. (7) is given by the following:

Λ1 � λ21;2 �
−b� ����

Δ
p

2
Λ2 � λ23;4 �

−b−
����
Δ

p

2
x̂k �

8>><
>>:
1

uk
λk
λk ⋅ uk

9>>=
>>;
(8)

where λk are the eigenvalues, and x̂k are their corresponding
eigenvectors for k varying from one to four. The HSP control
proposed by Scheeres et al. aims to project the state position error
along the eigenvectors direction associated to hyperbolic character-
istic exponents [27]. This is done to guarantee the simple Lyapunov
stability of the system. From a vectorial point of view, it is like
defining a projection tensor given by uku

T
k [27]. The first two

normalized components of x̂k in Eq. (8) represent the unitary vector
uk, and the expression of uk is

uk �
1�������������������

1� ukuk
p

�
1

uk

�
uk �

λ2k − Vxx

Vxy � 2ω0λk
(9)

where ukuk is the product of uk and its conjugate. Because the HSP
control aims to stabilize the system in the sense of Lyapunov, the
control law is designed to affect the sign of b, c, and Δ of Eq. (7).
Indeed, the simple Lyapunov stability can be achieved by placing the
eigenvalues of the linearized dynamics, the eigenvalues, on the
imaginary axis, as shown in Fig. 4, by adding to Vrr an artificial
potential, the center manifold T.
The artificial center manifold T is constructed from the linear

combination of the projection tensors ukuTk and the gains. This linear
combination is selected as bc, cc, and Δc, which are the indices of

stability affected by the control law, which are all greater than
zero [27]. The condition of simple Lyapunov stability is
fbc > 0 & cc > 0 & Δc > 0g, where the HSP control is added to
the dynamics in Eq. (1) as an additional control acceleration ac that
will be modeled as SRP acceleration. Thus, ac is given by the
actuatorsmodelas. Then,ac is obtained bymultiplyingT by the state
position error between the target orbit and the actual spacecraft
trajectory δr:

ac � Tδr (10)

The acceleration ac affects the linearized dynamics, andDf�X�t��
in Eq. (6) turns into Dfc�X�t��:

Dfc�X�t�� �
�

0 I
Vc
rr 2ω0J

�
(11)

The effect of the controller modifies Vrr into Vc
rr such that

Vc
rr � Vrr � T (12)

In this work, the full formulation of the proposed extended HSP
controller is derived for high-amplitude orbits. The control law
designed by Scheeres et al. [27] is used when there is, along the orbit,
a hyperbolic × center solution (Δ > 0); Scheeres et al.’s control law
is summarized in Sec. III.B. However, in the case of couples of
complex and conjugate solutions (Δ < 0), the dynamics requires a
modified control law proposed by the authors of the present work in
Sec. III.C.

A. Short-Term and Long-Term Stabilities

In this section, details are given to show the relationship between
the short-term stability (shown in Fig. 4) and the long-term stability
(shown in Fig. 2) [27]. Scheeres et al. [27] demonstrated that the
short-term stability was an approximation of the long-term stability
for a periodic linearized dynamical system:

_x � A�t�xA�t� T� � A�t�; T > 0 (13)

The stability of periodic orbit solutions (long-term stability shown
in Fig. 2) can be studied in term of the Floquetmultipliers. For a linear
periodic system, the Floquet theorem [36] states the following:
Theorem 1 (Floquet theorem): If Φ�t� is a fundamental matrix
solution of the periodic system in Eq. (13), then so is Φ�t� T�.
Moreover, there exists an invertible periodic matrix P�t� with a T
period such that

Φ�t� � P�t�eBt (14)

and B is a constant matrix.
Because Φ�t� T� � Φ�t�C with det C ≠ 0 and eB � C, the

eigenvalues ρ of C are called the characteristic multipliers of
the periodic linear system. The eigenvalues λ of B are called the
characteristic exponents of the periodic linear systemwhere ρ � eλT .

Fig. 3 Eigenvalues along the LPO, showing the hyberbolic × center solutions20 (inner arcs) and the couples of complex and conjugate solutions (outer
arcs). (Note that the Earth is not to scale.).

Fig. 4 Eigenvalues of the linearized dynamics with (filled crosses) and
without (empty crosses) the effect of the HSP controller.
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LPOs have one pair of hyperbolic characteristic exponents and two
circulation frequencies: one equal to the orbital period T, and one
slightly longer. Because of the presence of the unstable manifold,
uncontrolled relative motion to the target orbit will diverge in few
orbital periods.
To maintain a long-term trajectory close to the target orbit, the

spacecraft must be placed in the center manifold of the periodic orbit.
However, the use of natural center manifolds is restrictive due to the
unstable nature of the periodic orbit. Thus, the effect of the HSP
control given along the trajectory aims to remove the instability by
adding an artificial center manifold.
If we now focus on the short-term motion over a time much lower

than the orbital period, although the description of the relative
motion, Eq. (14) does not give a direct indication of the relative
motion over a short time period. The state transition matrix Φ
can be represented over one period as the product of mappings as
follows [27]:

Φ�t0 � T; t0� �
YN
i�1
Φ
�
t0 �

T

N
i; t0 �

T

N
�i − 1�

�
(15)

where Δt � T∕N and Φ�ti � Δt; ti� satisfies the equation:

_Φ�ti � δt; ti� � A�ti � δt�Φ�ti � δt; ti�0 ≤ δt ≤ Δt ≪ T (16)

For small Δt, the matrix A�t� can be expanded in a Taylor series.
Scheeres et al. [27] found that, for periodic orbits around the libration
point, _A�ti� does not vary strongly over the time. This means that Δt
can be chosen small enough to ensure that kA�ti�k≫ k _A�ti�Δtk.
Under this restriction, Scheeres et al. [27] found that the state
transition matrix differential equation can be approximated over
short-time intervals as follows:

Φ�ti � δt; ti� ∼ I � A�ti�δt� : : : (17)

Note that series expansion of the higher-order terms is neglected
because the time interval is chosen to be sufficiently small.
Equation (17) is commonly used in a discrete-time model, which is
the Euler model, which is a first-order numerical approximation of
the continuous-time dynamics. The relative motion can be finally
characterized over a short period of time as follows [27]:

�λI −Φ�u � 0 (18)

where λ is the eigenvalue, and u is the eigenvector. By substituting
Eqs. (17) and (18), this can be written as follows:��λ − 1�

δt
I − A�ti�

�
u � 0 (19)

For a time-invariant system, the eigenvalue of the state transition
matrix λ is equal to eγ⋅δt, and γ is the characteristic exponent of the
system. The eigenvalues of Eq. (19) can be approximated as follows:

γ ∼ lim
δt→0

λ − 1
δt

(20)

Under these approximations, the relative motion over a short time
can be understood by analyzing the eigenstructure of thematrixA�ti�.
The error induced by this approximation was investigated by
Scheeres et al. [27] and is shown to be reasonable. Scheeres et al. [27]
derived the HSP control law by using the short-term dynamics to
guide the understanding of the stability. The relativemotion along the
instantaneous unstable manifold is seen as a precursor to the motion
along the unstablemanifold of the full orbit, as defined by the Floquet
theory. Note that the full orbit may still be unstable even if the
instantaneous map is stable at each time step.
As previously said, the stabilization of the relative motion over a

short time is a necessary but not sufficient condition to ensure that the
motion of the spacecraft will be stable over a long time span. The

conditions to reach the stability were presented by Scheeres et al.
[27]. The stability of the system can, however, be evaluated by
application of the Floquet theory and numerical integration.
The stability is evaluated as follows. The periodic orbit and its

associated state transition matrix modified by adding the effect of the
control is numerically integrated over one period of motion. At each
time step, we compute the linear equations as follows:

δ _X�t� � Ac�X�t��δX�t� (21)

where Ac�X�t�� is defined as in Eq. (11) and is the time-varying
matrix used in the state transition matrix computation. The resulting
state transition matrix is denoted as Φc�t0 � t; t0�, and the
monodromy matrix evaluated over one period of motion is
Φc�t0 � T; t0�. The stability of the closed-loop system can be
evaluated by computing the eigenvalues μ (the monodromy matrix)
as follows:

jμI −Φc�t0 � T; t0�j � 0 (22)

As is well known, these eigenvalues must occur in complex and
conjugate pairs, as well as in inverse pairs. Stability of this system
occurs when all eigenvalues have a unit magnitude that corresponds
to the unit circle in the complex plane and have the form μ � e�iθ, as
shown in Fig. 2.

B. Control Law for LocalHyperbolic ×Center Equilibrium

In this section, the control law proposed by Scheeres et al. [27]
is summarized because this control law is used in case of local
hyperbolic × center equilibrium (i.e., low-amplitude orbits);
see Fig. 5.
Moreover, it is useful to compare this formulation with the

proposed control law for complex and conjugate roots (in Sec. III.C)
in order to understand the main differences. The hyperbolic
characteristic exponents for the stable λ1 and unstable λ2 directions
are the solutions of the linearized dynamics in Eq. (8) where, now, the
real roots λ1;2 are named as�σ. The corresponding eigenvector to σ is

u1 �
1��������������
1� u21

p
"
1

u1

#
u1 �

σ2 − Vxx

Vxy � 2ω0σ

u1u
T
1 �

1

1� u21

"
1 u1

u1 u21

#
(23)

where u1 is real, and such that the projection tensor u1uT1 is real. The
corresponding eigenvector to −σ is instead

u2 �
1��������������
1� u22

p
"
1

u2

#
u2 �

σ2 − Vxx

Vxy − 2ω0σ

u2u
T
2 �

1

1� u22

"
1 u2

u2 u22

#
(24)

whereu2 is real and the projection tensoru2uT2 is real. The control law
proposed by Scheeres et al. [27] is then

Fig. 5 Couples of real and pure imaginary eigenvalues of the linearized
equations: λ1 (rightmost cross), λ2 (leftmost cross), λ3 (top cross), and λ4
(bottom cross).
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ac � −σ2G1�u1uT1 � u2u
T
2 	δr (25)

As said, the validity of the control law in Eq. (25) is for solutions
where the instantaneous stability map has two couples of real and
pure imaginary eigenvalues. This is the case for low-amplitude LPOs.

C. Control Law for Complex and Conjugate Pairs

When couples of complex and conjugate numbers occur, as in the
case of high-amplitude orbits, the eigenvalues are the solution of the
linear system in Eq. (8) where, now, λ1;2;3;4 are complex and
conjugate pairs; thus, now, λ1;2 and λ3;4 are��σ � γi� and��σ − γi�,
respectively, as shown in Fig. 6. The idea proposed here for the design
of the extended control law is to get rid of the imaginary components
in order to have a real control acceleration. Thus, the eigenvector
components are separately analyzed in order to highlight possible
conjugate terms for the design of the eigenvectors normalization and
the control acceleration. Starting from λ1 � σ � γi, its correspondent
eigenvector component u1 is

u1 �
σ2 − Vxx − γ2 � 2σγi
Vxy � 2ω0σ � 2ω0γi

� A1 � B1i

C1 �D1i
(26)

that, after mathematical manipulation, can be written as follows:

u1 �
�A1C1 � B1D1� − �A1D1 − B1C1�i

C21 �D21

8>><
>>:
A1 � σ2 − Vxx − γ2

B1 � 2σγ
C1 � Vxy � 2ω0σ
D1 � 2ω0γ

(27)

The same approach can be used for λ2 � −σ − γi, where the
correspondent eigenvector component is defined as

u2 �
σ2 − Vxx − γ2 � 2σγi
Vxy − 2ω0σ − 2ω0γi

� A2 � B2i

C2 − D2i
(28)

Thus, it is possible to highlight the real and imaginary parts ofu2 as

u2 �
�A2C2 − B2D2� � �A2D2 � B2C2�i

C22 �D22

8>><
>>:
A2 � σ2 − Vxx − γ2

B2 � 2σγ
C2 � Vxy − 2ω0σ
D2 � 2ω0γ

(29)

As before, the correspondent eigenvector component u3 to
λ3 � σ − γi is

u3 �
σ2 − Vxx − γ2 − 2σγi
Vxy � 2ω0σ − 2ω0γi

� A3 − B3i

C3 − D3i
(30)

and, by manipulating the previous expression, it is possible to write

u3 �
�A3C3 � B3D3� � �A3D3 − B3C3�i

C22 �D22

8>><
>>:
A3 � σ2 − Vxx − γ2

B3 � 2σγ
C3 � Vxy � 2ω0σ
D3 � 2ω0γ

(31)

Finally, in the case of λ4 � −σ � γi, the correspondent
eigenvector component is u4:

u4 �
σ2 − Vxx − γ2 − 2σγi
Vxy − 2ω0σ � 2ω0γi

� A4 − B4i

C4 �D4i
(32)

and it can be defined as

u4 �
�A4C4 − B4D4� − �A4D4 � B4C4�i

C24 �D24

8>><
>>:
A4 � σ2 − Vxx − γ2

B4 � 2σγ
C4 � Vxy − 2ω0σ
D4 � 2ω0γ

(33)

By noticing that

8>>>><
>>>>:

A1 � A2 � A3 � A4 � A � σ2 − Vxx − γ2

B1 � B2 � B3 � B4 � B � 2σγ
C1 � C3 � C � Vxy � 2ω0σ
C2 � C4 � C � Vxy − 2ω0σ
D1 � D2 � D3 � D4 � D � 2ω0γ

(34)

it is possible to rewrite the expression of uk, with k defined from one
to four, as follows:

u1 �
�AC�BD�− �AD−BC�i

C2�D2
u2 �

�AC−BD�� �AD�BC�i
C2�D2

(35)

u3 �
�AC�BD�� �AD−BC�i

C2�D2
u4 �

�AC−BD�− �AD�BC�i
C2�D2

(36)

So, u1 and u3 are complex and conjugate, and u2 and u4 are
complex and conjugate as well. Moreover, if a change of variables is
applied,

8>>>>>><
>>>>>>:

a� � AC� BD
b� � AD − BC
c� � C2 �D2

d� � AC − BD
e� � AD� BC
f� � C2 �D2

(37)

it is possible to define the eigenvectors and their normalizations by
knowing that u3 is the conjugate of u1 and u4 is the conjugate of u2:

u1 �
1�������������������

1� u1u3
p

�
1

u1

�
u1 �

a� − b�i
c�

(38)

u3 �
1�������������������

1� u1u3
p

�
1

u3

�
u3 �

a� � b�i
c�

(39)

u2 �
1�������������������

1� u2u4
p

�
1

u2

�
u2 �

d� � e�i
f�

(40)

u4 �
1�������������������

1� u2u4
p

�
1

u4

�
u4 �

d� − e�i
f�

(41)
Fig. 6 Couples of complex and conjugate eigenvalues of the linearized
equations: λ1 (upper-right cross), λ2 (lower-left cross), λ3 (lower-right
cross), and λ4 (upper-left cross).
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where a�, b�, c�, d�, e�, and f� are functions of the eigenvalues
and Vrr:8>>>>>>>>>><

>>>>>>>>>>:

a� � �σ2 − Vxx − γ2��Vxy � 2ω0σ� � �2σγ��2ω0γ�
b� � �σ2 − Vxx − γ2��2ω0γ� − �2σγ��Vxy � 2ω0σ�
c� � �Vxy � 2ω0σ�2 � �2ω0γ�2
d� � �σ2 − Vxx − γ2��Vxy − 2ω0σ� − �2σγ��2ω0γ�
e� � �σ2 − Vxx − γ2��2ω0γ� � �2σγ��Vxy − 2ω0σ�
f� � �Vxy − 2ω0σ�2 � �2ω0γ�2

(42)

Because u1 and u3 are complex and conjugate and u2 and u4 are
complex and conjugate, we can write a new control law for high-
amplitude orbits as follows. From the normalization, we know that

u1u3 � �a� − b�i� ⋅ �a� � b�i� � a2� � b2� (43)

and

u2u4 � �d� � e�i� ⋅ �d� − e�i� � d2� � e2� (44)

The four projection tensors are now defined as follows:

u1u
T
1 �

1

1� u1u3

�
1 u1

u1 u21

�
; u3u

T
3 �

1

1� u1u3

�
1 u3

u3 u23

�
(45)

u2u
T
2 �

1

1� u2u4

�
1 u2

u2 u22

�
; and u4u

T
4 �

1

1� u2u4

�
1 u4

u4 u24

�
(46)

It is interesting to note that the only linear combination among the
projection tensors that guarantees a real control law requires the
couples of the projection tensors to be weighted with the same gain.
This can be demonstrated by looking at uk and uk in Eqs. (38–41).
The only solution is to keep the tensors associated to u1 and u3 with
the same gain such that

u1u
T
1 � u3u

T
3 �

1

1� u1u3

�
1 u1 � u3

u1 � u3 u21 � u23

�
(47)

u1 � u3 � a� − b�i� a� � b�i � 2a� (48)

and

u21 � u23 � �a� − b�i�2 � �a� � b�i�2 � 2�a2� − b2�� (49)

are all real. For the same reason, the tensors associated to u2 and u4
should be weighted with the same gain to achieve a real control
acceleration. So,

u2u
T
2 � u4u

T
4 �

1

1� u2u4

�
1 u2 � u4

u2 � u4 u22 � u24

�
(50)

u2 � u4 � d� � e�i� d� − e�i � 2d� (51)

and

u22 � u24 � �d� � e�i�2 � �d� − e�i�2 � 2�d2� − e2�� (52)

are real terms too. The proposed control law for high-amplitude orbits
needs to be weighted with the same gain couples of complex and
conjugate eigenvectors in order to have a real control acceleration and
to cancel the imaginary parts out:

ac � f−λ1λ3G1�u1uT1 � u3u
T
3 	 − λ2λ4G2�u2uT2 � u4u

T
4 	gδr (53)

where

λ1λ3 � �σ � γi��σ − γi� � σ2 � γ2λ2λ4

� �−σ − γi��−σ � γi� � σ2 � γ2 (54)

are all real and positive numbers. Thus,ac can be further simplified to

ac � −�σ2 � γ2�
n
G2�u1uT1 � u3u

T
3 	 �G3�u2uT2 � u4u

T
4 	
o
δr (55)

In conclusion, the HSP control algorithm is designed such that

ac �
	
Eq:�25� if Δ > 0 Scheeres et al: �27	
Eq:�55� if Δ < 0 (56)

The proposed control in Eq. (56) was implemented in the CRUISE
(which stands for controlled routes by using innovative solar-
radiation equipment) algorithm inMATLAB language. An important
remark is that not all the gain sets (G1, G2, and G3) can stabilize the
orbit because the local stability is not a necessary condition of the
periodic orbit stability due to resonance effects [27].

IV. Gain Definition to Achieve Simple
Lyapunov Stability

The simple stability is guaranteed for the following:

8><
>:
bc � 4ω2 − Vc

xx − Vc
yy > 0

cc � Vc
xxV

c
yy − �Vc

xy�2 > 0
Δc � �bc�2 − 4cc > 0

(57)

The linear stability was already proven by Scheeres et al. [27] for
the hyperbolic × center solution; in this case, G1 in Eq. (25) should
be selected to be large enough to guarantee linear stability. In this
section, a similar approach is used to study the stability as a function
of G2 and G3 associated to the extended control in Eq. (55), where
complex and conjugate eigenvalues occur. For the definition of the
control law in Eq. (55), Vc

xx, Vc
yy, and Vc

xy are defined as follows:

Vc
xx � Vxx − G2

�σ2 � γ2�
1� u1u3

− G3
�σ2 � γ2�
1� u2u4

(58)

Vc
yy � Vyy − G2

�σ2 � γ2��u21 � u23�
1� u1u3

− G3
�σ2 � γ2��u22 � u24�

1� u2u4
(59)

Vc
xy � Vxy − G2

�σ2 � γ2��u1 � u3�
1� u1u3

− G3
�σ2 � γ2��u2 � u4�

1� u2u4
(60)

The definition of bc is

bc � b� �σ2 � γ2�
�
G2
1� u21 � u23
1� u1u3

�G3
1� u22 � u24
1� u4u4

�
(61)

Because b < 0 and bc must be greater than zero, it is important to
study the sign of the terms associated to the controller. In Eq. (61),
u1u3 � a2� � b2� and u2u4 � d2� � e2� are positive terms; thus, all the
fractions are positive (greater than zero). This means that, for the first
condition in Eq. (57),G2 andG3 should be positive and big enough to
keepbc > 0. As a consequence of Eq. (57), �bc�2must be greater than
4cc such that Δc > 0. The definition of Δc is

Δc � �4ω2 − Vc
xx − Vc

yy�2 − 4�Vc
xxV

c
yy − �Vc

xy�2� (62)

where Eq. (62) can be rewritten as follows:
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Δc � 8ω2bc � �Vc
xx − Vc

yy�2 � 4�Vc
xy�2 (63)

Because �Vc
xx − Vc

yy�2 and �Vc
xy�2 are positive terms, the condition

Δc > 0 is satisfied by bc > 0. The definition of cc is

cc � c� �σ2 � γ2�2
�
G22

u21 � u23
�1� u1u3�2

�G23
u22 � u24
�1� u2u4�2

� G2G3�u22 � u24 � u21 � u23�
�1� u2u4��1� u1u3�

�
� Kn (64)

where Kn are all the negative terms:

Kn � −�σ2 � γ2�
	
G2

�
Vxx�u21 � u23� � Vyy

1� u1u3
−
2Vxy�u1 � u3�
1� u1u3

�G2�σ2 � γ2� �u1 � u3�2
�1� u1u3�2

�
�G3

�
Vxx�u22 � u24� � Vyy

1� u2u4

−
2Vxy�u2 � u4�
1� u2u4

�G3�σ2 � γ2� �u2 � u4�2
�1� u2u4�2

�

� 2G2G3�σ2 � γ2� �u1 � u3��u2 � u4�
�1� u2u4��1� u1u3�



(65)

Because c < 0, Kn collects all the negative terms, cc must be
greater than zero, andG2 andG3 must be positive and big enough to
guarantee the stability. Note that, as a result of both conditions of
bc > 0 and cc > 0, eitherG2 orG3 must be nonzero. This qualitative
analysis gives an understanding on how to select the gains. However,
it does not give quantitative information. Examples of optimization
techniques that can be used to select the control gains were shown
in [37,38]

V. Actuators Model: Deployable Reflective Structures

As shown by Farrés and Jorba [23] and Xu and Xu [28], the HSP
control acceleration can be expressed with the linear approximation
in the orientation angles and area, so as is defined as follows:

as�α; δ; β� � as�α0; δ0; β0� �
∂as

∂α

����
�α0;δ0 ;β0�

�α − α0�

� ∂as

∂δ

����
�α0 ;δ0;β0�

�δ − δ0� �
∂as

∂β

����
�α0;δ0;β0�

�β − β0� �O�2� (66)

Then, it is possible to write Δα � �α − α0�, Δδ � �δ − δ0�, and
Δβ � �β − β0�; by imposing that the SRP acceleration is given by the
HSP control asas�α; δ; β� � ac, Eq. (66) can be rewritten as follows:

ac � as�α0; δ0; β0� �
�
∂as

∂Θ

�����
�α0;δ0;β0�

ΔΘ�O�2� (67)

whereΔΘ is defined such as fΔα;Δδ;ΔβgT , and the Jacobianmatrix
is defined as follows:

�
∂as

∂Θ

�����
�α0 ;δ0 ;β0�

�
�
∂as

∂α

����
�α0;δ0;β0�

;
∂as

∂δ

����
�α0;δ0;β0�

;
∂as

∂β

����
�α0;δ0 ;β0�

�
(68)

The derivatives of the SRP acceleration in Eq. (68) is given in
Appendix B; by inverting Eq. (67), the variation in the control
parameters is given by

ΔΘ �
�
∂as

∂Θ

�−1
����
�α0;δ0;β0�

�ac − as�α0; δ0; β0�� (69)

VI. Study of Stability with the Effect of the SRP
Acceleration

In this section, the performance of theHSP control when usedwith
SRP acceleration will be investigated, where the control acceleration
is given by the actuator model shown in Sec. V, and the control law
proposed byMcInnes [22].McInnes’sworkwas based on a trajectory
station-keeping technique proposed byHowell andPernicka [20] (the
target point approach) and modified by McInnes [22] such that the
maneuvers were given by the effect of SRP acceleration when
changing the sail orientation angles. To allow the comparison, we
extended thework ofMcInnes to also include changes in the lightness
parameter β. Thus, the variational equations can bewritten as follows:

d

dt

2
4 δr
δ _r
δs

3
5 �

2
4 0 I 0
Vrr 2ω0J as

rs

0 0 0

3
5
2
4 δr
δ _r
δs

3
5 (70)

where, as for Eq. (6), δr is the position error with respect to the target
orbit, δ _r is the velocity error with respect to the target, J is defined as
in Eq. (6), and δs � fα; δ; βg is the vector of the control parameters in
terms of the SRP angles and lightness parameter. Note that Eqs. (6)
and (70) differ only for the selected states variables; however, here,
the SRP control parameters δs are included in the state. The target
point algorithm is written in term of a cost function that contains the
deviation of the actual trajectory given by

δx�t� � Φ�t; t0� ⋅ δx�t0� (71)

where Φ is the state transition matrix, which is now affected by the
SRP acceleration. The deviation from the actual trajectory is then
used to design the target point cost function (for further details, refer
to [20,22]). The aim here is not to derive the target point algorithm but
to study the Lyapunov stability of Eq. (70). We aim to demonstrate
that the effect of the SRP acceleration in the target point algorithm in
Eq. (70) does not affect the local stability when compared to the HSP
control, where Dfc is defined as in Eq. (11). However, the orbit
stability is affected by SRP acceleration because the target point
control modifies the state transition matrix. The idea is to study the
stability of this new linearized equations, where the characteristic
polynomial is given by computing the determinant of D�λ� �
jDfc − λIj � 0where, here,Dfc is defined as the matrix in Eq. (70).
For the planar dynamics, the characteristic polynomial is found to be

Λ2 � �4 − Vxx − Vyy�Λ� �VxxVyy − V2xy� � 0 (72)

From Eq. (72), it becomes clear that these modified linearized
equations do not affect the local behavior of the system because
we found the same characteristic polynomial as the planar case
without the effect of SRP acceleration in Eq. (7). Thus, changing the
angles or β will not stabilize the system and the system will still
have hyperbolic × center eigenvalues or couples of complex and
conjugate values. The simple Lyapunov stability cannot be reached;
thus, an artificial potential that affects the sign ofb, c, andΔ is needed
as for the HSP control. However, note that the eigenvalues of the
monodromy matrix are affected by the SRP acceleration. Thus, the
target point approach cannot guarantee Lyapunov stability.

VII. Hamiltonian Structure-Preserving Control
Through Solar Radiation Pressure Actuators

The purpose of this study is to investigate the use of SRP for station
keeping of spacecraft in high-amplitude DPOs. The selected orbits
are high-amplitude DPOs (in Fig. 3a) and planar-Lyapunov orbits,
shown in Fig. 3b. When SRP is incorporated, in order to have a
feasible acceleration, the values of the unstable manifold should
never be negative (i.e., the spacecraft escaping outward from the sun).
Goméz et al. [19] named this peculiarity the “always towards the sun
rule.” This effect causes saturation in the actuator system when the
lightness parameter β is constrained between zero and one, and the
orientation angles should be limited between−π∕2 and�π∕2 in both
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α and δ. Gómez et al. explained that this effect could not be overcome
unless a very high area-to-mass ratio was used. A previous extension
of HSP with SRP proposed by Xu and Xu [28] fulfilled the always-
towards–the-sun rule by selecting a very high area-to-mass ratio to
avoid saturation in the control parameters. Xu and Xu [28] selected a
Lissajous orbit to apply their control law, and they used an initial
lightness parameter β0 of 0.5059 that, for a spacecraft with the same
mass as SOHO, corresponded to an initial area of 6.1270 ⋅ 105 m2
(which was equivalent to a 782.75 m span of a square sail area).
Recently, the Japan Aerospace Exploration Agency’s IKAROS
mission demonstrated the capability to deploy a 20-m-span sail [39];
thus, this size of area required, as an example, for SOHO is infeasible
with current technology. As our study aims to understand which
parameters affect the pointing requirements and the size of the
actuator area for high-amplitude orbits, we first analyze the structural
requirements for the simple case of halo orbits (relevant to the SOHO
mission), where the SRP acceleration is provided by the HSP control
law designed by Scheeres et al. [27].

A. SOHOMission Scenario

In this section, SOHO is used as a mission scenario to verify when
SRP is a feasible option to control a spacecraft in a halo orbit using the
HSP controller. In this case, the control works in the regime of the
hyberbolic equilibrium and a gain ofG1 � 10 is required to stabilize
the orbit. The mass of SOHO is set to 1000 kg, and the required
control parameters are in terms of the reflective areaA, in-plane angle
α, and out-of-plane angle δ. These are computed as a function of the
injection error and the initial reflective area of the spacecraft. The
spacecraft is originally sun pointing before the action of the HSP
controller. The controller is tested for a maximum of nine orbital
periods that correspond to 4.4 years.
The results are shown in Table 1, where it can be seen that high

injection errors require a higher initial area A0 to guarantee a feasible
solution. For example, Fig. 7 shows the case of A0 � 20 m2 and an
offset of −40 km. The solution is not feasible because of the
requirements of a negative area; thus, for this specific initial injection

error, aminimum of 35 m2 inA0 is required to have a feasible area, as
shown in Table 1. In the case of no error in the halo orbit insertion
maneuver, the pointing requirements and the area needed to control
the spacecraft are very tiny, as shown in Table 1 for the case of
A0 � 70 m2. This shows that the HSP control requires very few
accelerations to stabilize the orbit. This is confirmed by Fig. 8, which
compares the same case scenario with (Figs. 8a, 8c, and 8e) and
without (Figs. 8b, 8d, and 8f) an initial injection error. Note that,
when the injection error is not considered, the controller acceleration
is zero at the first orbital period because the spacecraft is exactly
placed onto the target orbit. Table 1 shows that, for A0 � 20 m2 and
an injection error of −5 km, the solution exists and it requires
reasonable variations in the area required and in the orientation
angles. It also shows that, in this case, the controller should be limited
to variations in just the area and the in-plane angle α because the
variations in the out-of-plane angle δ are very tiny; thus, they are not
feasible.
These results suggest that the HSP controller is a good candidate to

perform propellant-free control using SRP acceleration. The initial
area required depends on the initial injection error; however, an initial
offset is required to avoid tiny control requirements that cannot be
physically achieved. For example, an offset of−5 km from the target
orbit requires an initial area of 20 m2 with variations of the area of
15.5–21.5 m2, as shown in Table 1. The pointing requirements are
feasible in α, on the order of magnitude of the telescopes’ sunshade
pointing requirements for LPOs; whereas, in this case in δ, a control
action is not necessary.
Note that the continuous acceleration requires the design of a

variable-geometry actuator system; thus, the control acceleration
should be limited in the variations of the control area required. It is
thus recommended to investigate a HSP control discrete in time to
avoid a continuous change of the reflective area.

B. High-Amplitude Planar DPOs and LPOs

In this section, the performance of the HSP controller enhanced by
SRP is tested for high-amplitude orbits where a couple of complex

Table 1 Area and orientations angles required for different initial reflective areas and injection errors

x-axis offset, km A0, m2 β0 A, m2 β α, deg δ, deg

−40 10 1.53 ⋅ 10−5 — — — — — — — —

−40 20 3.06 ⋅ 10−5 — — — — — — — —

−5 20 3.06 ⋅ 10−5 15.5–21.5 2.4 ⋅ 10−5–3.29 ⋅ 10−5 �2.5 �7 ⋅ 10−3

−40 30 4.59 ⋅ 10−5 — — — — — — — —

−40 35 5.355 ⋅ 10−5 0.5–47 1.306 ⋅ 10−6–7.24 ⋅ 10−5 �10.5 �3
−40 40 6.12 ⋅ 10−5 5.5–52.32 8.331 ⋅ 10−6–8.004 ⋅ 10−5 �9.5 �2.5
−40 70 1.071 ⋅ 10−4 35–83.3 5.436 ⋅ 10−5–1.259 ⋅ 10−4 �5.5 �1.5
0 70 1.071 ⋅ 10−4 69.99–70.0001 1.071 ⋅ 10−4 �2.635 ⋅ 10−5 �7.5 ⋅ 10−8

−40 100 1.53 ⋅ 10−4 65.66–112 1.004 ⋅ 10−4–1.718 ⋅ 10−4 �3.8 �1.02
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Fig. 7 Required area when the initial area ism2 and an initial offset in x of −40 km is taken into account.
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and conjugate eigenvalues occurs. The controller derived in Sec. III is
used. Themass of the spacecraft is still 1000 kg and thegains required
to stabilize the orbit are G1 � G2 � G3 � 31. The controller is
tested for the planar LPOs in Fig. 3a and for the DPO orbit shown in
Fig. 3b. An initial reflective area of 4.5 m2 is selected, and an initial
offset along the x axis is included to avoid tiny control requirements.
Figure 9 shows the required area and in-plane angle for the selected
high-amplitude orbits. In this case, the controller cannot be pushed to
a high injection error due to infeasible solutions; thus, minimum
offsets of−1 and −0.5 km are selected for the LPO (Figs. 9a and 9c)

and for the DPO (Figs. 9b and 9d), respectively. In both cases, a small
offset required relatively high variations in area and in α if compared
with the SOHO case study. This is because these orbits have an index
of stability that is much smaller than halo orbits; thus, a small
deviation from the target shows higher values in the control
requirements. Therefore, high-amplitude orbits require a precise
insertion maneuver with a tiny deviation from the target if the control
is to be performed using SRP. However, the increase of the control
gains may enlarge the effect of the control; thus, a small offset would
not need high variations in area and α.
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Fig. 8 Comparison of the29 effect of the initial injection error along the x axis onto the reflective area and the orientation angle required for stabilizing the
orbit when an initial area of 70 m2 is selected.
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VIII. Deployable Structure Solutions

As shown in Sec. VII, the HSP control requires small variations in
the reflective area and in the in-plane angle α. It is also found that the
variation in the out-of plane angle δ is very small, on the order of
10−5 − 10−8 deg. Thus, in this case, the controller is effective in the
variation of area and α. The variation in the angle α is achievablewith
the LPO’s spacecraft pointing requirements. For example, the SOHO
and Herschel spacecraft require a three-axis attitude stabilization
with pointing accuracy of 1 arcsec; whereas the Gaia spacecraft is
spin-axis stabilized, where the angle between the spin axis and the
sun-line direction (shown in Fig. 10) is of 45 deg. The area variation
of the reflective control actuators depends on the effect of the
disturbances, where the initial offset of the spacecraft from the target
orbit due to failure in the orbit insertion maneuver is evaluated.
In this section, the required additional flaps to achieve a variable-

geometry actuator system are presented for a class of LPO spacecraft
similar to the SOHO mission. Figure 10 shows an example of a
nominal configuration¶ for a spacecraft that has a near-perfect
reflective deployable area of 20 m2 and a mass of 1000 kg. The case
studied is shown in Table 1 for A0 � 20 m2 when an initial offset in
position of−5 km is considered. It is supposed that the square area of
the spacecraft bus is not reflective (white prism in Fig. 10). The bus
area is 11.61 m2 (3.4073 × 3.4073 m). It is also assumed that one
side of the solar array and of the reflective actuator flapmatch the side
of the spacecraft bus with a width of 3.4073 m, as shown in Fig. 10.
The SOHO spacecraft solar array is designed to have an area of

21.9 m2. Each of the four solar paddles (darkest squares Fig. 10) thus
has an area of 5.475 m2. By knowing that the width of the solar
paddle is 3.4073 m (as the solar bus size), the length of each of the
four solar paddles is 1.6068 m.
From Table 1, the initial β0 required for a near-perfect area is

3.06 ⋅ 10−5. The reflectivity coefficient of the solar arrayCsar is 1.08 at
the beginning of life. The lightness parameter for the solar array βsa
can be calculated from Eq. (4).
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Fig. 9 Area and in-plane angle required for the planar LPO in Fig. 3b and the DPO in Fig. 3a.

Fig. 10 Actuator configuration for a class of spacecraft like the SOHO
mission.

¶The nominal configuration of the control areawas previously denotedwith
A0. It is the initial area before activating the control law.
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The solar array lightness parameter βsa for a 1000 kg spacecraft
corresponds to 1.8227 ⋅ 10−5. An initial near perfect reflective flap
(Cf

r � 2) has to be added to reach the β0 condition**. The lightness
number associated to the nominal reflective flap βf0 is given by the
following:

βf0 � β0 − βsa (73)

The initial total area of the reflective flaps is 8.0867 m2

(βf0 � 1.2373 ⋅ 10−5). Two flaps of area Af
0 � 4.0434 m2

(1.1867 × 3.4073 m) are required (lighter-colored boxes in Fig. 10).
Note that it is possible to sum the lightness numbers of different

areas with different reflectivities because the definition of the
equivalent reflectivity coefficient is given by the following:

C�r �
2 ⋅ Cf

r ⋅ Af
0 � 4 ⋅ Csar ⋅ Asa

2 ⋅ Af
0 � 4 ⋅ Asa

(74)

where C�r is an equivalent reflectivity coefficient. The total lightness
number β0 is given by Eq. (4), and it turns into

β0 �
P�

msc

�2 ⋅ Af
0 � 4 ⋅ Asa� ⋅ C�r

� P�

msc

⋅ �2 ⋅ Cf
r ⋅ Af

0 � 4 ⋅ Csar ⋅ Asa� � βf0 � βsa (75)

where msc is the total mass of the spacecraft and

P� � Psrp−1AU
r2Earth−Sun
μSun

From Eq. (75), it is clear that operations within lightness numbers of
different reflective surfaces are possible.
The total length of the spacecraft in its nominal configuration is

therefore 13.5525 m. The length of the SOHO spacecraft without the
reflective actuator flaps was originally of 9.8 m.
As shown in Table 1 for a near-perfect reflective area†† of

A0 � 20 m2, the total area variation needed to meet the control
requirements is between 15.5 and 21.5 m2; thus, the variation in the
total reflective area 2 ⋅ ΔAf

0 is to be between −4.5 and 1.5 m2. For
each reflective flap, the initial Af

0 has to be reduced by 2.25 m
2

(0.6603 × 3.4073 m) or increased by 0.75 m2 (0.2201 × 3.4073 m).
In summary, the minimum flap area is Af

min � 1.7934 m2 and the
maximum flap area is Af

max � 4.7934 m2, whereas the nominal flap
area is Af

0 � 4.0434 m2.
The material proposed to design a highly reflective and light

actuator flap uses solar sail technology. The best sail substrate is
Kapton and has a surface density of 7.1 g∕m2. The best choice of the
surface coating is aluminum with a surface density of 1.35 g∕m2
[31]. Themaximumarea of one flap is 4.7934 m2, and themass of the
flap material is 40.5 g (0.0405 kg). To support the flap material,
7.9914 m of mast structure, as shown in Fig. 11, is required that has a
linear mass of 70 g∕m [40], which totals 560 g (0.56 kg). The total
mass of one flap is therefore 600.5 g, and the total mass of the two
flaps is 1.201 kg. Allowing a 20%massmargin [31], the total mass of
the reflective actuator system is 1.4412 kg. Figure 11 shows the front
and the back views of the reflective actuator flap with a maximum
area of Af

max � 4.7934 m2.
Shahid and Kumar [17] proposed a sliding-mode control for LPO

spacecraft enhanced by solar radiation pressure. In the Shahid and
Kumar [17] case, the initial area required for the control was around
40 m2. For a 1000 kg spacecraft, it was proposed by Shahid and
Kumar [17] to use a solar sail with a final mass of 6 kg. In this work,

two additional flaps to the spacecraft solar arraywere proposedwith a
total area of 8.0867 m2 and an additional mass of 1.4412 kg.
Table 2 summarizes the overall size of the spacecraft and the size in

the reflective actuator flaps. Note that the nominal area is 20 m2 for a
near-perfect reflective area. However, the contribution of 21.9 m2 of
solar array was taken into account; thus, A0 now includes the area of
the near-perfect flaps and of the solar array with a reflectivity
coefficient of 1.08. Due to the nonperfect reflective property of the
solar array, a nominal area of 31.4868 m2 is therefore required.
An example of variable-shape areas was proposed by Borggräfe

et al. [41], who also suggested the use of electrochromic devices for
the control of multipurpose variable-shape sails. Borggräfe et al. [41]
considered distributed masses with variable reflectivity, allowing a
change of the sail shape from a flat configuration (i.e., active
trajectory control) to a parabolic shape for use as a remote sensing
device or communication antenna. A similar approach can be
adopted here by having a reflective actuator flap covered by the pixels
of a reflective control device. The control law can thus be transformed
in an electric impulse to switch on (highly reflective pixel; Fig. 12)
and off (absorption pixel; Fig. 12) the reflective control devices. In
this case, the shape of the flap is kept fixed and the effect of the
variable geometry is obtained by changing the surface luminosity of
the flaps. Figure 12 shows how to modify the reflective area of the
flap through a reflective control device. The advantage of thismethod
is in allowing the change of the reflective area without mechanical
moving parts. This method could also add flexibility in the control
lawmission design. It would be possible to adjust the requirements of
the control law by reshaping the on/off switching configuration. The
main disadvantage is related to the effect of degradation of the
material in the space environment; thus, a margin in the area should
be included to compensate the effect of degradations during the
duration of the mission.
Other options investigate the use of mechanism to change the

geometry of the controlled area. Recently, Ceriotti et al. [42]
proposed a variable-geometry cone sail, achieved using controlled
mechanisms. Currently, mechanical solutions do not allow a
continuous variation of the area; thus, the proposed controlled
acceleration has to limit the fluctuation in the required area when
using the current space mechanism. The continuous variable area
requires the design of deployable mechanisms that enhance the
variable shape of the SRP actuators. As previously stated, current
space technology does not provide solutions for a continuously
varying geometry actuator system. This suggests that further study

Fig. 11 Front and back views of the reflective actuator flap for
Af

max � 4.7934 m2.

Table 2 Spacecraft area datasheet

Area m2 Number

Spacecraft bus 11.61 1
Solar paddle Asa 5.475 4
Reflective actuator flap Af

max
4.7934 2

Nominal area from Table 1 A0 20 — —

Control area required from Table 1 Amin − Amax 15.5–21.5 — —

Nominal area needed; A0 � 4 ⋅ Asa � 2 ⋅ Af
0

31.4868 — —

Variation of the reflective actuator Af
min − Af

max
1.7934–4.7934 2

**Note that C�r � 2 is a theoretical value, and it is true at the beginning of
life; however, some concern should be given on the degradation of reflectivity
due to the space environment.

††Note that, here, A0 is the contribution of the solar array and the additional
flaps area at the nominal condition; thus, A0 � 4 ⋅ Asa � 2 ⋅ Af

0 .
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should be done in the design of future space missions to find
innovative solutions.

IX. Conclusions

This work focuses on the design of a solar radiation pressure
Hamiltonian structure-preserving control for spacecraft. The
Hamiltonian structure-preserving control law developed by Scheeres
et al. [27] is here extended to high-amplitude orbits and applied by
considering the effect of solar radiation pressure. The Hamiltonian
structure-preserving control is a good candidate for solar radiation
pressure applications because of the lowcontrol acceleration required
(thus the fuel expenditure is small), the robustness due to error in the
launcher orbit insertion maneuver, and how it works in the regime
of nonlinearities. The Hamiltonian structure-preserving control
stabilizes the orbit through the simple Lyapunov stability by
counteracting the stable and unstable manifolds. Thus, the effect of
the control is to add an artificial center manifold to the system. The
Hamiltonian structure-preserving control is extended to high-
amplitude orbitswhen couples of complex and conjugate eigenvalues
occur. The generalized control shows that the control area pointing
requirements match the LPO spacecraft pointing requirements where
themajor action of control is given in the in-plane angle rather than in
the out-of-plane angle. This result holds independently from the orbit
amplitude size. The most efficient control parameters are thus the
reflective area and the in-plane angle α. A variable reflective area is
required by the control law. In this paper, a pixel reflective control
device (RCD) fixed-shape flap is proposed to enhance geometrical
change in the area-to-mass ratio of the spacecraft without using a
mechanism. This can provide a fast control response in the variation
of the reflective area, and it can prevent demanding requirements to
the AOCS subsystem. As high-amplitude orbits are highly unstable
when compared with low-amplitude orbits, a spacecraft in high-
amplitude orbits requires a precise orbit insertion maneuver and high
reflective surfaces to keep the spacecraft on the nominal orbit.

Appendix A: Hamiltonian Structure-Preserving Control
Law Extended to the Third Dimension

The eigenvalues of the linearized dynamics are the solutions of the
characteristic equationsD�λ� � jDf − λIj � 0, where the character-
istic polynomial is

Λ3 � bΛ2 � cΛ� d � 0 (A1)

where b, c, and d are defined as follows:8<
:
b � 4 − Vxx − Vyy − Vzz

c � −V2xy − V2xz � VxxVyy − V2yz − 4Vzz � VxxVzz � VyyVzz

d � −jVrrj
(A2)

The aim of the controller is to place the eigenvalues on the
imaginary axis, so an artificial center manifold stabilizes the periodic
orbit by removing the stable and unstable manifolds (i.e., hyperbolic

equilibrium). The discriminant of the equation must be greater than
zero in order to have three real and distinct roots:

Δ � b2c2 − 4c3 − 4b3d − 27d2 � 18bcd (A3)

To have an instantaneous map of real eigenvalues and two pairs of
imaginary eigenvalues, the polynomial in Eq. (A1) must have one
positive and two negative roots. If Δ > 0, there are three real and
distinct solutions. For a cubic polynomial, it is possible to guarantee
only one positive root by following the Descartes rule of signs. Thus,
b > 0, c < 0, d < 0 (or jVrrj > 0), andΔ > 0. WhenΔ < 0, there are
two couples of complex and conjugate roots and one real root.
However, the extension to this case is not included yet in our analysis.

1. Eigenvalues of the Characteristic Polynomial

The solutions of Eq. (A1) are [43] as follows:

Q � 3c − b2

9
; R � 9bc − 27d − 2b3

54
;

S � �R�
������������������
Q3 � R2

p
�1∕3; T � �R −

������������������
Q3 � R2

p
�1∕3 (A4)

8>>>>>>>><
>>>>>>>>:

Λ1 � S� T −
b

3

Λ2 � −
�S� T�
2

−
b

3
� �S − T� ⋅ i

2

Λ3 � −
�S� T�
2

−
b

3
−
�S − T� ⋅ i

2

(A5)

So, now, we can find the six eigenvalues as λ1 �
������
Λ1

p
,

λ2 � −
������
Λ1

p
, λ3 �

������
Λ2

p
, λ4 � −

������
Λ2

p
, λ5 �

������
Λ3

p
, and λ6 � −

������
Λ3

p
.

2. Eigenvectors of the Characteristic Polynomial

The eigenvectors can now be found by solving the system
�A − λiI� ⋅ x̂ � 0:

8>>>>>>>>><
>>>>>>>>>:

_̂x � λix̂
_̂y � λiŷ
_̂z � λiẑ

�Vxx − λ2i �x̂� �Vxy � 2ω0λi�ŷ� Vxzẑ � 0
�Vxy − 2ω0λi�x̂� �Vyy − λ2i �ŷ� Vyzẑ � 0
Vxzx̂� Vyzŷ� �Vzz − λ2i �ẑ � 0

(A6)

Setting an arbitrary parameter for x̂ � 1, one of the infinitive
eigenvectors for λi can be determined. We are now interested in
solving the following system:8>><

>>:
�Vxx − λ2i � � �Vxy � 2ω0λi�ŷ� Vxzẑ � 0
�Vxy − 2ω0λi� � �Vyy − λ2i �ŷ� Vyzẑ � 0
Vxz � Vyzŷ� �Vzz − λ2i �ẑ � 0

(A7)

which has three equations and two unknowns. Thus, we have three
different options to find the solution. The general eigenvector is
defined as follows:

8>>>>>>>>><
>>>>>>>>>:

x̂

ŷ

ẑ
_̂x
_̂y
_̂z

9>>>>>>>>>=
>>>>>>>>>;
�

8>>>>>>>>><
>>>>>>>>>:

1

ui

u2i
λi

λi ⋅ ui
λi ⋅ u2i

9>>>>>>>>>=
>>>>>>>>>;

(A8)

Fig. 12 Concept of pixel reflective control device.
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In the case of solving the first two equations of Eq. (A7), the
solution is

ŷ � Vxz�Vxy − 2ω0λi� � Vyz�λ2i − Vxx�
Vyz�Vxy � 2ω0λi� − Vxz�Vyy − λ2i �

� ui

ẑ � �−V
2
xy � 4ω20λ2i − Vyyλ

2
i � VyyVxx � λ4i − λ2i Vxx�

Vyz�Vxy � 2ω0λi� − Vxz�Vyy − λ2i �
� u2i

(A9)

If now we solve the first and the third equations of Eq. (A7), the
solution becomes

ŷ � �Vxx − λ2i ��Vzz − λ2i � − V2xz
VxzVyz − �Vxy � 2ω0λi��Vzz − λ2i �

� ui

ẑ � �Vxy � 2ω0λi�Vxz − �Vxx − λ2i �Vyz

VxzVyz − �Vxy � 2ω0λi��Vzz − λ2i �
� u2i

(A10)

Finally, by solving the second and third equations of Eq. (A7), the
solution turns into

ŷ � �Vxy − 2ω0λi��Vzz − λ2i � − VyzVxz

V2yz − �Vyy − λ2i ��Vzz − λ2i �
� ui

ẑ � �Vyy − λ2i �Vxz − �Vxy − 2ω0λi�Vyz

V2yz − �Vyy − λ2i ��Vzz − λ2i �
� u2i

(A11)

Appendix B: Derivatives of the Solar Radiation
Pressure Accelerations

In Sec. V, the control acceleration is given by the solar radiation
pressure actuators, where knowledge of the Jacobian matrix in
Eq. (68) is required. In this section, the derivatives of the SRP
accelerations with respect to α (in-plane angle), δ (out-of-plane
angle), and β (lightness parameter, function of the area-to-mass ratio)
is shown. The spacecraft–sun vector is defined with respect to the
rotating system by two angles: Φ (in-plane) and Ψ (out-of-plane).
These two angles are functions of the spacecraft–sun vector
components and are defined as follows:

Φ � arctan
�

y

�x − xSun�
�
; and Ψ � arctan

�
z

�x − xSun�2 � y2

�
(B1)

respectively. The projection of the spacecraft–sun vector on the x − y
plane is defined as follows:

rxy;Sun−p �
����������������������������������
�x − xSun�2 � y2

q
(B2)

The partial derivatives of the SRP accelerations with respect to α
are defined as follows:

∂a
∂α
�
( axα
ayα
azα

)
(B3)

where the components in x, y, and z are

axα �
β ⋅ �μ − 1� cos�δ� Ψ� ⋅ �−2z ⋅ rxy;Sun−p cos�3α∕2�Φ� sin�α∕2� sin�δ� � cos�δ��z2 sin�α�Φ� ⋅ r2xy;Sun−p sin�2α�Φ��	

��x� μ�2 � y2 � z2	3∕2 (B4)

ayα �
−�β�μ − 1� cos�δ�Φ��cos�δ��z2 cos�α� Ψ� � r2xy;Sun−p cos�2α�Φ�� � 2zrxy;Sun−p sin�α∕2� sin�3α∕2� Ψ��	

��x� μ�2 � y2 � z2	3∕2 (B5)

and

azα �
β�μ − 1� sin�α��r2xy;Sun−p cos�δ� − zrxy;Sun−p sin�δ� sin�δ� Ψ�	

��x� μ�2 � y2 � z2	3∕2 (B6)

As for the partial derivatives in α, the definition for the derivatives in δ is

∂a
∂δ
�
( axδ
ayδ
azδ

)
(B7)

where the partial derivative in x is

axδ �
β�1 − μ� cos�α� Ψ��cos�δ�Φ��−zrxy;Sun−p�−1 cos�α�� cos�δ� − �z2 � r2xy;Sun−p cos�α�� sin�δ��

��x� μ�2 � y2 � z2	3∕2

−
��z2 � r2xy;Sun−p cos�α�� cos�δ� − zrxy;Sun−p�−1 cos�α�� sin�δ�� sin�δ�Φ�	

��x� μ�2 � y2 � z2	3∕2 (B8)

the derivative in y is

ayδ �
β�1 − μ� sin�α�Φ��cos�δ� Ψ��−zrxy;Sun−p�−1 cos�α�� cos�δ� − �z2 � r2xy;Sun−p cos�α�� sin�δ��

��x� μ�2 � y2 � z2	3∕2

−
��z2 � r2xy;Sun−p cos�α�� cos�δ� − zrxy;Sun−p�−1� cos�α�� sin�δ�� sin�δ� Ψ�	

��x� μ�2 � y2 � z2	3∕2 (B9)
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whereas the derivative in z is

azδ �
β�1 − μ��cos�δ� Ψ���z2 � r2xy;Sun−p cos�α�� cos�δ� − zrxy;Sun−p�−1 cos�α�� sin�δ��

��x� μ�2 � y2 � z2	3∕2
�−zrxy;Sun−p�−1 cos�α�� cos�δ� − �z2r2xy;Sun−p cos�α�� sin�δ�� sin�δ� Ψ�	

��x� μ�2 � y2 � z2	3∕2
(B10)

For the case of the derivatives in β, the solution is written in a
compact way as follows:

∂a
∂β
� �1 − μ�

�
rSun−p
j �Sun−p j

; N̂

�
2

⋅ N̂ (B11)

In Eq. (B11), the scalar product between the spacecraft–sun vector
and the normal vector to the reflective surface is defined by�
rSun−p
jrSun−pj

;N̂

�

��z
2��y2��x�μ�2�cos�α��cos�δ�−z⋅rxy;Sun−p�cos�α�−1�sin�α�

�x�μ�2�y2�z2

(B12)

where the normalized spacecraft–sun vector is a function, by
definition, of the angles Φ and Ψ:

rSun−p
jrSun−pj

�
8<
:
cos�Φ� ⋅ cos�Ψ�
sin�Φ� ⋅ cos�Ψ�

sin�Ψ�

9=
; (B13)
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